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Abstract
Orthogonal decompositions are essential tools for the study of weakly stationary time
series. Some examples are given by the classicalWold decomposition ofWold (A study
in the analysis of stationary time series, Almqvist & Wiksells Boktryckeri, Uppsala,
1938) and the extendedWold decomposition ofOrtu et al. (Quant Econ 11(1):203–230,
2020), which permits to disentangle shocks with heterogeneous degrees of persis-
tence from a given weakly stationary process. The analysis becomes more involved
when dealing with vector processes because of the presence of different simultane-
ous shocks. In this paper, we recast the standard treatment of multivariate time series
in terms of Hilbert A-modules (where matrices replace the field of scalars) and we
prove the abstract Wold theorem for self-dual pre-Hilbert A-modules with an isomet-
ric operator. This theorem allows us to easily retrieve the multivariate classical Wold
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decomposition and the multivariate version of the extended Wold decomposition. The
theory helps in handling matrix coefficients and computing orthogonal projections on
closed submodules. The orthogonality notion is key to decompose the given vector
process into uncorrelated subseries, and it implies a variance decomposition.

Keywords Multivariate stationary processes · Wold decomposition · Persistence
heterogeneity · Hilbert A-modules

JEL Classification C18 · C32 · C50

Abbreviations

MCWD Multivariate classical Wold decomposition
MEWD Multivariate extended Wold decomposition

1 Introduction

A vector random process x = {xt }t∈Z is a collection of m univariate time series xi,t .
Although weakly stationary univariate processes generally depend on a unique source
of randomness [as ensured by the Wold decomposition Wold (1938)], each variable
xi,t of a weakly stationary multivariate process can be affected by m possibly differ-
ent shocks ε1,t , ε2,t , . . . , εm,t . The representation of vector processes involves matrix
coefficients, and their study has proved to be fruitful in numerous macroeconomic and
financial applications (Lütkepohl 2005).

In this paper, we recast the standard treatment of multivariate time series in terms
of Hilbert A-modules and prove the Abstract Wold Theorem for Hilbert A-modules
(Theorem 1). Our abstract A-module framework features a notion of orthogonality
that, by means of Theorem 1, permits to easily retrieve two important orthogonal
decompositions for weakly stationary vector processes that we illustrate in Sects. 3
and 4, respectively. One is the celebrated multivariate classical Wold decomposi-
tion (MCWD, henceforth), summarized in Theorem 2. The other is the multivariate
extended Wold decomposition (MEWD, henceforth), which constitutes the multivari-
ate version of the extended Wold decomposition1 of Ortu et al. (2020a), and it is used
by Bandi et al. (2019, 2021) in financial economics settings. See Theorem 4.

Both the MCWD and the MEWD rely on orthogonal innovations. However, only
in the MEWD shocks are associated with different degrees of persistence. In econo-
metrics, persistence is usually addressed by spectral analysis techniques to analyze
the frequency domain. For instance, cross-spectrum and squared coherency may be
used to quantify the linear association between single time series in a vector process
(Brockwell and Davis 2006, Section 11.6). On the contrary, the MEWD permits to
disentangle uncorrelated persistent components from a weakly stationary vector pro-
cess by using exclusively the time domain. Each vector component is associated with

1 An application of the extended Wold decomposition to market returns is provided in Di Virgilio et al.
(2019).
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a specific persistence level (or time scale), and it is sensible to a family of shocks with
precise duration. With respect to the univariate extended Wold decomposition of Ortu
et al. (2020a), the illustration of the MEWD is richer because of the persistence of
different simultaneous shocks.

To derive theMCWD and theMEWD, we first embed multivariate time series in an
abstract A-module framework from which orthogonal decompositions naturally arise.
We use the algebra A of square matrices, define orthogonal projections on closed
submodules and prove the Abstract Wold Theorem for Hilbert A-modules, which is
key to decompose vector processes into the sum of uncorrelated components. We
provide a self-contained compendium on Hilbert A-modules on a non-commutative
and finite dimensional algebra (as the one of matrices) in “Appendix A”. In fact, the
application of Hilbert A-modules in economic theory and statistics is not novel. Some
examples are given by Hansen and Richard (1987), Gallant et al. (1990), Wiener and
Masani (1957) and Cerreia-Vioglio et al. (2022).

To enter more the details of our construction, we consider the vector space of
square-integrablem-dimensional random vectors and we substitute the field of scalars
with the algebra of m × m matrices, obtaining an A-module H . We, then, endow
H with an A-valued inner product which generalizes the inner product of L2 and
naturally conveys a notion of orthogonality. Such a structure is a Hilbert A-module.
The properties of self-duality of H and complementability of closed submodules,
that we discuss in Sect. 2.1, are crucial for the Abstract Wold Theorem for Hilbert
A-modules (Theorem 1).

Such theorem generalizes the Abstract Wold Theorem for Hilbert spaces (Sz-Nagy
et al. 2010, Theorem 1.1) that permits to orthogonally decompose a Hilbert space by
an isometric operator. When this theorem is applied to the Hilbert space generated
by the past realizations of a weakly stationary univariate time series with the lag
operator as isometry, the classical Wold decomposition obtains (see, e.g., Wold 1938;
Brockwell and Davis 2006, Section 5.7 or Severino 2016). The orthogonality induced
by the theorem is responsible for thewhite noise of fundamental innovations.However,
other choices for the isometry are possible. For instance, the univariate persistence-
based decomposition of Ortu et al. (2020a) is obtained by using as isometry the scaling
operator on the Hilbert space generated by the past fundamental innovations. In this
decomposition, the orthogonality ensured by the Abstract Wold Theorem is retrieved
in the absence of correlation between persistent components.

TheMEWD for aweakly stationary vector process xt comes from the application of
Theorem 1 to the Hilbert A-module generated by the multivariate fundamental inno-
vations given by the MCWD of xt . The employed isometry is the scaling operator,
adapted to A-modules. The A-module orthogonality given by the theorem guarantees
that any entry of a multivariate persistent component at a given time scale is uncor-
related with any entry of any persistent component at a different scale (Theorem 4).
This absence of correlation is crucial to associate each scale-specific response with
the effect on the related time scale, without spurious correlation with the simultaneous
effects at the other scales. In addition, the orthogonality of components induces a vari-
ance decomposition that permits to classify each entry of xt as a short-, medium- or
long-term process, according to the variance explained by the persistent components
(Sect. 4.3).
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48 S. Cerreia-Vioglio et al.

The next section introduces the Hilbert A-module framework in which we embed
weakly stationary vector processes and illustrates Theorem 1. Section3 revisits
the MCWD by emphasizing his connection with Theorem 1. Section4 describes
the MEWD and the persistence-based variance decomposition. As to appendices,
“Appendix A” provides a comprehensive and self-contained treatment of Hilbert A-
modules and Theorem 1, “Appendix B” contains the proofs about the MEWD and
“Appendix C” provides some illustrations of the MEWD, including an application to
the bivariate macroeconomic model of Blanchard and Quah (1989).

2 Hilbert A-modules for multivariate time series

In the first subsection, we condense the notions of Hilbert A-module theory that lead
to the Abstract Wold Theorem for Hilbert A-modules (Theorem 1). “Appendix A”
contains all the details (see also Cerreia-Vioglio et al. 2017, 2019). After that, we
describe the Hilbert A-module L2(Rm,�,F ,P) and the submodules that we will
need for the MCWD and the MEWD.

2.1 Hilbert A-modules

Hilbert A-modules are a generalization of Hilbert spaces where the scalar field R is
replaced by an abstract algebra A. Although these structures have been studied in the
mathematical literature (Kaplansky 1953), few works deal with the case of our inter-
est, where the algebra is real, non-commutative and finite dimensional (Goldstine and
Horwitz 1966). Differently from Hilbert spaces, the Riesz Theorem about the repre-
sentation of linear functionals (Theorem 5.5 in Brezis 2011) is not always valid and
closed subspaces are not always complemented. Moreover, the self-duality property
that we discuss is key in deriving Theorem 1.

We consider a real normed operator algebra A (the algebra of square matrices) with
norm ‖ ‖A, an involution ∗ : A → A, an order ≥ and a trace functional ϕ̄ : A → R.
Then, we consider an A-module H with outer product · : A× H → H and we define
an A-valued inner product 〈 , 〉H : H ×H → A, which satisfies the A-valued versions
of the usual properties of inner products. This makes H a pre-Hilbert A-module.

A-valued operators f : H → A constitute the generalization of linear functionals,
and the properties of A-linearity and boundedness can be defined accordingly. Impor-
tantly, H is self-dual when for each f : H → A which is A-linear and bounded there
exists y ∈ H such that f (x) = 〈x, y〉H for all x ∈ H . In other words, a version of the
Riesz Theorem holds.

To put the theory at work, H can be endowed with two (real-valued) norms: ‖ ‖ϕ̄

and ‖ ‖H . The first one is ‖ ‖H : H → [0,+∞) defined by

‖x‖H = √‖〈x, x〉H‖A ∀x ∈ H .

The second one is induced by the (real-valued) inner product 〈 , 〉ϕ̄ : H × H → R

defined by 〈x, y〉ϕ̄ = ϕ̄(〈x, y〉H ) ∀x, y ∈ H , which makes H a pre-Hilbert space.
The norm is ‖ ‖ϕ̄ : H → [0,+∞) defined by
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‖x‖ϕ̄ =
√

〈x, x〉ϕ̄ = √ϕ̄ (〈x, x〉H ) ∀x ∈ H .

Proposition 12 in “Appendix A.3.1” shows that, if A is finite dimensional, then A
admits a trace ϕ̄ and the norms ‖ ‖H and ‖ ‖ϕ̄ are equivalent. In our construction, the
use of ‖ ‖ϕ̄ is convenient to establish the convergence of sequences in H , while 〈 , 〉H
naturally induces the notion of orthogonality: 〈x, y〉H = 0 with x, y ∈ H and 0 ∈ A.

We say that H is a Hilbert A-module when it is ‖ ‖H complete. Theorem 15 in
“Appendix A.5” establishes two characterizations of ‖ ‖H completeness when A is
finite dimensional: H is ‖ ‖H complete if and only if it is ‖ ‖ϕ̄ complete if and only
if it is self-dual. The link between completeness and self-duality is, then, established.

The last ingredient for Theorem 1 regards the orthogonal complement of a given
submodule M ⊆ H , i.e., M⊥ = {x ∈ H : 〈x, y〉H = 0 ∀y ∈ M}. By Proposition 17
in “Appendix A.5.1”, if A is finite dimensional and H is self-dual, M is ‖ ‖H closed
if and only if H = M ⊕ M⊥ (complementability). The projection map on closed
submodules is, then, well-defined.

The decomposition in Theorem1 is due to an isometryT : H → H , i.e., an A-linear
operator such that 〈Tx,Ty〉H = 〈x, y〉H for all x, y ∈ H . Moreover, the theorem
prescribes the determination of a wandering submodule L such that Tn L⊥TmL for
all m, n ∈ N0 with m �= n. If H is self-dual, a wandering submodule is L = (TH)⊥.

Theorem 1 (Abstract Wold Theorem for Hilbert A-modules) Let A be finite dimen-
sional and H a pre-Hilbert A-module. If H is self-dual andT : H → H is an isometry,
then H = Ĥ ⊕ H̃ where

Ĥ =
∞⋂

n=0

TnH , H̃ =
∞⊕

n=0

TnL, L = (TH)⊥ .

Moreover, the submodules orthogonal decomposition, (Ĥ , H̃), of H is the unique
submodules orthogonal decomposition such that TĤ = Ĥ and H̃ = ⊕∞

n=0 T
nL

given a wandering set L.

Proof See “Appendix A.6”. �

Theorem 1 provides a (generalized) version for Hilbert A-modules of the Abstract
Wold Theorem for Hilbert spaces (Sz-Nagy et al. 2010, Theorem 1.1). The properties
of self-duality and complementability play a crucial role in this wider setting.

2.2 The Hilbert A-module L2(Rm,Ä,F,P)

A probability space (�,F ,P) is given and, as usual, any two F-measurable ran-
dom vectors are defined to be equivalent when they coincide almost surely. We,
then, consider the vector space L2(Rm,�,F ,P) of (equivalence classes of) mea-
surable square-integrable random vectors x that take value in R

m . We build on
L2(Rm,�,F ,P) the structure of pre-Hilbert A-module, and we denote it by H . The
whole discussion is summarized in Table 1.
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First of all, we consider the algebra A = R
m×m of real m × m matrices. The unit

in A is the identity matrix, and the product in A is the usual row-by-column product.
A is normed by the operator norm ‖ ‖A such that, for any a = {ai, j }i, j=1,...,m in A,

‖a‖A = sup
x∈Rm ,‖x‖2=1

‖ax‖2,

where ‖ ‖2 is the L2 norm in R
m . In particular, ‖a‖2A is the largest eigenvalue of the

positive semidefinite matrix a′a (Meyer 2000, Section 5.2), where a′ is the transpose
of a. The map that associates any matrix a with a′ defines an involution in A. This
map induces an order ≥ such that, for any a, b ∈ A, a ≥ b when a − b is a symmetric
and positive semidefinite matrix (equivalently, a − b ≥ 0).

We use as outer product A × H → H the standard matrix-by-vector product.
This operation makes H an A-module. Then, we define the A-valued inner product
〈 〉H : H × H → A that associates any x = [x1, . . . , xm]′, y = [y1, . . . , ym]′ ∈ H
with the matrix

〈x, y〉H = E
[
xy′] = {E [xi y j

]}
i, j=1,...,m .

〈 , 〉H satisfies the usual properties of inner products. In addition, if x has zero mean,
〈x, x〉H is the covariance matrix of x . Importantly, two random vectors x, y ∈ H are
orthogonal when 〈x, y〉H = 0, that is E[xi y j ] = 0 for all i, j = 1, . . . ,m. If x and y
have zero mean, this means that any xi is uncorrelated with any y j .

We now define the two equivalent (real-valued) norms ‖ ‖H and ‖ ‖ϕ̄ . Regarding
‖ ‖H : H → [0,+∞), we have

‖x‖H = √‖〈x, x〉H‖A = √‖E [xx ′] ‖A ∀x ∈ H .

If x has zero mean, ‖x‖2H is the largest eigenvalue of the covariance matrix of x .
To construct ‖ ‖ϕ̄ , we first consider the trace functional ϕ̄ : A → R defined, for any

matrix a, by its trace ϕ̄(a) = Tr(a). Indeed, H is a pre-Hilbert space with the inner
product 〈 〉ϕ̄ : H × H → R defined by

〈x, y〉ϕ̄ = ϕ̄ (〈x, y〉H ) = Tr
(
E
[
xy′]) =

m∑

i=1

E [xi yi ] ∀x, y ∈ H ,

which coincides with the usual inner product of L2(Rm). The associated norm ‖ ‖ϕ̄ :
H → [0,+∞) is

‖x‖ϕ̄ = √〈x, x〉ϕ̄ = √Tr (E [xx ′]) =
√√√√

m∑

i=1

E
[
x2i
] ∀x ∈ H .

If x has zero mean, ‖x‖2ϕ̄ is the sum of the eigenvalues of the covariance matrix of x .
Proposition 20 in “Appendix B.1” shows that H is ‖ ‖ϕ̄ complete, i.e., it is a Hilbert

A-module. Thus, the self-duality property holds.
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2.3 The submodules generated by weakly stationary vector processes

Now, consider a zero-mean weakly stationary multivariate process x = {xt }t∈Z such
that xt = [x1,t , . . . , xm,t ]′ ∈ H for all t ∈ Z. The autocovariance function � : Z → A
associates any integer n with the matrix �n with entries �n(p, q) = E[xp,t xq,t+n] for
p, q = 1, . . . ,m. If �n = 0 for any n �= 0, we are facing a multivariate white noise,
which features unit variance when �0 is the identity matrix. In this case, the single
time series of the multivariate white noise are uncorrelated also simultaneously.

