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Abstract
In a probabilistic mean-field game driven by a linear diffusion an individual player
aims to minimize an ergodic long-run cost by controlling the diffusion through a
pair of –increasing and decreasing– càdlàg processes, while he is interacting with
an aggregate of players through the expectation of a similar diffusion controlled by
another pair of càdlàg processes. In order to find equilibrium points in this game, we
first consider the control problem, in which the individual player has no interaction
with the aggregate of players. In this case, we prove that the best policy is to reflect
the diffusion process within two thresholds. Based on these results, we obtain criteria
for the existence of equilibrium points in the mean-field game in the case when the
controls of the aggregate of players are of reflection type, and give a pair of nonlinear
equations to find these equilibrium points. In addition, we present an approximation
result for nash equilibria of erdogic games with finitely many players to the mean-field
game equilibria considered above when the number of players tends to infinity. These
results are illustrated by several examples where the existence and uniqueness of the
equilibrium points depend on the coefficients of the underlying diffusion.
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1 Introduction

In recent years, mean-field game theory has emerged as a powerful framework for
modeling the behavior of large populations of interacting players in a stochastic envi-
ronment. This interdisciplinary field lies at the intersection ofmathematics, economics,
and engineering, offering deep insights into complex systems characterized by strate-
gic interactions. Mean-field gamemodels have found applications in various domains,
including for instance, finance, energy systems (Carmona 2021), or traffic manage-
ment and social dynamics (Festa and Göttlich 2018). The two seminal papers in the
field can be considered the contributions by Huang et al. (2006) and Lasry and Lions
(2007). The key issue in their proposals, under the assumption of a large number of
identically interacting players, is that individual actions do not affect a mean state of
the system. This means that an individual player faces an optimization problem against
a synthetic player, resulting from the aggregation of a large number of players, which
is referred to in this paper as the market. The success of the proposal made it possible
to solve various problems, many of which can be found in the two-volume monograph
by Carmona and Delarue (2018), which has become a central reference in the field.

The first results of the present paper are in the framework of singular control of
diffusions. Our departure point are the results by Alvarez (2018), where the existence
and uniqueness of optimal reflecting controls for a diffusion are established. Our
contribution is to extend these results to show that the solution found byAlvarez (2018)
is in fact the optimal control within the larger class of finite variation controls. To do
this, we use the solution of the two-sided ergodic singular control, in the framework
proposed by Alvarez (2018), thus extending the class of controls. To achieve our
goals, we postulate a verification result in the form of a Hamilton–Jacobi–Bellman
equation and use the ergodic properties of the controlled processes to obtain an analytic
problem. The control problem has been studied extensively in the literature, see for
example Alvarez and Shepp (1998), Hening et al. (2019), and Lande et al. (1994).With
respect to applications of singular control results, wemention studies focusing on cash
flow management that investigate optimal dividend distribution, recapitalization, or a
combination of both, while considering risk neutrality. See, for example, Asmussen
and Taksar (1998), Højgaard et al. (2001), Jeanblanc-Picqué and Shiryaev (1995),
Paulsen (2008), Peura and Keppo (2006), Shreve et al. (1984).

Our second aim in the present paper is to incorporate amean-field game dependence
into the two-sided ergodic singular control problem for Itô diffusions just described.
As a consequence, we obtain necessary and sufficient conditions for the existence of
mean-field game equilibriumpoints, and, formore restricted families of cost functions,
uniqueness within the class of reflecting strategies. Finally, we define an N -player
problem and prove that a mean-field equilibrium is an approximate Nash equilibrium
for the N -player game.

The mean-field game framework is less discussed in the literature. However, there
has been increased activity in this area in the recent past. Herewewould like tomention
the current papers by Aïd et al. (2023), Cao et al. (2023), Dianetti et al. (2023), Kunwai
et al. (2022), Christensen et al. (2021), Cao and Guo (2022), on the explicit solution
of stationary Mean Field Games with singular and impulsive controls.
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The rest of the paper is organized as follows. In Sect. 2 we study the control prob-
lem. After introducing the necessary tools, we state and prove the main result of the
section, i.e. the optimality of reflecting controls obtained within the class of càdlàg
controls. In Sect. 3 we consider the mean-field game problem. It adds the complex-
ity of a two-variable cost function where the second variable represents the market.
The main result consists of a set of conditions for the existence and uniqueness of
equilibrium strategies, containing also a particular analysis when the cost function is
multiplicative. Section4 presents three examples that illustrate these results. Section5
contains approximation results. The equilibrium found for mean field games, becomes
the limit of Nash equilibrium strategies when considering an individual player in the
framework of a symmetric N -player game. A final appendix includes some auxiliary
computations corresponding to the examples of Sect. 4.

2 Control problem

In this section we consider the one-player control problem. We first recall results
obtained by Alvarez (2018) that play a fundamental role along the paper. These results
consist in the determination of optimal control levels in an ergodic framework for a
diffusion within the class of reflecting controls. We then prove that the optimal levels
found in Alvarez (2018) in fact give the optimal controls within the broader class of
of finite variation càdlàg controls.

2.1 Diffusion

Let us consider a filtered probability space (�,F , {Ft : t ≥ 0−},P) that satisfy the
usual assumptions. In order to define the underlying diffusion consider the functions
μ : R → R and σ : R → R assumed to be locally Lipschitz. Under these conditions
the stochastic differential equation

dXt = μ(Xt )dt + σ(Xt )dWt , X0 = x0 (1)

has a unique strong solution up to an explosion time, that we denote by X =
{Xt : t ≥ 0−} (see (Protter 2005, Theorem V.38)). Observe that our framework
includes quadratic coefficients.

As usual, we define the infinitesimal generator of the process X as

LX = 1

2
σ 2(x)

d2

d2x
+ μ(x)

d

dx
.

We denote the density of the scale function S(x) w.r.t the Lebesgue measure as

S′(x) = exp

(
−

∫ x 2μ(u)

σ 2(u)
du

)
,
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and the density of the speed measure m(x) w.r.t the Lebesgue measure as

m′(x) = 2

σ 2(x)S′(x)
.

As mentioned above, the underlying process is controlled by a pair of processes, the
admissible controls, that drive it to a convenient region, defined below.

