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Abstract
We devise a theoretical model for the optimal dynamical control of an infectious dis-
ease whose diffusion is described by the SVIR compartmental model. The control is
realized through implementing social rules to reduce the disease’s spread, which often
implies substantial economic and social costs. We model this trade-off by introducing
a functional depending on three terms: a social cost function, the cost supported by
the healthcare system for the infected population, and the cost of the vaccination cam-
paign. Using Pontryagin’sMaximumPrinciple, we are able to characterize the optimal
control strategy in three instances of the social cost function, the linear, quadratic, and
exponential models, respectively. Finally, we present a set of results on the numeri-
cal solution of the optimally controlled system by using Italian data from the recent
COVID-19 pandemics for the model calibration.

Keywords Optimal control · Social distancing · SVIR epidemic model · Pontryagin’s
maximum principle

JEL Classification C61 · C63 · I12 · I15 · I18

1 Introduction

For almost three years, around the world, governments have been trying to figure
out the best policy to manage the pandemic caused by COVID-19. This sudden global
emergency has highlighted the need to systematically address the problemofmanaging
epidemics in a closely interconnected society. The containment measures which have
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been considered, from the mildest ones, such as the use of masks, to the more limiting
ones, such as periods of home confinement, come naturally at the expense of losing
the benefits of contact, and they may induce a persistent economic depression due
to many aspects. From one side, the impossibility of carrying out all or part of the
usual work activity impacts the production system as a whole. On the other hand,
people become afraid of leaving their homes, thus forgoing all those activities based on
“social contact”, such as purchasing goods, personal healthcare (e.g., preventive health
checks), traveling, and so on. Although in almost all countries, to overcome some of
these limitations, there has been increasing use of web applications for smart working,
online shopping, and, to some extent, some kind of social activities; these measures
entail some costs to society besides the ones strictly due to the disease itself, such as
costs of treatments for infected people or for implementing a vaccinations campaign.
Therefore, the development of preventive or control interventions for the disease is
of central importance, as is the cost-effectiveness estimation of such measures. The
definition of appropriate optimal control strategies thus becomes essential to study the
planner trade-off between the direct cost due to the spread of the disease and containing
the disease through social measures, which certainly implies an economic effort for
the society as a whole.

In this paper, we consider the interaction between social distance interventions and
the spread of a disease by using a control theoretic approach. Optimal control theory
is undoubtedly the key tool to attain the trade-off between the fight against disease
and the costs of social limitations imposed by a planner.

The starting point in most of the literature is the description of the spread of an
infectious disease by means of the SIR model or its several modifications (see e.g.
Brauer and Castillo-Chavez 2010), introduced by Kermack and McKendrick (1991),
where each letter represents a compartment in which any individual of a population
can be set: Susceptible (S), Infected (I), andRecovered/Removed (R). The literature on
infectious disease analyzed via optimal control (see e.g. Lenhart and Workman 2007)
is rapidly increasing. Behncke (2000) is one of the first attempts to systematically use
a control approach in the framework of epidemiological models. In the past decades,
the research was focused on measures based on selective isolation and immunization.
Abakuks (1973), assuming that an infected population can be instantaneously isolated,
studied how to optimally separate it, while Hethcote and Waltman (1973) proposed
optimal vaccination strategies. More recently, Ledzewicz and Schattler (2011), were
dealing with an optimal control problem using a model with vaccines and treatments
on a growing population, while Federico et al. (2022), studied an optimal vaccination
strategy in a SIRS compartmental model, using a dynamic programming approach.
Gaff and Schaefer (2009) took into consideration SIR/SEIR/SIRS models where the
controls are again on the vaccination rate and the cure given to the infected persons,
who could also be quarantined. Bolzoni et al. (2017) analyzed the time-optimal control
problems for the use of vaccination, isolation, and culling in the linear case. In Miclo
et al. (2020), the authors studied a deterministic SIRmodel in which the social planner
controls the transmission rate in order to lower its natural level so as not to overbur-
den the health care system. In the same SIR model, Alvarez et al. (2021) conducted
a numerical investigation into optimal containment policies aimed at minimizing the
present discounted value of fatalities, while concurrently seeking to minimize the out-
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put costs associated with the implementation of lockdown measures. Federico and
Ferrari (2021) dealt with the issue of a policymaker aiming to tame an epidemic’s
spread while minimizing its associated social costs in a stochastic extension of the
SIR model. Kruse and Strack (2020) extended the SIR model with a parameter con-
trolled by the planner, which affects the rate at which the diseases are transmitted,
capturing political measures such as social distancing and lockdown of institutions
and businesses. While these measures reduce the spread of the disease, they often lead
to economic and social costs. They modeled this trade-off by considering convex costs
in the number of infected and the reduction in transmission rate. The control through
lockdown policies, which affect the rate of diffusion of the disease in a SIRD model,
is studied in Calvia et al. (2023) using a dynamic programming approach.

Undoubtedly, one of the most widely used preventive interventions is vaccination.
Nowadays, there is extensive literature on vaccination models; see, for instance, the
book by Brauer and Castillo-Chavez (2010). In order to include a vaccination strategy
explicitly into the dynamical description of the disease, we rely on the model proposed
by Liu et al. (2008), denoted as SVIR. Indeed, they consider vaccination in a basic
SIR model by introducing a new compartment V where the vaccinees will belong
before reaching immunity and, therefore, entering the compartment R of recovered
individuals.

The application of an optimal control approach to a SVIR dynamical model is
less considered in the literature. Ishikawa (2012) considers a stochastic version of
this model and analyzes the corresponding stochastic optimal control problem for the
vaccination strategy with a quadratic cost function. Witbooi et al. (2015), considered
both a deterministic and stochastic optimal problem for the SVIR model, assuming
the vaccination rate as control, and an additive cost functional. In Kumar and Sri-
vastava (2017) propose and analyze a control problem in this framework by using
vaccination and treatment as control policies, and a cost functional linear in the state
variables, quadratic in the treatment and quartic in the vaccination policies, respec-
tively. Similarly, Garriga et al. (2022) study the deterministic optimal control problem
for a pandemic having two phases: in the first one, social restrictions are the only
possible containment measures for the disease, while at a subsequent random time a
vaccine becomes available. Optimal control strategies are discussed for both phases,
involving one and two control variables, respectively, detailing the structure of the
cost function by means of a utility function.

In this paper, we assume a deterministic SVIR dynamical model to describe the
spread of an infectious disease that a social planner can control through a set of
mitigation measures that aim to lower the rate of contagion in the population. The
challenge is to find the optimal response balancing restrictions that will minimize the
prevalence of the disease, keeping in mind the economic cost of such limitations and
having at disposal an immunization instrument. We, therefore, introduce an explicit
cost function to take into account the impact of such measures other than the cost of
vaccination and the cost due to the infected population. Specifying the functional form
of the social cost function, the linear, quadratic, and exponential instances, we are able
to characterize the optimal control strategy function using Pontryagin’s Maximum
Principle (see, e.g., Lenhart and Workman 2007).
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Afterward, we performed a set of numerical experiments to examine the behavior
of the controlled SVIR model. To solve the optimal control problem and obtain the
solution efficiently, we utilized the Forward-Backward Sweep algorithm (Lenhart and
Workman 2007). In our numerical experiments, we assume that a disease has spread
in a population in a first period, which provides the initial conditions for subsequent
analyses. The numerical simulation was conducted using fixed model parameters con-
sistent with those observed during the recent COVID-19 pandemic. Some of these
parameters were calibrated using Italian data from the initial phase of the pandemic,
which featured the implementation of non-containment rules. A vaccine becomes
available at a given time, and the population dynamic can be described using the
SVIR model. Two scenarios were then considered for the SVIR dynamic: one involv-
ing a high-intensity vaccination campaign and the other a low-intensity campaign. Our
simulations find that the optimal strategy yields compartment values for the population
that are comparable to a full-control strategy but with a substantial reduction in costs,
up to 70.2% in one scenario. We further study the optimal control problem by varying
the maximum control level: in fact, it may not be practically feasible to consider the
highest possible level of control. In such situations, the decision maker may prefer a
partial level of containment, eventually for a longer duration, despite the associated
increase in total cost. This raises the issue of the trade-off between the length of the
maximum containment period and the effectiveness/cost of the restrictions.

