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Abstract
In the decumulation phase of a pension plan, consumption depends on the level of annu-
itization.Wemeasure the welfare loss of an individual with a demand for annuitization
if he has no access to annuitization or, equivalently, does not use such access. Unlike
earlier studies of the value of the annuity option, both individuals with and without
access to annuitization, respectively, are offered complete flexibility in the consump-
tion/payout profile. In that sense, we assume that the financial institutions (are allowed
to) design the best possible products in the two regimes,with andwithout annuitization.
We find for realistic parameters that a patient individual with time-additive preferences
loses 22% of wealth upon retirement if not annuitizing. Sensitivity studies show that
the relative loss decreases with a higher interest rate, a higher market price of financial
risk, a higher market price of mortality risk, more certainty in the lifetime distribution,
and a lower elasticity of intertemporal substitution. Further, we analyze a suboptimal
bank product based on conditional expected residual lifetime.
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1 The introduction

We compare the indirect utility of individuals without and with access to annuities
and measure the relative loss of wealth for an individual with access to annuities who
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loses that access.We characterize the loss explicitly and study its sensitivity toward the
interest rate, the market price of financial risk, the market price of insurance risk, and
the level of uncertainty in the survival model. We characterize the loss for individuals
with time-additive utility and individuals with separated time and risk preferences.
Finally, we include in the comparison a particular suboptimal consumption plan with-
out access to annuities, which might seem to be an appealing product design. All
value functions are characterized explicitly such that all comparisons can be calcu-
lated directly as a solution to a nonlinear equation, and all numerical illustrations are
presented accordingly.

A standard question in pensions is whether and when to annuitize pension savings.
If annuities are flexible and market returns drive payments, the question is whether the
individual should put his wealth at stake and pick up so-called mortality credits. This
depends on what the individual wants to leave behind when he dies. If he does not
annuitize, his wealth goes to his inheritors. If he annuitizes, he leaves nothing. What
is optimal depends on the individual’s so-called utility from a bequest.

When discussing annuitization, it is relevant to quantify the benefit of annuitization
to the annuitant. For example, if he has no demand for annuitization because his utility
from bequest urges him not to annuitize, the value of the annuity market is zero. But
what about the other extreme, where an annuitant wishes to annuitize fully? What is
the maximal value of the annuity market to the annuitant? And how does this value
depend on various parameters of the market and the mortality? These are the questions
we wish to answer in this paper.

We answer these questions in a continuous-time life-cycle model where the annui-
tant can choose optimal consumption and investment in the decumulation phase. First,
we calculate the individual’s lifetime utility in the decumulation phase inmarketswith-
out and with access to annuitization. We then compare these lifetime utility measures
by translating them into wealth proportions using certainty equivalents.

We focus on the decumulation phase exclusively. It is not until the decumulation
phase that the annuity market becomes valuable to the individual, simply because
mortality rates in the accumulation phase are so low that they can probably be partly
neglected. Then we can appropriately avoid the mathematical complication it would
take to study the accumulation phase. The point is that we need to be able to calcu-
late lifetime consumption in a market without access to annuitization to compare the
situations with and without annuitization. However, with uncertain lifetime and labor
income in the saving phase, this problem has no explicit solution. This is disturbing
both if the saving rate is residual to optimal consumption and if it is a fixed ratio of
the labor income. In both cases, we need a unique financial value of a fixed payment
stream, which does not exist in a market without access to annuitization. Therefore,
we focus on the decumulation phase and avoid resorting to numerics for non-explicit
solutions.

For optimizing consumption and investment, we work with the power utility func-
tion. We consider two different cases. One case is the so-called time-additive utility,
where the risk aversion parameter covers both aversions toward risk and variation in
consumption over time. Aversion toward time variation is the reciprocal of the so-
called elasticity of intertemporal substitution. In another case, we separate risk and
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time preferences. There is no consensus about how this should be done under an uncer-
tain lifetime. We briefly review the different proposals in the literature and continue
to work with one of them.

The optimal consumption and investment without access to life insurance are purely
flexible bank savings products. Therefore, one can speak of the optimal consumption
and investment plan as an optimal banking product design. There are, of course, many
different suboptimal product designs of both bank and annuity products, but we pay
attention to a particular suboptimal bank product. That behaves as an annuity-certain
based on the conditional residual expected lifetime. However, since the conditional
residual expected lifetime does not decrease linearly with age, it works as an annuity-
certain with a moving time horizon. We compare the individuals consuming optimally
with and without access to annuitization, respectively, to the individual offered the
ingenious suboptimal product.

The bibliographical starting point of our work is Richard (1975), who merged
the consumption–insurance results by Yaari (1965) with the consumption–investment
results by Merton (1971). This consumption–investment–insurance problem has been
generalized in various directions since its revival in both the financial literature (see
Pliska and Ye (2007)), and in the insurance literature, see Kraft and Steffensen (2008),
contributing to closing some gaps between the financial and the insurance literature.
These directions of generalizations include the market (see Duarte et al. (2014) and
Shen and Wei (2014)); the preferences (see Tang et al. (2018), Zhang et al. (2021)
and Steffensen and Søe (2023)); the inclusion of health risk (see Kraft and Steffensen
(2008), Koijen et al. (2015), Hambel et al. (2016) and Steffensen and Søe (2023)); and
constraints (see Nielsen and Steffensen (2008), Hambel et al. (2016) and Di Liddo
and Bari (2022)).

Duffie and Epstein (1992) formalized the continuous-time version of the separation
of time and risk preferences introduced as a recursive utility by Epstein and Zin (1989,
1991). Local separation of time and risk preferences under lifetime uncertainty is
studied in Aase (2016) and Jensen (2019). In contrast, the approach taken in Jensen
and Steffensen (2015) is based on the global separation and the equilibrium control and
also analyzed by Fahrenwaldt et al. (2020). These are significant background results
as we wish to analyze the impact of separation.

Mitchell et al. (1999) also quantified the welfare loss of not annuitizing. That work
initiated a vast amount of economic literature with positivistic explanations of the
lack of annuitization, including Einav et al. (2010), Hosseini (2015) and Brown et al.
(2017). In contrast to Mitchell et al. (1999), we work in continuous time, study the
sensitivity to market andmortality parameters, analyze the performance of a particular
suboptimal bank product, and pay special attention to non-time additive utility.