Definition 2.1 An admissible control is a pair of non-negative {Ft }-adapted processes
η = (U = {Ut }t≥0− , D = {Dt }t≥0−) such that:

(i) Each process U , D is right continuous and non decreasing almost surely.
(ii) For each t ≥ 0− the random variables Ut and Dt have finite expectation.
(iii) For every x ∈ R the stochastic differential equation

dXη
t := μ(Xη

t )dt + σ(Xη
t )dWt + dUt − dDt , X0− = x (2)

has a unique strong solution with no explosion in finite time.

We denote by A the set of admissible controls.

Note that condition (iii) is satisfied, for instance, when the coefficients are globally
Lipschitz (See the remark after Theorem V.38 in Protter (2005).) Observe also that
condition (ii) is not a real restriction, as, for instance, the integral in the cost function
G(x) in (5) that we aim to minimize, in case of having infinite expectations, is infinite.
A relevant sub-class of admissible controls is the set of reflecting controls.

Definition 2.2 For a < b denote by Xa,b = {Xa,b
t : t ≥ 0} the strong solution of the

stochastic differential equation with reflecting boundaries at a and b:

dXa,b
t = μ(Xa,b

t )dt + σ(Xa,b
t )dWt + dUa

t − dDb
t , X0− = x .

Here Ua = {Ua
t }, Db = {Db

t }, are the local times of the reflected diffusion in the
interval [a, b]. They are continuous non-decreasing processes that increase, respec-
tively, only when the solution visits a or b, and make the controlled diffusion satisfy
the condition a ≤ Xa,b

t ≤ b, a.s. for all t ≥ 0. As the above equation has a strong
solution (see Saisho (1987), Theorem 5.1)), the pair (Ua, Db) belongs to A, we call
them reflecting controls. If x /∈ (a, b), we begin the policy by sending the process to
the closest point of the interval [a, b] at time t = 0. This is why we need to begin our
evolution at t = 0−, in order to have càdlàg controls.

We introduce below the cost function c(x, y) to be considered in the mean-field game
formulation, satisfying some natural conditions.

Assumption 2.3 Assume that c : R2 → R+ is a continuous function, and the positive
constants qu, qd are the unit cost of using the associated controls. Assume that, for
each fixed y ∈ R there exist a value xy such that

c(x, y) ≥ c(xy, y) ≥ 0, for all x ∈ R,
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and positive constants Ky and αy such that

c(x, y) + Ky ≥ αy |x |, for all x ∈ R. (3)

Consider the maps

π1(x, y) = c(x, y) + qdμ(x), π2(x, y) = c(x, y) − quμ(x),

and assume that for each fixed y ∈ R:

(i) There exists a unique real number x yi = argmin{πi (x, y) : x ∈ R} so that πi (·, y)
is decreasing on (−∞, x yi ) and increasing on (x yi ,∞), where i = 1, 2.

(ii) The following limits hold:

lim
x→∞ π1(x, y) = lim

x→−∞ π2(x, y) = ∞. (4)

Remark 2.4 In the control problem case, when there is no aggregate of players, the
cost function depends only on the first variable. We then set the second variable above
to y = 0, and denote c(x) = c(x, 0). This function satisfies c(x) ≥ c(x0) ≥ 0 for
some x0, c(x)+K ≥ α|x |, for some positive constants K and α, and the functions are
π1(x) = c(x) + qdμ(x) and π2(x) = c(x) − quμ(x) have their respective minima at
x01 , x

0
2 , and satisfy (4).

Definition 2.5 We define the ergodic cost function as

G(x) = inf
η∈A

lim sup
T→∞

1

T
Ex

(∫ T

0
c(Xη

s )ds + quUT + qd DT

)
, (5)

where η = (U , D) is an admissible control in A.

The existence of a unique pair of optimal controls within the class of reflecting controls
was obtained by Alvarez (2018), fromwhere we borrow the notation and assumptions.
In the following result, we summarize (in a convenient way for our purposes) results
of Lemma 2.1 and Theorem 2.3 from Alvarez (2018). Let us mention that condition
(3) is not necessary for Alvarez (2018) results, we will use it in the sequel to prove
optimality within the class of feasible controls.

Theorem 2.6 (Alvarez (2018)) Under Assumption 2.3:
(a) If a < b then

lim
T→∞

1

T
Ex

(∫ T

0
c(Xa,b

s )ds + quU
a
T + qd D

b
T

)

= 1

m(a, b)

[∫ b

a
c(u)m(du) + qu

S′(a)
+ qd

S′(b)

]
=: C(a, b). (6)

(b) There is an unique pair of points a∗ < b∗ that satisfy the equations:
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(i) π1(b∗) = π2(a∗),
(ii)

∫ b∗
a∗ (π1(t) − π1(b∗))m(dt) + qu + qd

S′(a∗) = 0.

Furthermore, the pair (a∗, b∗) ∈ (−∞, x02 ) × (x01 ,∞) minimizes the expected long-
run average cost within the class of reflecting controls.

Remark 2.7 Condition (i) is obtained from the fact that Xa,b is stationary. Regarding
equation (ii), it arises after differentiation in order to determine the minimum. The
uniqueness of the solution is proved based on the properties of the cost function.
Conditions (i) and (ii) here are equivalent to conditions (2.5) and (2.6) in Alvarez
(2018) as they reduce to solving C(a, b) − π2(a) = π1(b) − C(a, b) = 0, as seen in
the proof of Lemma 2.1 in Alvarez (2018). See more details in Alvarez (2018).

2.2 Optimality withinA

Optimalitywithin the classA of càdlàg controls requires further analysis. As expected,
andmentioned inAlvarez (2018), the optimal controlswithin classA are the same con-
trols found in the class of reflecting controls. An analogous result to the one presented
below was obtained for non-negative diffusions when considering a maximization
problem in Cao et al. (2023) (see also Kunwai et al. 2022). More precisely, it is clear
that

inf
a<b

lim
T→∞

1

T
Ex

(∫ T

0
c(Xa,b

s )ds + quU
b
T + qd D

a
T

)
≥ G(x).

Then, to establish the optimality withinA it is necessary to obtain the other inequality.
This task is carried out with the help of the solution of the free boundary problem (13)
below, similarly to Cao et al. (2023). The mentioned differences with this situation
require different hypotheses and slightly different arguments.