Our paper is structured as follows: first of all, in Sect. 2, we recall the basic SVIR
model together with its main properties, then in Sect. 3, we formulate the deterministic
optimal control problem, proving the existence of a solution, and characterizing the
optimal control for several instances of the cost functional explicitly. Finally, by using
the Forward-Backward sweep algorithm, we numerically solve the problem, and we
illustrate the results obtained in several examples.

2 Outline of the basic SVIRmodel

The SVIR model was introduced by Liu et al. (2008) to modify the well-known
SIR model in order to include a vaccination program (continuous or impulsive) in
the considered population. The four groups are, therefore, the Susceptibles S, the
Infected I , the Recovered R, and theVaccinees V , representing those having begun the
vaccination process, where S, V , R, and I denote the fractions of the total population
belonging to each group, respectively.

Let β represents the transmission rate of disease when the susceptible individuals
get in contact with the infected ones and let γ be the recovery rate of the infected
individuals. It is assumed that vaccinated individuals gain immunity against the disease
at a rate γ1 and that even the vaccinees have the chance to be infected at a rate β1,
which can be taken smaller thanβ since after the vaccination process some immunity is
acquired. Parameter α represents the rate at which the susceptible persons are moving
in the vaccination program, and μ is the birth-death rate. Figure1 shows how the
population is moving among the four compartments S, V , I , R.
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Fig. 1 The basic SVIR model
graph

The framework for the continuous vaccination process can be described through
the following system of first-order differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S

dt
(t) = −βS(t)I (t) − αS(t) + μ − μS(t) S(0) = S0

dV

dt
(t) = αS(t) − β1V (t)I (t) − γ1V (t) − μV (t) V (0) = V0

d I

dt
(t) = βS(t)I (t) + β1V (t)I (t) − γ I (t) − μI (t) I (0) = I0

d R

dt
(t) = γ1V (t) + γ I (t) − μR(t) R(0) = R0

(1)

where the parameters β, β1, γ, γ1, μ ∈ R
+ and α ≥ 0. Moreover, we assume that the

initial data S0, V0, I0, R0 ∈ R
+, and S0 + V0 + I0 + R0 = 1. The above assumptions

are stated since the model (1) represents human populations, and it can be shown that
the solutions of the system are non-negative given non-negative initial values (see Liu
et al. 2008). In particular, it is worth noticing that by defining N (t) = S(t) + V (t) +
I (t) + R(t), we immediately have from (1) that d N

dt (t) = 0: hence N (t) = N0 ≡ 1,
for all t ≥ 0.

Since the first three equations in system (1) do not involve the state variable R, it
is enough to study the properties of the system using only the variables S, V , and I .
In Liu et al. (2008) it is shown that the model (1) has a disease free equilibrium (that
is an equilibrium (S∗, V ∗, I ∗) for which I ∗ ≡ 0)

E0 =
(

μ

μ + α
,

αμ

(μ + γ1)(μ + α)
, 0

)

(2)

and an endemic equilibrium

E+ =
(

μ

μ + α + β I+
,

αμ

(μ + α + β I+)(μ + γ1 + β1 I+)
, I+

)

, (3)
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where I+ is the positive root of quadratic equation, whose coefficients depend on the
parameters of the model and on the basic reproduction number, given by

RC
0 = μβ

(μ + α)(μ + γ )
+ αμβ1

(μ + γ1)(μ + α)(μ + γ )
. (4)

The main properties of the dynamical system (1) are summarized in the two fol-
lowing Theorems, which are proved in Liu et al. (2008):

Theorem 1 The disease free equilibrium E0, which always exists, is locally asymptot-
ically stable if RC

0 < 1 and is unstable if RC
0 > 1. System (1) has a unique positive

equilibrium E+ if and only if RC
0 > 1 and it is locally asymptotically stable when it

exists.

Theorem 2 If RC
0 ≤ 1, then the disease free equilibrium E0 is globally asymptotically

stable. If RC
0 > 1, the endemic equilibrium E+ is globally asymptotically stable in

all the region of feasible model solutions except for the constant solution identically
equal to E0.

3 The controlled SVIRmodel

In this section,we introduce the controlledSVIRmodel, andwe analyze a deterministic
optimal control problem associated with it.

We consider a control variable u(·), which is meant to govern the social restrictions
imposed by the social planner on a population until a specific time T , which is the
final time of government restrictions.

The control variable u belongs to the admissible set U defined as

U = {u : [0, T ] → [0, ū] : Lebesgue measurable, ū ∈ (0, 1]} .

The control variable u allows to adjust the rate of transmission of the disease,
which we model as a decreasing linear function β(·). We want to design the situation
where in the absence of control (u = 0), the infectivity rate β is high, while for
increasing controls, this rate decreases. The function β(u) captures both the infectivity
of the disease and the restrictions social planner imposes to govern the speed at which
the infection spreads. Furthermore we set β1 = εβ, where ε quantifies the vaccine
ineffectiveness (if ε ≡ 0 no vaccinated gets infected). Since the first three equations
of the SVIR model do not involve the recovered people R and since R will not enter
in the specification of the costs of the disease, it is enough to consider the following
controlled SVIR dynamic (see Fig. 2):
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Fig. 2 The controlled SVIR
model graph

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S

dt
(t) = −β(u(t))S(t)I (t) − αS(t) + μ − μS(t) S(0) = S0

dV

dt
(t) = αS(t) − εβ(u(t))V (t)I (t) − γ1V (t) − μV (t) V (0) = V0

d I

dt
(t) = β(u(t))S(t)I (t) + εβu(t)V (t)I (t) − γ I (t) − μI (t) I (0) = I0.

(5)

Now we can formulate the optimal control problem. To this end, we introduce the
following functional in order to minimize the cost of the infected population I and the
cost of the vaccination, which we assume to be proportional to αS, being the flux of
individuals from S to V or, equivalently, the number of new vaccinees individuals in
the unit of time. We suppose that these costs are due to hospitalization expenses for
patients requiring inpatient care, with or without ICU (Intensive Care Unit), and to
the arrangement of the vaccination program supply chain (e.g., the setting up and the
management of a vaccination hub, of the related medical staff, and so on). Moreover,
we assume that the cost of social restrictions is a function c of the control variable
u such that c is a strictly increasing, convex function of the restriction policy u, and
that c(0) = 0. This means that, in the absence of control, the total costs of the disease
diffusion are due to the infected individuals and the vaccination strategy. In this way,
and by assuming an additive structure for the cost functional, we disentangle the costs
entirely due to the disease from those due to the “restrictions” imposed on the whole
society. Parameters c1, c2 ∈ R

+ represent the cost of being infected and the cost of
the vaccination campaign, respectively.