The sequence {xt−n}n∈N0 spans the Hilbert submodule Ht (x) ⊆ H defined by

Ht (x) = cl

{+∞∑

k=0

akxt−k : ak ∈ A,

+∞∑

k=0

+∞∑

h=0

Tr
(
ak�k−ha

′
h

)
< +∞

}

(1)

with ∥∥∥∥∥

+∞∑

k=0

akxt−k

∥∥∥∥∥

2

ϕ̄

=
+∞∑

k=0

+∞∑

h=0

Tr
(
ak�k−ha

′
h

)
.

As we will see in Sect. 3, when x is regular, the multivariate classical Wold decompo-
sition (MCWD) can be obtained by applying Theorem 1 toHt (x)with the lag operator
as isometry.

An outcome of the MCWD is the unit variance multivariate white noise of funda-
mental innovations ε = {εt }t∈Z. The sequence {εt−n}n∈N0 generates the submodule
Ht (ε) ⊆ H given by

Ht (ε) =
{+∞∑

k=0

akεt−k : ak ∈ A,

+∞∑

k=0

Tr
(
aka

′
k

)
< +∞

}

(2)

with ∥∥∥∥∥

+∞∑

k=0

akεt−k

∥∥∥∥∥

2

ϕ̄

=
+∞∑

k=0

Tr
(
aka

′
k

)
.

Proposition 20 in “Appendix B.1” shows that Ht (ε) is a closed submodule of H and
so it is a Hilbert submodule. In Sect. 4, we apply Theorem 1 toHt (ε) with the scaling
operator as isometry in order to derive the multivariate extended Wold decomposition
(MEWD) of xt .

3 Multivariate classical Wold decomposition

In the MCWD, a zero-mean regular weakly stationary vector process x = {xt }t∈Z is
decomposed into the infinite sum of uncorrelated multivariate innovations that occur
at different times, plus a deterministic component (Theorem 7.2 in Bierens 2005).
Wiener and Masani (1957) and Rozanov (1967) provide a proof in the complex field.
Here, we provide the roadmap to derive the MCWD via the Abstract Wold Theorem
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for Hilbert A-modules in the real case. A similar derivation in the univariate case is
illustrated in Severino (2016).

We consider the Hilbert submodule Ht (x) ⊆ H of Eq. (1). The lag operator
L : Ht (x) → Ht (x) acts on generators of Ht (x) as

L :
+∞∑

k=0

akxt−k �→
+∞∑

k=0

akxt−1−k .

L is A-linear and bounded; hence, it can be extended toHt (x) with continuity. Impor-
tantly, L is isometric on Ht (x). Theorem 1 can, then, be applied.

Theorem 1 requires to determine the images of Ht (x) through the powers of L
and the wandering submodule LL

t . Since, in a self-dual pre-Hilbert A-module, the
image of a closed submodule through an isometry is a closed submodule (Lemma 18
in “Appendix A.6”), one can prove that L jHt (x) = Ht− j (x) for any j ∈ N.

Then, it is possible to show thatHt (x) can be decomposed into the direct sum

Ht (x) = Ht−1(x) ⊕ span
{
xt − PHt−1(x)xt

}
,

i.e., LL
t is the linear span of xt − PHt−1(x)xt , where PM denotes the orthogonal pro-

jection on the closed submodule M .
Since x is regular, for any t ∈ Z, 〈xt −PHt−1(x)xt , xt −PHt−1(x)xt 〉H is a symmetric

positive definite matrix (Bierens 2012, Section 6). Hence, by Theorem 7.2.6 in Horn
and Johnson (1990), there exists a symmetric positive definite square root matrix σ

such that 〈
xt − PHt−1(x)xt , xt − PHt−1(x)xt

〉
H = σσ.

As σ is invertible, we define the fundamental innovation process ε = {εt }t∈Z by
setting, for any t ∈ Z, εt = σ−1(xt − PHt−1(x)xt ). In particular, ε is a unit variance
white noise.

It is, then, possible to show that the lag and the projection operator commute: for
any k, j ∈ N0, L jPHt−k−1(x)xt−k = PHt−k− j−1(x)xt−k− j . Therefore, the covariance
matrix of xt −PHt−1(x)xt is not dependent on the time index t ∈ Z and, for any j ∈ N,

L jLL
t = span

{
xt− j − PHt− j−1(x)xt− j

}
.

As a result, Theorem 1 implies that Ht (x) = Ĥt (x) ⊕ H̃t (x) with

Ĥt (x) =
+∞⋂

j=0

Ht− j (x), H̃t (x) =
+∞⊕

j=0

span
{
xt− j − PHt− j−1(x)xt− j

}
.

The consequences for the process x are, then, straightforward.

Theorem 2 (Multivariate classical Wold decomposition) Let x = {xt }t∈Z be a zero-
mean regular weakly stationary m-dimensional process. Then, for any t ∈ Z, xt
decomposes as
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xt =
+∞∑

h=0

αhεt−h + νt ,

where the equality is in norm and

1. ε = {εt }t∈Z is a unit variance m-dimensional white noise;
2. for any h ∈ N0, the m × m matrices αh do not depend on t,

αh = E
[
xtε

′
t−h

]
and

+∞∑

h=0

Tr
(
αhα

′
h

)
< +∞;

3. ν = {νt }t∈Z is a zero-mean weakly stationary m-dimensional process,

νt ∈
+∞⋂

j=0

Ht− j (x) and E
[
νtε

′
t−h

] = 0 ∀h ∈ N0;

4.

νt ∈ cl

⎧
⎨

⎩

+∞∑

h=1

ahνt−h ∈
+∞⋂

j=1

Ht− j (x) : ah ∈ A

⎫
⎬

⎭
.

Proof Wiener and Masani (1957, Theorem 6.11) and Rozanov (1967, Chapter II,
Section 3) provide a proof in the complex field. A detailed proof using real Hilbert
A-modules is available upon request. �

The process ν constitutes the (predictable) deterministic component of x. If each
νt is the null vector, x is a purely non-deterministic process.

In our approach, the multivariate impulse responses αh are fully characterized
by the projection on Hilbert submodules via the inner product αh = 〈xt , εt−h〉H .
This feature generalizes the OLS methodology employed in the univariate case by
exploiting orthogonal projections in a more general sense. Indeed, each projection
matrix αh minimizes the distance of the outcome xt from the submodule generated by
the vector innovation εt−h .

4 Multivariate extendedWold decomposition

In this section, we generalize the extended Wold decomposition for weakly station-
ary time series of Ortu et al. (2020a) to multidimensional processes, by exploiting
our Hilbert-module framework. We apply the Abstract Wold Theorem for Hilbert
A-modules to Ht (ε), and, later on, we deduce the decomposition for a weakly sta-
tionary vector process x with fundamental innovations given by ε. We also provide a
persistence-based variance decomposition.
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4.1 The orthogonal decomposition ofHt(") induced by R

Let ε = {εt }t∈Z be a unit variancem-dimensional white noise and consider the Hilbert
submodule Ht (ε) ⊆ H of Eq. (2). In order to apply Theorem 1, we consider the
scaling operator R : Ht (ε) → Ht (ε) that makes (normalized) two-by-two averages
of subsequent innovations:

R :
+∞∑

k=0

akεt−k �→
+∞∑

k=0

ak√
2

(εt−2k + εt−2k−1) =
+∞∑

k=0

a� k
2 �√
2

εt−k .

Here, the function �·� associates any c ∈ Rwith the integer �c� = max{n ∈ Z : n � c}.
In the proof of Theorem 3, we show that R is well-defined, A-linear and isometric on
Ht (ε).

Following Ortu et al. (2020a), to illustrate the decomposition of Ht (ε) induced
by R, from the white noise ε, we define the (multivariate) detail process at scale 1
ε(1) = {ε(1)

t }t∈Z by

ε
(1)
t = εt − εt−1√

2
, t ∈ Z.

Each ε
(1)
t has zero mean and unit variance:E[ε(1)

t ε
(1)
t

′] = I . In general, for any j ∈ N,
we define the (multivariate) detail process at scale j ε( j) = {ε( j)

t }t∈Z by

ε
( j)
t = 1√

2 j

⎛

⎝
2 j−1−1∑

i=0

εt−i −
2 j−1−1∑

i=0

εt−2 j−1−i

⎞

⎠ , t ∈ Z. (3)

This definition is the natural multivariate counterpart of eq. (6) in Ortu et al. (2020a),
which is written in the sameway. Equation (3) is reminiscent of the iterated application
of the discrete Haar transform to the series of εt (Addison 2002, Chapter 3). High
scales involve detail processes that have not been faded out by many applications of
this transform. They are, therefore, associated with a high degree of persistence. For
instance, if t evolves daily, one can interpret the details at scale 1 as 2-day shocks, those
at scale 2 as 4-day shocks, those at scale 3 as 8-day shocks and so on. In few words,
the scale j involves 2 j -day multivariate shocks and defines the degree of persistence
j .
In order to avoid overlap among the vectors ε

( j)
t , at any scale j we consider the

subseries of ε( j) defined on the support S( j)
t = {t − k2 j : k ∈ Z}. Indeed, each detail

at scale j is a vector MA(2 j − 1) of the white noise ε. Some spurious correlation is
present between the details ε

( j)
t−k2 j and ε

( j)
τ−k2 j with |t − τ | � 2 j −1, but each subseries

{ε( j)
t−k2 j }k∈Z is a unit variance white noise. We formalize this fact in the first point of

Theorem 4, and we will associate high scales with more persistent detail processes.
We now state the orthogonal decomposition ofHt (ε) implied by Theorem 1 when

we use the scaling operator as isometry.
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Theorem 3 Let ε be a unit variancem -dimensionalwhite noise. TheHilbert A-module
Ht (ε) decomposes into the orthogonal sum

Ht (ε) =
+∞⊕

j=1

R j−1LR
t ,

where

R j−1LR
t =

{+∞∑

k=0

b( j)
k ε

( j)
t−k2 j ∈ Ht (ε) : b( j)

k ∈ A

}

. (4)

Proof See “Appendix B.2”. �

The main steps of the proof are the following.
We first determine the invariant submodule Ĥt (ε) prescribed by Theorem 1. From

the definition ofR, the submoduleRHt (ε) is composed by the linear combinations of
innovations εt that have the (matrix) coefficients equal to each others 2-by-2. Similarly,
for any j ∈ N, the submodules R jHt (ε) consist of the linear combinations of vectors
εt with (matrix) coefficients equal to each others 2 j -by-2 j :

R jHt (ε) =
⎧
⎨

⎩

+∞∑

k=0

c( j)
k

⎛

⎝
2 j−1∑

i=0

εt−k2 j−i

⎞

⎠ ∈ Ht (ε) : c( j)
k ∈ A

⎫
⎬

⎭
.

It follows that the intersection of all R jHt (ε) contains only the zero vector, that is
Ĥt (ε) is the null submodule: Ĥt (ε) = {0}.

We now turn to the submodule H̃t (ε). The wandering submodule LR
t associated

withR is the orthogonal complement ofRHt (ε) inHt (ε). AsR is linear and bounded,
such submodule coincides with the kernel of the adjoint operator R∗ (Proposition 19
in “Appendix A.7”). Therefore,

LR
t =

{+∞∑

k=0

b(1)
k ε

(1)
t−2k ∈ Ht (ε) : b(1)

k ∈ A

}

.

Hence, LR
t contains the moving averages generated by the detail process at scale 1

on the support S(1)
t . More generally, for each j ∈ N, the image of LR

t through R j−1

is the submodule in Eq. (4), which consists of the moving averages generated by the
detail process at scale j on S( j)

t .

4.2 Themultivariate extendedWold decomposition of xt

As in Sect. 3, we consider a zero-mean regular weakly stationary m-dimensional pro-
cess x = {xt }t∈Z. We also require x to be purely non-deterministic in order to focus
on the persistence generated by the shocks aggregation.

123



Multivariate Wold decompositions: a Hilbert A-module… 57

Theorem 2 (theMCWD) ensures that xt belongs toHt (ε), where ε is the process of
fundamental innovations of x. As a result, the orthogonal decomposition of Ht (ε) of
Theorem 3 induces a decomposition of xt . Indeed, there exists a sequence {g( j)

t } j∈N
of random processes such that

xt =
+∞∑

j=1

g( j)
t , (5)

where each g( j)
t is the orthogonal projection of xt on the submoduleR j−1LR

t ofHt (ε).

We refer to g( j)
t as the (multivariate) persistent component at scale j . Clearly, given t ,

the components g( j)
t are orthogonal to each others. In addition, since each g( j)

t belongs
to R j−1LR

t ,

g( j)
t =

+∞∑

k=0

β
( j)
k ε

( j)
t−k2 j

where ‖∑∞
k=0 β

( j)
k ε

( j)
t−k2 j ‖2ϕ̄ =∑∞

k=0 Tr(β
( j)
k β

( j)
k

′
) is finite. Each β

( j)
k is obtained by

projecting xt on the submodule generated by the detail ε( j)
t−k2 j and so

β
( j)
k =

〈
xt , ε

( j)
t−k2 j

〉

H
= E

[
xtε

( j)
t−k2 j

′]
.

By replacing the expression of g( j)
t into Eq. (5), we obtain the MEWD of xt stated in

Eq. (6). The explicit expression of matrices β
( j)
k in Eq. (7) below turns out to be the

multivariate version of eq. (7) in Ortu et al. (2020a), which features the same writing.

Theorem 4 (Multivariate extendedWold decomposition) Let x be a zero-mean regular
weakly stationary purely non-deterministic m-dimensional process. Then, xt decom-
poses as

xt =
+∞∑

j=1

+∞∑

k=0

β
( j)
k ε

( j)
t−k2 j , (6)

where the equality is in norm and

1. for any fixed j ∈ N, the m-dimensional process ε( j) = {ε( j)
t }t∈Z with

ε
( j)
t = 1√

2 j

⎛

⎝
2 j−1−1∑

i=0

εt−i −
2 j−1−1∑

i=0

εt−2 j−1−i

⎞

⎠

is a M A(2 j−1)with respect to the classicalWold innovations of x and {ε( j)
t−k2 j }k∈Z

is a unit variance white noise;
2. for any j ∈ N, k ∈ N0, the m × m matrices β

( j)
k are uniquely determined via

β
( j)
k = 1√

2 j

⎛

⎝
2 j−1−1∑

i=0

αk2 j+i −
2 j−1−1∑

i=0

αk2 j+2 j−1+i

⎞

⎠ ; (7)
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hence, they are independent of t and
∑∞

k=0 Tr(β
( j)
k β

( j)
k

′
) < +∞ for any j ∈ N;

3. letting

g( j)
t =

+∞∑

k=0

β
( j)
k ε

( j)
t−k2 j , (8)

for any j, l ∈ N, p, q, t ∈ Z, E[g( j)
t−pg

(l)
t−q

′] depends at most on j, l, p − q.

Moreover, E[g( j)
t−m2 j g

(l)
t−n2l

′] = 0 for all j �= l,m, n ∈ N0 and t ∈ Z.

Proof See “Appendix B.3.” �

The matrix β
( j)
k is the (multivariate) scale-specific response associated with the

innovation at scale j and time translation k2 j . Since the details at different scales can
be expressed in terms of the fundamental innovations εt , the MEWD and the MCWD
share the same shocks. For this reason, we can retrieve the matrices β

( j)
k from the

matrices αh of the MCWD through Eq. (7).
An orthogonal decomposition of Ht (ε) into a finite number of submodules is also

possible. Indeed, Ht (ε) = RHt (ε) ⊕ LR
t and, by iteratively applying the scaling

operator,

Ht (ε) = RJHt (ε) ⊕
J⊕

j=1

R j−1LR
t .