Theorem 2.8 (Verification)Consider a diffusion defined by (1) and a cost function c(x)
satisfying Assumption 2.3. Suppose that there exist a constant λ ≥ 0 and a function
u ∈ C2(R) such that

(LXu)(x) + c(x) ≥ λ, −qu ≤ u′(x) ≤ qd , for all x ∈ R. (7)

Define the subset of admissible controls

B =
{
η ∈ A : lim inf

T→∞
1

T

∣∣Ex (u(Xη
T ))

∣∣ = 0

}
. (8)

Then,

inf
η∈B

lim sup
T→∞

1

T
Ex

(∫ T

0
c(Xη

s )ds + quUT + qd DT

)
≥ λ. (9)
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Remark 2.9 The consideration of the subclass B is not a restriction, as will be seen
below. More precisely, it will be proved (using condition (3)), that controls in A \ B
give infinite values of the long run costs, being then not relevant in the computation
of G(x) in (5).

Proof Fix T > 0. For each n ≥ 1 define the stopping times

Tn = inf{t ≥ 0 : |Xη
t | ≥ n} ∧ T ↗ T a.s.

Using Itô formula for processes with jumps (observe that the diffusion X is continuous
but the controls can have jumps, and in consequence the controlled processes Xη can
have jumps),

u(Xη(Tn)) = u(x) +
∫ Tn

0
u′(Xη

s−)dXη
s + 1

2

∫ Tn

0
u′′(Xη

s−)d〈(Xη)c, (Xη)c〉s
+

∑
s≤Tn

(
u(Xη

s ) − u(Xη
s−) − u′(Xη

s−) 
 Xη
s

)
. (10)

The r.h.s in (10) can be rewritten as

u(x) +
∫ Tn

0
(LXu)(Xη

s−)ds −
∫ Tn

0
μ(Xη

s−)u′(Xη
s−)ds

+
∫ Tn

0
u′(Xη

s−)dXη
s +

∑
s≤Tn

(
u(Xη

s ) − u(Xη
s−) − u′(Xη

s−) 
 Xη
s

)
. (11)

Using the fact that u′(Xη
s−) = u′(Xη

s ) in a set of total Lebesgue measure in [0, T ]
almost surely, and that 
Xη

s = 
Us − 
Ds , we rewrite (11) as

u(x) +
∫ Tn

0
(LXu)(Xη

s−)ds +
∫ Tn

0
u′(Xη

s−)σ (Xη
s−)dWs

+
∫ Tn

0
u′(Xη

s−)d(Us − Ds)

+
∑
s≤Tn

(
u(Xη

s ) − u(Xη
s−) − u′(Xη

s−)(
Us − 
Ds)
)
. (12)

Therefore, denoting by Uc
s and Dc

s the continuous parts of the processes Us and Ds

respectively, and using the inequalities (7) in the hypothesis, we obtain

u(Xη(Tn)) ≥ u(x) + λTn −
∫ Tn

0
c(Xη

s−)ds +
∫ Tn

0
u′(Xη

s−)σ (Xη
s−)dWs

−
∫ Tn

0
qudU

c
s −

∫ Tn

0
qddD

c
s −

∑
0≤s≤Tn

(
Usqu + 
Dsqd)
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= u(x) + λTn −
∫ Tn

0
c(Xη

s−)ds +
∫ Tn

0
u′(Xη

s−)σ (Xη
s−)dWs

− quUTn − qd DTn .

Rearranging the terms above and taking the expectation we obtain

Ex (u(Xη(Tn))) − u(x) + Ex

(∫ Tn

0
c(Xη

s−)ds + quUTn + qd DTn

)
≥ λEx (Tn).

Taking first limit as n tends to infinity, dividing then by T , and finally taking lim inf
as T goes to infinity we obtain (9) concluding the proof of the verification theorem. ��

Consideration of free boundary problems such as (7) in the framework of singular
control problems can be found for example in Alvarez (2018), Cao et al. (2023), and
Kunwai et al. (2022). In Alvarez (2018), the author studied the same problem of this
section and used a free boundary problem to find some useful properties of optimal
controls. More precisely, under the same assumptions as above, to study the ergodic
optimal control problem in the class of reflecting controls, the author considered the
free boundary problem consisting of finding a < b, λ and a function u in C2(R) such
that

⎧⎪⎨
⎪⎩

(LXu)(x) + c(x) = λ, for all x ∈ (a, b),

u(x) = qd(x − b) + u(b), for all x ≥ b,

u(x) = qu(a − x) + u(a), for all x ≤ a.

(13)

For this problem, it is proved (see Remark 2.4 in Alvarez (2018)) that there exists a
unique solution that satisfies (7). Furthermore,

λ = C(a, b), (14)

the ergodic cost defined by (6), as states equation (2.15) in Alvarez (2018). Here,
similar to Kunwai et al. (2022), we use the results obtained in Alvarez (2018) to get a
suitable candidate to apply Theorem 2.8.

Theorem 2.10 Consider a diffusion defined by (1) and a cost function c(x) satisfying
Assumption 2.3. Then, the reflecting controls with levels given in (b) in Theorem 2.6
minimize the ergodic cost G(x) in (5) within the set A of admissible controls.

Proof Take u as the solution of the free boundary problem (13) defined above. In view
of Theorem 2.8, we need to prove that the infimum of the ergodic cost defining G(x)
is realized in the set B defined in (8). Take then η ∈ A \ B. By definition of B, there
exist constants ε > 0 and S > 0 such that

Exu(Xη
s ) > εs, for all s ≥ S. (15)
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The second statement in (7) implies that |u(x) − u(0)| ≤ (qu + qd)|x |. From this, it
follows

c(x) ≥ Au(x) − B,

for A = α/(qu + qd) and B = αu(0)/(qu + qd) + K , see (3). In view of (15), this
implies

lim sup
T→∞

1

T
Ex

(∫ T

0
c(Xη

s )ds

)
≥ lim sup

T→∞
1

T

∫ T

S
(Aεs − B)ds = ∞.

As a consequence, for any η ∈ A \ B, we have

lim sup
T→∞

1

T
Ex

(∫ T

0
c(Xη

s )ds + quUT + qd DT

)
= ∞.

Finally, as the class of reflecting controls gives finite ergodic limits by Theorem 2.6,
the infimum can be taken in the subclassB. So Theorem 2.8 gives the equalityG(x) =
λ = C(a, b) (see (14)), concluding the proof. ��

3 Mean-field game problem

As mentioned above, in the mean-field game formulation, the cost function depends
on two variables, respectively the state of the player and the state of an aggregate
of players referred to as the market. The state of the market is the expectation of a
continuous function of the diffusion process under some given controls.

The study of the existence and uniqueness of equilibrium points begins with the
application of Theorem 2.6 when the state of the market is asymptotically constant.
The cost function becomes one-dimensional and the results in Alvarez (2018) can be
applied.