Hence the objective function is given by J : U → R such that

J (u) =
∫ T

0
[c(u(t)) + c1 I (t) + c2αS(t)]dt . (6)

Our goal is to derive the optimal strategy u∗ ∈ U and the associated state variables
S, V and R to minimize (6) i.e.

min
u∈U

J (u) subject to (5).
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To prove the existence of such a strategy u∗ we refer to Fleming and Rishel (1975),
Lenhart and Workman (2007) and Kumar and Srivastava (2017).

Theorem 3 Let β(·) be a linear decreasing function and let c(·) be a convex, twice
continuous differentiable function, such that c′ > 0 and c(0) = 0.

Then an optimal solution u∗ for problem (5)–(6) exists, i.e. there exists an optimal
control u∗ ∈ U such that J (u∗) = min J (u).

Proof First of all, notice that the right-hand side functions of system (5) are Lipschitz
continuous with respect to the state variables, hence Picard–Lindelof Theorem ensures
that there exist solutions to (5). By definition, the set [0, ū] is compact and convex and
system (5) is linear in the control variable u, then the result follows applying Theorem
4.1 and Corollary 4.1 pp. 68–69 in Fleming and Rishel (1975). 	

Remark 1 Choosing in (6) a continuous function C(u, I , S), C(·, I , S) convex on
[0, ū] a similar results is easily obtained, again following Corollary 4.1 pp. 68–69 in
Fleming and Rishel (1975). Our choice of the particular case C(u, I , S) = c(u) +
c1 I + c2αS allows us to separate the costs due to social restrictions from the ones
due both to of the infected population I and of the vaccination. Moreover, with this
explicit choice of the integrand function, we are able to solve the problem applying
numerical techniques.

In order to solve the above optimal control problem, we refer to the well-established
control theory, see for instance Fleming and Rishel (1975) or Lenhart and Workman
(2007). It is introduced the Hamiltonian function H and the Lagrange multipliers
λ1(·), λ2(·) and λ3(·) denoted also as co-states, or adjoint variables. From now on,
even if the state variables S, V , I , the control variable u and the co-state variables λ1,
λ2 and λ3 are functions of time, we omit this dependence except where it is explicitly
required.

The Hamiltonian function of the optimal control problem (5)–(6) is defined as
follows

H(t, S, V , I , u, λ1, λ2, λ3) = c(u) + c1 I + c2αS + λ1[−β(u)SI − αS + μ − μS]
+λ2[αS − εβ(u)V I − γ1V − μV ] + λ3[β(u)SI + εβ(u)V I − γ I − μI ].

(7)

Theorem 4 Let (S∗, V ∗, I ∗, u∗) be an optimal solution for problem (5)–(6), then there
exist adjoint functions λ1, λ2 and λ3 satisfying the following system of differential
equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ′
1 = [β(u∗)I ∗ + α + μ]λ1 − αλ2 − β(u∗)I ∗λ3 − c2α

λ′
2 = [εβ(u∗)I ∗ + γ1 + μ]λ2 − εβ(u∗)I ∗λ3

λ′
3 = β(u∗)S∗λ1 + εβ(u∗)V ∗λ2 − [β(u∗)S∗ + εβ(u∗)V ∗ − γ − μ]λ3 − c1

(8)

with the transversality conditions

λ1(T ) = 0 λ2(T ) = 0 and λ3(T ) = 0.
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The optimal restriction policy u∗ is such that

u∗(t) ∈ argminu∈[0,1] H(t, S∗, V ∗, I ∗, u, λ1, λ2, λ3). (9)

Proof Let (S∗, V ∗, I ∗, u∗)be anoptimal solution for problem (5)–(6).ByPontryagin’s
Maximum Principle the costate variables λ1, λ2 and λ3 satisfy system (8) whose
equations are obtained evaluating the partial derivatives of the Hamiltonian function
H in (7), with respect to the state variables S, V , I

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
1 = −∂ H

∂S

λ′
2 = −∂ H

∂V

λ′
3 = −∂ H

∂ I

(10)

with the transversality conditions λ1(T ) = λ2(T ) = λ3(T ) = 0. The Hamiltonian
function H , defined in (7) is strictly convex with respect to the control variable u,
hence the existence of a unique minimum follows (see Witbooi et al. 2015), hence

u∗(t) ∈ argminu∈[0,1] H(t, S∗, V ∗, I ∗, u, λ1, λ2, λ3).

	

Remark 2 Similar results are easily generalized using a convex function for the cost
of the infected population. This more general assumption models the nonlinear impact
of disease spread on the healthcare system, resulting in hospital services becoming
overwhelmed.

We now further specialize the result obtained by explicitly specifying the functional
formof the transmission rateβ(u) and cost function c(u). As a basicmodelwe consider
the following linear model:

β(u) = β0(1 − u), 0 ≤ u ≤ 1, (11)

where β0 > 0 is the specific transmission rate of the disease. In this case, we model
the situation when the maximum control (i.e. u ≡ 1) completely “freezes” the disease
diffusion.

In our practical application we consider the following functions:

1. cquad(u) = bu2, b > 0;
2. cexp(u) = eku − 1, k > 0;
3. clin(u) = au, a > 0.

A complete characterization of the optimal controls is proved in the following.
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Proposition 5 Let β(u) = β0(1 − u) and cquad(u) = bu2. Then the optimal control
strategy u∗

quad for problem (5)–(6) is given by

u∗
quad(t)

= min

{

max

[

0,
β0 I ∗(t)[S∗(t)(λ3(t) − λ1(t)) + εV ∗(t)(λ3(t) − λ2(t))]

2b

]

, u

}

(12)

Proof In this case the Hamiltonian function H is defined as

H(t, S, V , I , u, λ1, λ2, λ3)

= bu2 + c1 I + c2αS + λ1[−β0(1 − u)SI − αS + μ − μS]
+λ2[αS − εβ0(1 − u)V I − γ1V − μV ]
+λ3[β0(1 − u)SI + εβ0(1 − u)V I − γ I − μI ]

(13)

then, imposing first-order conditions to minimize the Hamiltonian H at S∗, I ∗, V ∗

∂ H

∂u
= 2bu + I ∗[β0S∗(λ1 − λ3) + εβ0V ∗(λ2 − λ3)] = 0, (14)

we derive the optimal restriction policy u∗
quad (12). 	


Analogously to the quadratic case above, we can solve the exponential case

Proposition 6 Let β(u) = β0(1 − u) and cexp(u) = eku − 1.
If λ3(t) > λ1(t) and λ3(t) > λ2(t), then the optimal control strategy u∗

exp(t) for
problem (5)–(6) is given by

u∗
exp(t) = min

{

max

[

0,
1

k
ln

β0 I ∗(t)K (t)

k

]

, u

}

(15)

where K(t) is defined as K (t) = S∗(t)(λ3(t) − λ1(t)) + εV ∗(t)(λ3(t) − λ2(t)).

Remark 3 We notice that in both cases, the optimal control strategy u∗ depends on
the shadow price differences between infected and susceptible, and infected and vac-
cinated (see the paper Kruse and Strack 2020). In other words, λ3 − λ1 and λ3 − λ2
can be interpreted as the marginal cost of having an additional susceptible person
infected and as the marginal cost of having an additional vaccinated person infected,
respectively.

