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Abstract
We consider a class of non-cooperative N-player nonzero-sum stochastic differen-
tial games with singular controls, in which each player can affect a linear stochastic
differential equation in order to minimize a cost functional which is quadratic in
the state and linear in the control. We call these games linear-quadratic-singular
stochastic differential games. Under natural assumptions, we show the existence of
open-loopNash equilibria, which are characterized through a linear systemof forward-
backward stochastic differential equations. The proof is based on an approximation
via a sequence of games in which players are restricted to play Lipschitz continu-
ous strategies. We then discuss an application of these results to a model of capacity
expansion in oligopoly markets.

Keywords Singular stochastic control · Linear quadratic games · Stochastic
maximum principle · Nash equilibrium

JEL classification C72 · C73 · D24 · L13

1 Introduction

Linear-quadratic stochastic differential games (LQgames, in short) are games inwhich
players are allowed to affect a linear stochastic differential equation with an additive
control,with the aimofminimizing a cost functionalwhich is quadratic both in the state
and in the control. For example, we can consider the game in which, for i = 1, ..., N ,
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player i can choose a control αi and faces the control problem:

(LQ game)Minimize
αi

E

[ ∫ T

0

(
Xt Q

i
t Xt + cit (α

i
t )
2)dt + XT Q

i
T XT

]
,

subject to dX j
t = (a j

t + b j
t X

j
t + α

j
t )dt + σ

j
t dW

j
t , X j

0 = x j
0 , j = 1, ..., N .

Here, X = (X1, ..., XN ) denotes the vector of states of the players, which is affected
by the Brownian motions (W j ) j , while, for y ∈ R

N , yQi
t y denotes the product∑

k, j Q
k, j;i
t yk y j .

LQ games have received a huge attention in the literature. Indeed, this class of mod-
els represents a precious and rare example of explicitly solvable games (see Carmona
2016) and therefore it serves as a benchmark theoretical tool for describing systems of
interacting agents inmany applications, ranging fromeconomics, engineering, finance,
biology and so on (see Carmona 2016 and the references therein).

However, assuming the cost to be quadratic in the control is rather unrealistic in
many applications, where the price of an intervention would rather be linear in its size.
We refer to Section 3, Chapter 11 in Dixit and Pindyck (1994) for a more detailed
discussion on the classification of adjustment costs and on the criticism around strictly
convex costs. Moreover, the quadratic costs lead to equilibrium strategies which are
absolutely continuous, even if there is empirical evidence that lump sum-strategiesmay
arise. For example, in the context of investment behaviours (Stokey 2008) highlights
the significance of lumpy adjustments by quoting Establishment-level data gathered
by the U.S. Census Bureau on 13,700 manufacturing plants from 1972–1988: A large
share of the firms in the sample display an episode of significant adjustment (37% or
more), and one-fourth of aggregate investment concentrates on plants that are increas-
ing their capital stock by more than 30%.1

To illustrate the relevance of linear costs, we canmentionmodels of capacity expan-
sion in oligopolymarkets. Consider N companies producing a certain good and selling
it in the market. Each company can adjust its production capacity to follow the mar-
ket fluctuation of the demand, in order to maximize a net profit. Such a reward is
given by the revenues obtained by the selling, which correspond to the individual
production multiplied by the market price (which is affected by the production of
all the firms in the market), and by the investment expenditures that are necessary
to adjust the firm’s production capacity. Thus, in this case it is reasonable to assume
the cost of an investment to be linear in the capacity expansion (as it done in Back
and Paulsen 2009; Grenadier 2002; Steg 2012). Other examples in which the costs
of intervention is not quadratic arise in resource allocation problems (see Gao et al.
2018; Georgiadis et al. 2006), inventory management (see Federico et al. 2023), oper-
ations research (see Guo et al. 2011; Harrison and Taksar 1983), queuing theory (see
Krichagina and Taksar 1992), mathematical biology (see Alvarez and Shepp 1998)
and so on.

All these examples represent the main motivation to study in a systematic way
stochastic differential games in which each player can control a linear stochastic dif-

1 We thank the anonymous referee for suggesting the reference (Dixit and Pindyck 1994) and the precise
quoting from Stokey (2008).

123



Linear-quadratic-singular stochastic differential games and applications

ferential equation in order to minimize a cost which is quadratic in the state and
linear in the control. From the mathematical point of view, replacing the quadratic
cost cit (α

i
t )
2 with a linear one (say, cit |αi

t |), requires to introduce the so-called singu-
lar controls: namely, to replace the additive control term

∫ t
0 αi

sds with some càdlàg
(i.e., right continuous with left limits) bounded variation process vit (i.e., the singular
control). Thus, the LQ game considered above is replaced with the game in which
each player i can choose a bounded variation control vi and faces the singular control
problem:

(LQS game) Minimize
vi

E

[ ∫ T

0
Xt Q

i
t Xtdt + XT Q

i
T XT +

∫
[0,T ]

cit d|vi |t
]
,

subject to dX j
t = (a j

t + b j
t X

j
t )dt + σ

j
t dW

j
t + dv

j
t , X j

0− = x j
0 , j = 1, ..., N .

Here |v j | denotes the total variation of the process v j . We call these games linear-
quadratic-singular stochastic differential games (LQS games, in short).

The main objective of this paper is to show, under fairly general assumptions,
the existence of open-loop Nash equilibria for LQS games. The proof this result
hinges on an approximation technique and on the use of the stochastic maximum
principle. In particular, we introduce a sequence of approximating games where, for
any n ∈ N, players are restricted to pick strategies with Lispchitz constant bounded
by n. For fixed n, this approximating problem can be reformulated in terms of a more
standard stochastic differential game, which falls into the class of games with bang-
bang controls (seeHamadene andMannucci 2019;Hamadène andMu2014;Mannucci
2004, 2014); that is, depending on the state of the system, players at equilibrium do
nothing or act with the maximum rate allowed. Thanks to the results in Hamadene
and Mannucci (2019), the existence of a Nash equilibrium ηn = (ηi,n, ..., ηN ,n) for
the game with n-Lipschitz controls can be established. By assuming some conditions
on the coefficients of the matrices Qi , we then show some a priori estimates on
the sequence (ηn)n . Indeed, this requirements on the Qi translate into a coercivity
condition on the space of profile strategies and it ensures that the Nash equilibria,
whenever they exist, always live in a bounded set. These estimates allow to find an
accumulation point η of the sequence (ηn)n . Since, for each n, ηn is a Nash equilibrium
of the game with n-Lipschitz strategies, by the necessary conditions of the stochastic
maximum principle, it can be expressed as the solution of a certain forward-backward
stochastic differential equation. We then take limits in such a system in order to prove
that the limit point η satisfy a set of conditions (in the spirit of the stochastic maximum
principle), which in turn ensure η to be a Nash equilibrium. Indeed, as a byproduct
of our result, one obtains the existence a solution to the system of forward-backward
stochastic differential equation related to the equilibria.

As an application of our main result, we show the existence of equilibria in non-
symmetric games of capacity expansion in oligopoly markets (see Back and Paulsen
2009; Steg 2012).
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1.1 Related literature

A game with singular controls was first studied in Grenadier (2002), in order to derive
symmetric equilibrium investment strategies in a continuous-time symmetric (i.e.,
when the cost functionals and the dynamics are the same for all players) option exercise
game. This model was later revised in Back and Paulsen (2009), where the open-loop
equilibrium is provided under a suitable specification of the model.

For singular control problems, Bank and Riedel (2001) introduced a system of first-
order conditions, characterizing the optimal policies (see also Ferrari 2015; Ferrari
and Salminen 2016). These conditions represent a version of the stochastic maximum
principle (see Peng 1990) in the context of singular control. Inspired by the earlier
work (Bank 2005; Steg 2012) considers irreversible investment problems in oligopoly
markets, determines the equilibrium in the symmetric case, and characterizes (in the
non-symmetric case) the open-loop equilibria through the first-order conditions. A
similar approach is also followed in Ferrari et al. (2017) for a public good contribution
game in which players are allowed to choose a regular control and a singular control. A
general characterization of open-loopNash equilibria through the stochasticmaximum
principle approach has been investigated in Wang et al. (2018) for regular-singular
stochastic differential games.The existenceof equilibria in a non-symmetric gamewith
multi-dimensional singular controls and non-Markovian costs has been established
in Dianetti and Ferrari (2020) when the costs satisfy the submodularity conditions
(see Topkis 1979 for a seminal paper on static N -player submodular games). The
submodularity property represents, roughly speaking, the situation in which players
have an incentive to imitate the behaviour of their opponents, and it is widely used in
the economic literature (see Topkis 2011; Vives 1999). In comparison to these works,
the present paper establishes the first existence result for open-loop Nash equilibria
for the non-symmetric LQS game (unlike Back and Paulsen 2009; Ferrari et al. 2017;
Grenadier 2002, that require symmetry),without enforcing the submodularity structure
(unlike Dianetti and Ferrari 2020).