The (multivariate) residual component at scale j is the orthogonal projection of xt
on the submodule R jHt (ε), and we denote it by π

( j)
t . As can be seen in the proof of

Theorem 4, π( j)
t has the expression:

π
( j)
t =

+∞∑

k=0

γ
( j)
k

⎛

⎝ 1√
2 j

2 j−1∑

i=0

εt−k2 j−i

⎞

⎠ , γ
( j)
k = 1√

2 j

2 j−1∑

i=0

αk2 j+i . (9)

As a result, a MEWD of xt holds both in the finite case, i.e., when a maximum scale
J is chosen, and in the infinite one:

xt = π
(J )
t +

J∑

j=1

g( j)
t or xt =

+∞∑

j=1

g( j)
t .

According to the third point of Theorem 4, when t is fixed, the orthogonality
among persistent components involves all the shifted vectors g( j)

t−m2 j and g(l)
t−n2l

, for

anym, n ∈ Z, with time translation proportional to 2 j and 2l , respectively. In general,
the cross-covariance matrix between g( j)

t−p and g
(l)
t−q depends at most on the scales j, l

and on the difference p − q.
By the MEWD, xt is decomposed into the sum of orthogonal components g( j)

t

associated with different persistence levels j . Each vector g( j)
t has innovations on a

grid S( j)
t = {t − k2 j : k ∈ Z} with time interval between two indices proportional
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to 2 j . When the scale j increases, the support S( j)
t becomes sparser and the degree

of persistence of details rises. For instance, if j is high and a scale-specific response
β

( j)
k is remarkably different from the null matrix, xt is affected by an important low-

frequency component. On the contrary, if j is low and some β
( j)
k differs from zero, a

high-frequency component is not negligible and impinges on xt in the short term.
A justification of the fact that the iterated application of R increases persistence

is due to spectral analysis considerations, and it is developed in detail in Ortu et al.
(2020a) for the univariate case: see Section 2.1 therein and the supplementary material
(Ortu et al. 2020b). The scaling operator defines, in fact, an approximate low-pass filter.
In addition, as suggested in the same paper, bases different from 2 can be used to derive
similar persistence-based decompositions.

The MEWD properly generalizes the univariate Extended Wold Decomposition of
Ortu et al. (2020a). Indeed, in case the matrix coefficients αh are diagonal, for any
i = 1, . . . ,m the entry xi,t depends only on the innovations εi,t and the scale-specific

responses β
( j)
k are diagonal matrices, too. Each xi,t satisfies the decompositions

xi,t =
+∞∑

h=0

αh(i, i)εi,t−h and xi,t =
+∞∑

j=1

+∞∑

k=0

β
( j)
k (i, i)ε( j)

i,t−k2 j

with

β
( j)
k (i, i) = 1√

2 j

⎛

⎝
2 j−1−1∑

p=0

αk2 j+p(i, i) −
2 j−1−1∑

p=0

αk2 j+2 j−1+p(i, i)

⎞

⎠ ,

as in the univariate Extended Wold Decomposition.
Finally, the MEWD of xt turned out to be a refinement of the MCWD, where ε

is the process of fundamental innovations of x. Nonetheless, such persistence-based
decomposition holds also in case ε is any unit variance white noise that allows a
moving average representation of xt . Furthermore, in case ε has a positive definite
covariance matrix ξ , then ξ = ζ ζ for some symmetric positive definite ζ ∈ A. Then,
ηt = ζ−1εt defines a unit variance white noise and the MCWD and the MEWD of xt
become, respectively,

xt =
+∞∑

h=0

α̃hηt−h, xt =
+∞∑

j=1

+∞∑

k=0

β̃
( j)
k ηt−h

with α̃h = αhζ and β̃
( j)
k = β

( j)
k ζ . Alternatively, other tools can be used to factorize ξ ,

as the Cholesky decomposition (see, for instance, the application in “Appendix C.3”).

4.3 Persistence-based variance decomposition

One of the strength of the MEWD is that it allows us to define a variance decompo-
sition across the different persistence layers. The notion of orthogonality permits to
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decompose the variance of each entry xi,t of the vector xt into the sum of the vari-

ances of the corresponding entries of each persistent component g( j)
t . This permits

to disentangle the exposure towards shocks with heterogeneous persistence without
distinguishing among the different univariate disturbances. As a further step, the null
correlation between the univariate innovations in the (multivariate) details ε

( j)
t allows

us to decompose the variance of each entry of g( j)
t in order to quantify the contribution

of each source of randomness. In so doing, one can individuate the main time scales
at which each univariate shock impacts the aggregate process xt .

To illustrate the variance decompositions, we consider a weakly stationary bivariate
process xt = [yt , zt ]′ with unit variance white noise εt = [ut , vt ]′. We focus on yt
and on the first entry of the persistent components g( j)

t . The portion of variance of yt
associated with the latter is

var( j) (yt ) =
+∞∑

k=0

[(
β

( j)
k (1, 1)

)2 +
(
β

( j)
k (1, 2)

)2]
(10)

and

var (yt ) =
+∞∑

j=1

var( j) (yt ) .

Operationally, in order to assess the overall importance of each persistence level
in explaining the total variance of yt , we can compute, for each scale j , the ratio
var( j)(yt )/var(yt ). In addition, to capture the effect of the persistence of each single
shock, we can compute, at any scale j , the ratios

+∞∑

k=0

(
β

( j)
k (1, 1)

)2/
var (yt ) ,

+∞∑

k=0

(
β

( j)
k (1, 2)

)2/
var (yt ) . (11)

Although a persistence-based variance decomposition is already present in Ortu
et al. (2020a), the orthogonality notion employed in the multivariate case makes it
possible to quantify both the persistence of each time series in the vector process and
the persistence of single shocks impacting each of them.

5 Conclusions

In this paper, we recast the standard treatment ofmultivariate time series in aHilbert A-
module framework and prove the AbstractWold Theorem for Hilbert A-modules. This
result allows us to revisit theMCWDand to derivemultivariate version of the Extended
WoldDecomposition of Ortu et al. (2020a), by using two different isometric operators.
Interestingly, the MEWD provides a decomposition of the given vector process into
uncorrelated persistent components driven by shocks with longer and longer duration.
The orthogonality ensured by the theorem induces a variance decomposition that
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permits to establish the relative importance of each persistence component. Moreover,
scale-specific responses allow us to isolate, on different time scales, dynamics that
are not recognizable from the impulse responses of the aggregated process (some
illustrations are in “Appendix C”).

The statistical inference about scale-specific responses is an important issue that
goes beyond the scope of the paper. As to the estimators of the parameters in moving
average models, one can refer to the literature summarized in the introduction of Ghy-
sels et al. (2003), especially to the seminal work of Durbin (1959). However, a simple
way to statistically test whether scale-specific responses are zero is using the boot-
strap procedure (Efron and Tibshirani 1986) in the pipeline described in “Appendix
C.2”. The bootstrap empirical distribution of scale-specific responses can be easily
employed to obtain the test p value.
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Appendices

“Appendix A” focuses on the Hilbert A-module theory. “Appendix B” illustrates the
derivation of the multivariate extendedWold decomposition (MEWD). “Appendix C”
provides some illustrations of the MEWD, including an application to Blanchard and
Quah (1989).

Appendix A Hilbert A-modules

In this appendix, we present a primer on Hilbert A-modules. The purpose is twofold:
(a) to present a uniform and self-contained treatment of the topic, (b) to present tools
and results that are key for our theory and we could not find in the literature. We will
mostly focus our attention to the case of A being the algebra of square matrices with
real values, but wewill keep our setting abstract in order to avoid getting lost in useless
details.
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Hilbert A-modules are to algebras as Hilbert spaces are to the real/complex field.
In particular, one starts from the observation that the scalar field R in a Hilbert space
can be replaced by an abstract algebra A: for example, the algebra of matrices. All
definitions (e.g., Definition 1) are then kept identical to the ones of the scalar case.
Since the seminal paper of Kaplansky (1953), Hilbert A-modules have been widely
studied inmathematics. In applications, their use seems to be scarcer even though there
are notable exception. In economics, a particular Hilbert A-module was studied and
used by Hansen and Richard (1987) to prove a conditional version of the fundamental
theorem of asset pricing, while in statistics, Wiener and Masani (1957) studied the
complex version of the Hilbert A-module we use in our application, to provide a proof
for the multivariate classical Wold decomposition (MCWD). This is consistent with
the mathematical literature. This literature, starting with Kaplansky (1953), focused
on complex algebras and developed very rapidly and in a non-systematic/scattered
way (see, e.g., Frank 1996 for an account). On the other hand, the real case received
little attention. One notable exception to this is the paper of Goldstine and Horwitz
(1966) which deals with the case we have at hand here: the algebra of square real
matrices. As the appendix progresses, we will highlight what are the overlaps between
our work and theirs.Most notably, they prove the Riesz representation theorem and the
projection theorem, in a reverse order. Both results are instrumental in proving themain
result of this appendix which is the Abstract Wold Theorem for Hilbert A-modules
(Theorem 1).

The reader might be tempted to think that Hilbert A-modules behave exactly like
Hilbert spaces. One key feature which makes them appealing for applications is that
most of the statements valid for Hilbert spaces, seemingly carry over to this more
general structure: the caveat is that the proofs not always generalize in a similar
fashion.

A.1 C∗-algebras: the new scalars

Let A be a real C∗-algebra with (multiplicative) unit e which is ∗-isomorphic to the
real C∗-algebra of bounded operators over a real Hilbert space. In particular, A is a
real normed algebra with multiplicative unit e, we denote by ‖ ‖A the norm of A. We
denote the norm dual of A by A∗. Recall that A is also a C∗-algebra with unit, that is,
there exists an involution ∗ : A → A such that for each a, b ∈ A and α ∈ R

(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (αa)∗ = αa∗, and a∗∗ = (a∗)∗ = a.

The involution also well behaves with the norm, that is,

‖a‖2A = ∥∥a∗a
∥∥
A ∀a ∈ A.

The algebra A is also naturally ordered by the order ≥ induced by the closed convex
cone of positive elements that are such that a = a∗ (in the real case, the extra require-
ment a = a∗ is not redundant). We denote by A+ = {a ∈ A : a ≥ 0}. The following
properties will be very useful in what follows:
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1. ‖a‖A = ‖a∗‖A;
2. If a ∈ A, then we have that a∗a ∈ A+;
3. If a ≥ 0, then bab∗ ≤ ‖a‖Abb∗;
4. If a ≥ b ≥ 0, then ‖a‖A ≥ ‖b‖A;
5. If A is finite dimensional, then there exists a (continuous) linear functional ϕ̄ :

A → R such that

a ≥ 0 �⇒ ϕ̄ (a) ≥ 0

a ≥ 0 and ϕ̄ (a) = 0 ⇐⇒ a = 0

ϕ̄ (a) = ϕ̄
(
a∗) ∀a ∈ A

∃K > 0 such that ‖a‖A ≤ ϕ̄ (a) ≤ K ‖a‖A ∀a ≥ 0.

We will call a continuous and linear functional ϕ̄ that satisfies the first three prop-
erties of point 5 strictly positive. We will call a functional as in point 5 a trace. Since
A+ is a closed convex cone, there exists a closed and convex set C ⊆ A∗ such that

a ≥ b ⇐⇒ ϕ (a) ≥ ϕ (b) ∀ϕ ∈ C . (A1)

A.2 Pre-Hilbert A-modules

Consider A as above. We next proceed by defining the objects we study in this paper.

Definition 1 An abelian group (H ,+) is an A-module if and only if an outer product
· : A × H → H is well-defined with the following properties, for each a, b ∈ A and
for each x, y ∈ H :

(1) a · (x + y) = a · x + a · y;
(2) (a + b) · x = a · x + b · x ;
(3) a · (b · x) = (ab) · x ;
(4) e · x = x .

An A-module is a pre-Hilbert A-module if and only if an inner product 〈 , 〉H :
H × H → A is well-defined with the following properties, for each a ∈ A and for
each x, y, z ∈ H :

(5) 〈x, x〉H ≥ 0, with equality if and only if x = 0;
(6) 〈x, y〉H = 〈y, x〉∗H ;
(7) 〈x + y, z〉H = 〈x, z〉H + 〈y, z〉H ;
(8) 〈a · x, y〉H = a〈x, y〉H .

For A = R conditions (1)–(4) define vector spaces, while (5)–(8) define pre-Hilbert
spaces.2,3

2 We will use Latin letters a, b, c to denote elements of A, Latin letters x, y, z to denote elements of H ,
and Greek letters α, β to denote elements of R.
3 It is routine to show that the following statements, which we will use later on, are true:
1. 〈z, x + y〉H = 〈z, x〉H + 〈z, y〉H for all x, y, z ∈ H ;
2. 〈x, a · y〉H = 〈x, y〉Ha∗ for all a ∈ A and for all x, y ∈ H ;
3. 〈x, αy〉H = α〈x, y〉H for all α ∈ R and for all x, y ∈ H .
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Given a pre-Hilbert A-module, by adapting the techniques of Raeburn andWilliams
(1998, Lemma 2.5) to the real case, we will show that

〈x, y〉∗H 〈x, y〉H ≤ ‖〈x, x〉H‖A 〈y, y〉H ∀x, y ∈ H

where ‖ ‖A is the norm of A.
Given an element y ∈ H , note that 〈 , 〉H induces an operator f : H → A defined

as f (x) = 〈x, y〉H with the following properties:

– A-linearity f (a · x+b · y) = a f (x)+b f (y) for all a, b ∈ A and for all x, y ∈ H ;
– Boundedness There exists M > 0 such that ‖ f (x)‖2A ≤ M‖〈x, x〉H‖A for all

x ∈ H .

In light of this fact, we give the following definition:

Definition 2 Let H be a pre-Hilbert A-module. We say that H is self-dual if and only
if for each f : H → A which is A-linear and bounded there exists y ∈ H such that

f (x) = 〈x, y〉H ∀x ∈ H .

It is rather easy to see that if H is self-dual, then each A-linear and bounded
f : H → A is represented by a unique vector y.

A.3 The vector space structure of H

In this section, we will first show that a pre-Hilbert A-module has a natural structure
of vector space. Next, we will show that the A-valued inner product 〈 , 〉H shares
some of the properties of standard real-valued inner products. In particular, under the
assumption that A admits a strictly positive functional ϕ̄, we will show that it also
induces a real valued inner product on H , thus making H into a pre-Hilbert space.

We use the outer product · to define a scalar product:

·e : R×H → H
(α, x) �→ (αe) · x .

We next show that ·e makes the abelian group H into a real vector space.

Proposition 5 Let H be an A-module. (H ,+, ·e) is a real vector space.
Proof By assumption, H is an abelian group. For each α, β ∈ R and each x, y ∈ H ,
we have that

(1) α ·e (x + y) = αe · (x + y) = (αe) · x + (αe) · y = α ·e x + α ·e y;
(2) (α+β) ·e x = ((α+β)e) · x = (αe+βe) · x = (αe) · x+ (βe) · x = α ·e x+β ·e x ;
(3) α ·e (β ·e x) = (αe) · ((βe) · x) = ((αe)(βe)) · x = ((αβ)e) · x = (αβ) ·e x ;
(4) 1 ·e x = (1e) · x = e · x = x .

�
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From now on, we will often write αx in place of α ·e x .
Corollary 6 Let H be an A-module. If f : H → A is an A-linear operator, then f is
linear.

Proof Consider x, y ∈ H and α, β ∈ R. We have that

f (αx + β y) = f ((αe) · x + (βe) · y) = (αe) f (x)+(βe) f (y) = α f (x)+β f (y) .