Remark 4 It is interesting to point out that, as expected in reality, if in the optimal
strategies u∗

Q and u∗
exp the maximum is not vanishing, then the optimal controls con-

verges to the constant policy u as b and k tend to 0, respectively. Hence if the social
planner can cut off the social cost, then the optimal policy that can be adopted is the
most strict one, represented by u.

Finally, we now consider the linear case: the proof of the following Proposition is
reported in Appendix A and it follows the reasoning in Joshi et al. (2015).
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Proposition 7 Let β(u) = β0(1 − u) and clin(u) = au. Then the optimal control
strategy u∗

lin(t) for problem (5)–(6) is given by

u∗
lin(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ū if ∂ H
∂u < 0

using = A2(t)
A1(t)

if ∂ H
∂u = 0

0 if ∂ H
∂u > 0

(16)

where A1(·) and A2(·) are defined in the proof.

4 Numerical results

In this section, we utilize the optimality outcomes derived in the preceding section
to investigate the controlled SVIR dynamics across various scenarios. To obtain our
simulation results, we employ the Forward-Backward sweep algorithm to numerically
solve the control problem, as it is a well-established indirect technique for approxi-
mating optimal control problem solutions (see Lenhart and Workman 2007, and e.g.
McAsey et al. 2012 for a convergence result).

The algorithm iteratively updates the current control functionun(·) byfirstly solving
the forward state equations (5) utilizing an ODE solver. Subsequently, the costate
equations (8) are solved backward in time with the same solver, and the control is
updated according to the optimality conditions. This iterative procedure leads to the
generation of a new approximation of the state, costate, and control un+1(·). The
described steps are repeatedly performed until a convergence criterion is met.

In a preliminary phase, we set up the algorithm by establishing the temporal dis-
cretization and the criterion for terminating the computation. Specifically, we selected
a fixed number of time points, N = 1000, uniformly distributed within the time hori-
zon [0, T ], and defined the stopping criterion based on the non-decreasing behavior of
the cost functional. Additionally, we employed a technique of weighted averaging to
update the solution iteratively, by combining the new and previous solutions. In par-
ticular, we found that the weighting constant value equal to 0.99 is a good compromise
between convergence speed and smoothing properties of the obtained solution. For
the linear case, where the solution is of bang-bang type, we did not used instead the
averaging step, i.e. the weighting constant was set to 0. In our numerical experiments,
we never observed the singularity condition (see (16)).

The proposed algorithm was implemented using the software MatLab© (R2021b).
The built-in function ode45 was utilized to efficiently solve the systems of ordinary
differential equations (ODEs). After themodel parameterswere fixed, the computation
of the optimal solution was efficiently obtained within seconds.

The parameters used in this section are summarized in Table 1, and they represent
typical values of the recent COVID-19 pandemic. As a unit of time period, we take
one day. In particular, we estimated the parameters β0 and γ , by using the aggre-
gated Italian data provided by the “Dipartimento della Protezione Civile”, available
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on GitHub,1 in the early stage of the pandemic, by exploiting the procedure described
in the Appendix B. Specifically, they were obtained by using data from February,
24th to March, 15th 2020, setting α = γ1 = 0 (no vaccination measures at that
time).2 Then, we fixed γ −1

1 = 14, as the time to reach full protection is estimated to
be around 14 days (see, e.g. WHO https://www.who.int/health-topics/coronavirus)).
Hence, in our experiments, we considered a scenario where a short-lived infectious
disease has spread throughout a population, and only confinement measures are avail-
able to control its spread. After a given period, a vaccine becomes available. The
starting conditions for this scenario are V0 = 0, I0 = 0.04 and R0 = 0.12 (corre-
sponding to the percentage of infected and recovered Italian people in January 2022),
and S0 = 1− I0−V0−R0. The time horizonwas set to 240 days. Furthermore, in order
to fix the value for the scenario parameter ε, we choose to estimate it by using the vac-
cine effectiveness3 V E for the booster dose, averaged on the three available vaccines,
ChAdOx1 nCoV-19 (Astra-Zeneca), BNT162b2 (Pfitzer-BionTech) and mRNA-1273
(Moderna), as reported in Andrews et al. (2022) (Table 3): this procedure implied the
value ε ≡ (1− V E) = 0.078. Finally, the birth-death rate has been set equal to zero4,
assuming that the disease has a short lifespan compared to the population’s lifetime
(see e.g. Van den Driessche 2017).

As introduced in Sect. 3, the cost functional (6) is given by the sum of three
terms, each related to a specific aspect of the problem: the cumulative “social cost”
JSC (u) = ∫ T

0 c(u(t))dt , “infection cost” JI C (u) = ∫ T
0 c1 I (t)dt , and “vaccination

cost” JV C (u) = ∫ T
0 c2αS(t)dt . In order to quantify the relative weights of each term,

we rely on a quantification of the cost related to the hospitalized patients as available
in the paper by Marcellusi et al. (2022) (Supplementary material), assuming that the
average cost for vaccination is 15e per person. In particular, we considered the aver-
age daily cost weighted by the total number of patients hospitalized with and without
ICU and only ICU.5 Finally we normalized the corresponding weights in such a way
c1 = 1, implying c2 = 0.02.

As a preliminary step of our experiments, after having fixed the cost of the infection
and the cost of vaccination, we analyzed the impact of the social cost parameters on the
optimal solution, by comparing it with the two limiting cases: no restrictions (u ≡ 0)
and full restrictions (u ≡ 1). In general, we observed a similar qualitative behavior
of the optimal strategy for the three cost functions, cquad(·), cexp(·), and clin(·), with

1 https://github.com/pcm-dpc/COVID-19.
2 Since February 23rd, a series of increasingly restrictive local containment measures have been adopted
in Italy. Between March 8th and March 9th, a partial lockdown is defined for some provinces in northern
Italy, and a ban on travel for unnecessary reasons, suspension of rallies and events, and closure of museums,
cultural venues, and sports centers are sanctioned. The DPCM (Decree of the President of the Council of
Ministers) March 11 defines a total lockdown, further strengthened by the DPCM of March 22.
3 The vaccine effectiveness is defined as the percentage reduction in risk of disease among vaccinated
persons relative to unvaccinated persons.
4 The annual birth and death rate in 2021 for the Italian population was estimated as 6.7 × 10−3 and
12 × 10−3 (unit of measure 1/year), respectively (source: ISTAT).
5 These costs per hospitalized patients have been estimated considering a sample of 996 COVID-19 hos-
pitalisations recorded in Policlinico Tor Vergata Hospital between 2nd March 2020 and 27th December
2020.
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Table 1 Basic values of the
parameters for the uncontrolled
system

Parameter Value Description

β0 0.2200 Transmission rate

γ 0.0795 Recovery rate from infected

γ1 0.0714 Full immunization rate

respect to their parameter, b, k and a, respectively. Increasing these values in the
instances considered, corresponds to a higher social cost for increasing controls. As
expected, we immediately see that if the social cost becomes larger (b, k, a ↗), the
optimal strategy collapses to the no-control strategy: it would be convenient not to
adopt any restrictions if the cost of such restrictions became too expensive (see the
result of such experiments in Appendix C). In particular, we noticed that the optimal
policy provides a reduction of the overall cost, in all the considered scenarios.