We conclude this section with a literature review on Markovian equilibria and
mean field game equilibria. The study of Markovian equilibria in games with singular
controls seems to be particularly challenging (see the discussion in Section 2 of Back
and Paulsen (2009)). Indeed, following the dynamic programming principle approach,
finding a Markovian equilibrium means to construct a solution of a related reflected
stochastic differential equation, on which few is known even for the control problem
(see Boryc and Kruk 2016; Dianetti and Ferrari 2023; Kruk 2000). However, we can
mention few contributions. By showing a verification theorem, Guo et al. (2022); Guo
and Xu (2019) discuss some sufficient conditions for Nash equilibria in terms of a
system of partial differential equations, and construct a Markovian equilibrium in a
linear quadratic symmetric game.When two players acts on the same one-dimensional
diffusion, Nash equilibria are computed in Kwon (2022), while connections between
nonzero-sum games of singular control and games of optimal stopping have been
tackled in De Angelis and Ferrari (2018). We also mention (Cont et al. 2021), where
Pareto optima are analysed, andBovo et al. (2022);Hernandez-Hernandez et al. (2015);
Kwon and Zhang (2015) for other types of games involving singular controls. When
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the number of players is very large, equilibria can be approximated via mean field
games (see Huang et al. 2006; Lasry and Lions 2007). In the singular control case, the
abstract existence of mean field game equilibria is studied under general conditions in
Guo and Lee (2022); Fu (2023); Fu and Horst (2017) and, for submodular mean field
games, in Dianetti et al. (2023). A more explicit analysis is instead provided in Campi
et al. (2022); Cao and Guo (2022); Guo and Xu (2019) and in Cao et al. (2022), both
for the discounted infinite horizon problem and in the case of ergodic costs. We also
mention the recent (He et al. 2023), which provides a representation theorem for the
equilibria.
Outline of the paper. The rest of the paper is organized as follows. In Sect. 2 we
introduce the probabilistic setup for LQS games and discuss some preliminary results.
Sections3 is devoted to the existence theorem for Nash equilibria, while in Sect. 4 we
present an application to oligopoly games.

2 Linear-quadratic-singular stochastic differential games

2.1 The game

Fix N ∈ N, N ≥ 2, a finite time horizon T ∈ (0,∞), and consider an N -dimensional
Brownian motion W = (W 1, ...,WN ), defined on a complete probability space
(�,F ,P). Denote by F = (Ft )t the right-continuous extension of the filtration gen-
erated by W , augmented by the P-null sets.

Consider a game with N players, indexed by i ∈ {1, ..., N }. The filtration F repre-
sents the flow of information available to players. When player i does not intervene,
its state Xi evolves accordingly to the linear stochastic differential equation

dXi
t = (ait + bit X

i
t )dt + σ i

t dW
i
t , Xi

0 = xi0. (1)

The drift and the volatility of Xi are given in terms of deterministic bounded mea-
surable functions ai , bi : [0, T ] → R and σ i : [0, T ] → [0,∞), while the initial
condition xi0 ∈ R is deterministic. Each player i is allowed to choose two controls ξ i

and ζ i in the set

Ã :=
{

ξ : � × [0, T ] → [0,∞)

∣∣∣∣ ξ is anF-progressively measurable càdlàg
nondecreasing process, with E[ξT ] < ∞

}
.

Thus, the strategy of player i is given by the vector ηi = (ξ i , ζ i ) ∈ Ã2. Intu-
itively, player i uses the control ξ i to increase its state Xi and the control ζ i to
decrease it (see (2) below), and these two different actions might lead to different
costs (see (3) below). We will denote by η := (η1, ..., ηN ) ∈ Ã2N a vector of strate-
gies, also referred to as profile strategy. Given strategies ξ j , ζ j ∈ Ã, j = 1, ..., N ,
with slight abuse we will interchangeably use the notations ((ξ1, ζ 1), ..., (ξ N , ζ N )) =
(ξ1, ..., ξ N , ζ 1, ..., ζ N ) = (ξ, ζ ). Also, for a profile strategy η ∈ Ã2N and controls
ξ̄ i , ζ̄ i ∈ Ã, we define the unilateral deviation for player i as (η, η−i ) = (ξ, ζ, η−i ) =
((η, η−i )1, ..., (η, η−i )N ) with
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(η, η−i ) j :=
{

η j if j �= i,

(ξ̄ i , ζ̄ i ) if j = i .

A strategy ηi = (ξ i , ζ i ) ∈ Ã2 is said to be admissible if it is an element of

A2 :=
{
ηi = (ξ i , ζ i ) ∈ Ã2 with vi := ξ i − ζ i satisfying E

[ ∫ T
0 |vit |2dt + |viT |2] < ∞

}
.

Similarly, an admissible profile strategy is a vector η ∈ A2N .
When the admissible profile strategy η ∈ A2N is chosen by the players, the con-

trolled state Xη := (X1,η, ..., XN ,η) of the system evolves as

dXi,η
t = (ait + bit X

i,η
t )dt + σ i

t dW
i
t + dξ it − dζ it , Xi,η

0− = xi0, i = 1, ..., N , (2)

where Xi,η
0− denotes the left limit in 0 of the process Xi,η. Notice that the effect of the

controls of the players is linear on the state, and that, for any η ∈ A2N , there exists a
unique strong solution Xη (we refer to Protter (2005) for further details).

Given admissible strategies η−i ∈ A2(N−1), the aim of player i is to choose ηi =
(ξ i , ζ i ) ∈ A2 in order to minimize the quadratic-singular expected cost

J i (ηi , η−i ) := E

[ ∫ T

0
Xη
t Q

i
t X

η
t dt + Xη

T Q
i
T X

η
T +

∫
[0,T ]

(ci,+t dξ it + ci,−t dζ it )

]
. (3)

Here, the RN×N matrix Qi
t = (qk, j;it )k, j is given via bounded measurable functions

qk, j;i : [0, T ] → R, k, j = 1, ..., N , and we set

yQi
t z: =

N∑
j,k=1

qk, j;it yk z j , y, z ∈ R
N .

The cost of increasing and decreasing the state process is given by continuous functions
ci,+, ci,− : [0, T ] → [0,∞), respectively. Also, since any càdlàg bounded variation
process v can be identifiedwith aRadonmeasure on [0, T ], for any continuous function
f : [0, T ] → R, the integrals with respect to v are defined by

∫
[0,T ]

ft dvt := f0v0 +
∫ T

0
ft dvt ,

where the integral on the right hand side is intended in the standard Lebesgue-Stieltjes
sense on the interval (0, T ]. Notice that, in light of the square integrability of the
admissible strategies (see the definition of A2), the cost functional is well defined.

We will focus on the following notion of equilibrium.
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Definition 1 An admissible profile strategy η ∈ A2N is an (open-loop) Nash equilib-
rium if

J i (ηi , η−i ) ≤ J i (η̄i , η−i ), for any η̄i ∈ A2,

for any i = 1, ..., N .

2.2 Stochastic maximum principle for LQS games

For later use, we now review some basic tools in the theory of stochastic singular
control. In particular, we will introduce the adjoint processes and state a version of
the stochastic maximum principle.

For a generic d ∈ N, define the set

H
2,d :=

{
M : � × [0, T ] → R

d
∣∣∣F-progr. meas. process with E

[ ∫ T
0 |Mt |2dt

]
< ∞

}

and set H2 := H
2,1.

Given an admissible profile strategy η, for any i = 1, ..., N , define the adjoint
process Y i,η ∈ H

2 as

Y i,η
t := 2E

[
�i
t,T Q

i;i
T Xη

T +
∫ T

t
�i
t,s Q

i;i
s Xη

s ds

∣∣∣∣Ft

]
, t ∈ [0, T ], (4)

where

�i
s,t := exp

( ∫ t

s
bir dr

)
, s, t ∈ [0, T ]. (5)

Here and in the sequel, for i, j = 1, ..., N , the (raw) vector Q j;i
t = (q j,1;i

t , ..., q j,N ;i
t )

denotes the j-th rawof thematrix Qi
t , and Q

j;i
t x is the product

∑N
k=1 q

j,k;i
t xk , x ∈ R

N .

Remark 1 For any fixed i = 1, ..., N , consider (as in Wang et al. 2018) the backward
stochastic differential equation (BSDE, in short)

dY j
t = −(2Q j;i

t Xη
t + b j

t Y
j
t )dt + Z j

t dWt , Y j
T = 2Q j;i

T Xη
T , j = 1, ..., N ,

for which a solution is defined as a process (Y , Z) = (Y 1, ..., Y N , Z1, ..., ZN ) ∈
H

2,N × H
2,N×N which satisfies, for any j = 1, ..., N , the integral equation

Y j
t = 2Q j;i

T Xη
T +

∫ T

t
(2Q j;i

t Xη
t + b j

t Y
j
t )dt −

∫ T

t
Z j
t dWt , t ∈ [0, T ],P-a.s.

The solution (Y , Z) to such a BSDE is typically referred to as adjoint process (see
Wang et al. 2018 for further details) and its Y -component admits a continuous explicit
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solution as in (4) (see Proposition 6.2.1 at p. 142 in Pham (2009)), thus justifying the
name given to Y i,η.

The adjoint process Y i,η can also be interpreted as the subgradient of the cost
functional J i (·, η−i ). This observation ismade rigorous in the following lemma,which
will be used many times in the rest of this paper.

Lemma 2.1 For any i = 1, ..., N, η = (η1, ..., ηN ) = (ξ, ζ ) ∈ A2N and (ξ̄ i , ζ̄ i ) ∈
A2, we have

J i (ξ̄ i , ζ̄ i ; η−i ) − J i (ξ i , ζ i ; η−i ) ≥E

[ ∫
[0,T ]

Y i,η
t d(v̄i − vi )t

+
∫

[0,T ]
ci,+t d(ξ̄ i − ξ i )t +

∫
[0,T ]

ci,−t d(ζ̄ i − ζ i )t

]
,

where vi := ξ i − ζ i and v̄i := ξ̄ i − ζ̄ i .

Proof Take i ∈ {1, ..., N }, η = (η1, ..., ηN ) ∈ A2N and ξ̄ i , ζ̄ i ∈ A. In order to
simplify the notation, set X := Xη, Y i := Y i,η and denote by X̄ i the solution to the
SDE

d X̄ i
t = (ait + bit X̄

i
t )dt + σ i

t dW
i
t + d ξ̄ it − d ζ̄ it , X̄ i

0− = xi0.