More precisely, assuming f (x) continuous, the expectation of the market diffusion
Ex ( f (X

c,d
t )) has an ergodic limit, denoted R(c, d), and applying the previous results,

we can prove that the optimal controls for the player should be found in the class of
reflecting controls, considering a one variable cost function of the form c(·, R(c, d)).
This is why we assume that the market is also controlled by reflections at some levels
c < d, and expect to obtain an equilibrium point when the optimal levels a < b
that control the player’s diffusion coincide with c < d (see Definition 3.1). Note that
the question of the existence of equilibrium strategies beyond the class of reflecting
controls is not addressed here. The requirements to apply these results in themean-field
game formulation follow.
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3.1 Conditions for optimality and equilibrium

In this setting, we can generalize the results of the section before using some sim-
ple ergodic results for diffusions. Recall that the function f (x) is assumed to be
continuous.

Definition 3.1 We say that a control η∗ is an equilibrium of the mean-field game if it
belongs to the set

argminη=(U ,D)∈A
{
lim sup
T→∞

1

T
Ex

(∫ T

0
c
(
Xη
s ,Ex ( f (X

η∗
s ))

)
ds + quUT + qd DT

)}
.

In case the control is reflecting, i.e. η∗ = (Ua∗
, Db∗

) we say that (a∗, b∗) is an
equilibrium point.

The idea of the above definition is to consider situations in which the individual player
has no incentive to act differently to the market. Regarding the three-step proposal of
(Carmona and Delarue 2013, Section 2.2), we would (i) choose a control μ ∈ A for
the market, (ii) solve the standard stochastic problem

inf
η=(U ,D)∈A

{
lim sup
T→∞

1

T
Ex

(∫ T

0
c
(
Xη
s ,Ex ( f (X

μ
s ))

)
ds + quUT + qd DT

)}
.

to obtain a control η (depending on μ), and (iii) find a fixed point in A of the map
μ �→ η. Compared to Definition 3.2 in Cao et al. (2023), closer to our formulation,
Definition 3.1 admits a time dependent value representing the market state. More
precisely, in Cao et al. (2023), the authors consider situations in which the controlled
market process has a stationary distribution, whose mean has to coincide with the
equilibrium value. If this is the case, as seen in Sect. 2, the control to be an equilibrium,
in general terms, should be a reflecting one. Nevertheless, as the following results
shows, when considering reflecting controls, we can substitute the time dependent
value by its limit in Definition 3.1.

Theorem 3.2 Consider the points a < b, c < d, and x ∈ R. Then

lim sup
T→∞

1

T
Ex

(∫ T

0
c(Xa,b

s ,Ex
(
f (Xc,d

s ))
)
ds + qddD

b
s + qudU

a
s

)

= 1

m(a, b)

[∫ b

a
c(u, R(c, d))m(du) + qu

S′(a)
+ qd

S′(b)

]
, (16)

where

R(c, d) =
∫ d

c

f (u)

m(c, d)
m(du).
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Proof Applying Theorem 2.6 with the cost function c(·, R(c, d)) we obtain that

lim
T→∞

1

T
Ex

(∫ T

0
c(Xa,b

s , R(c, d))ds + quU
a
T + qd D

b
T

)

= 1

m(a, b)

[∫ b

a
c(u, R(c, d))m(du) + qu

S′(a)
+ qd

S′(b)

]
,

i.e. the r.h.s. in (16). It remains then to verify that

lim sup
T→∞

1

T
Ex

(∫ T

0
|c(Xa,b

s ,Ex ( f (X
c,d
s ))) − c(Xa,b

s , R(c, d))|ds
)

= 0. (17)

In order to do this, define the continuous function H : f ([c, d]) → R
+ by

H(y) = max
u∈[a,b] |c(u, y) − c(u, R(c, d))|,

and observe that the limit in (17) can be bounded by

lim sup
T→∞

1

T

∫ T

0
H(Ex

(
f (Xc,d

s )))ds

= lim sup
T→∞

1

T

∫ T

0
H

(∫ d

c
f (y)Ps(x, dy)

)
ds,

with Ps(x, dy) = Px (Y
c,d
s ∈ dy). This limit is zero because

H

(∫ d

c
f (y)Ps(x, dy)

)
→ H(R(c, d)) = 0,

as H is uniformly continuous, bounded and

∥∥∥∥Ps(x, ·) − 1

m(c, d)
m(·)

∥∥∥∥ → 0, as s → ∞,

with the norm of total variation (see Theorem 54.5 in Rogers and Williams (2000)).
It follows that (17) holds, concluding the proof. ��
The existence and uniqueness of minimizers given in (b) in Theorem 2.6 can also
be generalized, by noticing that in Theorem 3.2 the second variable in the cost func-
tion is fixed. The optimality of reflecting controls within the class of càdlàg controls
corresponding to Definition 3.1 follows from Theorem 2.10.

Theorem 3.3 For a fixed (a, b), the infimum of the ergodic problem is reached only at
a pair (a∗, b∗) such that

(i) π1(b∗, R(a, b)) = π2(a∗, R(a, b)),
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(ii)
∫ b∗

a∗

(
π1(t, R(a, b)) − π1(b

∗, R(a, b))
)
m(dt) + qu + qd

S′(a∗)
= 0.

Moreover (a∗, b∗) ∈ (−∞, x R(a,b)
2 ) × (x R(a,b)

1 ,∞)

Based on this result we obtain a condition for equilibrium of the mean-field game (see
Definition 3.1).

Theorem 3.4 A pair a < b is an equilibrium point if and only if

(i) π1(b, R(a, b)) = π2(a, R(a, b)),

(ii)
∫ b

a
[π1(t, R(a, b)) − π1(b, R(a, b))]m(dt) + qu + qd

S′(a)
= 0.

Moreover (a, b) ∈ (−∞, x R(a,b)
2 ) × (x R(a,b)

1 ,∞)

3.2 Themultiplicative case

In this subsection, we assume that the cost function has a multiplicative form.

Assumption 3.5 The cost function satisfying Assumption 2.3, is factorized as

c(x, y) = g(x)h(y),

where the factors satisfy

(i) g : R → [0,∞) is a convex function, with g(x) ≥ g(0),
(ii) h : R → (0,∞) is continuous, with h(x) ≥ h(0).

Note that such a multiplicative decomposition is particularly natural when g(x) is
interpreted as a standardized representation of the units of a good corresponding to a
state x and h(y) as the factor modeling the unit cost based in the market.