More interestingly, we analyzed the qualitative behavior of the optimal solution in
the three instances considered, comparing them with the two limiting cases given by
an absence of control (u ≡ 0) and the maximum control (u ≡ 1).

4.1 Analysis of the optimal policies

For each choice of the social cost function, cquad(·), cexp(·), and clin(·), we demon-
strate the effect of an optimal policy in two possible scenarios, a low-intensity
(α = 0.0005) and a high-intensity (α = 0.004) vaccination campaign. In order to get
comparable results among the three cost models, we set the parameters a = b = 0.04,
and k = 0.03922, respectively. In such a way, in the given time period, the social cost
with the maximum control is about the same.

In the analysis of the three cases presented, it is evident that the optimal strategy
leads to a reduction in the total cost even when there is a slight increment in the cost
of caring for the infected population. This outcome holds true for both low- and high-
intensity vaccine campaigns, as it is demonstrated in Tables 2, 3 for the quadratic cost
function, Tables 4, 5 for the exponential cost function, and Tables 6, 7 for the linear
cost function, where the total cost J and the specific costs JSC , JI C , and JV C , are
reported. The reduction in the overall cost of the optimal strategy w.r.t. the full-control
strategy is significant across all scenarios, but is most pronounced in the high-intensity
case, 70.2%, 61.4% and 61.6%, respectively. Moreover, it is apparent that the high-
intensity vaccine campaign yields lower total costs in spite of a minor increase in
related expenses (JI C and JV C ).

Figures 3, 4, 6, 7, 9 and 10 depict the outcomes of the dynamic model under full-
control, no-control, and optimal control strategies, in the three instances considered,
while Figs. 5, 8, 11 report the corresponding optimal policies u∗. It is evident that the
optimal strategy shows compartmental dynamics that are comparable to those of the
full-control strategy,while also yielding a substantial reduction in costs. Notably, in the
case of the low-intensity vaccination campaign, the Susceptible compartment remains
highly populated (at 70%, 70%, and 57% for the three social cost functions) after 240
days, resulting in an increase in the number of infected individuals at the end of the
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Table 2 Total costs J (u) of the strategies and the corresponding social, infection, and vaccination cost for
the quadratic cost function. In parentheses the percentage value w.r.t. the total cost. Low vaccination rate
scenario

Contr. strategy J (u) Social cost Infection cost Vaccination cost

u ≡ 0 9.7308 0 (0%) 9.7304 (99.99%) 0.0004 (0.01%)

u ≡ 1 10.1049 9.600 (95.01%) 0.5030 (4.98%) 0.0019 (0.02%)

u∗ 4.3602 3.4598 (79.35%) 0.8985 (20.61%) 0.0019 (0.05%)

Table 3 Total costs J (u) of the strategies and the corresponding social, infection and vaccination cost for
the quadratic cost function. In parentheses the percentage value w.r.t. the total cost. High vaccination rate
scenario

Contr. strategy J (u) Social cost Infection cost Vaccination cost

u ≡ 0 8.8124 0 (0%) 8.8095 (99.97%) 0.0029 (0.03%)

u ≡ 1 10.1134 9.6000 (94.92%) 0.5030 (4.97%) 0.0104 (0.10%)

u∗ 3.0132 2.0915 (69.41%) 0.9115 (30.25%) 0.0101 (0.34%)

Table 4 Total costs J (u) of the strategies and the corresponding social, infection and vaccination cost for
the exponential cost function. In parentheses the percentage value w.r.t. the total cost. Low vaccination rate
scenario

Cont. strategy J (u) Social cost Infection cost Vaccination cost

u ≡ 0 9.7246 0 (0%) 9.7242 (99.99%) 0.0004%

u ≡ 1 10.1051 9.6001 (95.00%) 0.5032 (4.98%) 0.0019 (0.02%)

u∗ 6.0359 5.2957 (87.74%) 0.7383 (12.23%) 0.0019 (0.03%)

Table 5 Total costs J (u) of the strategies and the corresponding social, infection and vaccination cost for
the exponential cost function. In parentheses the percentage value w.r.t. the total cost. High vaccination rate
scenario

Contr. strategy J (u) Social cost Infection cost Vaccination cost

u ≡ 0 8.8071 0 (0%) 8.8042 (99.97%) 0.0029 (0.03%)

u ≡ 1 10.1136 9.6001 (94.92%) 0.5032 (4.98%) 0.0104 (0.10%)

u∗ 3.8998 3.0543 (78.15%) 0.8352 (21.60%) 0.0102 (0.26%)

Table 6 Total costs J (u) of the strategies and the corresponding social, infection and vaccination cost
for the linear cost function. In parentheses the percentage value w.r.t. the total cost. Low vaccination rate
scenario

Contr. strategy J (u) Social cost Infection cost Vaccination cost

u ≡ 0 9.7246 0 (0%) 9.7242 (99.99%) 0.0004 (0.01%)

u ≡ 1 10.1051 9.600 (95.00%) 0.5032 (4.98%) 0.0019 (0.02%)

u∗ 6.4528 4.7231 (73.20%) 1.7278 (26.78%) 0.0019 (0.03%)
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Table 7 Total costs J (u) of the strategies and the corresponding social, infection and vaccination cost
for the linear cost function. In parentheses the percentage value w.r.t. the total cost. High vaccination rate
scenario

Contr. strategy J (u) Social cost Infection cost Vaccination cost

u ≡ 0 8.8071 0 (0%) 8.8042 (99.97%) 0.0029 (0.03%)

u ≡ 1 10.1135 9.600 (94.93%) 0.5032 (4.98%) 0.0104 (0.10%)

u∗ 3.8793 2.9069 (74.93%) 0.9622 (24.80%) 0.0102 (0.26%)

observation period. The Infected compartment population amounts to 1.1%, 1.3%, and
8%, respectively, at the final time T . This trend is particularly apparent in the linear
cost case. Overall, the percentages of Recovered and Vaccinated individuals amount to
28.3%, 26.6%, and 34.74%, respectively. In contrast, under the high-intensity vaccine
campaign scenario, the Susceptible population decreases more significantly (at 30%,
30%, and 29.1% for the three social cost functions), while the Infected compartment
remains consistently low (at 0.13%, 0.28%, and 0.35%, respectively). Furthermore,
the percentages of Recovered and Vaccinated individuals increase significantly, reach-
ing a total of 69.6%, 69.7%, and 70.6% of the total population. It is noteworthy that
in the quadratic cost case, Fig. 5, the optimal control policy involves the implemen-
tation of maximum control up to 15 days from the initial date, followed by a gradual
decrease to zero. The rate of decrease is dependent on the intensity of the vaccination
campaign. This pattern holds true for both low- and high-intensity vaccine scenarios.
In the exponential cost case, Fig. 8, the maximum control value persists for a longer
period of time (47 and 64 days, respectively) before rapidly decreasing to zero in the
high-intensity vaccine scenario. Conversely, it remains at an intermediate level for an
extended period from day 79 before reaching the minimum level after approximately
190 days from the initial date. In the linear cost case, Fig. 11, the optimal bang-bang
control involves maximum control for 118 and 70 days, respectively. Notably, the
number of days of maximum control is reduced in the high-intensity vaccine scenario.