For later use, we first show the following elementary identity:

E

[ ∫
[0,T ]

Y i
t d(v̄i − vi )t

]
= E

[ ∫ T

0
2Qi;i

t Xt (X̄
i
t − Xi

t )dt + 2Qi;i
T XT (X̄ i

T − Xi
T )

]
.

(6)

Indeed, since the process 	 := X̄ i − Xi solves the linear equation d	t = bit	t dt +
d(v̄i − vi )t , 	0− = 0, by a simple use of Itô’s formula (see Theorem 32 at p. 78
in Protter (2005)) on the process

(
exp

( − ∫ t
0 b

i
r dr

)
	t

)
t one can verify that exp

( −∫ t
0 b

i
r dr

)
(X̄ i

t −Xi
t ) = ∫

[0,t] exp
(−∫ s

0 bir dr
)
d(v̄i −vi )s . Thus, recalling the definition

of (�i
t,s)t,s in (5), we find

�i
t,0(X̄

i
t − Xi

t ) =
∫

[0,t]
�i
s,0d(v̄i − vi )s,
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which, together with an integration by parts, gives

E

[ ∫ T

0
2Qi;i

t X i
t (X̄

i
t − Xi

t )dt + 2Qi;i
T XT (X̄ i

T − Xi
T )

]
(7)

= E

[ ∫ T

0

(
−

∫ T

t
�i
0,s2Q

i;i
s Xsds

)′( ∫
[0,t]

�i
s,0d(v̄i − vi )s

)
dt

+ �i
0,T 2Q

i;i
T XT

( ∫
[0,T ]

�i
t,0d(v̄i − vi )t

)]

= E

[ ∫
[0,T ]

( ∫ T

t
�i
t,s2Q

i;i
s Xsds + �i

t,T 2Q
i;i
T XT

)
d(v̄i − vi )t

]
.

Moreover, Theorem 1.33 in Jacod (1979), implies that

E

[ ∫
[0,T ]

( ∫ T

t
�i
t,s2Q

i;i
s Xsds + �i

t,T 2Q
i;i
T XT

)
d(v̄i − vi )t

]

= E

[ ∫
[0,T ]

E

[ ∫ T

t
�i
t,s2Q

i;i
s Xsds + �i

t,T 2Q
i;i
T XT

∣∣∣Ft

]
d(v̄i − vi )t

]
,

which, together with (7) and (4), gives (6).
Now, by the convexity of the maps x 	→ xQi

t x , thanks to (6) we have

J i (ξ̄ i , ζ̄ i ; η−i ) − J i (ξ i , ζ i ; η−i )

≥ E

[ ∫ T

0
2Qi;i

t Xt (X̄
i
t − Xi

t )dt + 2Qi;i
T XT (X̄ i

T − Xi
T )

]

+ E

[ ∫
[0,T ]

ci,+t d(ξ̄ i − ξ i )t +
∫

[0,T ]
ci,−t d(ζ̄ i − ζ i )t

]

= E

[ ∫
[0,T ]

Y i,η
t d(v̄i − vi )t

]

+ E

[ ∫
[0,T ]

ci,+t d(ξ̄ i − ξ i )t +
∫

[0,T ]
ci,−t d(ζ̄ i − ζ i )t

]
,

completing the proof of the lemma. 
�
Next, we state the following version of the stochastic maximum principle, charac-

terizing the Nash equilibria in terms of the related adjoint processes. Such a theorem
was originated in Bank and Riedel (2001) for singular control problems, and we refer
to Wang et al. (2018) for a more general version in a game-context (which contains
Theorem 2.2 below as a particular case). Since our existence result (see Theorem 3.2
below) hinges on the stochastic maximum principle, for the reader’s convenience we
provide a proof.

Theorem 2.2 The admissible profile strategy η = (ξ, ζ ) ∈ A2N is a Nash equilibrium
if and only if, for any i = 1, ..., N, the following conditions hold:
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1. Y i,η
t + ci,+t ≥ 0 and −Y i,η

t + ci,−t ≥ 0, for any t ∈ [0, T ], P-a.s.;

2.
∫
[0,T ](Y

i,η
t + ci,+t )dξ it = 0 and

∫
[0,T ](−Y i,η

t + ci,−t )dζ it = 0, P-a.s.

Proof We first show that these conditions are sufficient for Nash. Fix i ∈ {1, ..., N }
and consider (ξ̄ i , ζ̄ i ) ∈ A2. Using Condition 2., in light of Lemma 2.1 we have

J i (ξ̄ i , ζ̄ i ; η−i ) − J i (ξ i , ζ i ; η−i ) ≥E

[ ∫
[0,T ]

(Y i,η
t + ci,+t )d(ξ̄ i − ξ i )t

+
∫

[0,T ]
(−Y i,η

t + ci,−t )d(ζ̄ i − ζ i )t

]

= E

[ ∫
[0,T ]

(Y i,η
t + ci,+t )d ξ̄ it

+
∫

[0,T ]
(−Y i,η

t + ci,−t )d ζ̄ it

]
≥ 0,

where the last inequality follows from Condition 1.. Since i is arbitrary, it follows that
η is a Nash equilibrium.

We next show that such conditions are necessary. Fix i ∈ {1, ..., N } and consider
ξ̄ i , ζ̄ i ∈ Ã with E[|ξ̄ iT |2 + |ζ̄ iT |2] < ∞. For any ε ∈ (−1, 1), define the strategy
profile ηε := (ξ i + εξ̄ i , ζ i + εζ̄ i , η−i ). Notice that, either if ε > 0 or if ε < 0 and
ξ̄ i ≤ ξ i , ζ̄ i ≤ ζ i , then the strategy profile ηε is admissible. Using that η is a Nash
equilibrium, from Lemma 2.1 we have

εE

[ ∫
[0,T ]

(Y i,ηε

t + ci,+t )d ξ̄ it +
∫

[0,T ]
(−Y i,ηε

t + ci,−t )d ζ̄ it

]
(8)

≥ J i (ξ i + εξ̄ i , ζ i + εζ̄ i , η−i ) − J i (ξ i , ζ i , η−i ) ≥ 0.

Moreover, observe that Xηε

t → Xη
t as ε → 0 for any t ∈ [0, T ], P-a.s., which in turn

implies that Y i,ηε

t → Y i,η
t as ε → 0 for any t ∈ [0, T ], P-a.s. Thus, for bounded ξ̄ i

and ζ̄ i , taking limits as ε → 0+ in (8), by the dominated convergence theorem we
obtain

E

[ ∫
[0,T ]

(Y i,η
t + ci,+t )d ξ̄ it +

∫
[0,T ]

(−Y i,η
t + ci,−t )d ζ̄ it

]
≥ 0.

Since ξ̄ i and ζ̄ i are arbitrary, Condition 1. follows. Finally, for M ∈ N, setting ξ̄ i,M :=
ξ i ∧ M and ζ̄ i,Mi := ζ i ∧ M , and taking limits as ε → 0− in (8), by the dominated
convergence theorem we get

E

[ ∫
[0,T ]

(Y i,η
t + ci,+t )d ξ̄

i,M
t +

∫
[0,T ]

(−Y i,η
t + ci,−t )d ζ̄

i,M
t

]
≤ 0.

123



Linear-quadratic-singular stochastic differential games and applications

Taking limits as M → ∞ in the latter inequality, by the monotone convergence
theorem we conclude that

E

[ ∫
[0,T ]

(Y i,η
t + ci,+t )dξ it +

∫
[0,T ]

(−Y i,η
t + ci,−t )dζ it

]
≤ 0,

which in light of Condition 1. implies Condition 2. 
�

3 Existence of Nash equilibria

3.1 Assumptions andmain result

Define matrix-valued functions Q̂, Q̄ : [0, T ] → R
N×N as

Q̂k, j
t = 2qk, j;kt , and Q̄k, j

t =
{
qk,k;kt if k = j,

2qk, j;kt if k �= j .
(9)

These two matrices contain some essential information on the strength of the interac-
tion among players. In particular, the entry Q̄k, j

t measures how relevant the position of
player j is for the optimization problem of player k at time t . In order to show the exis-
tence of Nash equilibria, we will require Q̄ to be positive definite (see Assumption 3.1
below). This in turn implies that large positions of the players are never convenient at
equilibrium (see Remark 2 and Lemma 3.4 below).

We now summarize the sufficient conditions for the existence of Nash equilibria.

Assumption 3.1 For any i = 1, ..., N , we require that:

1. The functions ai , bi , σ i , qk, j;i : [0, T ] → R are bounded, for any k, j = 1, ..., N ;
2. The functions ci,+, ci,− : [0, T ] → (0,∞) are continuous;
3. For any t ∈ [0, T ], the matrix Qi

t is symmetric;
4. For any t ∈ [0, T ], the matrix Q̄t is positive definite (hence, also Q̂t is positive

definite); i.e., there exists κ > 0 such that x Q̄t x ≥ κ|x |2 for any x ∈ R
N .

It is worth to underline that some of these requirements are in place for convenience
of exposition (in particular, the symmetry of Qi ): a model in which these are violated
is discussed in Sect. 4.

Remark 2 Clearly, the most restrictive hypothesis is the positive definiteness of the
matrices Q̄i . On the one hand, it implies that qi,i;it ≥ κ , and so that xQi

t x ≥
C(|xi |2 − |x−i |2) for any x ∈ R

N , for some C > 0. This condition is quite stan-
dard in singular control (see Dianetti and Ferrari 2023, among others) and it allows to
prove the existence of the optimal controls for the single-player optimization problems
(i.e., for the control problems infηi J

i (ηi , η−i ), parametrized by η−i ). On the other
hand, the assumption on the matrix Q̄ represents a coercivity condition on the space of
profile strategies and it ensures that the Nash equilibria, whenever they exist, always
live in a bounded subset ofA2N (see the a priori estimates in Lemma 3.4 below). This

123



J. Dianetti

assumption is different from more typical requirements used to treat LQ games in an
arbitrary time-horizon, which instead imply a certain monotonicity (in the sense of Hu
and Peng 1995) of the associated forward-backward system of equations (see Sections
5.2.2 and 5.4.3 in Carmona 2016 for more details).