Other studies related to our scope are Milevsky and Young (2007) and Milevsky
(2018). Common for Mitchell et al. (1999), Milevsky and Young (2007) andMilevsky
(2018) is that the annuity market does not give full flexibility of the consumption–
investment profile as we have in our setup. Annuities are there either fixed annuities
or variable annuities with some degree of investment freedom but not the full freedom
to choose both the investment portfolio and payout profile optimally. This means
that annuitization in their works is always a trade-off between losing flexibility and
gaining access to mortality credits. Annuitization in our work, in contrast, means full
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flexibility. Annuitization is, therefore, in their works, in general, less attractive than in
our work, where there is no tradeoff; annuitizing has no downside, only the upside of
getting access to mortality credits.

The paper is structured as follows. In Sect. 2, we present the four optimization
problems that later are the fundament of our comparison. In Sect. 3, we offer the
solutions to their problems. Section4 presents the suboptimal banking products we
include in the comparison, which is then performed in Sect. 5. Section6 concludes.

2 The problems

In this section, we present the various optimization problems, the solutions of which
we will later give and compare. The problems have two variations in the insurance
market’s and objective function’s dimensions. Thus, we face four different problems.

For all four different problems, the underlying financial market is the same. Thus,
only the insurance market depends on the market available to the investor. In all fours
problems, the underlyingfinancialmarket is a classicalBlack–Scholes financialmarket
with price processes,

dS0(t) = S0(t)rdt,

dS(t) = S(t) (αdt + σdW (t)) .

Here, W is a Brownian motion, and r , α, σ > 0 are constants. We assume that α ≥ r
such that the market price of risk defined by θ := (α − r)/σ is non-negative.

The individual invests a proportion π(t) of his wealth in the stock at time t , and the
process π is called the stock proportion. The individual consumes at rate c(t) at time
t , and the process c is called the consumption rate.

We assume that the individual has an uncertain lifetime and denote by μ(t) the
individual’s mortality rate. Furthermore, we assume that the mortality rate is deter-
ministic and increases with age. Thus, we do not model the so-called longevity risk
where the mortality rate is stochastic. However, not modeling longevity risk does not
mean we cannot model longevity, i.e., that mortality for a given age decreases with
calendar time. If it is deterministic, we can quickly implement such an effect by letting
the age-dependent mortality rate vary with birth year.

We distinguish between two different situations in the insurance market. In one
case, there exists no insurance market. Thus the market is fully described by the
financial market above. On the other hand, with lifetime uncertainty present in the
individual’s objective, the market is incomplete, and we can formulate contingent
claims that are not hedgeable in the market. An example is so-called pure endowment
insurance that pays out one unit upon survival until time n. Letting I indicate survival
such that I (t) = 1 if the individual is alive at time t , the non-hedgeable claim payable
at time n is I (n). This claim is not hedgeable in the Black–Scholes market, where
one cannot trade the survival risk of the individual. However, our goal is not to price
contingent claims. Instead, our goal is to make optimal decisions, and the investment–
consumption problem below is well-posed in this incomplete market.
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We consider an individual after retirement when labor income has fallen away.
The retirement phase is crucial for accessing the explicit solution for the investment–
consumption problem below. Otherwise, the non-hedgeability of the labor income,
which is only earned before retirement as long as the individual is alive, prevents an
explicit solution. Of course, it is possible to work with a problem with non-hedgeable
income and no access to insurance, but then one has to resort to a numerical solution of
the HJB equation. The alternative idea is to assume that the mortality rate is zero until
retirement. In that case, the otherwise incomplete market is, in a sense, ‘sufficiently
complete’ to make the labor income hedgeable; we still have access to solutions in
closed form. However, since we are interested in understanding the value of access
to insurance, which comes from lifetime uncertainty, modeling over ages with zero
mortality does not add value to our study. Therefore,we entirely disregard labor income
by moving our problem’s starting point to retirement age.

In the problem described above, the individual consumes his wealth invested in the
financial market. The dynamics of the wealth of that individual, as long as he is alive,
becomes

dX(t) = X(t)(r + π(t)(α − r))dt + X(t)π(t)σdW (t) − c(t)dt, (1)

where X(0) = x0 > 0 is the given initial wealth.
The individual’s objective is to maximize the expected utility from consumption

until death. Thus, we have a value function in the following form

V (t, x) = sup
c,π

Et,x

[∫ ∞

t
u(t, s, c(s))I (s)ds

]
, (2)

where we remind the reader that the process I indicates survival. The subscript (t, x)
denotes that the expectation is taken conditional on X(t) = x and I (t) = 1, i.e.,
conditional on the individual being alive at time t .

Note that there is no so-called utility from the bequest. Then the retiree does not
achieve any utility from leaving money behind. In (2), this appears as the individual
gets utility during survival only. The no-bequest case is a corner case that has several
benefits. First, it prevents us from discussing what that utility from bequest different
from zero should be. Second, it severely simplifies some elegant solutions to the
consumption problem, as they appear in the coming sections. Finally, we can say that
this is a clear case where we can measure the value of the annuity market in a situation
where the individual has no economic dependants that he also has to take into account
in his objective.

We are going to work with a constant relative risk aversion γ in combination with
exponential discounting of the utility with the discount rate ρ such that

u(t, s, c) = e−ρ(s−t) 1

1 − γ
c1−γ . (3)

We speak of the individual with wealth dynamics given by (1), the value function (2),
and the utility function (3) as the uninsured individual with time-additive preferences.
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The next individual has the same objective as the first, namely the one presented
through the value function (2). Thus, neither he has any utility from the bequest. He
distinguishes himself from thefirst individual by having access to the insurancemarket.
Instead of introducing the insurance sum as a decision process and optimizing it, we
implement the optimal solution directly. The optimal solution for an individual with
no utility from the bequest and access to life insurance is to sell an insurance contract
that pays out current wealth at any point in time. This position is called annuitization.
Access to an insurance market and an annuity market are two sides of the same story
and are just a matter of the sign of the insurance sum paid out. If the individual is
willing to give up his wealth upon death, he receives a premium based on the pricing
mortality rate used by the life annuity provider. We denote that mortality by μ∗ and
the premium rate he receives at time t is μ∗(t)X(t) where X(t) is current wealth. The
dynamics of the wealth of that individual, as long as he is alive, then becomes

dX(t) = X(t)(r + μ∗(t) + π(t)(α − r))dt + X(t)π(t)σdW (t) − c(t)dt, (4)

where X(0) = x0 > 0 is the given initial wealth. The premium rate from annuitization
appears in the return term of the dynamics because the premium is assumed to be
proportional to wealth itself, corresponding to the linear pricing of the insurance
contract.