4.2 Optimal policies with limited containment

In the second set of numerical experiments, we study the effect of reducing the max-
imum possible containment level ū, since there may be an inability to impose the
highest level of control ū ≡ 1 for extended periods of time. In fact, the decision maker
might prefer a partial level of containment, possibly for a greater number of days, in
the face of increasing the total cost, while still determining similar characteristics in
the population compartments, that is a trade-off between the length of the maximum
containment period and the effectiveness/cost of the restrictions. We then consider
the solution of the optimal control problem, assuming different levels for the value
ū ∈ {0.4, 0.6, 0.8, 1}. For this experiment we report only the case of the quadratic
social cost function: similar results are obtained for the other functions.

What our experiment shows is that increasing the maximum level of restriction ū
certainly generates a decrease in total cost J , in the face of a less prolonged period of
maximum containment. This is observed in the case of a high-intensity vaccination
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Fig. 3 Compartmental dynamics corresponding to the uncontrolled system (u ≡ 0, dash-dotted blue line),
fully controlled system (u ≡ 1, dashed red line) and optimally controlled system (u∗, black line), quadratic
social cost function. High vaccination rate scenario (color figure online)

Fig. 4 Compartmental dynamics corresponding to the uncontrolled system (u ≡ 0, dash-dotted blue line),
fully controlled system (u ≡ 1, dashed red line) and optimally controlled system (u∗, black line), quadratic
social cost function. Low vaccination rate scenario (color figure online)
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Fig. 5 Optimal controls for low vaccination rate (blue line) and high vaccination rate (red line) scenarios:
quadratic social cost function (color figure online)

Fig. 6 Compartmental dynamics corresponding to the uncontrolled system (u ≡ 0, dash-dotted blue line),
fully controlled system (u ≡ 1, dashed red line) and optimally controlled system (u∗, black line), exponential
social cost function. High vaccination rate scenario (color figure online)
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Fig. 7 Compartmental dynamics corresponding to the uncontrolled system (u ≡ 0, dash-dotted blue line),
fully controlled system (u ≡ 1, dashed red line) and optimally controlled system (u∗, black line), exponential
social cost function. Low vaccination rate scenario (color figure online)

Fig. 8 Optimal controls for low vaccination rate (blue line) and high vaccination rate (red line) scenarios:
exponential social cost function (color figure online)
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Fig. 9 Compartmental dynamics corresponding to the uncontrolled system (u ≡ 0, dash-dotted blue line),
fully controlled system (u ≡ 1, dashed red line) and optimally controlled system (u∗, black line), linear
social cost function. High vaccination rate scenario (color figure online)

Fig. 10 Compartmental dynamics corresponding to the uncontrolled system (u ≡ 0, dash-dotted blue line),
fully controlled system (u ≡ 1, dashed red line) and optimally controlled system (u∗, black line), linear
social cost function. Low vaccination rate scenario (color figure online)
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Fig. 11 Optimal controls for low vaccination rate (blue line) and high vaccination rate (red line) scenarios:
linear social cost function (color figure online)

Table 8 Comparison of the
optimally controlled system for
different maximum containment
levels ū in the high-intensity
vaccination scenario.
Compartment values at final
time

ū = 0.4 ū = 0.6 ū = 0.8 ū = 1.0

Total cost 5.6362 3.8159 3.1620 3.0132

Day max cont 94 76 37 15

Susceptibles 0.1664 0.2559 0.2922 0.3022

Infected 0.0001 0.0008 0.0012 0.0013

Vacc. + Rec 0.8334 0.7433 0.7066 0.6965

campaign, see Table 8. The final population of Susceptibles and Infected is increasing
with ū, while the Vaccinated and Recovered show a decreasing behavior. Notice that
the change in costs and final value in the compartments going from ū = 0.8 to ū =1 is
very small, compared with more than doubling the number of days of maximum con-
tainment. The corresponding optimal policies are shown in Fig. 12. Similar behavior
is observed in the low-intensity case, except that the number of days of maximum con-
tainment is not strictly decreasing, see Table 9 and Fig. 13 showing the corresponding
optimal controls.

5 Concluding remarks

In this paper, we considered the problem of optimal control of an infectious disease by
modeling its diffusion through a SVIR compartmental dynamic. Differently from the
classical SIR (or SIRD) model, we consider the possibility to implement a vaccination
campaign to immunize the population. The control of the disease is realized by adopt-
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Table 9 Comparison of the
optimally controlled system for
different maximum containment
levels ū in the low-intensity
vaccination scenario.
Compartment values at final time

ū = 0.4 ū = 0.6 ū = 0.8 ū = 1.0

Total cost 7.4893 5.4040 4.5033 4.3602

Day max cont 123 130 48 15

Susceptibles 0.3104 0.5655 0.6809 0.7049

Infected 0.0015 0.0085 0.0108 0.0113

Vacc. + Rec 0.6881 0.4260 0.3083 0.2834

Fig. 12 Optimal controls for varying containment levels ū. High intensity vaccination rate scenario

ing political measures of containment, generally identified here as social distancing,
since they may have an impact on the social behavior of the population, e.g., the use
of face masks, the partial or total closure of many activities, educational structures,
commercial activities, production, and/or different degrees of prohibition of move-
ments. All these measures aim to reduce the disease’s diffusion but imply a cost for
the whole society. Hence we introduced a cost functional that explicitly considers
these social measures, the social cost function, other than the cost of vaccination and
the cost due to the infected population. Our main result is the characterization of the
solution of the optimal control of the SVIR dynamical model obtained in terms of a
controlled diffusion rate to minimize the overall cost of the disease. We thoroughly
describe the optimal control strategy using the Pontryagin Maximum Principle for
several instances of the social cost function. Finally, we implemented the optimal con-
trolled system using the Forward-Backward Sweep algorithm by calibrating some of
themodel parameters using the Italian dataset of the recent COVID-19 pandemics. In a
preliminary set of experiments, we investigated the effect of social cost parameters on
the optimal solution by comparing it to two extreme cases, namely the no-control and
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Fig. 13 Optimal controls for varying containment levels ū. Low intensity vaccination rate scenario

full-control strategies. The former corresponds to a situation where no social restric-
tions are implemented, while the latter represents a scenario where restrictions are
imposed throughout the entire period under consideration. By fixing costs for treat-
ment and vaccination, the optimal policies always allow the total cost to decrease,
thereby significantly reducing the social cost in comparison to a full-control strategy,
although disease-related costs may increase slightly. Moreover, the optimal policy
tends to be a no-control strategy, as expected: conversely, when the social cost is neg-
ligible, the optimal strategy shifts towards a full-control strategy. Then, we analyzed
the properties of the optimal policies of social restrictions in the two different scenar-
ios, high-intensity and low-intensity vaccine campaign. Our simulations reveal in one
scenario, that the optimal strategy achieves population compartment values similar to
those of a full-control strategy, but at significantly lower costs, with potential savings
of up to 70.2%. In the low-intensity vaccine campaign, the Susceptible compartment
remains highly populated, up to 70%, possibly resulting in an increase in the number
of infected individuals at the end of the observation period, stabilizing between 1.1
and 8%, while the Recovered and Vaccinated compartments account for a percentage
of the population ranging from 26.6 to 34.74%. In contrast, the high-intensity vaccine
campaign significantly reduces the susceptible population at about 30%, and keeps the
Infected compartment consistently low, between 0.13 and 0.35%, together with about
70% of Recovered and Vaccinated. The optimal control policy involves maximum
control for a specific period, followed by a gradual decrease to zero or a bang-bang
characterization for the linear social cost function. The duration of maximum control
depends on the intensity of the vaccination campaign and the cost function.Overall, the
optimal strategy in the high-intensity vaccination scenario reduces costs while main-
taining the effectiveness of disease control. Furthermore, in our study of the optimal
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control problem, we explored the impact of varying themaximum level of control, rec-
ognizing that it may not be feasible to implement the highest possible level of control
in practice. In such cases, decision makers might opt for a partial level of containment
(ū < 1) for an extended period, even though it could result in higher overall costs.
This raises the question of balancing the duration of the maximum containment period
with the effectiveness and cost of the imposed restrictions. In the case of quadratic
social cost function, our experiments shows in the high-intensity vaccine campaign
scenario that increasing the maximum level of restrictions produces a decrease of the
total cost, in face of a less prolonged period of maximum containment, going from 15
days when the maximum level is the highest, to 94 days for the lowest. This is in line
with the findings in Federico and Ferrari (2021), where the a stochastic version of the
SIR model and a quadratic cost function has been considered.