We now state the main result of this paper.

Theorem 3.2 Under Assumption 3.1, there exists a Nash equilibrium.

The proof of Theorem 3.2 is given in the next subsection (see Subsection 3.2), and it
consists of several steps. We resume here the key ideas. First, we introduce a sequence
of approximating games where, for any n ∈ N, players are restricted to pick strategies
ξ i , ζ i ∈ Ã with Lispchitz constant bounded by n. For fixed n, this approximating
problem falls into the class of games with bang-bang controls and we can employ
the results in Hamadene and Mannucci (2019) in order to show the existence of a
Nash equilibrium ηn = (ηi,n, ..., ηN ,n). We then show some a priori estimates on
the sequence (ηn)n , which in turn allow to find an accumulation point η. Finally, we
prove that the limit point satisfies the conditions of Theorem 2.2, hence it is a Nash
equilibrium.

3.2 Proof of Theorem 3.2

In the following subsections we will prove Theorem 3.2, and Assumption 3.1 will be
in force. During the proofs,C > 0 will denote a generic constant, which might change
from line to line.

3.2.1 Nash equilibria for a sequence of approximating games

Define, for eachn ≥ 1, then-Lipschitz game as the game inwhich, for any i = 1, ..., N ,
player i is allowed to chose strategies ξ i and ζ i in the space of n-Lipschitz strategies

An := {ξ ∈ Ã with Lipschitz constant bounded by n and ξ0 = 0}.

For a given profile strategy η = (ξ, ζ ) ∈ A2N
n , player i minimizes the cost J i defined

as in (3), in which the state equation is replaced by the controlled SDE

dXi,η
t = (ait + bit X

i,η
t )ds + σ

i,n
t dWi

t + dξ it − dζ it , Xi,η
0 = xi0, (10)

with strictly elliptic diffusion term

σ
i,n
t := σ i

t ∨ 1

n
. (11)

We first have the following existence result.
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Proposition 3.3 Foranyn ≥ 1, there exists aNash equilibriumηn = (η1,n, ..., ηN ,n) ∈
A2N

n of the n-Lipschitz game; that is, ηn ∈ A2N
n such that

J i (ηi,n, η−i,n) ≤ J i (η̄i , η−i,n), for any η̄i ∈ A2
n,

for any i = 1, ..., N.

Proof For each n, the n-Lipschitz game can be reformulated as a stochastic differential
game with regular controls by setting

uit := dξ it

dt
and wi

t := dζ it

dt
.

Indeed, in the n-Lipschitz game player i chooses a strategies ui , wi in the set

Un := {progressively measurable processes u with0 ≤ ut ≤ n, P ⊗ dt-a.e.}

in order to minimize the expected cost

J i (αi , α−i ) := E

[ ∫ T

0

(
Xα
t Q

i
t X

α
t + ci,+t uit + ci,−t wi

t

)
dt + Xα

T Q
i
T X

α
T

]
,

subject to dX j,α
t = (a j

t + b j
t X

j,α
t + u j

t − w
j
t )ds + σ

j,n
t dW j

t , X j,α
0 = x j

0 ,

j = 1, ..., N . (12)

Here, we use the notation

α := (α1, ..., αN ) := ((u1, w1), ..., (uN , wN )) and Xα := (X1,α, ..., XN ,α).

Thanks to the uniform ellipticity enforced in (11), we can employ Theorem 4.1 in
Hamadene and Mannucci (2019) in order to deduce that, for any n there exists a Nash
equilibrium αn = (α1,n, ..., αN ,n), with αi,n = (ui,n, wi,n) ∈ U2

n . Hence, defining
the processes

ξ
i,n
t :=

∫ t

0
ui,ns ds and ζ

i,n
t :=

∫ t

0
wi,n
s ds, (13)

we have that ηn := (η1,n, ..., ηN ,n) is a Nash equilibrium for the n-Lipschitz game,
with ηi,n := (ξ i,n, ζ i,n). 
�

For any n ∈ N, we can now fix a Nash equilibrium ηn ∈ A2N
n , which is given in

terms of the equilibrium αn of the game in (12). Thus, we proceed by characterizing
such these equilibria by using the stochastic maximum principle (see Chapter 5 in
Carmona 2016).
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When viewed as a stochastic differential game with regular controls (see (12)), the
pre-Hamiltonians of the n-Lipschitz game write as

Hi,n(t, x, u, w; y1, ..., yN ) :=
N∑
j=1

(a j
t + b j

t x
j + u j − w j )y j + xQi

t x + ci,+t ui + ci,−t wi ,

for any i = 1, ..., N , (t, x) ∈ [0, T ] × R
N , u = (u1, ..., uN ), w = (w1, ..., wN ) ∈

[0, n]N and y := (y1, ..., yN ) ∈ R
N . In particular, the function Hi,n represents the

pre-Hamiltonian related to the optimization problem of player i .
Define theprocess (Xn,Yn, Zn)=(X1,n, ..., XN ,n,Y 1,n, ...,Y N ,n, Z1,n, ..., ZN ,n),

with (Xi,n,Y i,n, Zi,n) ∈ H
2×H

2,N ×H
2,N×N , as the unique solution of the forward-

backward stochastic differential equation (FBSDE, in short)

{
dXi,n

t = (
ait + bit X

i,n
t + ui,nt − w

i,n
t

)
dt + σ

i,n
t dWi

t , Xi,n
0 = xi0, i = 1, ..., N ,

dY i,n
t = −Dx Hi,n(t, Xn

t ,Y
n
t )dt + Zi,n

t dWt , Y i,n
T = 2Qi

T X
n
T , i = 1, ..., N .

The necessary conditions of the stochastic maximum principle (see Theorem 5.19 at
p. 187 in Carmona 2016) characterize the Nash equilibria as the minimizers of the
pre-Hamiltonian; that is, for any i = 1, ..., N we have

Hi,n(t, Xn
t , u

1,n
t , ..., uN ,n

t , w
1,n
t , ..., w

N ,n
t ; Y 1,i,n

t , ..., Y N ,i,n
t )

= inf
ui ,wi∈[0,n]

Hi,n(t, Xn
t , (u

i , u−i,n
t ), (wi , w

−i,n
t ); Y 1,i,n

t , ..., Y N ,i,n
t ), P ⊗ dt-a.e.

(14)

Now, we can compute the optimal feedbacks for player i , as multivalued functions
ûi,n and ŵi,n from [0, T ]×R

K+N ×[0, n]2(N−1) ×R
N into [0, n]. Indeed, by setting

(ûi,n, ŵi,n)(t, x, u−i , w−i ;y1, ..., yN )

:= argmin
ui ,wi∈[0,n]

Hi,n(s, x, u1, ...uN , w1, ..., wN ; y1, ..., yN )

:=
(
argmin
ui∈[0,n]

ui (yi + ci,+t ), argmin
wi∈[0,n]

wi (−yi + ci,−t )
)
,

and using the notation nA := {na | a ∈ A} for A ⊂ R, we obtain

ûi,n(t, yi ) = n

⎧⎪⎨
⎪⎩

{1} if yi + ci,+t < 0,

[0, 1] if yi + ci,+t = 0,

{0} if yi + ci,+t > 0,
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and

ŵi,n(t, yi ) = n

⎧⎪⎨
⎪⎩

{1} if − yi + ci,−t < 0,

[0, 1] if − yi + ci,−t = 0,

{0} if − yi + ci,−t > 0.

Hence, the necessary conditions (14) rewrites as

ui,nt ∈ ûi,n(t,Y i,i,n
t ) and w

i,n
t ∈ ŵi,n(t,Y i,i,n

t ), P ⊗ dt-a.e.. (15)

Since ûi,n and ŵi,n depend only on Y i,i,n and since the equation for Y i,i,n does
not depend on Y j,i,n if j �= i , one can reduce the FBSDE (14). In particular,
with slight abuse of notation (i.e., writing (Y i,n, Zi,n) instead of (Y i,i,n, Zi,i,n))
we have ui,nt = ûi,n(t,Y i,n

t ) and w
i,n
t = ŵi,n(t,Y i,n

t ) with (Xn,Yn, Zn) =
(X1,n, ..., XN ,n,Y 1,n, ...,Y N ,n, Z1,n, ..., ZN ,n) solution to the FBSDE{
dXi,n

t = (
ait + bit X

i,n
t + ui,nt − w

i,n
t

)
dt + σ

i,n
t dWi

t , Xi,n
0 = xi0, i = 1, ..., N ,

dY i,n
t = −(2Qi;i

t X i,n
t + bit Y

i,n
t )dt + Zi,n

t dWt , Y i,n
T = 2Qi;i

T Xn
T , i = 1, ..., N .

Moreover, using (13) and noticing that the equations for Y i,n are linear, by using
Proposition 6.2.1 at p. 142 in Pham (2009), as in (4) we can rewrite this system as⎧⎨
⎩
dXi,n

t = (
ait + bit X

i,n
t

)
dt + σ

i,n
t dWi

t + dξ
i,n
t − dζ

i,n
t , Xi,n

0 = xi0, i = 1, ..., N ,

Y i,n
t = 2E

[
�i
t,T Q

i;i
T Xn

T + ∫ T
t �i

t,s Q
i;i
s Xn

s ds
∣∣∣Ft

]
, i = 1, ..., N ,

(16)

and the necessary conditions for the n-Lipschitz game (see (15)) translate into

ξ
i,n
t =

∫ t

0
ui,ns ds, ui,nt ∈ ûi,n(t, Y i,n

t ) and ζ
i,n
t =

∫ t

0
wi,n
s ds, w

i,n
t ∈ ŵi,n(t, Y i,n

t ).