We speak of the individual with wealth dynamics given by (4) in combination with
the value function (2) as the insured individual with time-additive preferences. The
appearance of μ∗ in the dynamics (4) makes it seem as if the insured behaves as the
uninsured with an addition of the mortality rate to the interest rate. But we have to
be careful here. Since the interest rate also appears in the term stemming from stock
investment, without the mortality rate, the correct statement is instead: The insured
individual behaves as the non-insured individual with an addition of the mortality rate
to both the interest rate and the stock return. Then, these additions offset correctly in
the term α − r .

The uninsured and the insured individual above share the objective formalized
through the value function (2). It is, however, well known that this objective misses
an essential point about time and risk preferences. It assumes the parameter γ , spoken
of as risk aversion, as a parameter that characterizes preferences toward both risks,
i.e., variation of consumption over outcomes of stochastic variables, and time, i.e.,
variation of consumption over time. We see this quickly by considering the particular
case of no mortality risk (μ = 0) and no financial risk (α = r and σ = 0). Given the
objective of the paper, this is an odd particular case. Still, it unveils the role of γ as a
parameter that (in general but in this case of no risk only) characterizes preferences
concerning time variation. That odd version of the problem has an internal solution that
depends on γ . The parameter γ reflects aversion toward the variation of consumption
over time. If γ is large, the investor is not as willing to postpone consumption to
pick up (deterministic) capital gains from interest payments as if γ is smaller. That is
true, even if that would allow him to consume more. Note that this pattern of thinking
works well without risk. We speak of the parameter as covering both risk aversion and
variation aversion.
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Epstein and Zin (1989, 1991) formalized the disentanglement of risk and variation
aversion in the objective formalized by (2) in discrete time and Duffie and Epstein
(1992) translated the concepts to continuous time. In the case of no lifetime uncertainty,
they derive a so-called aggregator f (c, v) such that the value function has the implicit
representation,

V (t, x) = sup
c,π

Et,x

[∫ ∞

t
f (c(s), V (s, X(s)))ds

]
. (5)

The aggregator function f depends on the underlying structure of preferences toward
risk and variation, respectively. They work with a parameter φ for the elasticity of
intertemporal substitution, which is the reciprocal of variation aversion. If both the
relative risk aversion and the relative variation aversion are constant, they derive the
aggregator

f (c, v) = 1 − γ

1 − φ
δv

⎛
⎜⎝

( 1
1−γ

c1−γ

v

) 1−φ
1−γ

− 1

⎞
⎟⎠ . (6)

Now comes the question of how to generalize the disentanglement of risk and time
preferences by Duffie and Epstein (1992) to the case of an uncertain lifetime. They
showed how to construct the aggregator for diffusivemarkets only. Others haveworked
on generalizing to other markets and more general risk and variation preferences. Yet,
there is no consensus about how to implement lifetime uncertainty. The literature
contains (at least) three proposals that we now explain.

The simplest generalization to an uncertain lifetime is the one obtained by simply
replacing the value function (5) by

V (t, x) = sup
c,π

Et,x

[∫ ∞

t
f (c(s), V (s, X(s)))I (s)ds

]
. (7)

Again, the expectation is conditional on both current wealth and upon survival until
time t , like how we read it in (2). Aase (2016) proposed this and studied the impact
of insurance markets. However, the value function appearing as an argument in the
aggregator in (7) is certainly different from the value function in (5). So, is there an
argument that the same aggregator f with an updated argument V properly considers
possible aversion toward lifetime uncertainty?

Jensen and Steffensen (2015) proposed a different generalization. They drop the
idea of working with (local) aggregators as the fundamental ingredient in the (local)
disentanglement. Instead, they form a global objective with a global risk and time
variation disentanglement. Their version without mortality risk reads

V (t, x) =
∫ ∞

t
v

(
u−1 (

Et,x [u(t, s, c(s))]
))

ds, (8)

123



M. Steffensen, J. B. Søe

where u is the utility function containing risk aversion and v is a time preference
function containing variation aversion. It is probably an insinuation to call what we
construct below a generalization of recursive utility to an uncertain lifetime. However,
the consumption–investment strategy formed from the value function (8) does coin-
cide with the consumption–investment strategy formed from (5). At least, this is the
case for the Black–Scholes market. Both Fahrenwaldt et al. (2020) and Jensen and
Steffensen (2015) obtain this result. So, in that sense, we present a generalization of
the consumption–investment strategy obtained in recursive utility.

In two steps, we construct the value function in (8). The argument of the function
v, u−1(Et,x [u(t, s, c(s))]), is the so-called certainty equivalent. The first step is to
form these certainty equivalents. They turn the utility of uncertain future consumption
rates into certain consumption rates fromwhich the individual obtains the same utility.
Thus, in a sense, these certainty equivalence operations ‘delete’ uncertainty from the
objective. The function v expresses preferences concerning time variation of certain (or
rather certainty equivalent) consumption rates. There is a crucial difference between
the recursive utility approach to the disentanglement of time and risk preferences and
ours. The certainty equivalent is here based on the utility of actual consumption. In
contrast, the certainty equivalent in recursive utility is based on indirect utility.

From a mathematical point of view, this construction radically changes the opti-
mization problem. Suppose v and u are the same functions, such that the operation
v(u−1(·)) vanishes. In that case, the expectation goes outside the integral, and we are
back with a standard objective (corresponds to (2) without the survival indicator). But
v and u being different functions, the integral forms a sum of nonlinear functions of
conditional expectations. Time consistency and standard dynamic programming break
down. But other methods are ready to take over. Jensen and Steffensen (2015) attack
the problemwith equilibrium theory, corresponding to how the so-called sophisticated
individual thinks when facing a time-inconsistent problem. The technical details are
beyond the level of ambition in that direction for this exposition. But this explains why
we add in the equilibrium sense whenever we speak of an optimal solution below.

The following is the generalization of (8) to include lifetime uncertainty suggested
by Jensen and Steffensen (2015). We compose the optimal value function in the
equilibrium sense as

V (t, x) =
∫ ∞

t
v

(
u−1 (

Et,x [u(t, s, c(s))I (s)]
))

ds, (9)

and we see how the utility function operates on both financial risk and lifetime
uncertainty.

We mention that Jensen and Steffensen (2015) also works with utility from a
bequest. Their approach to this and its consequences for consumption and insurance is
a crucial idea of their work. They introduce an elasticity between consuming as dead
(the bequest) or alive (like our consumption above). When working with time-additive
utility, one usually works with additive utility across the states, dead and alive. But
suppose we, in addition to disentangling time and risk preferences, also introduce
an elasticity between consuming as dead or alive. Following Jensen and Steffensen
(2015), this has exciting consequences and interpretations. However, when there is no
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utility from the bequest, the elasticity between consuming as dead or alive vanishes
from the problem and, therefore, without utility from the bequest, only the parameters
of the functions u and v appear in the solution.