We give a first result that follows from Theorem 3.4 if the cost function is multi-
plicative. In this situation, using condition (i), one of the variables can be obtained as
a function of the other. For this purpose, consider the set

Ca = {b ∈ R : b > x R(a,b)
1 ∨ a, x R(a,b)

2 > a, π1(b, R(a, b)) = π2(a, R(a, b))}.

Observe that if Ca = ∅, there are no equilibrium points. We then assume condition
Ca �= ∅ if and only if a ≤ 0. This means that we search for the equilibrium points in
a connected set. Furthermore, for a fixed a ≤ 0 we denote

ρ(a) = inf Ca, (18)

and

L(a) = R(a, ρ(a)).

123



Two sided ergodic singular…

Proposition 3.6 Suppose that the cost function factorizes as in Assumption 3.5, and
there exists a point a0 ≤ 0 such that the function ρ defined via (18) is continuous in
(−∞, a0]. Then,

(C1) if

∫ ρ(a0)

a0
(π1(t, L(a0)) − π1(ρ(a0), L(a0)))m(dt) + qu + qd

S′(a0)
≥ 0,

then there is at least one equilibrium point.
(C2) Furthermore, if in (−∞, a0],

π2(t, L(a2)) − π2(a2, L(a2)) < π2(t, L(a1)) − π2(a1, L(a1))

∀(a2, a1, t) s.t, a2 < a1 < t ≤ a0,

π1(t, L(a2)) − π1(ρ(a2), L(a2)) < π1(t, L(a1)) − π1(ρ(a1), L(a1))

∀(a2, a1, t) s.t. ρ(a2) > ρ(a1) > t ≥ a0,

and

∫ l

r
(π1(t, R(r , l)) − π1(l, R(r , l)))m(dt) + qu + qd

S′(r)
> 0,

∀r ∈ (a0, ρ(a0)), l > r , π1(l, R(r , l)) = π2(r , R(r , l)), (19)

then the equilibrium is unique.

Proof For the existence of equilibrium points, we need to prove

∫ ρ(A)

A
(π1(t, L(A)) − π1(ρ(A), L(A)))m(dt) + qu + qd

S′(A)
< 0,

for some A < a0. First, observe that the inequality can be rewritten as

∫ 0

A
(π2(t, L(A)) − π2(A, L(A)))m(dt)

+
∫ ρ(A)

0
(π1(t, L(A)) − π1(ρ(A), L(A)))m(dt) + qu + qd

S′(0)
< 0. (20)

Furthermore, due to the nature of themultiplicative cost, the points x yi , i = 1, 2 defined
in (2.3) can be taken all equal to x0i for each i respectively. Thus, for A negative enough,
both integrands are always negative and tend to −∞ when A → −∞.
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Finally, for the uniqueness, condition (C2) implies that the map defined in
(−∞, a0]:

a →
∫ ρ(a)

a
(π1(t, L(a)) − π1(ρ(a), L(a)))m(dt) + qu + qd

S′(a)
,

is monotone, thus concluding that the root of this map is unique. ��
Remark 3.7 Condition (C2) is a condition on differences of value functions. In par-
ticular, if we assume π2 ∈ C2((−∞, a0) × R), f defined in the introduction of the
section is increasing and L(a) is increasing, then the first inequality in condition (C2)

holds if π2 has negative cross second derivative in (−∞, a0) ×R which is equivalent
to the function

(a, μ) → π2(a, 〈 f , μ〉), a ∈ (−∞, a0), μ a probability measure,

being submodular (see Example 2 of (Dianetti et al. 2021, Assumption 2.9)). A sim-
ilar analysis can be made with the second inequality (the function in this case is
supermodular).

In the particular case of a diffusion without drift, the conditions of the previous
proposition are satisfied under the following simple conditions.

Corollary 3.8 Suppose that the cost function factorizes as in Assumption 3.5. Assume
furthermore that g is unbounded, convex and with minimum at zero, and the diffusion
process (1) has no drift. Then,

(a) the function ρ(a) is defined as the unique solution of the equation h(a) = h(b),
with a ≤ 0 ≤ b, and there exists an equilibrium point,

(b) if the function h(R(a, ρ(a))) is strictly decreasing for a ≤ 0, the equilibrium is
unique.

Proof Take a0 = 0. We have that π1(b, R(a, b)) = π2(a, R(a, b)) is equivalent to
the equality g(b) = g(a), thus from the fact that g is convex with a minimum at zero,
the restriction of g to x < 0 is an invertible function, denote it by g|(−∞,0) , and we can
define

ρ(a) = (
g|(−∞,0)

)−1
(a).

We conclude part (a) from the fact ρ(0) = 0 and condition (C1) and is fulfilled.
Condition (C2) is verified, the first two statements follow from the monotonicity of h
and a → g(a, R(a)) because the inequalites can be rewritten as:

(g(t) − g(a2))h(R(a2, ρ(a2))) < (g(t) − g(a1))h(R(a1, ρ(a1)))

∀(a2, a1, t) s.t, a2 < a1 < t ≤ 0,

(g(t) − g(ρ(a2)))h(R((a2), ρ(a2))) < (g(t) − g(a1))h(R(a1, ρ(a1)))
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∀(a2, a1, t) s.t. ρ(a2) > ρ(a1) > t ≥ 0.

The third integral (19) condition in (C2) is automatic, as (a0, ρ(a0)) = (0, 0). ��

4 Examples

We present below several examples where the equations of Theorem 3.4 can be
expressed more explicitly and solved numerically. To help the presentation, for each
example, we plot in an (a, b) plane the implicit curves defined by these equations. To
this end, we write equation (i) in Theorem 3.4 as

F(a, b) = π1(a, R(a, b)) − π2(b, R(a, b)) = 0,

and draw first the set of its solutions.We then draw the set determined by condition (ii).
Note that there are cases where there is an intersection of both curves outside the set
{a < b}, these points are of no interest for our problem. In all examples the function
affecting the market expectation is f (x) = x . Furthermore, to ease of exposition, we
present the conclusions and the plots and defer the computations to the Appendix (see
Sect. A.1).

4.1 Examples withmultiplicative cost

The cost function now has the form

c(x, y) = max(−λx, x)(1 + |y|β), λ > 0, β ≥ 1, (21)

and qdλ = qu .

Remark 4.1 In this scenario the value max(−λx, x) could represent the maintenance
cost of certain property done by a third party. This third party will change the price of
its services depending on the demand of the market.