�

Assume A admits a strictly positive functional ϕ̄. Define 〈 , 〉ϕ̄ : H × H → R by

〈x, y〉ϕ̄ = ϕ̄
(〈x, y〉H

) ∀x, y ∈ H .

Proposition 7 Let H be a pre-Hilbert A -module. If A admits a strictly positive func-
tional ϕ̄, then 〈 , 〉ϕ̄ is an inner product.

Proof We prove four properties:
a. Consider x ∈ H . By assumption, we have that 〈x, x〉H ≥ 0. Since ϕ̄ is positive, it
follows that 〈x, x〉ϕ̄ = ϕ̄(〈x, x〉H ) ≥ 0. Since ϕ̄ is strictly positive and 〈x, x〉H ≥ 0,
note also that

ϕ̄ (〈x, x〉H ) = 0 ⇐⇒ 〈x, x〉H = 0 ⇐⇒ x = 0.

b. Consider x, y ∈ H . Since ϕ̄(a) = ϕ̄(a∗) for all a ∈ A, we have that

〈y, x〉ϕ̄ = ϕ̄
(〈y, x〉H

) = ϕ̄
(〈y, x〉∗H

) = ϕ̄
(〈x, y〉H

) = 〈x, y〉ϕ̄ .

c. Consider x, y, z ∈ H . Since ϕ̄ is linear, we obtain that

〈x + y, z〉ϕ̄ = ϕ̄
(〈x + y, z〉H

) = ϕ̄
(〈x, z〉H + 〈y, z〉H

)

= ϕ̄ (〈x, z〉H ) + ϕ̄
(〈y, z〉H

) = 〈x, z〉ϕ̄ + 〈y, z〉ϕ̄ .

d. Consider x, y ∈ H and α ∈ R. Since ϕ̄ is linear, we obtain that

〈αx, y〉ϕ̄ = ϕ̄
(〈(αe) · x, y〉H

) = ϕ̄
(
(αe) 〈x, y〉H

)

= ϕ̄
(
α 〈x, y〉H

) = α 〈x, y〉ϕ̄ .

Properties a–d yield the statement.

Corollary 8 Let H be a pre-Hilbert A-module. If A admits a strictly positive functional
ϕ̄, then (H ,+, ·e, 〈 , 〉ϕ̄ ) is a pre-Hilbert space.
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Proposition 9 Let H be a pre-Hilbert A-module. The following statements are true:

1. 〈x, y〉∗H 〈x, y〉H ≤ ‖〈x, x〉H‖A〈y, y〉H for all x, y ∈ H;
2. ‖〈x, y〉H‖2A ≤ ‖〈x, x〉H‖A‖〈y, y〉H‖A for all x, y ∈ H;

3. ‖〈x, y〉H‖A ≤ ‖〈x, x〉H‖
1
2
A‖〈y, y〉H‖

1
2
A for all x, y ∈ H.

Proof Consider w, z ∈ H and assume that 〈w, z〉H = 〈w, z〉∗H . Then, for each t ≥ 0

0 ≤ 〈w + t z, w + t z〉H = 〈w,w + t z〉H + 〈t z, w + t z〉H
= 〈w,w〉H + 〈w, t z〉H + 〈t z, w〉H + 〈t z, t z〉H
= 〈w,w〉H + t 〈w, z〉H + t 〈z, w〉H + t2 〈z, z〉H
= 〈w,w〉H + t 〈w, z〉H + t 〈w, z〉∗H + t2 〈z, z〉H
= 〈w,w〉H + 2t 〈w, z〉H + t2 〈z, z〉H .

Consider ϕ ∈ C . It follows that

0 ≤ ϕ (〈w + t z, w + t z〉H ) = ϕ
(
〈w,w〉H + 2t 〈w, z〉H + t2 〈z, z〉H

)

= ϕ (〈w,w〉H ) + 2tϕ (〈w, z〉H ) + t2ϕ (〈z, z〉H ) ,

yielding that
ϕ (〈w, z〉H )2 ≤ ϕ (〈w,w〉H ) ϕ (〈z, z〉H ) . (A2)

Choose x̄, ȳ ∈ H . Define w = 〈x̄, ȳ〉∗H · x̄ and z = ȳ. It follows that

〈w, z〉H = 〈x̄, ȳ〉∗H 〈x̄, ȳ〉H ,

yielding that 〈w, z〉H = 〈w, z〉∗H and (A2) holds. In particular, we have that

ϕ
(〈x̄, ȳ〉∗H 〈x̄, ȳ〉H

)2 = ϕ (〈w, z〉H )2 ≤ ϕ (〈w,w〉H ) ϕ (〈z, z〉H )

= ϕ
(〈x̄, ȳ〉∗H 〈x̄, x̄〉H 〈x̄, ȳ〉H

)
ϕ
(〈ȳ, ȳ〉H

)
.

Define a = 〈x̄, x̄〉H and b = 〈x̄, ȳ〉∗H . Recall that bab∗ ≤ ‖a‖Abb∗ and bb∗ ≥ 0.
Thus, we have that

ϕ
(〈x̄, ȳ〉∗H 〈x̄, ȳ〉H

)2 ≤ ϕ
(〈x̄, ȳ〉∗H 〈x̄, x̄〉H 〈x̄, ȳ〉H

)
ϕ
(〈ȳ, ȳ〉H

)

≤ ϕ
(‖〈x̄, x̄〉H‖A 〈x̄, ȳ〉∗H 〈x̄, ȳ〉H

)
ϕ
(〈ȳ, ȳ〉H

)

≤ ‖〈x̄, x̄〉H‖A ϕ
(〈x̄, ȳ〉∗H 〈x̄, ȳ〉H

)
ϕ
(〈ȳ, ȳ〉H

)

and ϕ(〈x̄, ȳ〉∗H 〈x̄, ȳ〉H ) ≥ 0. We thus have that

ϕ
(〈x̄, ȳ〉∗H 〈x̄, ȳ〉H

) ≤ ϕ
(‖〈x̄, x̄〉H‖A 〈ȳ, ȳ〉H

)
. (A3)
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Since ϕ was arbitrarily chosen, we have that (A3) holds for all ϕ ∈ C , that is, by (A1)

〈x̄, ȳ〉∗H 〈x̄, ȳ〉H ≤ ‖〈x̄, x̄〉H‖A 〈ȳ, ȳ〉H .

Since x̄ and ȳ were arbitrarily chosen, the statement follows.
2. Consider x, y ∈ H . Call a = 〈x, y〉H and b = ‖〈x, x〉H‖A〈y, y〉H . By point 1,

we have that 0 ≤ a∗a ≤ b. It follows that

∥∥〈x, y〉H
∥∥2
A = ‖a‖2A = ∥∥a∗a

∥∥
A ≤ ‖b‖A = ∥∥‖〈x, x〉H‖A 〈y, y〉H

∥∥
A

= ‖〈x, x〉H‖A

∥∥〈y, y〉H
∥∥
A .

3. It trivially follows from point 2. �

A.3.1 Topological structure

The ‖ ‖H norm
Define ‖ ‖H : H → [0,+∞) by

‖x‖H = √‖〈x, x〉H‖A ∀x ∈ H .

Proposition 10 Let H be pre-Hilbert A-module. The following statements are true:

1. ‖ ‖H is a norm;
2. ‖a · x‖H ≤ ‖a‖A‖x‖H for all a ∈ A and for all x ∈ H.

Proof 1. Note that

‖x‖H = 0 ⇐⇒ ‖〈x, x〉H‖A = 0 ⇐⇒ 〈x, x〉H = 0 ⇐⇒ x = 0.

Note also that for each α ∈ R and x ∈ H

‖αx‖H = √‖〈αx, αx〉H‖A =
√∥∥α2 〈x, x〉H

∥∥
A = |α|√‖〈x, x〉H‖A = |α| ‖x‖H .

Finally, we have that for each x, y ∈ H

‖x + y‖2H = ∥∥〈x + y, x + y〉H
∥∥
A = ∥∥〈x, x〉H + 〈x, y〉H + 〈y, x〉H + 〈y, y〉H

∥∥
A

≤ ‖〈x, x〉H‖A + ∥∥〈x, y〉H
∥∥
A + ∥∥〈y, x〉H

∥∥
A + ∥∥〈y, y〉H

∥∥
A

≤ ‖〈x, x〉H‖A +
√

‖〈x, x〉H‖A

∥∥〈y, y〉H
∥∥
A

+
√∥∥〈y, y〉H

∥∥
A ‖〈x, x〉H‖A + ∥∥〈y, y〉H

∥∥
A

= ‖〈x, x〉H‖A + 2
√

‖〈x, x〉H‖A

∥∥〈y, y〉H
∥∥
A + ∥∥〈y, y〉H

∥∥
A
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=
(

‖〈x, x〉H‖
1
2
A + ∥∥〈y, y〉H

∥∥
1
2
A

)2

.

We can thus conclude that

‖x + y‖H ≤
(

‖〈x, x〉H‖
1
2
A + ∥∥〈y, y〉H

∥∥
1
2
A

)
= ‖x‖H + ‖y‖H ,

proving that ‖ ‖H is a norm.
2. Given a ∈ A and x ∈ H , define b = 〈x, x〉H ≥ 0. We have

‖a · x‖2H = ‖〈a · x, a · x〉H‖A = ∥∥a 〈x, x〉H a∗∥∥
A = ∥∥aba∗∥∥

A ≤ ‖a‖A ‖b‖A

∥∥a∗∥∥
A

≤ ‖〈x, x〉H‖A ‖a‖2A = ‖a‖2A ‖x‖2H .

�

By Proposition 9, it readily follows that

∥∥〈x, y〉H
∥∥
A ≤ ‖x‖H ‖y‖H ∀x, y ∈ H . (A4)

Corollary 11 Let H be a pre-Hilbert A-module. For each y ∈ H, the functional
〈·, y〉H : H → A is A-linear, ‖ ‖H − ‖ ‖A continuous, and has norm ‖y‖H .
Proof Fix y ∈ H . It is immediate to see that the operator induced by y is A-linear,
thus, linear. Continuity easily follows from (A4). Since the norm of the linear operator
is given by

sup
{∥∥〈x, y〉H

∥∥
A / ‖x‖H : x �= 0

}
,

the statement easily follows from (A4) and the definition of ‖ ‖H . �

The ‖ ‖ϕ̄ norm
Assume A admits a strictly positive functional ϕ̄. Define ‖ ‖ϕ̄ : H → [0,+∞) by

‖x‖ϕ̄ =
√

〈x, x〉ϕ̄ ∀x ∈ H . (A5)

By Corollary 8, 〈 , 〉ϕ̄ is an inner product on H and it is immediate to see that ‖ ‖ϕ̄ is
a norm and

‖x‖ϕ̄ = √ϕ̄ (〈x, x〉H ) ∀x ∈ H . (A6)

Relations among norms
Assume A admits a strictly positive functional ϕ̄. Since ϕ̄ is a continuous linear

functional, it follows that there exists K > 0 such that

ϕ̄ (a) ≤ K ‖a‖A ∀a ∈ A+.
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This implies that

‖x‖2ϕ̄ = ϕ̄ (〈x, x〉H ) ≤ K ‖〈x, x〉H‖A = K ‖x‖2H ∀x ∈ H ,

that is,
‖x‖ϕ̄ ≤ √

K ‖x‖H ∀x ∈ H .

We can conclude that

xn
‖ ‖H→ 0 �⇒ xn

‖ ‖ϕ̄→ 0.

Proposition 12 Let H be a pre-Hilbert A-module. If A is finite dimensional, then A
admits a trace ϕ̄ and the norms ‖ ‖ϕ̄ and ‖ ‖H are equivalent.

Proof Since A is finite dimensional, there exists K > 0 such that ‖a‖A ≤ ϕ̄(a) ≤
K‖a‖A for all a ≥ 0. It follows that

‖x‖H = √‖〈x, x〉H‖A ≤ √ϕ̄ (〈x, x〉H ) = ‖x‖ϕ̄

= √ϕ̄ (〈x, x〉H ) ≤ √
K
√‖〈x, x〉H‖A = √

K ‖x‖H ∀x ∈ H ,

proving the statement. �

A.4 Dual module

Given a pre-Hilbert A-module H , we define

H∼ =
{
f ∈ AH : f is A-linear and bounded

}
.

By definition of boundedness and ‖ ‖H , we have that f is bounded if and only if there
exists M > 0 such that

‖ f (x)‖A ≤ M ‖x‖H ∀x ∈ H .

Recall that if f ∈ H∼, then f is linear. Thus, in this case,wehave that H∼ ⊆ B(H , A),
where the latter is the set of all bounded linear operators from H to A when H is
endowed with ‖ ‖H and A is endowed with ‖ ‖A.

Proposition 13 If H is a pre-Hilbert A-module, then H∼ is an A-module.

Proof Define + : H∼ × H∼ → H∼ to be such that for each f , g ∈ H∼

( f + g) (x) = f (x) + g (x) ∀x ∈ H .

In other words, + is the usual pointwise sum of operators. Define · : A× H∼ → H∼
to be such that for each a ∈ A and for each f ∈ H∼

(a · f ) (x) = f (x) a∗ ∀x ∈ H .
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It is immediate to verify that H∼ is closed under + and ·. In particular, (H ,+) is an
abelian group. Note that for each a, b ∈ A and each f , g ∈ H∼:

1. (a · ( f + g))(x) = (( f + g)(x))a∗ = ( f (x) + g(x))a∗ = f (x)a∗ + g(x)a∗ =
(a· f )(x)+(a·g)(x) = (a· f +a·g)(x) for all x ∈ H , that is,a·( f +g) = a· f +a·g.

2. ((a + b) · f )(x) = f (x)(a + b)∗ = f (x)(a∗ + b∗) = f (x)a∗ + f (x)b∗ = (a ·
f )(x)+(b· f )(x) = (a · f +b· f )(x) for all x ∈ H , that is, (a+b)· f = a · f +b· f .

3. (a · (b · f ))(x) = ((b · f )(x))a∗ = ( f (x)b∗)a∗ = f (x)(b∗a∗) = f (x)(ab)∗ =
((ab) · f )(x) for all x ∈ H , that is, a · (b · f ) = (ab) · f .

4. (e · f )(x) = f (x)e∗ = f (x)e = f (x) for all x ∈ H , that is, e · f = f . �

Since H∼ is an A-module, it is also a vector space. Note that the scalar product
·e coincides with the usual scalar product defined on B(H , A) once restricted to H∼.
Thus, we can also define a norm ‖ ‖H∼ : H∼ → [0,+∞) defined by

‖ f ‖H∼ = sup
‖x‖H=1

‖ f (x)‖A ∀ f ∈ H∼.

Define S∼ : H → H∼ by

S∼ (y) = 〈·, y〉H ∀y ∈ H .

Given Corollary 11 and the properties of 〈 , 〉H , the map S∼ is well-defined and linear.
In fact, for each α, β ∈ R and for each x, y, z ∈ H

S∼ (αy + βz) (x) = 〈x, αy + βz〉H = 〈x, αy〉H+〈x, βz〉H = α 〈x, y〉H+β 〈x, z〉H ,

proving that

S∼ (αy + βz) = (αe) · S∼ (y) + (βe) · S∼ (z) = αS∼ (y) + βS∼ (z) .

Proposition 14 Let H be a pre-Hilbert A-module. The following statements are true:

1. H∼ is ‖ ‖H∼ complete.
2. S∼ is an isometry, that is, ‖S∼(y)‖H∼ = ‖y‖H for all y ∈ H.
3. If H is self-dual, then S∼ is onto and H is ‖ ‖H complete.