Jensen (2019) proposes the third generalization of recursive utility to lifetime uncer-
tainty and separation of preferences. Jensen (2019) extends the original derivation of
the aggregator byDuffie andEpstein (1992).We shall not present the formalismbehind
it. But as mentioned above, a certainty equivalent based on indirect utility appears in
classical recursive utility. Similarly to when Jensen and Steffensen (2015) introduced
elasticity between consumption as dead or alive, it is natural in recursive utility to
introduce elasticity between bequest (consumption as dead) and indirect utility con-
ditional on surviving the next small time interval. However, since indirect utility upon
survival contains both future consumption and future bequest, that elasticity does not
explicitly concern bequest and consumption. Therefore, it should also be clear, as is
also discussed in Jensen (2019), that Jensen and Steffensen (2015) and Jensen (2019)
are fundamentally different approaches. In contrast to Jensen and Steffensen (2015),
the elasticity between a bequest and indirect utility given survival appears in the solu-
tion by Jensen (2019), even in the case of no utility from the bequest we consider
here.

When we work with separated preferences in the next section, our individual has
an objective corresponding to (9). Suppose this individual does not have access to life
insurance (unlike the situation in Jensen and Steffensen 2015) and therefore cannot
annuitize and must realize the wealth dynamics (1). In that case, we speak of the unin-
sured individual with separated preferences. Finally, suppose the individual with an
objective corresponding to (9) has access to life insurance (like the situation in Jensen
and Steffensen 2015) and therefore fully annuitizes and realizes the wealth dynamics
(4). In that case, we speak of the insured individual with separated preferences.

We have now presented four different individuals, namely the uninsured individual
with time-additive preferences, the insured individual with time-additive preference,
the uninsured individual with separated preferences, and the insured individual with
separated preferences. In the next section, we present and discuss their optimal
investment and consumption processes.

3 The solutions

In this section, we present the solutions to the problems presented in the previous
section. These problems can be seen as special cases of Jensen and Steffensen (2015),
here presented in our setting to enable an easier andmore comprehendible comparison.

We start by considering the investment decision. The solutions for all four
individuals are the same well-known Merton proportion given by

π = 1

γ

α − r

σ 2 = 1

γ

θ

σ
. (10)

The expected return from the investment equals r +π(α−r) = r + 1
γ
θ2. However,

a return rate with half of the excess return obtained from stock investments added to
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the risk-free return shows up in the solution again and again, and we denote this by R
such that R = r + 1

2π(α − r) = r + 1
2γ θ2.

We now turn to the consumption rate. All individuals withdraw a fraction of their
wealth for consumption. The fraction for all individuals is the reciprocal of an annuity,
i.e., for all individuals, we can write c(t) = X(t)/a(t), where a(t) is a specific
annuity that depends on which individual we consider. The uninsured individual with
time-additive preferences withdraws optimally in accordance with the annuity

aua(t) =
∫ ∞

t
e− ∫ s

t δa+μua
ds, (11)

where

δa = 1

γ
ρ +

(
1 − 1

γ

)
R, (12)

μua = 1

γ
μ (13)

The letters in the top script u and a abbreviate uninsured and time-additive. Decorating
δ with just an a reflects that this is the same for uninsured and insured individuals.
Only the μ in the annuity depends on whether the individual is insured. In the annuity,
we use the slightly informal notation e− ∫ s

t δa+μua
representing e− ∫ s

t (δa+μua(τ ))dτ , for
notational ease, where the transition intensity is time-dependent, but δ is not, we
continue to use the abbreviated notation. We recognize the annuity formula as the
actuarial formula for a life annuity with the design interest rate δa and the design
mortality rate μua. We call these elements design elements as they form different
annuity product designs. In that formula, the interest rate is a weighted average of the
impatience rate ρ and the return rate R. The weights are 1

γ
and 1 − 1

γ
, respectively.

We also note how mortality impacts ρ. Namely, we cover the case with an uncertain
lifetime by the case without uncertainty lifetime by simply adding μ to ρ.

We also present the optimal consumption rate dynamics for each individual. For all
four individuals, the optimal consumption rate follows a geometric Brownian motion.
The uninsured individual with time-additive preferences consumes according to the
dynamics

dcua(t, X(t))

cua(t, X(t))
= r − ρ − μ + 1

2γ (1 + γ )θ2

γ
dt + θ

γ
dW (t). (14)

We now consider the uninsured individual with separated preferences. He also
consumes a proportion of his wealth corresponding to the annuity,

aus(t) = ∫ ∞
t e− ∫ s

t δs+μus
ds, (15)
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where

δs = 1

φ
ρ +

(
1 − 1

φ

)
R, (16)

μus = 1

φ

1 − φ

1 − γ
μ. (17)

Again, we have the actuarial formula for the life annuity formed by a design interest
rate and a design mortality rate. However, the weights on ρ and R in forming the
design interest rate are now replaced by 1

φ
and 1 − 1

φ
. The design mortality rate is

replaced by 1
φ
1−φ
1−γ

μ. As it should be, we find that the design rates of the uninsured
individual with time-additive preferences equal those of the uninsured individual with
separated preferences in the special case φ = γ .

The dynamics of consumption for the uninsured individual with separated prefer-
ences are

dcus(t, X(t))

cus(t, X(t))
= r − ρ − 1−φ

1−γ
μ + 1

2γ (1 + φ)θ2

φ
dt + θ

γ
dW (t). (18)

Again, we note how the dynamics of the uninsured individual with separated prefer-
ences collapse into those of the uninsured individual with time-additive preferences
in the particular case φ = γ .

We now turn to the individuals with access to the life annuity market. We first
consider the insured individual with time-additive preferences. He consumes a fraction
of his wealth based on the annuity

aia(t) = ∫ ∞
t e− ∫ s

t δa+μia
ds, (19)

where

μia = 1

γ
μ +

(
1 − 1

γ

)
μ∗. (20)

Thus, we base the annuity of the insured individual with time-additive preferences on a
design interest rate that is the same as that of the uninsured with the same preferences.
However, we replace the design mortality rate of the uninsured individual μ/γ by a
weighted average of the actual mortality intensity and the pricing mortality intensity
with weights given by 1

γ
and 1− 1

γ
. Note that the designmortality rate of the uninsured

individual is obtained as the design mortality rate of the insured individual in the
particular case μ∗ = 0.

The dynamics of the consumption rate for the insured individual with time-additive
preferences are

dcia(t, X(t))

cia(t, X(t))
= r − ρ + μ∗ − μ + 1

2γ (1 + γ )θ2

γ
dt + θ

γ
dW (t). (21)
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Note that the dynamics of consumption for the uninsured individual follow from the
special case μ∗ = 0.