(17)

3.2.2 A priori estimates for Nash equilibria and convergence to a limit point

From the previous subsection, we can fix a sequence (ξn, ζ n)n of Nash equilibria of
the n-Lipschitz games and consider the associated sequence (Xn,Yn, ξn, ζ n)n of the
solutions to the FBSDE (16) which satisfy the conditions (17).

We begin with the following a priori estimates on the moments of the these Nash
equilibria, which will be used to find limit points if the sequence (Xn,Yn, ξn, ζ n)n in
Proposition 3.5.

Lemma 3.4 We have

sup
n

E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

]
< ∞ and sup

n
E

[
|ξnT | + |ζ n

T | + sup
t∈[0,T ]

|Xn
t |

]
< ∞.
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Proof We divide the proof in two steps.
Step 1. For i = 1, ..., N , let X̃ i,n denote the solution to the SDE (10) controlled by 0;
that is, to the SDE

d X̃ i,η
t = (ait + bit X̃

i,η
t )ds + σ

i,n
t dWi

t , X̃ i,η
0 = xi0. (18)

Since ηn is a Nash equilibrium for the n-Lipschitz game, we have J i (ηi,n, η−i,n) ≤
J i (0, 0, η−i,n), from which we obtain

E

[ ∫ T

0
Xn
t Q

i
t X

n
t dt + Xn

T Q
i
T X

n
T

]

≤ J i (ηi,n, η−i,n) ≤ J i (0, 0, η−i,n)

= E

[ ∫ T

0

(
qi,i;it (X̃ i,n

t )2 + 2
∑
j �=i

qi, j;it X̃ i,n
t X j,n

t +
∑

k �=i, j �=i

qk, j;it Xk,n
t X j,n

t

)
dt

]

+ E

[
qi,i;iT (X̃ i,n

T )2 + 2
∑
j �=i

qi, j;iT X̃ i,n
T X j,n

T +
∑

k �=i, j �=i

qk, j;iT Xk,n
T X j,n

T

]
,

which in turn rewrites as

E

[ ∫ T

0

(
qi,i;it (Xi,n

t )2 + 2
∑
j �=i

qi, j;it X i,n
t X j,n

t

)
dt + qi,i;iT (Xi,n

T )2 + 2
∑
j �=i

qi, j;iT Xi,n
T X j,n

T

]

≤ E

[ ∫ T

0

(
qi,i;it (X̃ i,n

t )2 + 2
∑
j �=i

qi, j;it X̃ i,n
t X j,n

t

)
dt

+ qi,i;iT (X̃ i,n
T )2 + 2

∑
j �=i

qi, j;iT X̃ i,n
T X j,n

T

]
.

Therefore, summing over i = 1, ..., N , for Q̄ as in (9),

Q̃k, j
t :=

{
0 if k = j,

2qk, j;kt if k �= j .
and X̃n := (X̃1,n, ..., X̃ N ,n),

using the integrability of X̃n , we find

E

[ ∫ T

0
Xn
t Q̄t X

n
t dt + Xn

T Q̄T X
n
T

]
≤ C

(
1 + E

[ ∫ T

0
X̃n
t Q̃t X

n
t dt + X̃n

T Q̃T X
n
T

])
,

and, since Q̄ > 0 (cf. Condition 4. in Assumption 3.1), we deduce that

E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

]
≤ C

(
1 + E

[ ∫ T

0
X̃n
t Q̃t X

n
t dt + X̃n

T Q̃T X
n
T

])
.
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By employing Hölder inequality with exponent 2 on the latter estimate, we obtain

E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

]
≤ C

(
1 +

N∑
i, j=1

E

[ ∫ T

0
|X̃ i,n

t ||X j,n
t |dt + |X̃ i,n

T ||X j,n
T |

])

≤ C

(
1 +

N∑
i, j=1

(
E

[ ∫ T

0
|X̃ i,n

t |2dt + |X̃ i,n
T |2

]) 1
2

×
(
E

[ ∫ T

0
|X j,n

t |2dt + |X j,n
T |2

]) 1
2
)

.

Hence, again by the integrability of X̃n , we get

E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

]
≤ C

(
1 +

(
E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

]) 1
2
)

,

which in turn implies that

sup
n

E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

]
< ∞, (19)

thus proving the first part of the statement.
Step 2. We now estimate ξnT and ζ n

T . Fix i ∈ {1, ..., N } and, for X̃ i,n denoting the
solution to the SDE (18), set X̄n = (X̄1,n, ..., X̄ N ,n) by X̄ j,n := X j,n if j �= i and
X̄ i,n := X̃ i,n . By optimality of ηn we have

E

[ ∫ T

0
Xn
t Q

i
t X

n
t dt + Xn

T Q
i
T X

n
T +

∫
[0,T ]

(ci,+t dξ
i,n
t + ci,−t dζ

i,n
t )

]

≤ J i (ηi,n, η−i,n) ≤ J i (0, η−i,n)

= E

[ ∫ T

0
X̄n
t Q

i
t X̄

n
t dt + X̄n

T Q
i
T X̄

n
T

]
.

Now, using the fact that ci,+t , ci,−t ≥ c̄ > 0 (see in Condition 2. in Assumption 3.1),
by employing Hölder inequality with exponent 2 we find

c̄E
[
ξ
i,n
T + ζ

i,n
T

]
≤ E

[ ∫
[0,T ]

(ci,+t dξ
i,n,+
t + ci,−t dξ

i,n,−
t )

]

≤ E

[ ∫ T

0

(
X̄n
t Q

i
t X̄

n
t − Xn

t Q
i
t X

n
t

)
dt + X̄n

T Q
i
T X̄

n
T − Xn

T Q
i
T X

n
T

]

≤ C

(
1 + E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

])
,
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so that, thanks to the estimates in (19), we obtain

sup
n

E[ξ i,nT + ζ
i,n
T ] < ∞.

Finally, since i ∈ {1, ..., N } is arbitrary, we obtain

sup
n

E[|ξnT | + |ζ n
T |] ≤ sup

n

N∑
i=1

E[ξ i,nT + ζ
i,n
T ] < ∞,

and, by classical Grönwall estimate, we conclude that

sup
n

E

[
sup

t∈[0,T ]
|Xn

t |
]

< ∞,

completing the proof. 
�

We are now ready to identify the accumulation points of the sequence of Nash
equilibria (Xn,Yn, ξn, ζ n)n of the n-Lipschitz game. To this end, for a generic d ∈ N,
introduce the Hilbert space H2,d

T with norm ‖ · ‖2,dT defined as

H
2,d
T := {M ∈ H

2,d s.t. ‖M‖2,dT < ∞} and ‖M‖2,dT := E

[ ∫ T

0
|Mt |2dt + |MT |2

]
,

and setH2
T := H

2,1
T . Also, onH2,d

T we can consider the weak convergence; that is, for

M, Mn ∈ H
2,d
T , n ∈ N, we say that

Mn → M as n → ∞, weakly in H2,d
T ,

if, for any H ∈ H
2,d
T , one has

lim
n

E

[ ∫ T

0
HtM

n
t dt + HT M

n
T

]
= E

[ ∫ T

0
HtMtdt + HT MT

]
.

We now state the following convergence result in which we identify a candidate
Nash equilibrium as a limit point of the sequence (Xn,Yn, ξn, ζ n)n .

Proposition 3.5 There exists a subsequence of (Xn,Yn, ξn, ζ n)n (still indexed by
n) and processes (X ,Y ) = (X1, ..., XN ,Y 1, ...,Y N ) ∈ H

2,2N
T and (ξ, ζ ) =

(ξ1, ..., ξ N , ζ 1, ..., ζ N ) ∈ Ã2N such that:

1. (Xn,Yn)n → (X ,Y ) as n → ∞, weakly in H2,2N
T ;
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2. For ξ̄ i,m := 1
n

∑m
n=1 ξ i,n and ζ̄ i,m := 1

n

∑m
n=1 ζ i,n, for P-a.a. ω ∈ �, the conver-

gence

ξ̄
i,m
t (ω) → ξ it (ω) for any continuity point of ξ i (ω) and ξ̄

i,m
T (ω) → ξ iT (ω),

ζ̄
i,m
t (ω) → ζ it (ω) for any continuity point of ζ i (ω) and ζ̄

i,m
T (ω) → ζ iT (ω),

as m → ∞ holds, for any i = 1, ..., N;
3. The profile strategy (ξ, ζ ) is admissible.

Proof Since the process Y i,n solves the BSDE in (16), we have

E
[|Y i,n

t |2] ≤ CE

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

]
,

so that, by Lemma 3.4, we have

sup
n

E

[ ∫ T

0
|Yn

t |2dt + |Yn
T |2

]
< ∞.

The latter, together with the estimates in Lemma 3.4, allows to find a subsequence of
(Xn,Yn)n (still labelled by n) and a process (X ,Y ) = (X1, ..., XN ,Y 1, ..., Y N ) such
that (Xn,Yn) converges to (X ,Y ) as n → ∞, weakly in H

2,2N
T .