As a final contribution, we highlight some possible further developments of this
research. First of all, it would be natural to include in the control variables the rate of
vaccination, other than the control of the rate of diffusion. The addition of a controlled
vaccination campaign makes the problem more complex from a mathematical point
of view, resulting in a two-dimensional constrained optimization problem. In this
paper, we preferred to focus only on the impact of the social measures over the overall
cost. Nevertheless, we deserve to include this variable in future research. As a second
remark, in light of the recent pandemic, it would be interesting to introduce some
modifications to the basic SVIR compartmental dynamical model, particularly the
possibility for a recovered person to be re-infected. This could be relevant to capturing
the phenomenon of virus mutations. The resulting dynamical model can be simply
obtained by adding a link from the R to the I compartment. Of course, the analysis of
the stability of the uncontrolled system is quite different from the one presented here,
as well as the corresponding Hamiltonian function.

Finally, other essential SVIR dynamical system modifications are still under con-
sideration to meet the peculiarities of a possible pandemic. In particular, as noticed in
the numerical section based on the COVID-19 data, the cost of the pandemic can be
particularly severe for its impact on hospital services becoming overwhelmed, and it
is “quantifiable”. On the other hand, the cost of being “quarantined” is undoubtedly
more challenging to assess. It is, therefore, reasonable to split the “I” compart-
ment into at least three sub-compartments, e.g., Hospitalized w/o ICU, Hospitalized
with ICU, and Quarantined, and to adjust the cost function accordingly, eventually
adding other compartments as the Death and/or the Exposed, thus resulting in the
SVIRD/SVEIR/SVEIRD models.
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Appendix A: Proof of Proposition 7

The system (5) can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′ = β0(u−1)SI − (α + μ)S + μ S(0) = S0

V ′ = αS + εβ0(u−1)V I − (γ1 + μ)V V (0) = V0

I ′ = β0(1 − u)SI + εβ0(1 − u)V I − (γ + μ)I I (0) = I0

(A1)

The Hamiltonian function H is defined as

H(t, S, V , I , u) = au + c1 I + c2αS + λ1[−β0(1 − u)SI − αS + μ(1 − S)]

+λ2[αS + εβ0(u−1)V I − (γ1 + μ)V ]

+λ3[β0(1 − u)SI + εβ0(1 − u)V I − (γ I + μ)I ]

(A2)

and the co-state system (8) can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ′
1 = β0(1 − u)(λ1 − λ3)I + α(λ1 − λ2) + μλ1 − c2α

λ′
2 = εβ0(1 − u)(λ2 − λ3)I + (γ1 + μ)λ2

λ′
3 = β0(1 − u)(λ1 − λ3)S + εβ0(1 − u)(λ2 − λ3)V + (γ + μ)λ3 − c1

(A3)

Since theHamiltonian is linear in the control,u is bang–bang, singular or a combination
(see Joshi et al. 2015; Lenhart and Workman 2007). The singular case is attained if

∂ H

∂u
= a + β0(λ1 − λ3)SI + εβ0(λ2 − λ3)V I = 0, (A4)

on a non-trivial interval of time, else if ∂ H
∂u < 0 the optimal control would be at its

upper bound, while if ∂ H
∂u > 0 it would be at its lower bound. So, to study the singular

case, suppose ∂ H
∂u = 0 on a non-trivial interval of time, calculate

d

dt

(
∂ H

∂u

)

= 0
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and show that, in the above equation, the control u does not appear explicitly. Then,
the value of the singular control will be obtained evaluating

d2

dt2

(
∂ H

∂u

)

= 0.

Hence

0 = d

dt

(
∂ H

∂u

)

= (λ′
1 − λ′

3)SI + (λ1 − λ3)S′ I + (λ1 − λ3)SI ′

+ε(λ′
2 − λ′

3)V I + ε(λ2 − λ3)V ′ I + ε(λ2 − λ3)V I ′.

We calculate each term of the sum separately and then we add them together:

(λ′
1 − λ′

3)SI

= [β0(1 − u)(λ1 − λ3)I + α(λ1 − λ2) + μλ1 − c2α−
− β0(1 − u)(λ1 − λ3)S − εβ0(1 − u)(λ2 − λ3)V − (γ + μ)λ3 + c1]SI

(λ1 − λ3)S′ I
= [β0(u−1)SI − (α + μ)S + μ](λ1 − λ3)I

(λ1 − λ3)SI ′

= [β0(1 − u)SI + εβ0(1 − u)V I − (γ + μ)I ](λ1 − λ3)S

ε(λ′
2 − λ′

3)V I

= ε[εβ0(1 − u)(λ2 − λ3)I + (γ1 + μ)λ2

− β0(1 − u)(λ1 − λ3)S − εβ0(1 − u)(λ2 − λ3)V − (γ + μ)λ3 + c1]V I

ε(λ2 − λ3)V ′ I
= ε[αS + εβ0(u−1)V I − (γ1 + μ)V ](λ2 − λ3)I

ε(λ2 − λ3)V I ′

= ε[β0(1 − u)SI + εβ0(1 − u)V I − (γ + μ)I ](λ2 − λ3)V .

Hence, summing up we obtain with a little algebra

d

dt

(
∂ H

∂u

)

= [−(γ + μ)λ1 + (α + μ)λ3 − αλ2 + (c1 − αc2)]SI + μ(λ1 − λ3)I

+ε[−(γ + μ)λ2 + (γ1 + μ)λ3 + c1]V I .

Since the control does not appear in the previous expression, we compute the second
derivative6:

d2

dt2

(
∂ H

∂u

)

6 Computations were realized with the help of Mathematica©.
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= I ′(S(c1 − αc2 − αλ2 + αλ3 − (γ + μ)λ1 + μλ3) + εV (c1 − (γ + μ)λ2

+(γ1 + μ)λ3) + μ(λ1 − λ3))

+I (S′(c1 − αc2 − αλ2 + αλ3 − (γ + μ)λ1 + μλ3) + εV ′(c1 − (γ + μ)λ2

+(γ1 + μ)λ3)

+S(−αλ′
2 + (α + μ)λ′

3 − ((γ + μ)λ′
1)) + εV ((γ1 + μ)λ′

3 − (γ + μ)λ′
2)

+μ(λ′
1 − λ′

3)).