Finally, we consider the insured individual with separated preferences. He
consumed a fraction of his wealth based on the annuity

ais(t) = ∫ ∞
t e− ∫ s

t δs+μis
ds, (22)

with

μis = 1

φ

1 − φ

1 − γ
μ +

(
1 − 1

φ

)
μ∗. (23)

Thus, as was the case for time-additive utility, we can reuse the design interest rate δs

for this uninsured individual. And, as was the case for time-additive utility, we have
to update the design mortality rate. Now, for the case of separated preferences, the
introduction of the life annuity market allows us to replace the design mortality rate
1
φ
1−φ
1−γ

μ by 1
φ
1−φ
1−γ

μ + (1− 1
φ
)μ∗. Note how we obtain the design mortality rate of the

insured individual with time-additive preferences as a particular case of the insured
individual with separated preferences in the case of φ = γ . Also, note how we obtain
the design mortality rate of the uninsured individual with separated preferences as a
particular case of the insured individual with separated preferences in the specific case
of μ∗ = 0.

The dynamics of the consumption rate of the insured individual with separated
preferences are

dcis(t, X(t))

cis(t, X(t))
= r − ρ + μ∗ − 1−φ

1−γ
μ + 1

2γ (1 + φ)θ2

φ
dt + θ

γ
dW (t). (24)

Note that we obtain the consumption dynamics for the individual with time-additive
preferences by the particular case φ = γ . Note that the dynamics of consumption for
the uninsured individual is the specific case μ∗ = 0.

All the above results follow Jensen and Steffensen (2015) with properly specifying
special cases. As discussed in Sect. 2, Jensen (2019) provides a different disentangle-
ment of time and risk preferences under lifetimeuncertainty than Jensen andSteffensen
(2015). In the case of no consumption upon death, the additional parameter considered
to deal with an uncertain lifetime does not appear in the optimal controls in Jensen and
Steffensen (2015), in contrast to what Jensen (2019) obtains. It is difficult to unravel
the optimal control of Jensen (2019)’s approach in the case of no utility from a bequest
since the utility from a bequest there cannot immediately be set to zero. However, it
seems that we can base the optimal control on the annuity

ais(t) = ∫ ∞
t e− ∫ s

t δs+μis
ds, (25)
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with

μis = 1

φ

1 − φ

1 − κ
μ +

(
1 − 1

φ

)
μ∗, (26)

where κ is what Jensen (2019) speaks of as the reciprocal elasticity of substitution
between a bequest and future utility. Jensen (2019) also provides a different interpre-
tation of κ . We can think of the distinction between γ and κ as working with different
risk aversion concerning market risk and mortality risk, respectively, where γ is the
former, and κ is the latter. Based on the annuity above, the dynamics of consumption
are then in Jensen (2019) given by

dcis(t, X(t))

cis(t, X(t))
= r − ρ + μ∗ − 1−φ

1−κ
μ + 1

2γ (1 + φ)θ2

φ
dt + θ

γ
dW (t). (27)

In our numerical studies, we stick to the approach by Jensen and Steffensen (2015),
i.e., corresponding to (22), (23), and (24). However, as it can be seen through (25),
(26), and (27), this can be thought of as a particular case of Jensen (2019) where
κ = γ , i.e.,+ according to the interpretation by Jensen (2019), as the particular case
where the preferences for financial and insurance risk are identical.

In all the annuity formulas above, we recognize the actuarial life annuity formula
with specific design interest and mortality rates that depend on the individual and
whether he has access to an annuity market. With access to an annuity market, the
design mortality rate is a weighted average of the actual mortality rate and the pricing
mortality rate, depending on whether the individual has time-additive or separated
preferences.

One may think that such a construction can be generalized to multi-state models.
Indeed, it can. But from Kraft and Steffensen (2008) and Steffensen and Søe (2023),
one can learn that the design mortality rates cannot be directly generalized based on
the construction of a weighted average. They both work with time-additive utility
and access to insurance, so we should compare with (19), (20), and (21). From there,
one learns that the more general representation follows from adjusting the calculation
interest rate by the difference between the arithmetic and the geometric weightedmean
of mortalities and then using the geometric weighted mean as the mortality rate in the
actuarial formula. That is, we should redefine δa and μia by

δag = δa + μia − μiag, (28)

μiag = μ
1
γ (μ∗)1−

1
γ . (29)

These design interest and mortality rates can be directly generalized to multi-state
models. Obviously, in our studies, they form the same control processes since δa +
μia = δag + μiag.
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4 The sub-optimal product design

The uninsured individuals above decide optimally in the market they face. Of course,
there aremany sub-optimalways to determine, e.g., the consumption plan.We nowpay
special attention to one of them, which has some merits in its construction. Although
the construction is sub-optimal, we derive the dynamics of the consumption plan such
that we can compare its structure to the optimal one. The idea behind the design is to
have a problem with deterministic finite time horizon n in mind. We use the letter n
for the finite time point to reserve the otherwise frequently used T as the stochastic
lifetime of the individual. For the problem with finite-time horizon n, the solution is
to consume a fraction of your wealth according to the annuity

a(t) = ∫ n
t e− ∫ s

t r̃ds. (30)

As interest rate in the annuity, we introduce a rate of return r̃ , which we can adjust
to accommodate the individual’s preferences. If, e.g., the individual has time-additive
preferences, and n is the actual time horizon, then r̃ = δa is optimal.

Now, we acknowledge that the lifetime is uncertain, but what is our best estimate
of that lifetime? The answer is the conditional expectation Et [T ] where the subscript
t denotes survival until time t . We have that

Et [T ] = t + ∫ ∞
t e− ∫ s

t μds, (31)

Now we replace n in our annuity construction by Et [T ] as this is our best estimate of
our time horizon. Thus, we suggest the consumption rate X(t)/a(t) with

a(t) = ∫ Et [T ]
t e− ∫ s

t r̃ds. (32)

However, this is not an optimal consumption under any problem with a stochastic
lifetime. It just seems to be a good idea. Note carefully that the expected lifetime is
continuously updated with the conditioning on survival. This means that there is no
risk of outliving your wealth, and there is nothing particular about dying before or
after the expected lifetime, conditional on survival to some earlier age.

To derive the dynamics of c, we have to decide which dynamics of X to use.
Since the product is proposed here as an alternative to the optimal consumption for the
uninsured individual, we gowith the dynamics in (1).We can then derive the dynamics
of the consumption rate to be

dc(t, X(t))

c(t, X(t))
=

(
r − r̃ − μ̃ + θ2

γ

)
dt + θ

γ
dW (t), (33)

where

μ̃ = e− ∫ Et [T ]
t r̃ (Et [T ] − t)

a(t)
μ, (34)
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since

da(t)

dt
= μ(Et [T ] − t)e− ∫ Et [T ]

t r̃ − 1 + r̃a(t).