Proof 1. By Proposition 13, H∼ is an A-module. In particular, H∼ is a vector subspace
of B(H , A). Consider a ‖ ‖H∼ Cauchy sequence { fn}n∈N ⊆ H∼ ⊆ B(H , A). By
Aliprantis and Border (2006, Theorem 6.6) and since A is ‖ ‖A complete, we have

that there exists f ∈ B(H , A) such that fn
‖ ‖H∼→ f . We are left to show that f is

A-linear. First, observe that f : H → A is such that

f (x) = lim
n

fn (x) ∀x ∈ H
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where the limit is in norm ‖ ‖A. We can conclude that for each a, b ∈ A and x, y ∈ H

fn (x)
‖ ‖A→ f (x) , fn (y)

‖ ‖A→ f (y) �⇒ a fn (x)
‖ ‖A→ a f (x) , b fn (y)

‖ ‖A→ b f (y)

�⇒ a fn (x) + b fn (y)
‖ ‖A→ a f (x) + b f (y) .

At the same time, a fn(x) + b fn(y) = fn(a · x + b · y) ‖ ‖A→ f (a · x + b · y) for
all a, b ∈ A and x, y ∈ H . By the uniqueness of the limit, we can conclude that
f (a · x+b · y) = a f (x)+b f (y) for all a, b ∈ A and x, y ∈ H , proving the statement.
2. Recall that S∼ : H → H∼ is defined by

S∼ (y) (x) = 〈x, y〉H ∀x ∈ H .

By Corollary 11, it follows that ‖S∼(y)‖H∼ = ‖y‖H for all y ∈ H .
3. If H is self-dual, it is immediate to see that S∼ is onto. Consider a ‖ ‖H Cauchy

sequence {xn}n∈N ⊆ H . Since S∼ is an isometry, it follows that {S∼(xn)}n∈N is a
‖ ‖H∼ Cauchy sequence in H∼. Since H∼ is ‖ ‖H∼ complete and S∼ is onto, it

follows that there exists f ∈ H∼ such that S∼(xn)
‖ ‖H∼→ f = S∼(x) for some

x ∈ H∼. Since S∼ is an isometry, we have that xn
‖ ‖H→ x , proving that H is ‖ ‖H

complete. �

A.5 Self-duality

Theorem 15 Let A be finite dimensional and H a pre-Hilbert A-module. The following
statements are equivalent:

(i) H is ‖ ‖H complete, that is, H is a Hilbert A-module;
(ii) H is ‖ ‖ϕ̄ complete;
(iii) H is self-dual.

Proof Since A is finite dimensional, it admits a trace ϕ̄.
(i) implies (ii). By Proposition 12 and since A is finite dimensional, ‖ ‖ϕ̄ and ‖ ‖H

are equivalent. It follows that H is ‖ ‖ϕ̄ complete.
(ii) implies (iii). By Corollary 8 and since H is ‖ ‖ϕ̄ complete, it follows that H

is a Hilbert space with inner product 〈 , 〉ϕ̄ . Consider f : H → A which is A-linear
and bounded. In particular, by the proof of Proposition 12, we have that there exists
M > 0 such that

‖ f (x)‖A ≤ M ‖x‖H ≤ M ‖x‖ϕ̄ ∀x ∈ H .

We can conclude that f : H → A is linear and ‖ ‖ϕ̄ − ‖ ‖A continuous. Consider the
linear functional l = ϕ̄◦ f . Since ϕ̄ is ‖ ‖A continuous and f is ‖ ‖ϕ̄−‖ ‖A continuous,
we have that l is ‖ ‖ϕ̄ continuous. By the standardRiesz representation theorem (Brezis
2011, Theorem 5.5), there exists (a unique) y ∈ H such that l(x) = 〈x, y〉ϕ̄ for all
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x ∈ H . It follows that, for all x ∈ H ,

ϕ̄
(
f (x) − 〈x, y〉H

) = ϕ̄ ( f (x)) − ϕ̄
(〈x, y〉H

) = l (x) − 〈x, y〉ϕ̄ = 0. (A7)

Fix x̄ ∈ H . Define a = ( f (x̄) − 〈x̄, y〉H )∗ ∈ A. By Eq. (A7), we have that

0 = ϕ̄
(
f (a · x̄) − 〈a · x̄, y〉H

) = ϕ̄
(
a f (x̄) − a 〈x̄, y〉H

)

= ϕ̄
(
a
(
f (x̄) − 〈x̄, y〉H

)) = ϕ̄
(
aa∗) .

Since ϕ̄ is a trace andaa∗ ≥ 0, this implies thataa∗ = 0, that is,‖a∗‖2A = ‖aa∗‖A = 0.
We can conclude that f (x̄) − 〈x̄, y〉H = a∗ = 0. Since x̄ was arbitrarily chosen, it
follows that f (x) = 〈x, y〉H for all x ∈ H , proving that H is self-dual.

(iii) implies (i). By point 3 of Proposition 14, it follows that H is ‖ ‖H complete.
�

The implication (ii) implies (iii) can be found in Goldstine and Horwitz (1966)
although few mathematical differences are present. Namely, Goldstine and Horwitz
use a different norm over A. The characterization of self-duality, that is, the remaining
implications, to the best of our knowledge is novel. A similar observation holds for
the implication (i) implies (ii) of Proposition 17.

A.5.1 Orthogonal decompositions

Pre-Hilbert A-modules behave very much like Hilbert spaces also in terms of orthog-
onal decompositions. Consider a pre-Hilbert A-module H and let M ⊆ H . Define

M⊥ = {x ∈ H : 〈x, y〉H = 0 ∀y ∈ M
}
.

If M is nonempty, then it is immediate to prove that M⊥ is a submodule.4 It is also
immediate to show that M ∩ M⊥ = {0} and that M⊥⊥ ⊇ M where

M⊥⊥ =
(
M⊥)⊥ =

{
y ∈ H : 〈x, y〉H = 0 ∀x ∈ M⊥} .

Before stating our result on orthogonal decompositions, we need an ancillary fact.

Lemma 16 Let H be a pre-Hilbert A-module. If M ⊆ H, then M⊥ is ‖ ‖H closed.

Proof Fix z ∈ H and define ker{z} = {x ∈ H : 〈x, z〉H = 0}. Consider a sequence
{xn}n∈N ⊆ ker{z} such that xn

‖ ‖H→ x . Since S∼(z) is ‖ ‖H − ‖ ‖A continuous, it
follows that S∼(z)(x) = 0, that is, ker{z} is closed. Since M⊥ = ⋂

y∈M ker{y}, the
statement follows. �

Proposition 17 Let A be finite dimensional and H a pre-Hilbert A-module. If H is
self-dual and M is a submodule of H, then the following statements are equivalent:

4 A nonempty subset N of H is a submodule if and only if, for each a, b ∈ A and x, y ∈ N , a ·x+b · y ∈ N .
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(i) M is ‖ ‖H closed;
(ii) H = M ⊕ M⊥;
(iii) M = M⊥⊥.

Proof (i) implies (ii). Clearly, M ⊕ M⊥ ⊆ H . We next prove the opposite inclusion.
Since M is a submodule of H , if we define 〈 , 〉M as the restriction of 〈 , 〉H to
M × M , then (M,+, ·, 〈 , 〉M ) is a pre-Hilbert A-module. It is immediate to see that
‖ ‖M = ‖ ‖H once the latter is restricted to M . By Theorem 15 and since M is ‖ ‖H
closed, it follows that M is ‖ ‖M complete and is itself self-dual. Fix y ∈ H . The
map defined on M by x �→ 〈x, y〉H is A-linear and bounded. Since M is self-dual, it
follows that there exists a unique y1 ∈ M such that 〈x, y1〉H = 〈x, y1〉M = 〈x, y〉H
for all x ∈ M . Define y2 = y − y1. It follow that 〈x, y − y1〉H = 0 for all x ∈ M ,
that is, y2 ∈ M⊥. It is also immediate to see that y1 + y2 = y. Since y was arbitrarily
chosen, we can conclude that H ⊆ M ⊕ M⊥.

(ii) implies (iii). Since M ⊆ M⊥⊥, we only need to prove the opposite inclusion.
By assumption, if x ∈ M⊥⊥, then there exists xM ∈ M and xM⊥ ∈ M⊥ such that
x = xM + xM⊥ . Since M ⊆ M⊥⊥, we have that M⊥ � xM⊥ = x − xM ∈ M⊥⊥.
Since M⊥ ∩ M⊥⊥ = {0}, this implies that x − xM = 0, that is, x = xM ∈ M , proving
the opposite inclusion and the statement.

(iii) implies (i). By Lemma 16 and since M = M⊥⊥ = (M⊥)⊥, it follows that M
is ‖ ‖H closed. �

We conclude with a last piece of notation given M, N ⊆ H we write M⊥N if and
only if 〈x, y〉H = 0 for all x ∈ M and y ∈ N . Clearly, we have that M⊥M⊥ for all
M ⊆ H .

Proposition 17 allows us to define the (orthogonal) projection of an element x ∈ H
on a ‖ ‖H closed submodule M .

Definition 3 Let A be finite dimensional, H a Hilbert A -module, and M ⊆ H a ‖ ‖H
closed submodule. We call projection on M the linear map PM : H → M such that,
for any x ∈ H ,

PMx = xM ,

where xM ∈ M and xM⊥ ∈ M⊥ are the unique elements that satisfy x = xM + xM⊥ .

Given x ∈ H and y ∈ M , we have that y = PMx if and only if 〈x − y, z〉H = 0
for all z ∈ M . Moreover, since PMx ∈ M and x − PMx ∈ M⊥, PMx minimizes the
distance between x and the submodule M since, for all z ∈ M ,

‖x − z‖2H = ‖(x − PMx) + (PMx − z)‖2H = ‖x − PMx‖2H + ‖PMx − z‖2H .

A.6 The abstractWold theorem for Hilbert A-modules

In this section, we prove a (generalized) version for Hilbert A-modules of the Abstract
Wold Theorem (see, e.g., Sz-Nagy et al. 2010, Theorem 1.1). It is important to observe
that the properties of self-duality and complementability (see Theorem 15 and Propo-
sition 17) are fundamental in allowing us to follow the proof strategy used for Hilbert
spaces.

123



74 S. Cerreia-Vioglio et al.

Definition 4 We say that T : H → H is an isometry if and only if T is A-linear and
such that

〈Tx,Ty〉H = 〈x, y〉H ∀x, y ∈ H . (A8)

Note that an isometry in this sense satisfies the usual property

‖Tx‖H = ‖x‖H ∀x ∈ H . (A9)

It is immediate to prove by induction that for each n ∈ N0 the iterate Tn satisfies
Eqs. (A8) and (A9). In particular, by Abramovich and Aliprantis (2002, Theorem 2.5),
if H is ‖ ‖H complete, TnH is a ‖ ‖H closed submodule of H .

Definition 5 LetT : H → H be an isometry.We say that a submodule L is wandering
if and only if TnL⊥TmL for all m, n ∈ N0 such that m �= n.

Lemma 18 Let A be finite dimensional and H apre-Hilbert A-module. If H is self-dual
and T : H → H an isometry, then the following statements are true:

1. If M is ‖ ‖H closed, so is TM.
2. If L = (TH)⊥, then L is wandering.
3. If L = (TH)⊥, then for each n ∈ N0

TnH = TnL ⊕ Tn+1H and Tn L⊥Tn+1H .

4. If L = (TH)⊥, then for each k ∈ N0

k⊕

n=0

TnL =
(
Tk+1H

)⊥
.

Proof 1. Since T is A-linear, that is, for each a, b ∈ A and each x, y ∈ H

T (a · x + b · y) = a · Tx + b · Ty,

we have that T is linear. By the proof of Abramovich and Aliprantis (2002, Theorem
2.5) and since T satisfies Eq. (A9), we have that TM is closed.

2. Observe that TnH ⊆ H for all n ∈ N0. It follows that TnH ⊆ TH for all n ∈ N.
Since L ⊆ H , it also follows that TnL ⊆ TnH ⊆ TH for all n ∈ N. Since TH⊥L ,
this implies that TnL⊥L for all n ∈ N. Next, consider m, n ∈ N0 such that m �= n.
Without loss of generality, assume that n > m. By the previous part of the proof, we
have that Tn−mL⊥L . By Eq. (A8), we can conclude that TnL⊥TmL .

3. We proceed by induction.
Initial Step. n = 0. By definition of L , point 1, and Proposition 17 and since H is
self-dual, we have that L is a ‖ ‖H closed submodule and

TnH = H = L ⊕ L⊥ = L ⊕ TH = TnL ⊕ Tn+1H

proving the step.
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Inductive Step. Assume the statement is true for n. By assumption, it follows that
TnH = Tn L ⊕ Tn+1H and TnL⊥Tn+1H . By Eq. (A8), we have that

Tn+1L⊥Tn+2H (A10)

as well as

Tn+1H = TTnH = T
(
TnL ⊕ Tn+1H

)

= TTnL + TTn+1H = Tn+1L ⊕ Tn+2H ,

where the last equality follows from (A10). The statement follows by induction.
4. We proceed by induction.

Initial Step. k = 0. By definition of L ,

k⊕

n=0

TnL = T0L = L = (TH)⊥ =
(
Tk+1H

)⊥
.

Inductive Step. Assume the statement is true for k. By assumption, it follows that⊕k
n=0 T

nL = (Tk+1H)⊥. By Proposition 17 and since H is self-dual and since
Tk+1H is a ‖ ‖H closed submodule, this implies that

H = Tk+1H ⊕
(
Tk+1H

)⊥ =
k⊕

n=0

TnL ⊕ Tk+1H .

At the same time, by point 3, we also have that Tk+1H = Tk+1L ⊕ Tk+2H and
Tk+1L⊥Tk+2H . We can conclude that5

k+1⊕

n=0

TnL ⊕ Tk+2H = H and
k+1⊕

n=0

TnL =
(
Tk+2H

)⊥
.

The statement follows by induction. �
Theorem1Let A befinite dimensional and H a pre-Hilbert A-module. If H is self-dual
and T : H → H is an isometry, then H = Ĥ ⊕ H̃ where

Ĥ =
+∞⋂

n=0

TnH , H̃ =
+∞⊕

n=0

TnL, L = (TH)⊥ .

Moreover, the submodules orthogonal decomposition, (Ĥ , H̃), of H is the unique
submodules orthogonal decomposition such that TĤ = Ĥ and H̃ = ⊕∞

n=0 T
nL

given a wandering set L .

5 We are relying on the following fact whose proof is routine. Given a H self-dual pre-Hilbert A-module,
if M, N , P, Q are four ‖ ‖H closed submodules such that H = M ⊕ N , N = P ⊕ Q, N = M⊥: and
P⊥Q, then Q⊥ = M ⊕ P .
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Proof Define L = (TH)⊥. Define also Mk = ⊕k
n=0 T

n L for all k ∈ N0, H̃ =⊕∞
n=0 T

nL ,6 and Ĥ = H̃⊥. It is immediate to see that Ĥ and H̃ are two ‖ ‖H closed
submodules. Note that Mk ⊆ Mk+1 for all k ∈ N0 and H̃ = cl‖ ‖H (

⋃
k∈N0

Mk).
By construction, we have that Ĥ⊥Mk for all k ∈ N0. By Lemma 18, it follows that
Mk = (Tk+1H)⊥ for all k ∈ N. By Proposition 17, this implies that if x ∈ Ĥ , then
x ∈ M⊥

k = Tk+1H for all k ∈ N0. We can conclude that x ∈ ⋂∞
n=1 T

nH ∩ H =⋂∞
n=0 T

nH . Vice versa, since Mk = (Tk+1H)⊥ for all k ∈ N, if x ∈⋂∞
n=0 T

nH , then

〈x, y〉H = 0 ∀y ∈
∞⋃

n=0

Mn .