We next identify the limits for the sequence (ξn, ζ n)n . By the estimates in
Lemma 3.4, thanks to Lemma 3.5 in Kabanov (1999) we can find processes ξ =
(ξ1, ..., ξ N ) ∈ ÃN and ζ = (ζ 1, ..., ζ N ) ∈ ÃN and a subsequence of indexes (not
relabelled) such that, for any further subsequence, by setting

ξ̄ i,m := 1

n

m∑
n=1

ξ i,n and ζ̄ i,m := 1

n

m∑
n=1

ζ i,n,

we have, for P-a.a. ω ∈ �, the convergence

ξ̄
i,m
t (ω) → ξ it (ω) for any continuity point of ξ i (ω) and ξ̄

i,m
T (ω) → ξ iT (ω), (20)

ζ̄
i,m
t (ω) → ζ it (ω) for any continuity point of ζ i (ω) and ζ̄

i,m
T (ω) → ζ iT (ω),

as m → ∞ for any i = 1, ..., N . On the other hand, for any i = 1, ..., N , we can
define the processes vi,n := ξ i,n − ζ i,n and, by Lemma 3.4, we have

sup
n

E

[ ∫ T

0
|vi,nt |2dt + |vi,nT |2

]
≤ C sup

n
E

[ ∫ T

0
|Xi,n

t |2dt + |Xi,n
T |2

]
< ∞.

Thus, there exists a further subsequence (again, not relabelled) and a process vi ∈ H
2
T

such that

vi,n → vi as n → ∞, weakly in H2
T . (21)
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Moreover, by Banach-Saks theorem, we can find another subsequence of (vi,n)n (still
labelled by n) such that v̄i,m := 1

n

∑m
n=1 vi,n → vi , as m → ∞, strongly in H

2
T .

Thus, up to a subsequence (still labelled by m), we have the convergence

v̄
i,m
t → vit , as m → ∞,P ⊗ dt-a.e. in � × [0, T ].

The latter limit, together with (20), implies that vi = ξ i − ζ i .
Finally, since vi ∈ H

2
T , we conclude that (ξ i , ζ i ) is admissible, completing the

proof of the proposition. 
�

3.2.3 Properties of limit points

In the next two proposition we will show that the accumulation point (X ,Y , ξ, ζ )

satisfies the conditions of Theorem 2.2.

Proposition 3.6 The process (X ,Y , ξ, ζ ) solves the FBSDE

⎧⎨
⎩
dXi

t = (
ait + bit X

i
t

)
dt + σ i

t dW
i
t + dξ it − dζ it X i

0− = xi0, i = 1, ..., N ,

Y i
t = 2E

[
�i
t,T Q

i;i
T XT + ∫ T

t �i
t,s Q

i;i
s Xsds

∣∣∣Ft

]
, i = 1, ..., N .

(22)

Proof Take i ∈ {1, ..., N }. We first prove that Xi solves the forward equation. Since,
for any n, the process Xi,n solves the forward equation in (16), we have

Xi,n
t = Ai,n

t +
∫ t

0
bis X

i,n
s ds + v

i,n
t , Ai,n

t := xi0 +
∫ t

0
aisds +

∫ t

0
σ i,n
s dWi

s .

Then, for any M ∈ H
2, via an integration by parts we obtain

E

[ ∫ T

0
Mt X

i,n
t dt

]
= E

[ ∫ T

0
Mt

(
Ai,n
t +

∫ t

0
bis X

i,n
s ds + v

i,n
t

)
dt

]

= E

[ ∫ T

0
Mt (A

i,n
t + v

i,n
t )dt

]

+ E

[ ∫ T

0

( ∫ T

0
Msds

)
bit X

i,n
t dt −

∫ T

0

( ∫ t

0
Msds

)
bit X

i,n
t dt

]
.

Notice that, from the definition of σ i,n in (11), we have

lim
n

E

[ ∫ T

0
|Ai,n

t − Ai
t |2dt

]
= 0, where Ai

t := xi0 +
∫ t

0
aisds +

∫ t

0
σ i
s dW

i
s .

Hence, the convergence established in Proposition 3.5 (see also (21)) allows to take
limits as n → ∞ in the latter equality, and integrating again by parts, we conclude
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that

E

[ ∫ T

0
Mt X

i
t dt

]
= E

[ ∫ T

0
Mt

(
Ai
t +

∫ t

0
bis X

i
sds + vit

)
dt

]
, for any M ∈ H

2.

Thus, the forward equation Xi
t = Ai

t + ∫ t
0 b

i
s X

i
sds + vit holds P ⊗ dt-a.e.

We now prove that Y i solves the backward equation. Since, for any n, the process
Y i,n solves the backward equation in (16), we have, for any M ∈ H

2
T , the identity

E

[ ∫ T

0
MtY

i,n
t dt

]
= 2E

[ ∫ T

0
Mt

(
E

[
�i
t,T Q

i;i
T Xn

t +
∫ T

t
�i
t,s Q

i;i
s Xn

s ds
∣∣∣Ft

])
dt

]
,

and, by using Theorem 1.33 in Jacod (1979) and then an integration by parts, we obtain

E

[ ∫ T

0
MtY

i,n
t dt

]
= 2E

[ ∫ T

0
Mt

(
�i
t,T Q

i;i
T Xn

T +
∫ T

t
�i
t,s Q

i;i
s Xn

s ds
)
dt

]

= 2E

[
Xn
T Q

i;i
T

∫ T

0
Mt�

i
t,T dt +

∫ T

0

( ∫ t

0
Ms�

i
s,t ds

)
Qi;i

t Xn
t dt

]
.

Finally, thanks to the convergence established in Proposition 3.5, we can take limits as
n → ∞ in the latter equality and, using the same steps backward, we conclude that

E

[ ∫ T

0
MtY

i
t dt

]
= 2E

[ ∫ T

0
Mt

(
E

[
�i
t,T Q

i;i
T XT +

∫ T

t
�i
t,s Q

i;i
s Xsds

∣∣∣Ft

])
dt

]
,

for any M ∈ H
2
T , so that Y

i solves the backward equation. 
�

Proposition 3.7 For every i = 1, ..., N, the following conditions hold true:

1. Y i
t + ci,+t ≥ 0 and −Y i

t + ci,−t ≥ 0, for any t ∈ [0, T ], P-a.s.;
2.

∫
[0,T ](Y

i
t + ci,+t )dξ it = 0 and

∫
[0,T ](−Y i

t + ci,−t )dζ it = 0, P-a.s.

Proof We prove each claim separately.

Proof of 1.. By Lemma 2.1, we have

J i (0, 0; η−i,n) − J i (ξ i,n, ζ i,n; η−i,n) (23)

≥ −E

[ ∫ T

0
(Y i,n

t + ci,+t )dξ
i,n
t +

∫ T

0
(−Y i,n

t + ci,−t )dζ
i,n
t

]
,

where, in the last equality, we have used the integrability of ξ i,n and ζ i,n . Next,
for y ∈ R, set y+ := max{y, 0} and y− := max{−y, 0}. By using the necessary
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conditions in (17), we obtain

nE

[ ∫ T

0
(Y i,n

t + ci,+t )−dt +
∫ T

0
(−Y i,n

t + ci,−t )−dt
]

≤ J i (0; η−i,n) − J i (ξ i,n, ζ i,n; η−i,n),

so that, thanks to the boundedness of Qi , we have

nE

[ ∫ T

0
(Y i,n

t + ci,+t )−dt +
∫ T

0
(−Y i,n

t + ci,−t )−dt
]

≤ C

(
1 + E

[ ∫ T

0
|Xn

t |2dt + |Xn
T |2

])
.

Hence, by Lemma 3.4 we deduce that

lim
n

E

[ ∫ T

0
(Y i,n

t + ci,+t )−dt
]

= lim
n

E

[ ∫ T

0
(−Y i,n

t + ci,−t )−dt
]

= 0. (24)

From the latter equality, using that Y i,n converges weakly to Y i as n → ∞ (cf.
Proposition 3.5), we deduce that

0 ≤ E

[ ∫ T

0
(Y i

t + ci,+t )−dt
]

= − lim
n

E

[ ∫ T

0
(Y i,n

t + ci,+t )1{Y i
t +ci,+t ≤0}dt

]

≤ lim
n

E

[ ∫ T

0
(Y i,n

t + ci,+t )−1{Y i
t +ci,+t ≤0}dt

]

≤ lim
n

E

[ ∫ T

0
(Y i,n

t + ci,+t )−dt
]

= 0.

Similarly, we find

E

[ ∫ T

0
(−Y i

t + ci,−t )−dt
]

= 0,

completing the proof of Claim 1..
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Proof of 2..Using (6) (see the proof ofLemma2.1)withη = η−i,n and (ξ̄ , ζ̄ ) = (0, 0),
denoting by X̃ i,n the solution to (18), we obtain

E

[ ∫
[0,T ]

Y i,n
t d(ξ i,n − ζ i,n)t

]
= 2E

[ ∫ T

0

( N∑
j=1

qi, j;it X j,n
t

)
(Xi,n

t − X̃ i,n
t )dt

]

+ 2E

[( N∑
j=1

qi, j;iT X j,n
T

)
(Xi,n

T − X̃ i,n
T )

]
.

Thus, summing over i = 1, ..., N , for Q̂ as in (9) and X̃n := (X̃1,n, ..., X̃ N ,n) we find

N∑
i=1

E

[ ∫
[0,T ]

Y i,n
t d(ξ i,n − ζ i,n)t

]
= E

[ ∫ T

0
(Xn

t Q̂t X
n
t − X̃n

t Q̂t X
n
t )dt

]
(25)

+ E
[
Xn
T Q̂T X

n
T − X̃n

T Q̂T X
n
T

]
.

Similarly, for X̃ = (X̃1, ..., X̃ N ), with X̃ j solution to the SDE (1) for j = 1, ..., N ,
we obtain the identity

N∑
i=1

E

[ ∫
[0,T ]

Y i
t d(ξ i − ζ i )t

]
= E

[ ∫ T

0
(Xt Q̂t Xt − X̃t Q̂t Xt )dt

]
(26)

+ E
[
XT Q̂T XT − X̃T Q̂T XT

]
.

From (11), we notice that

lim
n

E

[ ∫ T

0
|X̃n

t − X̃t |2dt
]

= 0.