By substituting (5) and (8), we get

d2

dt2

(
∂ H

∂u

)

= I ((S(α+β I −β I u+μ)−μ)(αλ2−αλ3+γ λ1−c1+αc2

+λ1μ−λ3μ)

+S((α+μ)(γ λ3−c1+λ3μ−βλ1S(u−1)+βλ3S(u−1)−βελ2(u−1)V

+βελ3(u−1)V )

−(γ +μ)(−αλ2+α(−c2)+λ1(α+ I (β−βu)+μ)+β Iλ3(u−1))−αλ2(γ1

−βε I (u−1)+μ)

+αβε(−I )λ3(u−1))+μ(−αλ2+c1−αc2+λ1(α+ I (β−βu)+μ)+β Iλ3(u−1)

+βλ1S(u−1)

−λ3(γ +μ+βS(u−1)+βεuV −βεV )+εβλ2(u−1)V )−(γ +μ+βS(u−1)

+βεuV −βεV )

×(S(−αλ2+αλ3−λ1(γ +μ)+c1−αc2+λ3μ)+εV (−λ2(γ +μ)

+λ3(γ1+μ)+c1)+μ(λ1−λ3))

+ε(−λ2(γ +μ)+λ3(γ1+μ)+c1)(αS−V (γ1−βε I (u−1)+μ))

+εV ((γ1+μ)(γ λ3−c1+λ3μ

−βλ1S(u−1)+βλ3S(u−1)−βελ2(u−1)V +βελ3(u−1)V )−(γ +μ)(γ1λ2

−βε I (u−1)(λ2−λ3)+λ2μ))),

which is linear in the control u: hence

d2

dt2

(
∂ H

∂u

)

= A1(t)u(t) − A2(t) = 0

giving the singular control

using(t) = A2(t)

A1(t)
,

if A1(t) �= 0 and 0 ≤ A2(t)
A1(t)

≤ ū, where the functions Ai are given by

A1 = I (−αλ1μ + 2αλ2μ − αλ3μ + 2γ λ1μ + c1(S(−α(ε − 2) + γ + β I
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+ 3μ − 2βεV )

+ εV (γ + 2γ1 + βε I + 3μ) − 2μ − βS2 − βε2V 2) + αc2(−S(α + 2γ + β I

+ 3μ − βεV )

+ 2μ + βS2) − β Iλ1μ + β Iλ3μ + αβε Iλ2S − αβε Iλ3S − αβ Iλ2S

+ αβ Iλ3S − βγ Iλ3S

− βγ ε2 Iλ3V + βγ1ε
2 Iλ3V + λ1μ

2 − λ3μ
2 − αβλ1S2 + αβλ2S2 + βγλ1S2

− α2λ2S

+ α2λ3S + αγ ελ2S − 2αγλ2S − αγ1ελ3S + αγ1λ2S + αελ2μS − αελ3μS

− 2αλ2μS + 2αλ3μS − γ 2λ1S − 2γ λ1μS − λ1μ
2S + λ3μ

2S

+ βγ ελ1SV + βγ ελ2SV

− βγ1ελ1SV + βγ ε2λ2V 2 − βγ1ε
2λ2V 2 − βελ1μV − γ 2ελ2V

− 2γ ελ2μV + γ 2
1 ελ3V + 2λ1ελ3μV − ελ2μ

2V + ελ3μ
2V + εβλ2μV ),

and

A2 = I (βc1(I (S + ε2V ) − (S + εV )2) + αβc2S(−I + S + εV ) − β Iλ1μ

+ β Iλ3μ

+ αβε Iλ2S − αβε Iλ3S − αβ Iλ2S + αβ Iλ3S − βγ Iλ3S − βγ ε2 Iλ3V

+ βγ1ε
2 Iλ3V − αβλ1S2 + αβλ2S2 + βγλ1S2 + βγ ελ1SV + βγ ελ2SV

− βγ1ελ1SV + βγ ε2λ2V 2 − βγ1ε
2λ2V 2 − βελ1μV + εβλ2μV ).

	


Appendix B: SVIR parameters estimation

The estimation of parameters for the SVIR model is typically based on a discrete-
time version of (1) (where we set β1 = εβ), once available the observations for the
compartments. By considering a discretization period 	t = 1 day, and by letting
n = 0, 1, . . . the discrete time instants, we consider a first-order scheme to obtain the
following finite-differences model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn − βSn In − αSn + μ − μSn S0 = s0

Vn+1 = Vn + αSn − εβVn In − γ1Vn − μVn V0 = v0

In+1 = In + βSn In + εβVn In − γ In − μIn I0 = i0

Rn+1 = Rn + γ1Vn + γ In − μRn R0 = r0.

(B5)
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By assuming the parameter μ as exogeneously given, the system is linear in the
remaining parameters ϑ := (β, α, γ1, γ )′. Hence, by defining

	n =

⎛

⎜
⎜
⎝

Sn+1 − Sn(1 − μ)

Vn+1 − Vn(1 − μ)

In+1 − In(1 − μ)

Rn+1 − Rn(1 − μ)

⎞

⎟
⎟
⎠ An =

⎛

⎜
⎜
⎝

−Sn In −Sn 0 0
εVn In Sn −Vn 0

(Sn + εVn)In 0 0 −In

0 0 Vn In

⎞

⎟
⎟
⎠

we can write (B5) in matrix form as Anϑ = 	n . Given the observed values of the
compartments, the standard constrained regression OLS can therefore be used as the
basic estimation procedure for the parameters of the model, that is

ϑ̂ = argminϑ≥0

T −1∑

n=1

‖	n − Anϑ‖22.

(see e.g. Calafiore et al. 2020).
By considering the system instead with time-varying coefficients

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn − βn Sn In − αn Sn + μ − μSn S0 = s0

Vn+1 = Vn + αn Sn − εβn Vn In − γ1,n Vn − μVn V0 = v0

In+1 = In + βn Sn In + εβn Vn In − γn In − μIn I0 = i0

Rn+1 = Rn + γ1,n Vn + γn In − μRn R0 = r0,

(B6)

we may write the discrete-time dynamic equations in a matrix form as Anϑn = 	n ,
where ϑn := (βn, αn, γ1,n, γn)′. When αn = γ1,n ≡ 0, the system has the unique
solution

⎧
⎪⎪⎨

⎪⎪⎩

β̂n = − 	
(1)
n

Sn In

γ̂n = 	
(4)
n

In
.

Appendix C: Analysis of the cost functions

In Figs. 14, 15, and 16 we plotted the values of the costs JSC , JI C and JV C , and
the corresponding total cost J , as a function of the parameters of the social cost
function, b, k, a, respectively (see Sect. 3). Our sensitivity analysis shows qualitatively
similar behavior in the three cases considered: in particular, the optimal strategy always
reduces the total cost compared to the two benchmark strategies, u(t) ≡ 1, and u(t) ≡
0. Moreover, for low values of the social cost function parameter, it is possible to
identify a regime in which the full-control strategy produces lower costs than the
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Fig. 14 Comparison of the cost values for the three strategies, no-control, full-control, optimal control, as
a function of the social cost function parameter b for the quadratic social cost function

no-control strategy. As the parameter increases, the full-control strategy becomes
increasingly costly, and at the same time, the optimal strategy “converges” to the
no-control strategy.
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Fig. 15 Comparison of the cost values for the three strategies, no-control, full-control, optimal control, as
a function of the exponential model of social cost function parameter k
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Fig. 16 Comparison of the cost values for the three strategies, no-control, full-control, optimal control, as
a function of the linear model of social cost function parameter a
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