We formulate the dynamics of the consumption rate by constructing an odd mortality
rate μ̃ to make it comparable with the optimal consumption patterns we have seen in
the previous section.

We want to compare the performance of the proposed consumption strategy with
those with and without insurance access. We must calculate the sub-optimal value
function based on the suboptimal consumption strategy. We compare the suboptimal
strategy to the optimal one under time-additive preferences. Thus, the objective is as
defined in (2), such that

V (t, x) = Et,x

[∫ ∞

t
u(t, s, c(s))I (s)ds

]

= Et,x

[∫ ∞

t

1

1 − γ
c(s)1−γ e−ρ(s−t) I (s)ds

]

=
∫ ∞

t

1

1 − γ
Et,x

[
c(s)1−γ

]
e−ρ(s−t)e− ∫ s

t μds.

To calculate the expectation, we write down the solution to (33) as

c(s, X(s)) = c(t, X(t))e
∫ s
t ((r−r̃−μ̃+ θ2

γ
− 1

2
θ2

γ 2
)du+ θ

γ
dW (t))

.

We achieve

Et,x

[
c(s, X(s))1−γ

]

= Et,x

[
c(t, X(t))1−γ e

(1−γ )
∫ s
t ((r−r̃−μ̃+ θ2

γ
− 1

2
θ2

γ 2
)du+ θ

γ
dW (u))

]

= c(t, x)1−γ Et,x

[
e
(1−γ )

∫ s
t ((r−r̃−μ̃+ θ2

γ
− 1

2
θ2

γ 2
)du+ θ

γ
dW (u))

]

= c(t, x)1−γ e
∫ s
t (1−γ )(r−r̃−μ̃+ 1

2
θ2
γ

)du
.

By rewriting the power coefficient,

(1 − γ )

(
r − r̃ − μ̃ + θ2

2γ

)
= −γ δa + ρ − (1 − γ )μ̃ − (1 − γ )r̃ ,

we conclude that
∫ ∞

t

1

1 − γ
Et,x [c(s, X(s))1−γ ]e−ρ(s−t)e− ∫ s

t μds
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= 1

1 − γ
c(t, x)1−γ

∫ ∞

t
e− ∫ s

t μ+γ δa+(1−γ )(r̃+μ̃)ds

= 1

1 − γ
x1−γ a(t)γ

∫ ∞
t e− ∫ s

t μ+γ δa+(1−γ )(r̃+μ̃)ds

a(t)
.

Note we have used the consumption rate c(t, x) = x/a(t). We define a function f (t)
to simplify notation,

f (t) =
∫ ∞
t e− ∫ s

t μ+γ δa+(1−γ )(r̃+μ̃)ds

a(t)
,

such that we can write the sub-optimal value function as

V (t, x) = 1

1 − γ
x1−γ a(t)γ f (t).

This expression deviates from the structure of the other presented value functions
because of the extra function f .

5 The comparison

In this section, we compare formally the explicit value functions such that the relative
loss can be calculated directly and well as compared numerically, the individuals. In
particular, we measure the welfare lost from losing access to an annuity market. We
calculate the welfare loss for individuals with time-additive and separated preferences.

5.1 Comparison of the optimal solutions

We can compare the uninsured and insured individuals with either time-additive or
separated preferences by comparing their optimal value functions, called indirect util-
ity. One should be careful with comparing optimal value functions. Only if the same
preferences underlie, the optimal value functions are they comparable. This is the case
for the uninsured and insured individualswith time-additive and separated preferences,
respectively. Only the markets are different, namely, through access to life annuities.
However, for the same reason, we cannot, e.g., compare the value functions from the
time-additive and separated preferences since the preferences are not the same.

We have presented the uninsured individual as an individual who behaves opti-
mally in a market without insurance. However, we can also think of that individual
as an individual who behaves sub-optimally in a market with insurance. His sub-
optimal decision is not to buy any insurance. In that sense, we calculate the welfare
loss from deciding sub-optimally rather than optimally in the market with insurance.
Also, in such cases, one can compare the value functions corresponding to optimal and
sub-optimal decisions. For most sub-optimal decisions, this is an utterly complicated
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numerical task. Whereas some problem formulations allow for closed-form expres-
sions for the optimal value function, value functions for most sub-optimal decisions
cannot be calculated directly. In our case, we can because the sub-optimal decision
is optimal in the restricted market, and we have access to an explicit value function
there.

The value functions are given by

V ua(t, x) =(
aua(t)

)γ 1

1 − γ
x1−γ ,

V us(t, x) =(
aus(t)

) 1−γ
1−φ

φ 1

1 − γ
x1−γ ,

V ia(t, x) =(
aia(t)

)γ 1

1 − γ
x1−γ ,

V is(t, x) =(
ais(t)

) 1−γ
1−φ

φ 1

1 − γ
x1−γ ,

respectively, for the four individuals we study. Thus, by specifying all the annuities
in the previous section, we have all the ingredients we need to compare and calculate
welfare gains from access to the insurance market.

For the individual with time-additive preferences, we form the equation

V ia(0, x(1 − ε)) =V ua(0, x),

which we then want to solve concerning ε. This is the relative loss of wealth that
the insured individual would suffer from losing access to the insurance market. By
plugging in the value functions above, it is easy to obtain

ε = 1−
(
aua(0)

aia(0)

) γ
1−γ

.

We speak of ε as the relative value of the annuity market. We calculate it here as the
value of that market to someone who has access to it. We could have calculated the
relative value in terms of the gain experienced by an individual without access if that
individual would get this access. It is just a convention whether to use one or the other
as long as we use the same one in all calculations.