We consider a mean reverting process X = {Xt } that follows the stochastic differential
equation

dXt = −θXtdt + σ(Xt )dWt , (22)

such that σ is a function that satisfies the conditions of Sect. 2 and qdθ < 1. Under
these conditions the function c(x, y) is under Assumptions 2.3. First observe that if
we take x y = 0 for all y ∈ R, then c(x, y) ≥ c(x y, y) = 0, Second, by taking
Ky = 0, αy = λ ∧ 1 for all y ∈ R, condition (3) is satisfied. Finally observe that for
every y ∈ R the maps π1(x, y), π2(x, y) are decreasing on x in (−∞, 0), increasing
on x in (0,∞) and both conditions (i) and (ii) in Assumptions 2.3 are satisfied.

123



S. Christensen et al.

Fig. 1 Mean reverting process (22) with multiplicative cost and parameters θ = 0.4, qd = 0.1, λ = 1, σ =
2, β = 1. The equilibrium point (EP) is (−0.646, 0.646) with value 0.617

In the particular case when σ is constant, we can compute

R(a, b) =
√

σ 2

θπ

⎛
⎜⎝ e−a2 θ

σ2 − e−b2 θ

σ2

erf
(√

θ
σ 2 b

)
− erf

(√
θ
σ 2 a

)
⎞
⎟⎠ ,

where erf(x) = 1√
2π

∫ x
−∞ e−y2/2 dy. Using Proposition 3.6, existence of equilibrium

points holds. Furthermore, if σ is even then uniqueness also holds. Again, the cal-
culations are in Appendix 1. In the graphical examples below σ is constant (Figs. 1,
2).

4.2 “Follow themarket" examples

The idea is to introduce a cost function in such a way that the player has incentives to
follow the market evolution. The cost function is then

c(x, y) = |x − y|.
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Fig. 2 Brownian motion with drift and cost function c(x, y) = |x − y|. On the left (qu + qd = 0.1, μ =
−0.89) the value at equilibrium points is constant 0.848. On the right (qu + qd = 2, μ = −1 ) there are no
equilibrium points

4.2.1 Brownian motion with negative drift

In this case, the driving process X = {Xt } is

Xt = μt + Wt ,

where μ < 0. We proceed to prove that Assumption 2.3 is satisfied. By taking x y = y
for all y ∈ R, then c(x, y) ≥ c(x y, y) = 0, Second, by taking Ky = |y|, αy = 1
for all y ∈ R then (3) is satisfied. Finally observe that for every y ∈ R the maps
π1(x, y), π2(x, y) are decreasing on x in (−∞, y), increasing on x in (y,∞) and
both conditions (i) and (ii) in Assumptions 2.3 are satisfied.

The problem can be reduced to a one variable problem. The conclusions are:

• If there is a positive constant C such that

C(1 + e2μC )(1 − e2μC )−1 + (qu + qd)μ + μ−1 = 0,
( C

e2μC − 1

)2e2μC
μ

+ −2e2μC + 2Cμ + 1

2μ2 + qd + qu = 0,

then every point of the set {(a, a + C), a ∈ R} is an equilibrium point.
• Otherwise there are no equilibrium points.

The details can be found in the Appendix A.1.1

4.2.2 Ornstein Uhlenbeck process

In this case, the process X = {Xt } follows the stochastic differential equation

dXt = −θXtdt + σdWt ,
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Fig. 3 Mean reverting processwithq = 0.1, θ = 3, s = 2, EP1 ∼ (−4.26,−1.86), EP2 ∼ (−0.78, 0.78),
EP3 ∼ (1.87, 4.27) with the values 0.839, 0.55 and 0.84 at each equilibrium point respectively

We analyze the symmetric case when q := qd = qu and qθ < 1. In this situation, tak-
ing the same parameters as in the previous example, c(x, y) is under Assumption 2.3.
The existence of equilibrium points will hold, but uniqueness not necessarily. Essen-
tially, the equation π1(a, R(a, b)) = π2(a, R(a, b)) is satisfied when a = −b by
symmetry, so similar arguments as the ones in the multiplicative case hold. However
the line a + b = 0 is not the only set where π1(a, R(a, b)) = π2(a, R(a, b)). We
show that uniqueness does not always hold, see Fig. 3.

5 Approximation of nash equilibria in symmetric N-player games
withmean-field interaction

In this section, we present an approximation result for Nash equilibria in the N -player
game corresponding to the ergodic mean-field game considered above, when the num-
ber of players N tends to infinity.More precisely, we establish that an equilibriumpoint
of themean-field game of Definition 3.1 is an ε-Nash equilibrium of the corresponding
N -player game of Definition 5.1, for N large enough. These approximation results
have been studied for instance in Cao and Guo (2022) and Cao et al. (2023) and the
references therein. In order to formulate the approximation result, consider:

(i) A filtered probability space (�,F , {Ft : t ≥ 0−},P) that satisfies the usual
conditions, where all the processes are defined.

(ii) Diffusion processes X , {Xi }i=1,2,..., each of one satisfies Eq. (1) driven by
respective adapted independent Brownian motions W , {Wi }i=1,2,....
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(iii) The set of admissible controlsA of Definition 2.1, that in particular assumes, given
an admissible control ηi = (Ui , Di ), the existence of the controlled process as a
solution of

dXi,ηi
t = μ(Xi,ηi

t )dt + σ(Xi,ηi
t )dWi

t + dUi
t − dDi

t , Xi
0− = xi , (23)

for each i = 1, 2, . . .

For simplicity and coherence we denote by Xi,a,b the solution to (23) when the i-th
player chooses reflecting strategies within a < b, denoted respectively by Ui,a and
Di,b. As usual, we define a vector of admissible controls by

� = (η1, . . . , ηN )

such that ηi = (Ui , Di ) is an admissible control selected by the player i in the
N -player game. Furthermore, we define

�−i = (η1, . . . , ηi−1, ηi+1, . . . , ηN ),

(μ,�−i ) = (η1, . . . , ηi−1, μ, ηi+1, . . . , ηN )

and, given a real continuous function f (x), denote

f̄ −i
s = 1

N − 1

N∑
j �=i

f (X j,η j

s ), f̄ a,b,−i
s = 1

N − 1

N∑
j �=i

f (X j,a,b
s ), (24)

and, given μ = (U , D) ∈ A, for (μ,�−i ), consider

V i
N (μ,�−i )(x) = lim sup

T→∞
1

T
Ex

( ∫ T

0
c
(
Xi,μ
s , f̄ −i

s

)
ds + quU

i
T + qd D

i
T

)
, (25)

for a cost function c(x, y) satisfying Assumption 2.3.