Therefore, since Xn → X weakly (see Proposition 3.5), we have

E

[ ∫ T

0
X̃t Q̂t Xtdt + X̃T Q̂T XT

]
= lim

n
E

[ ∫ T

0
X̃n
t Q̂t X

n
t dt + X̃n

T Q̂T X
n
T

]

and, by convexity of the map x 	→ x Q̂x (cf. Condition 4. in Assumption 3.1), we find

E

[ ∫ T

0
Xt Q̂t Xtdt + XT Q̂T XT

]
≤ lim inf

n
E

[ ∫ T

0
Xn
t Q̂t X

n
t dt + Xn

T Q̂T X
n
T

]
.

123



J. Dianetti

Hence, by using the latter limits in (25) and (26), we obtain

N∑
i=1

E

[ ∫
[0,T ]

Y i
t d(ξ i − ζ i )t

]
≤ lim inf

n

N∑
i=1

E

[ ∫
[0,T ]

Y i,n
t d(ξ i,n − ζ i,n)t

]
, (27)

Next, for a suitable subsequence of indexes (nk)k , since the functions ci,+ and ci,−
are bounded and continuous, the limits at Point 2. in Proposition 3.5 give

N∑
i=1

E

[ ∫
[0,T ]

(
ci,+t dξ it + ci,−t dζ it

)]
= lim

m

1

m

m∑
k=1

N∑
i=1

E

[ ∫
[0,T ]

(
ci,+t dξ

i,nk
t + ci,−t dζ

i,nk
t

)]
.

(28)

Moreover, by the limits in (27), we also have

N∑
i=1

E

[ ∫
[0,T ]

Y i
t d(ξ i − ζ i )t

]
≤ lim inf

m

1

m

m∑
k=1

N∑
i=1

E

[ ∫
[0,T ]

Y i,nk
t d(ξ i,nk − ζ i,nk )t

]
.

(29)

Finally, by the step 1 in this proof, the integrals
∫
[0,T ](Y

i
t + ci,+t )dξ it and∫

[0,T ](−Y i
t + ci,−t )dζ it are well defined (possibly equal to +∞) and, from (28) and

(29), we conclude that

N∑
i=1

E

[ ∫
[0,T ]

(Y i
t + ci,+t )dξ it +

∫
[0,T ]

(−Y i
t + ci,−t )dζ it

]

≤ lim inf
m

1

m

m∑
k=1

N∑
i=1

E

[ ∫
[0,T ]

(Y i,nk
t + ci,+t )dξ

i,nk
t +

∫
[0,T ]

(−Y i,nk
t + ci,−t )dζ

i,nk
t

]
,

= lim inf
m

1

m

m∑
k=1

N∑
i=1

(
− nkE

[ ∫ T

0

(
(Y i,nk

t + ci,+t )− + (−Y i,nk
t + ci,−t )−

)
dt

])
≤ 0,

where we have used the necessary conditions in (17). The latter inequality, combined
with Claim 1., in turn implies that

∫
[0,T ]

(Y i
t + ci,+t )dξ it =

∫
[0,T ]

(−Y i
t + ci,−t )dζ it = 0,

thus completing the proof of the proposition. 
�
In order to conclude the proof of Theorem 3.2, we only remain to observe that, by

Propositions 3.6 and 3.7, the constructed η satisfies the conditions of Theorem 2.2,
and it is therefore a Nash equilibrium.
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4 An application to oligopoly investment games

We consider N firms competing in a market by producing and selling a certain good.
The stochastic demand of such a good is modeled by the one-dimensional diffusion
process

dX0
t = μ0(t, X0

t )dt + σ 0(t, X0
t )dW

0
t , X0

0 = x00 ∈ R,

which is driven by a one-dimensional Brownian motion W 0 on some complete prob-
ability space (�,F ,P). The functions μ0, σ 0 : [0, T ] × R → R are assumed to be
Lipschitz continuous and the diffusive termσ 0 is assumed to satisfy the nondegeneracy
condition

0 < σ ≤ σ 0(t, x) ≤ σ̄ , for any t ∈ [0, T ], x ∈ R, for some σ , σ̄ ∈ R. (30)

Following the fluctuations of the demand X0, each company i can expand its capital
stock Xi through an irreversible investment strategy ξ i . Since σ 0 is nondegenerate,
the filtration generated by X0 coincides with the filtration generated byW 0. Let F0 =
(F0

t )t the right-continuous extension of the filtration generated byW 0, augmented by
the P-null sets. Thus, strategies ξ i are F0-adapted, nonnegative, nondecreasing, càdlàg
processes with E[ξ iT ] < ∞, and the capital stock of firm i evolves as

dXi
t = −δi X i

t dt + dξ it , Xi
0− = xi0 ≥ 0,

where the parameter δi > 0 measures the natural deterioration of the capital. The
production output of firm i is given by the multiple αi X i

t , for some αi > 0.
Assuming a linear demand (as in Back and Paulsen 2009, at the end of Section

1), the price at time t of the good is given by X0
t − γ

∑N
j=1 α j X j

t , for a parameter

γ > 0. Hence, the profit from sales of company i is given by Xi
t

(
X0
t −γ

∑N
j=1 α j X j

t
)
.

Moreover, we assume that the cost faced by company i per unit of investment is ci > 0,
and that the company’s discount factor is ρ > 0. Summarizing, each company aims
at maximizing the net quadratic-singular profit functional

Pi (ξ i , ξ−i ) := E

[ ∫ T

0
e−ρtαi X i

t

(
X0
t − γ

N∑
j=1

α j X j
t

)
dt − ci

∫
[0,T ]

e−ρt dξ it

]
.

Before discussing the existence of Nash equilibria, some observations are worth
being done.

Remark 3 We point out that, in comparison to the setup in Sect. 2, the model described
in this section is more general from two points of view:

1. The uncertainty in the decision of players is driven by the presence of the extra
noiseW 0. As a consequence, since the idiosyncratic noisesWi are set to zero, the
equilibrium investment strategies are expected to be adapted only to the noiseW 0
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(this fact will be proved in the Step 2 in the proof of Theorem4.1 below).Moreover,
X0 enters in the optimization problem of the players as a random unaffected
parameter. Hence, even if the SDE for X0 is not linear, the optimization problems
of the players remain convex, and the necessary and sufficient conditions for Nash
as in Theorem 2.2 remain valid up to minimal adjustments: In particular, any F

0-
adapted Nash equilibrium solves the system (34) with the optimality conditions
(35) and (36) below (notice that the conditional expectation of the adjoint process
in (34) is taken with respect to F0).

2. The symmetry of Qi and the non-degeneracy of Q̄ in Assumption 3.1 are not
satisfied. Nevertheless, a taylor made a priori estimate (as in Lemma 3.4) can be
shown (see Step 1 in the proof of Theorem 4.1 below), which allows to recover
the convergence of the approximating Nash equilibria (as in Proposition 3.5).

Remark 4 The nondegeneracy condition (30) is in place merely for technical reasons,
and it is used to employ the results in Hamadene and Mannucci (2019) in order to
constructNash equilibria of the relatedLipschitz games.Akey example,which already
appeared in the literature (see e.g. in Aid et al. (2015); Bar-Ilan et al. (2002)), where
the nondegeneracy condition is satisfied is when the demand X0 is a mean-reverting
process, following the SDE

dX0
t = μ0(θ0 − X0

t )dt + σ 0dW 0
t , X0

0 = x00 > 0,

for parameters θ0 ∈ R, μ0, σ 0 > 0. Mean-reverting dynamics find important appli-
cation in the energy and commodity markets (see, e.g., Benth et al. 2014 or Chapter 2
in Lutz 2009).

4.1 Existence of Nash equilibria

Slightly adapting Theorem 3.2, we can show existence of equilibrium investment
strategies.

Theorem 4.1 There exists an F
0-adapted Nash equilibrium.

Proof In order to simplify the notation we take α1 = ... = αN = 1 and ρ = 0 (the
proof in the general case is analogous). The rest of the proof is dived in two steps.

Step 1.Wefirst give a sketch of how to construct a Nash equilibrium as in Theorem 3.2.
Without loss of generality, we can assume the probability space (�,F ,P) to be large
enough to accommodate N independent Brownian motions Wi , i = 1, ..., N , which
are independent fromW 0. LetF = (Ft )t the right-continuous extensionof thefiltration
generated by (W 0,W 1, ...,WN ), augmented by the P-null sets.

Weobserve that the symmetry ofQi and the non-degeneracyof Q̄ inAssumption3.1
are not satisfied. However, despite the presence of the extra uncontrolled dynamics X0,
Theorem 3.2 applies (with minimal adjustment) and provides the existence of a Nash
equilibrium ξ = (ξ1, ..., ξ N ) which is F-adapted, with E[|ξT |2] < ∞. In particular,
the main difference is in the estimates of Lemma 3.4, which can be recovered as
follows. For n ∈ N, let ξn be a Nash equilibrium of the related n-Lipschitz game,
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and denote by Xn = (X1,n, ..., XN ,n) and X̃n = (X̃1,n, ..., X̃ N ,n) the solutions to
the controlled and uncontrolled equations

dXi,n
t = −δi X i,n

t dt + 1

n
dWi

t + dξ
i,n
t , Xi,n

0− = xi0,

d X̃ i,n
t = −δi X̃ i,n

t dt + 1

n
dWi

t , X̃ i,n
0 = xi0,

respectively, for i =1, ..., N . By optimality, for i = 1, ..., N wehave Pi (ξ i,n, ξ−i,n) ≥
Pi (0, ξ−i,n), which implies that

E

[ ∫ T

0
Xi,n
t

(
γ

N∑
j=1

X j,n
t − X0

t

)
dt

]
≤ E

[ ∫ T

0
X̃ i,n
t

(
γ X̃ i,n

t + γ
∑
j �=i

X j,n
t − X0

t

)
dt

]
.