Since cl‖ ‖H (
⋃∞

n=0 Mn) = H̃ , this implies that x ∈ H̃⊥ = Ĥ . In other words, we
proved that Ĥ =⋂∞

n=0 T
nH .

We next prove uniqueness. Since Tn+1H ⊆ TnH ⊆ H for all n ∈ N0, it follows
that

TĤ = T

( ∞⋂

n=0

TnH

)

=
∞⋂

n=0

TTnH =
∞⋂

n=1

TnH =
∞⋂

n=1

TnH ∩ H = Ĥ .

Assume that (Ĥ ′, H̃ ′
) is another decomposition. Consider the wandering set L ′ gen-

erating H̃ ′. By construction and since L ′ is wandering, we have that L ′⊥TH̃ ′ and
L ′ ⊕ TH̃ ′ = H̃ ′. By construction and Eq. (A8), this implies that

L = (TH)⊥ = (T (Ĥ ′ ⊕ H̃ ′))⊥ = (Ĥ ′ ⊕ TH̃ ′)⊥ = L ′,

proving the statement. �

A.7 Adjoints

Given a pre-Hilbert A-module, we define by B∼(H) the collection of all bounded
A-linear operators. In other words, T ∈ B∼(H) if and only if

T (a · x + b · y) = a · Tx + b · Ty ∀a, b ∈ A,∀x, y ∈ H

and there exists M > 0 such that

‖Tx‖H ≤ M ‖x‖H ∀x ∈ H .

Since any A-linear operator is linear, we have that B∼ (H) ⊆ B(H) where the latter
is the set of all bounded and linear operators from H to H .

Given T ∈ B∼(H), we define the adjoint of T, denoted by T∗, to be such that

〈Tx, y〉H = 〈x,T∗y
〉
H ∀x, y ∈ H . (A11)

6 With the notation
⊕∞

n=0 T
n L , we mean the ‖ ‖H closure of the set

⋃
k∈N0

Mk .
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The next result shows that adjoints are well-defined and all the properties that hold for
Hilbert spaces are satisfied once suitably adjusted to Hilbert modules. It is immediate
to see that B∼(H) is a vector subspace of B(H). Note also that if S,T ∈ B∼(H),
then the composition of S with T is also in B∼(H),7

Proposition 19 Let H be a self-dual pre-Hilbert A-module. The following statements
are true:

1. ∗ : B∼(H) → B∼(H) is well-defined, injective, and linear;
2. T∗∗ = T for all T ∈ B∼(H);
3. ∗ : B∼(H) → B∼(H) is surjective;
4. ‖T‖ = ‖T∗‖ for all T ∈ B∼(H);
5. ‖ST‖ ≤ ‖S‖‖T‖ for all S,T ∈ B∼(H);
6. ‖T∗T‖ = ‖TT∗‖ = ‖T‖2 for all T ∈ B∼(H);
7. (ST)∗ = T∗S∗ for all S,T ∈ B∼(H);
8. For all T ∈ B∼(H), ker(T∗) = T(H)⊥, where

ker
(
T∗) = {x ∈ H : T∗x = 0

}
.

Proof 1. Consider T ∈ B∼(H). Fix y ∈ H . Since T is A-linear and bounded, note
that the element y induces a bounded A-linear operator on H to A via the map

x �→ 〈Tx, y〉H ∀x ∈ H .

Since H is self-dual, there exists a unique zy ∈ H such that 〈Tx, y〉H = 〈x, zy〉H
for all x ∈ H . We define T∗ : H → H to be such that T∗y = zy . It follows that T∗
is well-defined and satisfies Eq. (A11). Next, observe that for each y1, y2 ∈ H and
a1, a2 ∈ A

〈
x,T∗ (a1 · y1 + a2 · y2)

〉
H = 〈x, za1·y1+a2·y2

〉
H = 〈Tx, a1 · y1 + a2 · y2〉H

= 〈Tx, y1〉H a∗
1 + 〈Tx, y2〉H a∗

2 = 〈x, zy1
〉
H a∗

1 + 〈x, zy2
〉
H a∗

2

= 〈x, a1 · zy1 + a2 · zy2
〉
H = 〈x, a1 · T∗y1 + a2 · T∗y2

〉
H ∀x ∈ H ,

yielding that T∗ is A-linear and, in particular, linear. Finally, note that

∥∥T∗∥∥ = sup
‖y‖H=1

∥∥T∗y
∥∥
H = sup

‖y‖H=1

(

sup
‖x‖H=1

∥∥〈x,T∗y
〉
H

∥∥
A

)

= sup
‖y‖H=1

(

sup
‖x‖H=1

∥∥〈Tx, y〉H
∥∥
A

)

≤ sup
‖y‖H=1

(

sup
‖x‖H=1

‖Tx‖H ‖y‖H
)

7 Note that ST ∈ B∼(H) ⊆ B(H), thus ST ∈ B(H). We only need to prove A-linearity. Indeed, for each
a, b ∈ A and x, y ∈ H

(ST) (a · x + b · y) = S (T (a · x + b · y)) = S (a · Tx + b · Ty)
= a · S (Tx) + b · S (Ty) = a · (ST) x + b · (ST) y.
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≤ sup
‖y‖H=1

(

sup
‖x‖H=1

‖T‖ ‖x‖H ‖y‖H
)

≤ ‖T‖ ,

proving that T∗ ∈ B∼(H) and ∗ is well-defined. Next, fix y ∈ H . Consider S,T ∈
B∼(H) and α, β ∈ R. Observe that

〈
x, (αS + βT)∗ y

〉
H = 〈(αS + βT) x, y〉H = 〈αSx + βTx, y〉H

= α 〈Sx, y〉H + β 〈Tx, y〉H = α
〈
x,S∗y

〉
H + β

〈
x,T∗y

〉
H

= 〈x, αS∗y + βT∗y
〉
H = 〈x, (αS∗ + βT∗) y

〉
H ∀x ∈ H .

We can conclude that (αS+βT)∗y = (αS∗ +βT∗)y. Since y was arbitrarily chosen,
we can conclude that (αS + βT)∗ = αS∗ + βT∗, that is, ∗ is linear. Next, fix x ∈ H
and assume that T∗ = S∗. It follows that

〈Tx, y〉H = 〈x,T∗y
〉
H = 〈x,S∗y

〉
H = 〈Sx, y〉H ∀y ∈ H .

We can conclude that Tx = Sx . Since x was arbitrarily chosen, we can conclude that
T = S, that is, ∗ is injective.

2. Fix x ∈ H . By definition of T∗ and T∗∗, we have that

〈Tx, y〉H = 〈x,T∗y
〉
H = 〈T∗y, x

〉∗
H = 〈y,T∗∗x

〉∗
H = 〈T∗∗x, y

〉
H ∀y ∈ H .

We can conclude that Tx = T∗∗x . Since x was arbitrarily chosen, we can conclude
that T = T∗∗.

3. Consider S ∈ B∼(H) and consider T = S∗. By point 2, it follows that T∗ =
S∗∗ = S, that is, ∗ is surjective.

4. By the proof of point 1, we have that

∥∥T∗∥∥ ≤ ‖T‖ ∀T ∈ B∼ (H) .

In particular, we have that ‖T∗∗‖ ≤ ‖T∗‖ ≤ ‖T‖ for all T ∈ B∼(H). By point 2, we
can conclude that ‖T‖ ≤ ‖T∗‖ ≤ ‖T‖ for all T ∈ B∼(H), proving the statement.

5. Consider S,T ∈ B∼(H). We have that

‖ST‖ = sup
‖y‖H=1

‖S (Ty)‖H ≤ sup
‖y‖H=1

(‖S‖ ‖Ty‖H
)

≤ ‖S‖ sup
‖y‖H=1

(‖Ty‖H
) ≤ ‖S‖ ‖T‖ .

6. Consider S ∈ B∼(H). By points 4 and 5, observe that

‖S‖2 = sup
‖x‖H=1

‖Sx‖2H = sup
‖x‖H=1

‖〈Sx,Sx〉H‖A

= sup
‖x‖H=1

∥∥〈x,S∗Sx
〉
H

∥∥
A

≤ sup
‖x‖H=1

‖x‖H
∥∥S∗Sx

∥∥
H
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= sup
‖x‖H=1

∥∥(S∗S
)
x
∥∥
H = ∥∥S∗S

∥∥ ≤ ∥∥S∗∥∥ ‖S‖ = ‖S‖2 ,

yielding that ‖S∗S‖ = ‖S‖2. If we choose S = T, then ‖T∗T‖ = ‖T‖2. If we choose
S = T∗, then ‖TT∗‖ = ‖T∗‖2 = ‖T‖2.

7. Consider S,T ∈ B∼(H). Fix y ∈ H . We have that, for each x ∈ H ,

〈
x, (ST)∗ y

〉
H = 〈(ST) x, y〉H = 〈S (Tx) , y〉H

= 〈Tx,S∗y
〉
H = 〈x,T∗S∗y

〉
H .

It follows that (ST)∗y = T∗S∗y. Since y was arbitrarily chosen, it follows that
(ST)∗y = T∗S∗y for all y ∈ H , that is, (ST)∗ = T∗S∗.

8. First, we show that ker(T∗) is included in (TH)⊥. Equivalently, we prove that
each ȳ ∈ ker(T∗) is orthogonal to any y ∈ TH . Note that T∗ ȳ = 0 and that y = Tx
for some x ∈ H . By the definition of adjoint operator,

〈y, ȳ〉H = 〈Tx, ȳ〉H = 〈x,T∗ ȳ〉H = 0,

proving the orthogonality of ȳ and y. Conversely, consider ȳ ∈ (TH)⊥, that is
〈Tx, ȳ〉H = 0 for all x ∈ H . Since T∗ is the adjoint operator, 〈x,T∗ ȳ〉H = 0
for all x ∈ H , yielding that T∗ ȳ = 0. �

Point 1 can also be found in Goldstine and Horwitz (1966). Also in this case, there
is a technical difference in terms of norm used over A.

Appendix B Proofs about theMEWD

B.1 Properties of L2(Rm,Ä,F,P) andHt(")

Proposition 20 H = L2(Rm,�,F ,P) is a Hilbert A-module. Moreover, if ε is a
m-dimensional white noise, the submoduleHt (ε) of H defined in Eq. (2) is closed.

Proof We already described in Sect. 2.2 that H is a pre-Hilbert A-module. Here, we
show that H is also ‖ ‖ϕ̄ complete. We consider a Cauchy sequence {x (n)}n ⊂ H , i.e.,
for any ε > 0 there exists N > 0 such that

∥∥∥x (n) − x (m)
∥∥∥
2

ϕ̄
=

m∑

i=1

E

[(
x (n)
i − x (m)

i

)2]
< ε2 ∀n,m > N .

For any entry i = 1, . . . ,m, the sequence {x (n)
i }n ⊂ L2(�,F ,P) satisfies the Cauchy

condition. Since L2(�,F ,P) is complete, there exists xi ∈ L2(�,F ,P) such that
E[(x (n)

i −xi )2] < ε2/m for all n > Ni . As a result, by defining x = [x1, . . . , xm]′ ∈ H ,
we have

∥∥∥x (n) − x
∥∥∥
2

ϕ̄
=

m∑

i=1

E

[(
x (n)
i − xi

)2]
< ε2 ∀n > max

i=1,...,m
Ni
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and so H is ‖ ‖ϕ̄ complete, i.e., it is a Hilbert A -module by Theorem 15.
As to the submoduleHt (ε), take x ∈ H such that there exists a sequence {x (n)}n ⊂

Ht (ε) with ‖x (n) − x‖ϕ̄ → 0. We show that x ∈ Ht (ε), too. Any x (n) can be written

as x (n) =∑∞
k=0〈x (n), εt−k〉Hεt−k because, if x (n) =∑∞

k=0 a
(n)
k εt−k with a

(n)
k ∈ A,

〈
x (n), εt−k

〉

H
=
〈+∞∑

h=0

a(n)
h εt−h, εt−k

〉

H

=
+∞∑

h=0

a(n)
h 〈εt−h, εt−k〉H = a(n)

k .

In addition, the limit x can be decomposed as x = ∑∞
k=0〈x, εt−k〉Hεt−k + ν with

ν ∈ H such that 〈ν, εt−k〉H = 0 for all k ∈ N0. This implies that 〈ν, εt−k〉ϕ̄ =
Tr(〈ν, εt−k〉H ) = 0. In consequence,

∥∥∥x (n) − x
∥∥∥
2

ϕ̄
=
∥∥∥∥∥

+∞∑

k=0

〈
x (n) − x, εt−k

〉

H
εt−k − ν

∥∥∥∥∥

2

ϕ̄

=
∥∥∥∥∥

+∞∑

k=0

〈
x (n) − x, εt−k

〉

H
εt−k

∥∥∥∥∥

2

ϕ̄

+ ‖ν‖2ϕ̄ .

As ‖x (n) − x‖ϕ̄ is arbitrary small, ‖ν‖ϕ̄ = 0 and so ν = 0. Thus, x =∑∞
k=0〈x, εt−k〉Hεt−k belongs toHt (ε). �

B.2 Proof of Theorem 3

By Proposition 20,Ht (ε) is a closed submodule of H = L2(Rm,�,F ,P), which is a
Hilbert A-module. Hence,Ht (ε) is a Hilbert A-module too and so, by Theorem 15, it
is self-dual. Before applying the Abstract Wold Theorem for Hilbert A-modules (The-
orem 1), we prove that the scaling operator R is well-defined, A-linear and isometric
onHt (ε).

To show thatR is well-defined onHt (ε), consider any X =∑∞
k=0 akεt−k ∈ Ht (ε),

i.e., ‖X‖2ϕ̄ =∑∞
k=0 Tr(aka

′
k) < +∞. Then,

‖RX‖2ϕ̄ =
+∞∑

k=0

Tr

⎛

⎝
a� k

2 �√
2

a′
� k
2 �√
2

⎞

⎠ = 1

2

+∞∑

k=0

Tr

(
a� k

2 �a
′
� k
2 �

)

=
+∞∑

p=0

Tr
(
apa

′
p

)
= ‖X‖2ϕ̄

and this quantity is finite. Thus, R is well-defined and it is a bounded operator.
About A-linearity, consider any matrix m ∈ A and X = ∑∞

k=0 akεt−k,Y =∑∞
k=0 bkεt−k in Ht (ε). The element X + mY = ∑∞

k=0 ckεt−k has for coefficients
the matrices ck = ak + mbk for any k in N0. Then, R maps X + mY to the element
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R(X + mY ) =
+∞∑

k=0

c� k
2 �√
2

εt−k ∈ Ht (ε), with c� k
2 � = a� k

2 � + mb� k
2 � ∀k ∈ N0.

As a result, R(X + mY ) = RX + mRY , i.e., R is A-linear.
To prove thatR is isometric onHt (ε), consider again any X and Y as before. Since

ε is a multivariate white noise,

〈RX ,RY 〉H =
〈+∞∑

k=0

a� k
2 �√
2

εt−k,

+∞∑

h=0

b� h
2 �√
2

εt−k

〉

H

= 1

2

+∞∑

k=0

+∞∑

h=0

a� k
2 � 〈εt−k, εt−h〉 b′

� h
2 �

= 1

2

+∞∑

k=0

a� k
2 �b

′
� k
2 � =

+∞∑

k=0

akb
′
k = 〈X ,Y 〉H .

Hence, R is an isometry on Ht (ε). Theorem 1 provides the orthogonal decompo-
sitionHt (ε) = Ĥt (ε) ⊕ H̃t (ε), where

Ĥt (ε) =
+∞⋂

j=0

R jHt (ε), H̃t (ε) =
+∞⊕

j=1

R j−1LR
t

and LR
t = Ht (ε) � RHt (ε) is the wandering submodule.