Definition 5.1 For fixed ε > 0 and N ∈ N, a vector of admissible controls � =
(η1, . . . , ηN ) is called an ε-Nash equilibrium if for all i and all x ∈ R,

V i
N (ηi ,�−i )(x) ≤ V i

N (μ,�−i )(x) + ε, for all μ ∈ A.

We are ready to prove that the equilibrium points of the mean-field game are ε-Nash
equilibriums for the N -player game in two different situations: (i) with reflecting
controls for the players and a cost function that is convex in the second variable, (ii)
with general controls in A, and the cost function c(x, y) = |x − y|.
Theorem 5.2 Consider a cost function c(x, y) that satisfies Assumption 2.3, and sup-
pose that the function f (x) in Definition 3.1 is continuous. Assume also that one of
the following conditions holds:
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(i) For every fixed x the function y �→ c(x, y) is convex, and the set of admissible
controls for each process Xi , i = 1, . . . , N, is the set of reflecting controls instead
of A.

(ii) We have f (x) = x and the cost function is c(x, y) = |x − y|.
Then, if (a, b) is an equilibrium point for the mean field game driven by X, given
ε > 0, the vector of controls

�a,b = ((U 1,a, D1,b), . . . , (UN ,a,UN ,b)), (26)

is an ε-Nash equilibrium for the N-player game, for N large enough.

In the proof of (i) we will use the following result.

Lemma 5.3 Let c(x, y) be a positive measurable function such that y �→ c(x, y) is
convex for each fixed x, and (X ,Y ) a random vector. Then

(a) If X and Y are independent,

Ec(X ,EY ) ≤ Ec(X ,Y ). (27)

(b) In the general case, statement (27) is not true.

Proof of Lemma 5.3 (a) With FX and FY the respective distributions of X and Y , we
have

Ec(X ,Y ) =
∫ [∫

c(x, y)FY (dy)

]
FX (dx)

≥
∫

c

(
x,

∫
yFY (dy)

)
FX (dx) = Ec(X ,EY ).

To see (b), consider c(x, y) = |x − y|, a standard normal random variable X ∼
N (0, 1), and the random vector (X ,Y ) = (X , X). We have

Ec(X ,Y ) = E|X − X | = 0 <

√
2

π
= Ec(X ,EY ) = E|X |,

giving the counter-example that concludes the proof. ��
Proof of (i) in Theorem 5.2 Define the function

V : A × {(a, b) : a < b} → R (28)

by the formula

V (μ, (a, b)) = lim sup
T→∞

1

T
Ex

(∫ T

0
c
(
Xμ
s ,Ex ( f (X

a,b
s ))

)
ds + quUT + qd DT

)
,
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whereμ = (U , D). Take�a,b as in (26). The departing point is the inequality provided
by the equilibrium definition:

V ((Ua, Db), (a, b)) ≤ V (μ, (a, b)), for any μ ∈ A. (29)

Second, by equidistribution of the player’s driving processes,

Ex c(X
μ
s ,Ex ( f (X

a,b
s ))) = Ex c(X

μ
s ,Ex ( f̄

a,b,−i
s )).

Now, taking c < d and μ = (Uc, Dd), by convexity and independence between the
coordinates, we apply (i) in Lemma 5.3:

Ex c(X
c,d
s ,Ex ( f̄

a,b,−i
s )) ≤ Ex c(X

c,d
s , f̄ a,b,−i

s ),

Integrating in time, taking expectation and ergodic limits, combined with (29), it
follows

V ((Ua, Db), (a, b)) ≤ V ((Uc, Dd), (a, b)) ≤ V i
N ((Uc, Dd),�

a,b,−i
N ). (30)

Now, as f (x) is continuous, the set f ([a, b]) is a closed interval, denote it by [m, M],
and observe that

(Xi,a,b
s , f̄ a,b,−i

s ) ∈ [a, b] × [m, M],

that is a product of closed intervals. Then, as c(x, y) is uniformly continuous in this
compact domain, given ε there exist δ s.t.

|c(Xμ
s , f̄ a,b,−i

s ) − c(Xμ
s ,Ex ( f (X

a,b
s ))| ≤ ε

2
,

whenever | f̄ a,b,−i
s − Ex ( f (X

a,b
s ))| ≤ δ. Now we apply Hoeffding’s inequality for

bounded random variables m ≤ f (X j,a,b) ≤ M , obtaining,

P
(
| f a,b,−i − Ex ( f (X

a,b
s ))| ≥ δ

)
≤ 2e

− 2δ2(N−1)
(M−m)2 .

Finally, denoting ‖c‖∞ = max{|c(x, y)| : a ≤ x ≤ b,m ≤ y ≤ M}, we have
∣∣∣∣ 1T Ex

∫ T

0

(
c(Xi,a,b

s , f̄ a,b,−i
s ) − c(Xi,a,b

s ,Ex ( f (X
a,b
s ))

)
ds

∣∣∣∣
≤ ε

2
+ 2‖c‖∞

T

∫ T

0
Px

(
| f̄ a,b,−i

s − Ex ( f (X
a,b
s ))| ≥ δ

)
ds

≤ ε

2
+ 4‖c‖∞e

− 2δ2(N−1)
(M−m)2 ≤ ε,
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for N large enough. From this follows that, for these values of N ,

∣∣∣V ((Ua, Db), (a, b)) − V i
N ((Ua, Db),�

a,b,−i
N )

∣∣∣ ≤ ε,

concluding, in view of (30), the proof of (i). ��
Proof of (ii) in Theorem 5.2 As f (x) = x , we denote

X̄a,b,−i
s,N = 1

N − 1

N∑
j �=i

X j,a,b
s .

As (a, b) is an equilibrium point of the mean field game, given ε > 0, we have to
prove that

V i
N ((Ui,a, Di,b),�a,b,−i ) ≤ V i

N (μ,�a,b,−i ) + ε, (31)

for any strategy μ ∈ A, for N large enough. Observe now that, given a strategy η, if
for some N0 and some i0, we have V

i0
N0

(η,�a,b,−i0) < ∞, then

lim sup
T→∞

1

T
Ex

∫ T

0

∣∣∣Xη
s − X̄a,b,−i0

s,N0

∣∣∣ ds =: I0 < ∞,

lim sup
T→∞

1

T
Ex (quUT ) =: J0 < ∞,

lim sup
T→∞

1

T
Ex (qd DT ) =: K0 < ∞.