Thus, summing over i , we obtain

E

[ ∫ T

0

( N∑
j=1

X j,n
t

)2
dt

]
≤ C

(
1 + E

[ ∫ T

0

N∑
i=1

(
X0
t X

i,n
t + γ X̃ i,n

t

∑
j �=i

X j,n
t

)
dt

])
.

(31)

Moreover, solving explicitly the equation for X j,n , we have X j,n
t = e−δ j t

(
x j
0 +∫ t

0 e
δ j sdξ

j,n
s + 1

n

∫ t
0 e

δ j sdW i
s

)
, so that

X j,n
t − M j,n

t := X j,n
t − 1

n

∫ t

0
eδ j (s−t)dW j

s = e−δ j t
(
x j
0 +

∫ t

0
eδ j sdξ

j,n
s

)
≥ 0.

Thus, we have 0 ≤ Xi,n
t − Mi,n

t ≤ ∑N
j=1(X

j,n
t − M j,n

t ). This implies that

(Xi,n
t )2 + (Mi,n

t )2 − 2Xi,n
t Mi,n

t = (Xi,n
t − Mi,n

t )2

≤
( N∑

j=1

(X j,n
t − M j,n

t )
)2

≤ 2
(( N∑

j=1

X j,n
t

)2 +
( N∑

j=1

M j,n
t

)2)
,

which, summing over i , gives

E

[ ∫ T

0
|Xn

t |2dt
]

≤ C

(
1 + E

[ ∫ T

0

(( N∑
j=1

X j,n
t

)2 + 2
N∑
i=1

Xi,n
t Mi,n

t

)
dt

])
.

123



J. Dianetti

Combining the latter estimate with (31), thanks to Hölder inequality we find

E

[ ∫ T

0
|Xn

t |2dt
]

≤ C

(
1 +

(
E

[ ∫ T

0
|Xn

t |2dt
])1/2)

.

Hence, we conclude that supn E[∫ T
0 |Xn

t |2dt] < ∞ and (as in Lemma 3.4) that
supn E[|ξnT |] < ∞.

We also underline that there is a difference in the optimality conditions of Theorem
2.2. Indeed, if the process (X ,Y ) = (X1, ..., XN ,Y 1, ..., Y N ) ∈ H

2,2N is associated
to a Nash equilibrium ξ , then it solves the FBSDE

{
Xi
t = xi0 − δi

∫ t
0 Xi

sds + ξ it , i = 1, ..., N ,

Y i
t = E

[ ∫ T
t e−δi (s−t)(γ

∑N
j=1 X

j
s + γ Xi

s − X0
s )ds

∣∣Ft
]
, i = 1, ..., N ,

and, by the analogous of Theorem 2.2 in the current setting, the equilibrium ξ satisfies
the conditions:

Y i
t + ci ≥ 0, for any t ∈ [0, T ], P-a.s.; (32)∫
[0,T ]

(Y i
t + ci )dξ it = 0,P-a.s. (33)

Step 2. We now construct an F
0-adapted equilibrium. Set ξ̄ := (ξ̄1, ..., ξ̄ N ), where

ξ̄ i := (E[ξ it |F0
t ])t , for i = 1, ..., N .

Clearly, the processes ξ̄ i are F0-adapted and, since E[ξ it |F0
t ] = E[ξ it |F0

T ] P-a.s., we
see that ξ̄ i are nondecreasing and càdlàg. Next, set

X̄ i := (E[Xi
t |F0

t ])t and Ȳ i := (E[Y i
t |F0

t ])t , for i = 1, ..., N .

With elementary arguments, we find

{
X̄ i
t = xi0 − δi

∫ t
0 X̄ i

sds + ξ̄ it , i = 1, ..., N ,

Ȳ i
t = E

[ ∫ T
t e−δi (s−t)(γ

∑N
j=1 X̄

j
s + γ X̄ i

s − X0
s )ds

∣∣F0
t

]
, i = 1, ..., N .

(34)

Next,wewant to show that ξ̄ is aNash equilibriumbychecking the sufficient conditions
of Theorem 2.2. By taking the conditional expectation in (32), we find

Ȳ i
t + ci ≥ 0, for any t ∈ [0, T ], P-a.s. (35)

Also, similarly to (6), denoting by X̃ i the solution to the uncontrolled equation d X̃ i
t =

−δi X̃ i
t dt, X̃ i

0 = xi0, we have

E

[ ∫
[0,T ]

(Ȳ i
t + ci )d ξ̄ it

]
= E

[ ∫ T

0

(
γ

N∑
j=1

X̄ j
t + γ X̄ i

t − X0
t

)
(X̄ i

t − X̃ i
t )dt + ci ξ̄ iT

]
.
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Moreover, noticing that X0 is F0-adapted and that X̃ i is deterministic, summing over
i and using Jensen inequality for conditional expectation we obtain

N∑
i=1

E

[ ∫
[0,T ]

(Ȳ i
t + ci )d ξ̄ it

]
=E

[ ∫ T

0

(
γ
( N∑

i=1

X̄ i
t

)2+γ

N∑
i=1

(
X̄ i
t

)2 − X0
t

N∑
i=1

X̄ i
t

)
dt

−
N∑
i=1

∫ T

0

(
γ

N∑
j=1

X̄ j
t + γ X̄ i

t − X0
t

)
X̃ i
t dt +

N∑
i=1

ci ξ̄ iT

]

≤ E

[ ∫ T

0

(
γ
( N∑

i=1

Xi
t

)2 + γ

N∑
i=1

(
Xi
t

)2 − X0
t

N∑
j=1

Xi
t

)
dt

−
N∑
i=1

∫ T

0

(
γ

N∑
j=1

X j
t + γ Xi

t − X0
t

)
X̃ i
t dt +

N∑
i=1

ciξ iT

]

=
N∑
i=1

E

[ ∫
[0,T ]

(Y i
t + ci )dξ it

]
.

Thus, using (6) and (33), we get

N∑
i=1

E

[ ∫
[0,T ]

(Ȳ i
t + ci )d ξ̄ it

]
≤

N∑
i=1

E

[ ∫
[0,T ]

(Y i
t + ci )dξ it

]
= 0,

which, together with (35), in turn implies that
∫

[0,T ]
(Ȳ i

t + ci )d ξ̄ it = 0,P-a.s. (36)

Finally, we can invoke Theorem 2.2, in order to conclude that ξ̄ is a Nash equilibrium.

�

4.2 A comparison between linear costs and quadratic costs

In this subsection we will compare the equilibrium investments strategies found in
Theorem 4.1 (hence for an LQS game) with the equilibrium strategies arising from
replacing the linear cost with a quadratic cost (i.e., for the LQ game). In order to
simplify the presentation, we will focus on the case α1 = ... = αN = 1 and ρ = 0.

With the same notation as in the beginning of Sect. 4, consider the game in which
each player is allowed to choose a square integrable F

0-adapted process ui : � ×
[0, T ] → [0,∞) to expand its capital stock

dXi
t = (−δi X i

t + uit )dt, Xi
0− = xi0 ≥ 0,
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in order to maximize, given strategies u−i := (u j ) j �=i of its opponents, the net
quadratic profit functional

Pi
2(u

i , u−i ) := E

[ ∫ T

0

(
Xi
t

(
X0
t − γ

N∑
j=1

X j
t

)
− ci |uit |2

)
dt

]
.

Notice that the cost Pi
2 is quadratic in the size of the investment rate ui , so that this

model is a LQ game.
We next have a closer look to the related FBSDEs. On the one hand, using the

stochastic maximum principle (see Chapter 5 in Carmona (2016)), the Nash equilibria
û = (û1, ..., ûN ) of the LQ game are given in terms of the solutions to the FBSDE

⎧⎪⎨
⎪⎩
X̂ i
t = xi0 − δi

∫ t
0 X̂ i

sds + ∫ t
0 û

i
sds, i = 1, ..., N ,

Ŷ i
t = E

[ ∫ T
t e−δi (s−t)(γ

∑N
j=1 X̂

j
s + γ X̂ i

s − X0
s )ds

∣∣F0
t

]
, i = 1, ..., N ,

ûit = ( − Ŷ i
t

2ci
) ∨ 0, i = 1, ..., N ,

(37)

where the last equation represents the optimality condition for the equilibrium strate-
gies (û1, ..., ûN ). On the other hand, from the proof of Theorem 4.1, we know that the
Nash equilibrium (ξ̄1, ..., ξ̄ N ) of the LQS model is a solution to the system

⎧⎪⎨
⎪⎩
X̄ i
t = xi0 − δi

∫ t
0 X̄ i

sds + ξ̄ it , i = 1, ..., N ,

Ȳ i
t = E

[ ∫ T
t e−δi (s−t)(γ

∑N
j=1 X̄

j
s + γ X̄ i

s − X0
s )ds

∣∣F0
t

]
, i = 1, ..., N ,

Ȳ i
t + ci ≥ 0, for any t ∈ [0, T ], ∫[0,T ](Ȳ

i
t + ci )d ξ̄ it = 0, i = 1, ..., N .

(38)

We are now ready to discuss differences and similarities among these two models.
While the forward and the backward components of the systems (37) and (38) are
essentially the same, the nature of the equilibria differ due to the optimality conditions.
In particular:

1. In both models, investing is never convenient as long as the adjoint process is
positive. However, while for the LQ game players start investing proportionally to
−Ŷ i as soon as Ŷ i < 0, in the LQS game players invest only when Ȳ i = −ci .

2. In theLQmodel, players invest at finite rates ûi . Instead, the equilibrium investment
strategy ξ̄ i in the LQS game is typically singular with respect to the Lebesgue
measure, having support in the set {s ∈ [0, T ]|Ȳ i

s = −ci }.
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