First, we show that Ĥt (ε) is the null submodule. Indeed, the submodules R jHt (ε)

consist of linear combinations of innovations εt with matrix coefficients equal to each
others 2 j -by-2 j :

R jHt (ε) =
⎧
⎨

⎩

+∞∑

k=0

c( j)
k

⎛

⎝
2 j−1∑

i=0

εt−k2 j−i

⎞

⎠ ∈ Ht (ε) : c( j)
k ∈ A

⎫
⎬

⎭
.

Therefore, Ĥt (ε) can just include vectors as
∑∞

h=0 cεt−h with c ∈ A. Such vectors
must belong toHt (ε); hence,

+∞∑

k=0

Tr
(
cc′) =

+∞∑

k=0

m∑

p=1

m∑

q=1

c2(p, q)

is finite. Since the addends do not depend on k, c(p, q) = 0 for all p, q = 1, . . . ,m
and so c is the null matrix. Consequently, Ĥt (ε) = {0} and Ht (ε) = H̃t (ε).

We now turn to the submodule H̃t (ε). As the orthogonal complement ofRHt (x) is
the kernel of the adjoint operatorR∗ (Proposition 19), we determineR∗. In particular,
R∗ : Ht (ε) → Ht (ε) is defined by
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R∗ :
+∞∑

k=0

akεt−k �→
+∞∑

k=0

a2k + a2k+1√
2

εt−k .

To prove that R∗ is well-defined, we take any Y =∑∞
k=0 akεt−k inHt (ε), i.e.,

‖Y‖2ϕ̄ =
+∞∑

h=0

Tr
(
aha

′
h

) =
+∞∑

h=0

m∑

p=1

m∑

q=1

a2h(p, q) < +∞.

Similarly,

‖R∗Y‖2ϕ̄ = 1

2

+∞∑

k=0

Tr
(
(a2k + a2k+1)

(
a′
2k + a′

2k+1

))

= 1

2

+∞∑

k=0

m∑

p=1

m∑

q=1

(a2k(p, q) + a2k+1(p, q))2

and so

‖R∗Y‖2ϕ̄ �
+∞∑

k=0

m∑

p=1

m∑

q=1

(
(a2k(p, q))2 + (a2k+1(p, q))2

)

=
+∞∑

h=0

m∑

p=1

m∑

q=1

a2h(p, q) = ‖Y‖2ϕ̄ .

We deduce that ‖R∗Y‖2 is finite and R∗ is well-defined.
We now establish that 〈RX ,Y 〉H = 〈X ,R∗Y 〉H for any X = ∑∞

h=0 bhεt−h and
Y =∑∞

k=0 akεt−k inHt (ε). By the unit variance white noise properties of ε,

〈RX ,Y 〉H =
+∞∑

h=0

+∞∑

k=0

b� h
2 �√
2

〈εt−h, εt−k〉Ha′
k =

+∞∑

k=0

b� k
2 �

a′
k√
2

=
+∞∑

k=0

bk
a′
2k + a′

2k+1√
2

=
+∞∑

h=0

+∞∑

k=0

bh〈εt−h, εt−k〉H
a′
2k + a′

2k+1√
2

= 〈X ,R∗Y 〉H .

Therefore, R∗ is the adjoint of the scaling operator.
Regarding the kernel of R∗, we show that

ker(R∗) =
{+∞∑

k=0

d(1)
k (εt−2k − εt−2k−1) ∈ Ht (ε) : d(1)

k ∈ A

}

.

Any element X = ∑∞
k=0 d

(1)
k (εt−2k − εt−2k−1) of Ht (ε) can be rewritten as X =∑∞

h=0 ahεt−h with a2k+1 = −a2k for every k ∈ N0, i.e., a2k + a2k+1 = 0. Conse-
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quently, R∗X = 0 and so

{+∞∑

k=0

d(1)
k (εt−2k − εt−2k−1) ∈ Ht (ε) : d(1)

k ∈ A

}

⊂ ker(R∗). (B12)

Conversely, take any X =∑∞
h=0 ahεt−h in ker(R∗). Since ‖R∗X‖ϕ̄ = 0,

1

2

+∞∑

k=0

Tr
((
a2k + a2k+1

)(
a′
2k + a′

2k+1

))

= 1

2

+∞∑

k=0

m∑

p=1

m∑

q=1

(a2k(p, q) + a2k+1(p, q))2 = 0.

It follows that a2k+1(p, q) = −a2k(p, q) for any k ∈ N0 and p, q = 1, . . . ,m.
Therefore,a2k+1 = −a2k for any k ∈ N0.As a result, X =∑∞

k=0 d
(1)
k (εt−2k−εt−2k−1)

with d(1)
k = a2k and so the converse inclusion in (B12) holds. As a result,

LR
t = ker(R∗) =

{+∞∑

k=0

b(1)
k ε

(1)
t−2k ∈ Ht (ε) : b(1)

k ∈ A

}

.

Moreover,

RLR
t =

{+∞∑

k=0

b(2)
k ε

(2)
t−4k ∈ Ht (ε) : b(2)

k ∈ A

}

and, for any j ∈ N,

R j−1LR
t =

{+∞∑

k=0

b( j)
k ε

( j)
t−k2 j ∈ Ht (ε) : b( j)

k ∈ A

}

.

As the case with j ∈ N follows by induction, we focus on RLR
t and prove that

RLR
t =

{+∞∑

k=0

d(2)
k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) ∈ Ht (ε) : d(2)

k ∈ A

}

.

(B13)
Consider any Y ∈ RLR

t . As Y is the image of some X ∈ LR
t , there exists a sequence

of matrices {d(1)
k }k such that X =∑∞

k=0 d
(1)
k (εt−2k − εt−2k−1) and

Y =
+∞∑

k=0

d(1)
k√
2

(εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) .

As a result, RLR
t is included in the module in (B13).
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Conversely, consider any
∑∞

k=0 d
(2)
k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3)

in Ht (ε). Then, Y belongs to RLR
t too, because it is the image of X =

∑∞
k=0

√
2d(2)

k (εt−2k − εt−2k−1) in LR
t . Consequently, the relation in (B13) holds.

The decomposition of the Hilbert A-module Ht (ε) is, then, achieved. �

B.3 Proof of Theorem 4

By applying the MCWD (Theorem 2) to the zero-mean, weakly stationary purely
non-deterministic process x, we find that xt belongs to the Hilbert A-module Ht (ε),
where ε is the unit variance white noise of classical Wold innovations of x. Notably,
Ht (ε) orthogonally decomposes as in Theorem 3. By denoting g( j)

t the orthogonal
projections of xt on the submodulesR j−1LR

t , we find that xt =∑∞
j=1 g

( j)
t , where the

equality is in norm (recall that ‖ ‖H and ‖ ‖ϕ̄ are equivalent by Proposition 12). Then,
by using the characterizations of submodules R j−1LR

t , for any scale j ∈ N we find a

sequence of matrices {β( j)
k }k such that Eq. (8) holds with∑∞

k=0 Tr(β
( j)
k β

( j)
k

′
) < +∞.

As a consequence, we can decompose xt as in Eq. (6).
1. As we can see in Eq. (3), the process ε

( j)
t is a MA(2 j − 1) with respect to

the fundamental innovations ε. In addition, the subprocess {ε( j)
t−k2 j }k∈Z is weakly

stationary. Indeed, since ε is a multivariate white noise, E[ε( j)
t−k2 j ε

( j)
t−k2 j

′] is finite and
it does not depend on k: for any k ∈ Z,

E

[
ε
( j)
t−k2 j ε

( j)
t−k2 j

′] = 1

2 j
E

⎡

⎣

⎛

⎝
2 j−1−1∑

i=0

εt−k2 j−i −
2 j−1−1∑

i=0

εt−k2 j−2 j−1−i

⎞

⎠

·
⎛

⎝
2 j−1−1∑

i=0

ε′
t−k2 j−i −

2 j−1−1∑

i=0

ε′
t−k2 j−2 j−1−i

⎞

⎠

⎤

⎦

= 1

2 j

2 j−1∑

i=0

E
[
εtε

′
t

] = 2 j

2 j
E
[
εtε

′
t

] = I .

In addition, E[ε( j)
t−k2 j ] = 0 for any k ∈ Z and the expectation does not depend on k.

Regarding the cross-moment matrix on the support S( j)
t = {t − k2 j : k ∈ N0}, for any

h �= k,

E

[
ε
( j)
t−h2 j ε

( j)
t−k2 j

′] = 1

2 j
E

⎡

⎣

⎛

⎝
2 j−1−1∑

i=0

εt−h2 j−i −
2 j−1−1∑

i=0

εt−h2 j−2 j−1−i

⎞

⎠

·
⎛

⎝
2 j−1−1∑

l=0

ε′
t−k2 j−l −

2 j−1−1∑

l=0

ε′
t−k2 j−2 j−1−l

⎞

⎠

⎤

⎦

123



Multivariate Wold decompositions: a Hilbert A-module… 85

= 1

2 j

⎧
⎨

⎩

2 j−1−1∑

i=0

2 j−1−1∑

l=0

E

[
εt−h2 j−iε

′
t−k2 j−l

]

−
2 j−1−1∑

i=0

2 j−1−1∑

l=0

E

[
εt−h2 j−iε

′
t−k2 j−2 j−1−l

]

−
2 j−1−1∑

i=0

2 j−1−1∑

l=0

E

[
εt−h2 j−2 j−1−iε

′
t−k2 j−l

]

+
2 j−1−1∑

i=0

2 j−1−1∑

l=0

E

[
εt−h2 j−2 j−1−iε

′
t−k2 j−2 j−1−l

]
⎫
⎬

⎭
.

The sets of indices {h2 j , . . . , h2 j + 2 j − 1} and {k2 j , . . . , k2 j + 2 j − 1} are disjoint
because of h �= k and so the last sums are null. In consequence, E[ε( j)

t−h2 j ε
( j)
t−k2 j

′] = 0

for all h �= k. Thus, {ε( j)
t−k2 j }k∈Z turns out to be weakly stationary on S( j)

t . In particular,
it is a unit variance white noise.

2. In order to find the exact expression of thematricesβ
( j)
k , we exploit the orthogonal

decompositions of the Hilbert A-module Ht (ε) at different scales J ∈ N:

Ht (ε) = RJHt (ε) ⊕
J⊕

j=1

R j−1LR
t .

We call π( j)
t the orthogonal projection of xt onR jHt (ε), and we proceed inductively.

We begin with the decomposition xt = π
(1)
t + g(1)

t coming from scale J = 1, i.e.,
Ht (ε) = RHt (ε) ⊕ LR

t . By using the characterization of submodules RHt (ε) and
LR
t described in the proof of Theorem 3, we set

π
(1)
t =

+∞∑

k=0

γ
(1)
k

εt−2k + εt−(2k+1)√
2

=
+∞∑

k=0

c(1)
k

(
εt−2k + εt−(2k+1)

)
,

g(1)
t =

+∞∑

k=0

β
(1)
k ε

(1)
t−2k =

+∞∑

k=0

d(1)
k (εt−2k − εt−2k−1)

for some sequences of matrices {c(1)
k }k and {d(1)

k }k , or equivalently {γ (1)
k }k and {β(1)

k }k ,
to determine in order to have xt = π

(1)
t + g(1)

t , where we set
√
2c(1)

k = γ
(1)
k and√

2d(1)
k = β

(1)
k . The expressions above may be rewritten as

xt =
+∞∑

k=0

((
c(1)
k + d(1)

k

)
εt−2k +

(
c(1)
k − d(1)

k

)
εt−2k−1

)
.
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However, from Theorem 2 we know that

xt =
+∞∑

k=0

(α2kεt−2k + α2k+1εt−2k−1) ,

where the same fundamental innovations εt are present. By the uniqueness of writing
of the MCWD, the two expressions for xt must coincide. As a result, c(1)

k and d(1)
k are

the solutions of the linear system

⎧
⎨

⎩

c(1)
k + d(1)

k = α2k

c(1)
k − d(1)

k = α2k+1,

that is,

c(1)
k = α2k + α2k+1

2
, d(1)

k = α2k − α2k+1

2
.

In particular, we find

γ
(1)
k = α2k + α2k+1√

2
, β

(1)
k = α2k − α2k+1√

2
.

Now, we focus on the scale J = 2. We exploit the decomposition of the submodule
RHt (ε) = R2Ht (ε)⊕RLR

t , which implies the relation π
(1)
t = π

(2)
t +g(2)

t . We follow
the same track as in the previous case, by using the features of the elements inR2Ht (ε)

and inRLR
t and, finally, by comparing the expression of π

(2)
t + g(2)

t with the (unique)

writing of π
(1)
t that we found before. Since

π
(2)
t =

+∞∑

k=0

γ
(2)
k

εt−4k + εt−(4k+1) + εt−(4k+2) + εt−(4k+3)

2
, g(2)

t =
+∞∑

k=0

β
(2)
k ε

(2)
t−4k,

by solving a linear system, we get

γ
(2)
k = α4k + α4k+1 + α4k+2 + α4k+3

2
, β

(2)
k = α4k + α4k+1 − α4k+2 − α4k+3

2
.

At the generic scale J = j , we retrieve the expressions of β
( j)
k and γ

( j)
k of Eqs. (7)

and (9), where π
( j)
t is also defined.

3. First of all, when t is fixed, 〈g( j)
t , g(l)

t 〉H = E[g( j)
t g(l)

t
′] = 0 for all j �= l

because g( j)
t and g(l)

t are, respectively, the projections of xt on the submodulesR j−1LR
t

and Rl−1LR
t , which are orthogonal by construction. Now, consider any g( j)

t−m2 j with

m ∈ N0. Clearly, g
( j)
t−m2 j belongs toR

j−1LR
t−m2 j but, by the definition of g

( j)
t , we can

write

g( j)
t−m2 j =

+∞∑

k=0

β
( j)
k ε

( j)
t−(m+k)2 j =

+∞∑

K=0

β
( j)
K ε

( j)
t−K2 j ,
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with β
( j)
K = 0 if K = 0, . . . ,m − 1 and β

( j)
K = β

( j)
k if K = m + k for some k ∈ N0.

As a result, g( j)
t−m2 j belongs to R j−1LR

t , too. Similarly, at scale l, taken any n ∈ N0,

it is easy to see that g(l)
t−n2l

belongs to Rl−1LR
t . Hence, the orthogonality of such

submodules guarantees that E[g( j)
t−m2 j g

(l)
t−n2l

′] = 0 for all j �= l and m, n ∈ N0.