By adding and substracting X̄a,b,−i0
s,N0

and the triangular inequality, it follows

lim sup
T→∞

1

T
Ex

∫ T

0

∣∣Xη
s

∣∣ ds ≤ I0 + max(|a|, |b|),

and in consequence

max(V (η, (a, b)), V i
N (η,�a,b,−i )) ≤ I0 + J0 + K0 + 2max(|a|, |b|),

for all N and i . Then, in order to prove (31), it is enough to consider these strategies
η. Now, as (a, b) is an equilibrium point, we have

V i
N ((Ui,a, Di,b),�a,b,−i ) − V i

N (η,�a,b,−i )

= V i
N ((Ui,a, Di,b),�a,b,−i ) − V (η, (a, b)) + V (η, (a, b)) − V i

N (η,�a,b,−i )

≤ V i
N ((Ui,a, Di,b),�a,b,−i ) − V ((Ua, Db), (a, b))

+V (η, (a, b)) − V i
N (η,�a,b,−i )
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≤ 2 sup
η

∣∣∣V (η, (a, b)) − V i
N (η,�a,b,−i )

∣∣∣ .

By the triangular inequality, given η, we have

∣∣∣V (η, (a, b)) − V i
N (η,�a,b,−i )

∣∣∣
≤ lim sup

T→∞
1

T
Ex

∫ T

0

∣∣∣|Xη
s − X̄a,b,−i

s | − |Xη
s − Ex (X

a,b
s )|

∣∣∣ ds
≤ lim sup

T→∞
1

T

∫ T

0
Ex |X̄a,b,−i

s − Ex (X
a,b
s )|ds ≤ b − a√

N − 1
,

because

Ex |X̄a,b,−i
s − Ex (X

a,b
s )| ≤

√
1

N − 1
varx (X

a,b
s ) ≤ b − a√

N − 1
,

concluding the proof. ��
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A Appendix

A.1 Calculations of the examples

A.1.1 Absolute value, Brownian motion with negative drift

In this case (see Borodin and Salminen 2002),

S′(x) = exp(−2μx), m′(x) = 2e2μx .

Therefore

R(a, b) =

∫ b

a
2ue2μudu

∫ b

a
2e2μudu

= be2μb − ae2μa

e2μb − e2μa
− 1

2μ
.
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The cost function is c(x, y) = |x− y|.Weproceed to analyze the function ρ. The nota-
tions are the same as Proposition 3.6. The equation π2(a, R(a, b)) = π1(b, R(a, b))
is equivalent to

F(a, b) = (b + a) + 1

μ
− 2

(
be2μb − ae2μa

e2μb − e2μa

)
+ μ(qu + qd) = 0.

On one hand, when a < 0 the equation F(a, b) = 0 has a solution b > 0 because

a + μ−1 + μ(qu + qd) < 0

On the other, when a ≥ 0, the equation F(a, b) = 0 also has a root because b −
2R(a, b) → −∞ when b → ∞.

We compute the partial derivative

∂F

∂b
(a, b) = −1

(e2μ(b−a))
(
2μ(a − b) − 1 + e2μ(b−a)

)

(1 − e2μ(b−a))2
> 0.

We deduce that the function ρ is well defined in all R and the roots of F(a, b) are
unique for each a. Furthermore, if C is the positive constant that satisfies the equality

C(1 + e2μC )(1 − e2μC )−1 = −(qu + qd)μ − μ−1,

then F(a, a + C) = 0. So ρ(a) = a + C .
From Theorem 3.3 we know the equilibrium points (a, b)must satisfy the equality:

∫ b

a
(|t − R(a, b)| − b + R(a, b))2e2μt dt + (qu + qd)e

2μa = 0. (32)

More explicitly,

∫ b

a

(∣∣∣t + 1

2μ
− be2μb − ae2μa

e2μb − e2μa

∣∣∣ − b − 1

2μ
+be2μb − ae2μa

e2μb − e2μa

)
2e2μt dt

+ (qu + qd)e
2μa = 0 (33)

With the change of variable u = t − b the equality (33) is equivalent to:

∫ 0

a−b

(∣∣∣u − (b − a)

e2μ(b−a) − 1
+ 1

2μ

∣∣∣ + (b − a)

e2μ(b−a) − 1
− 1

2μ

)
2e2μ(u+b−a)du e2μa

+ (qu + qd)e
2μa = 0.

(34)

Therefore if there is a point (A, B) that satisfies (33) then every point (a, b) such
that b − a = B − A also satisfies (33). To solve the integral define C :=b − a and
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K :=C(exp(2μC) − 1)−1 − (2μ)−1 so the integral in (34) becomes

∫ 0

−C
(|u − K | + K ) 2e2μ(C+u)du

= 2e2μK
∫ −K

−C−K
|r |e2μ(C+r)dr + Ke2μC

1 − e−2μC

μ

=
( C

e2μC − 1

)2e2μC
μ

+ −2e2μC + 2Cμ + 1

2μ2 .

Solving the integral in (33) we conclude that a point (a, b) is an equilibrium point iff
C :=b − a satisfies

C(1 + e2μC )(1 − e2μC )−1 + (qu + qd)μ + μ−1 = 0
( C

e2μC − 1

)2e2μC
μ

+ −2e2μC + 2Cμ + 1

2μ2 + qd + qu = 0

Using 3.2 it can be shown that the value of the game is the same for all equilibrium
points, and it is

−C exp(−2μC)(1 − exp(−2μC))−1 − (2μ)−1 + qdμ.

A.1.2 Multiplicative cost

Proposition 3.6 is used with a0 = 0. We assume λ ≥ 1 (in other cases symmetrical
arguments can be used), c(x, y) = max(−λx, x)(1+|y|β), q := qd = quλ−1, β ≥ 1
and qdθ < 1 ∧ λ−1 so the function c is a cost function.

The equality π1(b, R(a, b)) = π2(a, R(a, b)) reads as −λa = b taking into
account that a < 0 < b. Furthermore if σ is an even function we deduce R(a,−λa)

is decreasing in a so:

π2(t, L(a)) − π2(a, L(a)) = (a − t)(1 + R(a,−λa)β − qdλθ),

which decreases to −∞ in a.

π1(t, L(a)) − π1(−λa, L(a)) = (t − λa)(1 + R(a,−λa)β − quθ),

which decrease to −∞ implying that uniqueness and existence holds.
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