Correspondingly, for the individual with separate preferences, we form the equation

V is(0, x(1 − ε)) =V us(0, x),

again solving for ε. The relative value in terms of the loss experienced by someone
with separated preferences and access in case they lose this access is

ε = 1−
(
aus(0)

ais(0)

) φ
1−φ

.
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Table 1 The parameters used in the numerical examples

Parameters Description Value

z Age at initialization/retirement 65

ρ Impatience factor for all states 0.02

r0 The constant drift of the risk-free asset 0.02

α The constant drift of the risky asset 0.05

σ The constant volatility of the risky asset 0.2

A Parameter for pricing mortality intensity 0.0000005

B Parameter for pricing mortality intensity 1.14

Note r , α, and σ are thought of as corrected for inflation

In the forthcoming illustrations, we use parameters fromTable1, with truemortality
intensity defined by the Gompertz law with μ(t) = A · B(z+t). These parameters and
transition intensities are chosen as a baseline case, where we study the effect of their
values in the numerical examples by varying them. By studying the variations of the
parameters, we can isolate and evaluate their effect and impact on the relative loss.
The illustrations below show the time-additive case with γ = 2. The separated case
is calculated with γ = 2 and φ = 6. These values are chosen based on previously
performed studies, such as Burgaard and Steffensen (2020) where the average risk
aversion for males is 1.9 and for females 2.3. In Burgaard and Steffensen (2020),
they also discuss the values of φ and that it should be greater than the risk aversion.
Further, we remind the reader that the time-additive preferences correspond to the case
of the separated preferences where γ = φ. Thus, in the illustration, the individual with
separated preferences has a stronger aversion toward time variability than risk.

In the baseline case, the relative loss is 22,2% for time-additive preferences and
15,8% for separated preferences. Thus, separated preferences lead here to a reduc-
tion of the relative loss. The reason is that the individual with separated preferences
demands, for our choice of parameters, growth in the consumption rate, which is rel-
atively smaller. Therefore, he consumes faster than the individual with time-additive
preferences, and his capital is generally lower. But then his mortality credits are
relatively lower, and his loss from giving up the annuity option is smaller.

We start by varying the interest rate, r , in Fig. 1. Themarket price of risk, defined by
θ0 = α−r0

σ
, where r0, is defined in Table1. The relative loss decreases with the interest

rate since a higher interest rate means that (risk-free) capital gains finance a higher
proportion of total income. When capital gains finance a higher proportion of total
income, the additional return frommortality credits plays a smaller role, and the relative
loss from losing the annuity becomes smaller. The line for separated preferences is
lower than the line for time-additive preferences with the same argument as the one
for the baseline case above.

Now we vary the market price of risk and keep the interest rate constant as r0 in
Fig. 2. We see how the relative loss decreases with the increasing market price of risk.
Again the explanation is that a higher market price of risk leads to a higher part of the
consumption being financed by (risky) capital gains.
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Fig. 1 The relative loss ε, as a function of the interest rate for a fixed market price of risk. For time-additive
preferences (γ = φ = 2) and for separated preferences (γ = 2, φ = 6)

Fig. 2 The relative loss ε, as a function of the market price of risk for a fixed interest rate, for time-additive
preference (γ = φ = 2) and separated preferences (γ = 2, φ = 6)

In Fig. 3, we study the impact of insurance pricing. So far, we have assumed that
μ∗ = μ. Now we define μ∗ = (1 − ξ)μ with ξ ∈ [0, 1]. When ξ = 0, there is no
risk loading in the price, and we are back with μ∗ = μ. When ξ ≥ 0, the insurance
company has a risk loading in the pricing. We can see that the larger the risk loading,
the less attractive the mortality credits and, thus, the less is lost if we lose the annuity
market. When ξ = 1, there are no mortality credits. In that case, there is no benefit
from access to the annuity market.

It is also interesting to study the loss as a function of the lifetime’s uncertainty.
Intuitively, if the lifetime were certain, there should be no difference between insured
and uninsured individuals as both would have to buy the same annuity-certain. In the
Gompertz model we have used so far, it is difficult to control the uncertainty level
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Fig. 3 The relative loss ε, for time-additive preferences (γ = φ = 2) and separated preferences (γ = 2,
φ = 6) as a function of the reduction from μ to μ∗

Fig. 4 The relative loss ε, for time-additive preferences (γ = φ = 2) and separated preferences (γ = 2,
φ = 6) as a function of the constant K defining the certainty of survival until time n = 120

by changing the parameters. We, therefore, consider a so-called hyperbolic mortality
model defined by μK (t, n) = 1

K (n−t) , where n is the maximum age possible (we let
n = 120) and where K is a measure of certainty. When K increases, the mortality
for all ages earlier than n decreases. However, the maximum age is still n. Thus, we
see how the uncertainty decreases in K , and for K increasing, we approach a model
where the lifetime ends deterministically at age n.

Figure 4 shows how the relative loss decreases when K increases. The intuition is
that the larger the K , the less lifetime uncertainty, and, naturally, the less is lost from
losing access to the insurance market.
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Fig. 5 The relative loss ε, for time-additive preferences and separated preferences as a function of either γ

or fixing γ = 2 and as a function of φ

Finally, we study the sensitivity of the relative loss toward the assumptions about
risk aversion and EIS.We perform two different sensitivity analyses. For time-additive
preferences, we vary γ . For separated preferences, we fix γ = 2 and vary φ.

Figure 5 the sensitivity toward these assumptions. Note that the x-axis means
something different for the two curves. We see that the loss is relatively robust with
respect to risk aversion in the case of time-additive preferences. A slight upward trend
can be explained by the fact that the bank actually uses smaller risk aversions to slope
the consumption profile as well as they can. If the risk aversion is high, this feature
vanishes as μia tends to zero for the banking case, μ∗ = 0. For separated preferences,
we see that the loss is relatively robust but slightly decreasing in φ when this is larger
than γ . However, it increases drastically for φ smaller than γ . As φ tends to 1, μis

tends to zero for both the bank and insurance products. Then the loss is the pure impact
of mortality credits since the bank does not deviate from the insurance company’s
assumption about μis to compensate for the loss of mortality credits. It should also be
noted, as mentioned earlier, the value of φ is known to be bigger than γ .

5.2 Comparison to the sub-optimal product design

We now wish to compare the relative loss of being equipped with the suboptimal
product design. We want to calculate both the loss from optimality with access to life
insurance to the suboptimal product and the loss from optimality without access to
life insurance to the suboptimal product.

The value function for the suboptimal consumption is formulated as

V (t, x) = (a(t))γ f (t)
1

1 − γ
x1−γ , (35)

such that we can form the two loss quantification problems as
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Table 2 Table for values of relative loss in the three cases with γ = 2, age at 65 and in the case of using r̃
and δa

Interest rate Insured to uninsured (%) Insured to suboptimal (%) Uninsured to suboptimal (%)

Optimal 22 29 9

δa 22 35 16

V ia(0, x(1 − ε)) = V (0, x),

V ua(0, x(1 − ε)) = V (0, x),

respectively. Corresponding to when comparing the optimal controls, we get relative
losses in the form,

ε = 1 −
(

a(0)
aia(0)

) γ
1−γ

f (0)
1

1−γ ,

ε = 1 −
(

a(0)
aua(0)

) γ
1−γ

f (0)
1

1−γ ,

respectively.
When comparing the suboptimal product design, wemust decidewhich interest rate

r̃ to use. There are two natural alternatives. One is to determine with which interest
rate the product performs the best. With the baseline parameters, we have calculated
that by static optimization to be r̃ = −0.00835. An alternative is, of course, to use δa.
For the baseline case, this is δa = 0.02281.