As for the general requirement aboutE[g( j)
t−pg

(l)
t−q

′] for any j, l ∈ N and p, q, t ∈ Z,
we have

E

[
g( j)
t−pg

(l)
t−q

′] =
+∞∑

k=0

+∞∑

h=0

β
( j)
k E

[
ε
( j)
t−p−k2 j ε

(l)
t−q−h2l

′]
β

(l)
h

′

= 1√
2 j+l

+∞∑

k=0

+∞∑

h=0

β
( j)
k

2 j−1−1∑

u=0

2l−1−1∑

v=0

{
E

[
εt−p−k2 j−uε

′
t−q−h2l−v

]

− E

[
εt−p−k2 j−uε

′
t−q−h2l−2l−1−v

]
− E

[
εt−p−k2 j−2 j−1−uε

′
t−q−h2l−v

]

+ E

[
εt−p−k2 j−2 j−1−uε

′
t−q−h2l−2l−1−v

] }
β

(l)
h

′

and so

E

[
g( j)
t−pg

(l)
t−q

′] = 1√
2 j+l

+∞∑

k=0

+∞∑

h=0

β
( j)
k

2 j−1−1∑

u=0

2l−1−1∑

v=0

{
�p−q+k2 j+u−h2l−v

− �p−q+k2 j+u−h2l−2l−1−v − �p−q+k2 j+2 j−1+u−h2l−v

+ �p−q+k2 j+2 j−1+u−h2l−2l−1−v

}
β

(l)
h

′
,

where the matrices β
( j)
k , β(l)

h do not depend on t and �n denotes the autocovariance
matrix of ε at lag n ∈ Z. Hence, after the summations over u, v and k, h, the one

remaining variables are j, l, p − q. Therefore, E[g( j)
t−pg

(l)
t−q

′] depends at most on
j, l, p − q. �

Appendix C Illustrations of theMEWD

To put the MEWD into practice, we first compute the scale-specific responses of
weakly stationary V AR(1) and V ARMA(1, 1) processes in closed form. Afterwards,
we briefly describe how to estimate the MEWD of weakly stationary processes in
general. Finally, we analyze the persistent dynamics of Blanchard and Quah (1989)
bivariate process through the MEWD.
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C.1 TheMEWD of VAR(1) and VARMA(1,1)

Consider a weakly stationary purely non-deterministic vector ARMA(1, 1) process,
or V ARMA(1, 1), x = {xt }t∈Z defined by xt = ρxt−1 + εt + θεt−1, where ρ, θ ∈ A,
ρ + θ �= 0 and ε = {ε}t∈Z is a multivariate unit variance white noise. We assume the
stationarity condition ‖ρ‖A < 1.8

By using the lag operator L, we can rewrite the previous equation as (I −ρL)xt =
(I + θL)εt . Since ‖ρ‖A < 1, the operator

∑∞
l=0(ρL)l is well-defined. Moreover, the

operator (I − ρL) is invertible with
∑∞

l=0(ρL)l as inverse. Therefore, the moving
average representation of xt is

xt = (I − ρL)−1(I + θL)εt = εt +
+∞∑

l=1

ρl−1(ρ + θ)εt−l =
+∞∑

h=0

αhεt−h

with α0 = 1 and αh = ρh−1(ρ + θ) for all h ∈ N.
We compute the scale-specific responses by Eq. (7). Fixed a scale j ∈ N, we obtain

β
( j)
0 = 1√

2 j

{
I + (I − ρ)−1

(
I − 2ρ2 j−1−1 + ρ2 j−1

)
(ρ + θ)

}
,

β
( j)
k = 1√

2 j
(I − ρ)−1

(
I − ρ2 j−1

)2
ρk2 j−1(ρ + θ) ∀k ∈ N.

By setting θ = 0, we find the scale-specific responses of a V AR(1):

β
( j)
k = 1√

2 j
(I − ρ)−1

(
I − ρ2 j−1

)2
ρk2 j ∀k ∈ N0.

As an example, consider a weakly stationary bivariate VAR(1) process with xt =
[yt , zt ]′, εt = [ut , vt ]′ as unit variance white noise and ρ = [a, b; c, d], that is

[
yt
zt

]
=
[
a b
c d

] [
yt−1

zt−1

]
+
[
ut
vt

]
.

For any j ∈ N and k ∈ N0, the scale-specific responses β
( j)
k turn out to be

β
( j)
k = 1√

2 j [(1−a)(1−d)−bc]

[
1 − d −b
−c 1 − a

](

I −
[
a b
c d

]2 j−1)2 [
a b
c d

]k2 j

.

C.2 Estimation of theMEWD

When the moving average representation of the weakly stationary process x = {xt }t∈Z
is not known, to obtain theMEWD,one can follow the similar procedure of Subsections
3.1.1 and 3.2.1 in Ortu et al. (2020a) and Section 5 in Di Virgilio et al. (2019). The

8 In the literature, other assumptions are also considered, e.g., stability (Lütkepohl 2005, Chapter 2).
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first step is to estimate a vector autoregressive form for xt . Then, a moving average
representation can be retrieved. Finally, detail processes and scale-specific responses
can be obtained from Eqs. (3) and (7), respectively. More details can be found in the
next subsection, in the special case of Blanchard and Quah (1989) model.

C.3 Blanchard and Quah’s model

The macroeconomic model of Blanchard and Quah (1989) studies the impulse
responses of GNP and unemployment to demand and supply shocks. We reproduce
the model and analyze the responses through the MEWD in order to quantify the
persistence of different disturbances.

We consider the algebra A of 2×2 matrices, and we take into account a zero-mean
weakly stationary purely non-deterministic bivariate time series x = {xt }t∈Z such that

xt =
+∞∑

h=0

αhεt−h, αh ∈ A, (C14)

where ε = {εt }t∈Z is a unit variance bivariate white noise and
∑∞

h=0 Tr(αhα
′
h) is finite.

In Blanchard andQuah (1989), xt = [yt , zt ]′, where yt is the first-difference process of
log real GNP (or output growth) and zt is the seasonally adjusted unemployment rate
for males aged more than 20. The impulse responses satisfy the long-run restriction∑∞

h=0 αh(1, 1) = 0, which is crucial for the identification. Indeed, xt is supposed to
have also the MA representation

xt =
+∞∑

h=0

chηt−h, ch ∈ A, (C15)

where η = {ηt }t∈Z is a bivariate with noise with covariance matrixω, generally differ-
ent from the identity. Here, ηt are the reduced-form residuals, while εt are the structural
shocks. Equation (C15) provides the formulation obtained by estimating the time series
parameters from the data. Specifically, we first estimate a vector autoregressive form
for xt , that is

xt =
N∑

k=1

bkxt−k + ηt , bk ∈ A, N ∈ N.

The matrix ω is estimated by the covariance matrix of the residuals in the multivariate
regression. Then, the autoregressive form implies that

xt = ηt +
N∑

k=1

bk

+∞∑

h=0

chηt−k−h = ηt +
+∞∑

n=1

⎛

⎝
n−1∑

h=max{n−N ,0}
bn−hch

⎞

⎠ ηt−n .
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Fig. 1 Bottom: impulse responses of output growth (blue) and unemployment rate (red) with respect to
demand (left panel) and supply (right panel) shocks. The sole difference of upper graphs is that they contain
the impulse responses of output (the cumulated responses of output growth) (Color figure online)

From the last expression, we can find the MA matrix coefficients of Eq. (C15):

c0 = I , cn =
n−1∑

h=max{n−N ,0}
bn−hch ∀n ∈ N.

The MA representations (C14) and (C15) of xt are related by ηt = α0εt and
αh = chα0, where the matrix α0 is such that ω = α0α

′
0. However, many choices

for α0 are possible since the factorization of ω provides only three conditions for the
identification of α0. The long-run restriction (together with the signs restrictions) is an
additional requirement that ensures the identification of structural shocks (Lütkepohl
2005, Section 9.1.4).

By the Cholesky factorization, there exists a unique lower triangular matrix s, such
that ω = ss′ (Trefethen and Bau III 1997, Lecture 23). Any α0 such that ω = α0α

′
0

is an orthonormal transformation of s, namely α0 = sr ′ with r ∈ A orthonormal. The
long-run restriction and the sign restrictions r(1, 2) < 0, r(2, 1) > 0 imply that r is
uniquely determined by

r = − 1√
ϑ2 + 1

[
ϑ 1
−1 ϑ

]
, ϑ = − s(2, 2)

∑∞
h=0 ch(1, 2)

s(1, 1)
∑∞

h=0 ch(1, 1) + s(2, 1)
∑∞

h=0 ch(1, 2)
.

By using these parameters, we get theMAof Eq. (C14), where the univariate shocks
are simultaneously uncorrelated.
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Blanchard and Quah (1989) data, which are freely released, are quarterly and span
from 1950 : Q2 to 1987 : Q4. The maximum autoregressive lag N is chosen equal
to 8. To reduce non-stationarity, zt is linearly detrended, while yt is demeaned by
splitting the sample into two parts: before and after 1973 : Q4. The bivariate structural
innovation εt = [ut , vt ]′ consists of the demand shock ut and the supply shock vt .
The impulse responses of output are obtained by cumulating the impulse responses of
yt . They are plotted (together with the impulse responses of zt ) in the top panels of
Fig. 1, which reproduce Figures 1 and 2 in Blanchard and Quah (1989). The impulse
responses of output with respect to ut converge to zero in the long term by the long-run
restriction. This phenomenon is not present in the impulse responses of output with
respect to vt : demand shocks have transitory effects, while supply disturbances have
a permanent impact on output.

Demand shocks have opposite hump-shaped effects on output and unemployment,
with a peak after two or four quarters. Moreover, the impact of ut vanishes after 3 or
5years: demand disturbances have similar relevant effects on GNP and employment,
but, definitively, the subsequent adjustment of prices and wages leads the economy
back to the equilibrium. As for supply shocks, the influence of innovations vt on
output cumulates over time, reaching a peak after 2years. Except for the first quarter,
output is increasing. Then, the output response declines and stabilizes on a steady level
after 5years from the initial shock. A different reaction, however, characterizes the
unemployment rate. Indeed, even if the supply disturbance is favorable (due, e.g., to a
productivity increase), in the short term zt rises, plausibly because of wage rigidities.
After several quarters zt drops and, later, it slowly reverts to the original value. No
effect is present after 5years.

The lower graphs of Fig. 1 display the (non-cumulated) impulse responses of yt ,
together with those of zt . The non-monotonic responses of output in top panels cor-
respond to oscillatory and sign changing responses of yt in bottom panels. The latter
reveal the presence of contrasting reactions that, overall, generate the hump-shaped
responses. We now use the MEWD to shed light on the persistence of the shocks
causing opposite reactions on different time scales.

From a sample of 159 data points, we estimate the first 7 scales in the MEWD and
we plot in Fig. 2 the variance decompositions of yt and zt illustrated in Sect. 4.3. The
two left panels, inspired by Eq. (10), regard the decomposition across scales without
distinguishing between the two sources of randomness. The middle and right panels
further disentangle the contribution across time scales of demand and supply shocks,
followingEq. (11). From thefigure, it is apparent that the unemployment rate is a longer
term phenomenon than output growth. Indeed, most of the variance of zt is explained
by persistent components at scales 4, 5 and 6, involving shocks from 4 to 16years.
On the contrary, the variance of yt comes from scales 1–3, i.e., from disturbances
lasting from 6months to 2years, with an additional sizable contribution given by scale
4. Moreover, the analysis of individual shocks reveals that demand shocks provide
the most variability of both output growth and unemployment. In agreement with the
long-run restriction, the response of yt to supply shocks operates mainly at scale 4
(involving 4-year innovations), while the response of the same variable to demand
shocks is more concentrated on lower scales (1–3). However, demand shocks explain
relatively more variance.
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Fig. 2 Relative variance of output growth and unemployment rate explained by each scale

We can compare the results of Fig. 2 with the analysis of the spectral density matrix
of xt . Following Example 11.8.1 in Brockwell and Davis (2006), we rewrite Eq. (C14)
by using a time-invariant linear filter U :

xt = U (L)εt with U (L) =
+∞∑

h=0

αhLh,

where we assume that the entries ofU (L) are absolutely summable. Then, the spectral
density matrix of xt is, for any π < λ � π ,

fx (λ) = 1

2π
U
(
e−iλ

)
U ′ (eiλ

)
=
[
fy(λ) fyz(λ)

fzy(λ) fz(λ)

]
,

where the spectral density of output growth satisfies

2π fy(λ) =
∣∣∣∣∣

+∞∑

h=0

αh(1, 1)e
−ihλ

∣∣∣∣∣

2

+
∣∣∣∣∣

+∞∑

h=0

αh(1, 2)e
−ihλ

∣∣∣∣∣

2

=
+∞∑

h=0

+∞∑

k=0

(αh(1, 1)αk(1, 1) + αh(1, 2)αk(1, 2)) cos (λ(k − h)), (C16)

the spectral density of unemployment is similar, i.e.,

2π fz(λ) =
∣∣∣∣∣

+∞∑

h=0

αh(2, 1)e
−ihλ

∣∣∣∣∣

2

+
∣∣∣∣∣

+∞∑

h=0

αh(2, 2)e
−ihλ

∣∣∣∣∣

2

, (C17)
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Fig. 3 On the left, spectral densities of output growth and unemployment rate. In the middle, contributions
of demand shocks to such densities. On the right, contributions of supply shocks to the same densities

the cross-spectrum satisfies

2π fyz(λ) =
+∞∑

h=0

+∞∑

k=0

(αh(1, 1)αk(2, 1) + αh(1, 2)αk(2, 2)) e
i(k−h)λ

and fzy(λ) is the complex conjugate of fyz(λ).
The left panels of Fig. 3 display the spectral densities of output growth and

unemployment. Middle panels represent the contributions of demand shocks to such
densities, i.e., the first summation terms in Eqs. (C16) and (C17). Similarly, right pan-
els display the contribution of supply shocks to fy and fz . Demand shocks keep a
prominent role with respect to supply disturbances, as it was already clear from Fig. 2.
The peaks of fy are consistent with the variance of output growth explained by scales
1–4 (top-left panels in both figures). Moreover, the low density at 0 is consistent
with the negligible variance of output explained by high scales. Supply shocks fea-
ture a peak of frequencies at roughly 0.23, in line with the peak of variance at scale
4 (top-right panels in the same figures). The spectral analysis confirms the persis-
tent nature of unemployment, which features a concentration of frequencies around
0 (bottom-left panels). Hence, Figs. 2 and 3 are consistent within them. However, the
variance decomposition of the MEWD provides simple interpretations directly in the
time domain.

Figure4 displays the scale-specific responses β
( j)
k of xt . As to supply shocks, we

confirm the positive contemporaneous reaction of output growth with respect to 4-year
innovations, captured byβ

(4)
0 (1, 2). Regarding the reaction of output growth to demand

shocks, the positive reaction causing the surge of the hump in cumulated responses
is principally due to the coefficients β

( j)
0 (1, 1) with j = 1, . . . , 4. Such responses

are simultaneous with the shock and positive. The responses at other lags and scales
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Fig. 4 Scale-specific responses of output growth (in blue) and unemployment rate (in red) with respect to
demand (left panels) and supply (right panels) shocks at scales 1–6 (Color figure online)

mainly contribute to stabilize, and definitely fade out, this positive effect over time. In
line with the variance decompositions, the responses of unemployment rate to demand
shocks are mainly dictated by the coefficients β

( j)
0 (2, 1) with j = 4, 5, 6, which are

negative and occur instantaneously (lag zero). These scale-specific responses generate
the fall in the hump of the responses of zt to demand shocks. Interestingly, other scale-
specific coefficients, as for example β

(2)
0 (2, 1), are positive, proving the coexistence

of contrasting reactions at different time scales. The simultaneous positive impact of
demand shocks at scale 2 concurs to delay the large drop in unemployment and to
make the hump arise.

123



Multivariate Wold decompositions: a Hilbert A-module… 95

Hence, by the MEWD we can disaggregate demand/supply calendar-time shocks
and quantify the impact of innovations with heterogeneous duration in Blanchard and
Quah’s model. First, the permanent effect of supply shocks on GNP growth (assumed
by the long-run restriction) turns out to be linked to 4-year innovations. Overall,
demand shocks are more important than supply shocks in the variance explanation. In
particular, output growth positively responds to demand shocks lasting from 6months
to 2years, while the unemployment rate evolves primarily on a 4, 8 or 16-year basis.
In addition, the analysis of scale-specific responses can help in disentangling the
positive and negative reactions at different time scales that, aggregated, generate the
hump-shaped behavior of cumulated responses. The economic rigidities advocated
by Blanchard and Quah (1989) can be individuated at some scale and lag, providing
useful tools to the policy maker.
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