In Table2, we present the results for the two interest rate choices in the two lines.
The loss from insured to uninsured is unrelated to the suboptimal product and is in
the baseline case 22%. This corresponds to, e.g., the point in Fig. 3 for time-additive
preferences and ξ = 0. If the insured is offered the suboptimal design with the best
possible interest rate instead of optimality with insurance, he loses 29%. If the unin-
sured individual is provided a suboptimal design with the best possible interest rate
instead of the best possible design without insurance, he loses 9%. These two losses,
22% and 9%, do not add up to the 29% since they are relative losses stemming from
nonlinear functions.

It is clear from the suboptimal control that this performs optimally if the mortality
is deterministic. To compare the three consumption plans as a function of the level
of lifetime uncertainty, we consider the hyperbolic mortality rate underlying Fig. 4
again. In Fig. 6 , all three relative losses converge toward zero as K becomes larger
and mortality becomes less uncertain. The interest rate level r̃ is chosen equal to δa

for greater comparability to the optimal and suboptimal consumption. Like in Table2,
we do not have additivity in the sense that the relative loss from insured to suboptimal
is not the sum of the relative loss from insured to uninsured and the relative loss from
uninsured to suboptimal. The relative loss from uninsured to suboptimal decreases
steeply toward zero. Similarly, the loss of the life annuity is not so different depending
on whether the alternative is the optimal consumption plan without insurance or the
suboptimal plan. For K < 2.5, the loss is more than 20% in both cases.
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Fig. 6 The relative loss for the individual in the three situations, as a function of the constant K defining
the certainty of surviving until time T = 120 for γ = 2 and r̃ = δa

5.3 Comparison of consumption profiles

It is interesting to study the consumption profiles from each of the three cases, insured,
uninsured, and sub-optimal. This adds time to the dimension, and we limit ourselves
to the baseline assumptions of the time-additive individual. For the insured individual,
the uninsured individual, and the sub-optimal product design, we get from (14), (21),
and (33), where the sub-optimal consumption is not decorated with topscripts,

Et,x
[
cua(s, X(s))

] = cua(t, x)e
∫ s
t

1
γ

(r−ρ−μ+ (1+γ )θ2

γ
du)

= aua(t)

x
e
∫ s
t

1
γ

(r−ρ−μ+ (1+γ )θ2

γ
du)

,

Et,x

[
cia(s, X(s))

]
= cia(t, x)e

∫ s
t

1
γ

(r−ρ+μ∗−μ+ (1+γ )θ2

γ
)du

= aia(t)

x
e
∫ s
t

1
γ

(r−ρ+μ∗−μ+ (1+γ )θ2

γ
)du

,

Et,x [c(s, X(s))] = c(t, x)e
∫ s
t (r−r̃−μ̃+ θ2

γ
)du

= a(t)

x
e
∫ s
t (r−r̃−μ̃+ θ2

γ
)du.

The expected consumption profiles are illustrated in Fig. 7, assuming the parameters
presented in Table1, γ = 2, and the interest rate in the sub-optimal case chosen
as δa. The wealth at time 0 is taken to be 1. The insured individual demands an
exponentially increasing consumption rate. The uninsured individual starts out at a
lower level because γ > 1 and demands a hump-shaped as a consequence of the drift
of cua crossing zero from above when mortality increases. The sub-optimal design
starts out at a higher level than the uninsured individual. However, after approximately
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Fig. 7 The expected consumption rates as a function of time, with the preference γ = 2 and wealth equal
to 1 at retirement

10ears, the consumption rate of the uninsured individual becomes larger than that in
the sub-optimal design. The value of the insured benefit rate equals the initial wealth
of 1. The values of the two other benefit rates are smaller and mutually different since
in both cases, some wealth is left behind upon death.

6 The conclusion

We have specified the optimal payout profiles of retirement products with and
without mortality credits. The preference parameters, as well as the insurance and
financial market parameters, determine the optimal drift and volatility of the con-
sumption/benefit profiles in the two cases. In the product design, these are determined
by the proportion invested in risky assets and the interest and mortality basis used in
the annuity when spreading out current wealth during the ’rest of the life.’

We have compared the cases with and without mortality credits numerically. We
found, for realistic parameters, a considerable loss of wealth if an individual without
utility from bequest does not annuitize, and we studied and discussed its dependence
on preference and market parameters.

The results generally contribute to the optimal design of annuity contracts, both
life annuities offered by pension funds and annuity contracts offered by banks. The
results can help both financial regulators in reconsidering their framework for annuity
designs and financial institutions in redesigning their product range and arguing for
(or against) life annuitization. All of this contributes to the generation of welfare for
retirees.

Future works along the lines include, in unprioritized order, (a) evaluation of the
sub-optimal product design under separated preferences; (b) more fundamental under-
standing and comparison of the different approaches to separated preference under
mortality risk; (c) further numerical studies to illustrate the various consumption
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profiles arising from different market conditions; (d) formalizing and discussing the
impact of longevity risk in the sense of a stochastic process for μ, both with and
without the individual’s access to longevity derivatives; (e) the impact of asymmetric
information about health that could undermine the extreme payout flexibility assumed;
(f) more profound discussions about institutional and policy impact of the study.
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Appendix

The sub-optimal consumption rate calculation is further elaborated. The annuity is
defined as

a(t) =
∫ Et [T ]

t
e− ∫ s

t r̃ds,

with the corresponding derivative, thereby

d

dt
a(t) = μ(t)(Et [T ] − t)e− ∫ Et [T ]

t r̃ − 1 + r̃a(t).

The consumption rate is, as previous, defined as c(t, X(t)) = X(t)
a(t) . Using Ito’s lemma

with the dynamics of the wealth defined by (1), the calculation is

dc(t, X(t)) = d

dt
c(t, X(t))dt + d

dx
c(t, X(t))dX(t) + 1

2

d2

dx2
c(t, X(t))(dX(t))2

= − x(t)

a(t)2

(
μ(t)(Et [T ] − t)e− ∫ Et [T ]

t r̃ − 1 + r̃a(t)
)
dt

+ 1

a(t)

(
X(t)(r + π(t)(α − r))dt + X(t)π(t)σdW (t) − X(t)

a(t)
dt

)
.

Inserting (10), and by defining (34), obtaining the dynamics of the consumption rate
in the sub-optimal situation (33).
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