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Abstract
Variational analysis, a subject that has been vigorously developing for the past 40 years,
has proven itself to be extremely effective at describing nonsmooth phenomenon. The
Clarke subdifferential (or generalized gradient) and the limiting subdifferential of a
function are the earliest and most widely used constructions of the subject. A key
distinction between these two notions is that, in contrast to the limiting subdiffer-
ential, the Clarke subdifferential is always convex. From a computational point of
view, convexity of the Clarke subdifferential is a great virtue. We consider a nons-
mooth multiobjective semi-infinite programming problem with a feasible set defined
by inequality constraints. First, we introduce the weak Slater constraint qualification
and derive the Karush–Kuhn–Tucker types necessary and sufficient conditions for
(weakly, properly) efficient solution of the considered problem. Then, we introduce
two duals of Mond–Weir type for the problem and present (weak and strong) duality
results for them. All results are given in terms of Clarke subdifferential.
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1 Introduction

Amultiobjective semi-infinite programming (MOSIP in brief) is an optimization prob-
lem where two or more objectives are to be minimized on a set of feasible solutions
described by infinitely many inequality constraint functions. Optimality and dual-
ity conditions of MOSIP have been studied by many authors: (Guerra-Vazquez and
Todorov 2016; Kanzi et al. 2018) in linear case, (Goberna and Kanzi 2017; Gob-
erna et al. 2013) in convex case, (Caristi et al. 2010) in smooth case, and (Kanzi
2015; Kanzi and Nobakhtian 2013) in locally Lipschitz case. Also, Gao presented
some sufficient and duality results for MOSIPs under the various generalized convex-
ity assumptions in (Gao 2012, 2013). In almost all of the articles in MOSIP theory,
the Fritz–John-type (Karush–Kuhn–Tucker-type) necessary optimality conditions are
justified for continuous problems (under Slater constraint qualification); continuous
MOSIPs and Slater constraint qualification will be defined in Sect. 3. The first aim
of this paper is to replace these conditions by two weaker conditions, named PLV
property and weak Slater constraint qualification. Also, in all the articles mentioned
above (with the exception of Caristi et al. (2010), sufficient optimality conditions
and duality results are presented under convexity, quasiconvexity\pseudoconvexity,
and invexity assumptions for objective and restriction functions. Caristi et al. (2010)
took the (�, ρ)-invexity to state of optimality and duality theorems for MOSIPs with
differentiable data. Another aim of this paper is to extension of (�, ρ)-invexity for
nondifferentiable functions and also is to apply this concept for nonsmooth MOSIPs.
We should mention that the (�, ρ)-invexity was generalized for nonsmooth functions
in some references (e.g., Antczak 2015, 2012), but our definition and results are dif-
ferent from theirs. Some of the issues that soared in the optimization theory, in the
past four decades and suddenly declined, are the topics related to the invex functions,
their extensions, and applications. The concept of invexity was originated by Han-
son and Mond (1981) but so named by Craven (1981) for differentiable functions.
They used this concept to extend the concept of convexity in presenting sufficient
optimality conditions and duality results. After Hanson, this concept was considered
by many researchers. Invexity was generalized to nonsmooth functions by Phoung et
al. (1995), by Reiland (1990), and by Craven (1986). Also, the invexity was used in
optimality conditions and for alternative theorems by (Hanson 1999; Brandao et al.
2000), respectively. Some researchers such as Antczak have selected the extension of
the concepts of invexity and convexity as their main research areas (see, e.g., Antczak
2002, 2009a, b). These studies extended the previous concepts in a way that sufficient
and duality results could remain valid. These concepts are researched in two separate
forms, smooth and nonsmooth. The procedure to extend convexity was not limited
to invexity. But other concepts such as abstract convex functions by Rubinov (2000),
DC functions by Horst and Thoai (1999), and star-shaped functions by Cambini and
Martein (2009) were also introduced. Of course, the quasiconvex analysis also plays
a crucial role in weakening the convexity condition (Penot 1998, 2000). Since these
concepts are not related to this study, they are not delved into. But why was invexity
taken out of focus? The authors present some reasons for that: First, it seems that the
extensions of invex functions become so abstract in some levels that one can hardly
find a model for them in the real world and they can only be used as some artificial
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samples. Of course, we do not consider them as very serious because the “theory of
optimization" is one of the crossing points of pure and applied mathematics and it
is natural for it to inherit the abstractness from pure mathematics (specifically from
mathematical analysis), while in some issues, it fully functions within the framework
of the applied mathematics (e.g., modeling). Another reason seems to be the similarity
(and sometimes sameness) of proving the theorems. In fact, in many theorems which
are proved under various extensions of invexity, only the underlying assumptions will
change and the foundations will remain unchanged and these repetitions will drasti-
cally reduce the attraction and novelty of the subject. Repetition of techniques in some
articles cannot be ignored, and we think nobody would approve them. Unfortunately,
this is a plague which many scientific papers suffer from (including papers related to
optimization) and invexity is not the only subject affected by it. But the main reason
for lack of interest in researchers on invexity is the publication of article by Zalinescu
(2014). In fact, it may be claimed that the heaviest strike on invexity has been caused
by this beautiful, exact, and clever paper. Zalinescu (2014) in his article, which is a
criticism of several other papers, mentions some basic points.

• One is that, in the definition of invex functions (according to some references),
a logical instrument exists and its consequence is that all functions should be
inevitably invex. It is clear that this problem can be solved by a replacement in the
assumption of existence of η(x, y). Fortunately, this replacement for η(x, y) in the
definition of invex function does not invalidate the proofs of previous theorems
and the verdicts are still valid (as long as the authors have studied).

• Another problem that Zalinescu highlights is the falsity of some of the theorems
in the invexity-related articles to which many have referred. It is clear that it is not
the fault by invexity and negligence in inference and argument we have caused
these problems.

Considering what has been mentioned in above, we still believe that invexity and its
extensions could be studied more, and for this purpose, we investigate the concept of
(�, ρ)-invexity which has been introduced by Caristi et al. (2010) and try to present its
nonsmooth version. Of course, it should be mentioned that, in this study, if we replace
“(�, ρ)-invex" by “invex," the results will still be original which are the extensions
of the existing theorems in other articles and we have added the concept of (�, ρ)-
invexity to these extensions so that our results could be more general. We organize
the paper as follows. In the next section, we provide the preliminary results to be used
in the rest of the paper. In Sect. 3 (resp. 4), we present some necessary and sufficient
optimality conditions and duality results for weak (resp. proper) efficient solutions of
nonsmooth MOSIPs.

2 Preliminaries

In this section, we briefly overview some notions of nonsmooth analysis widely used
in formulations and proofs of main results of the paper. Nonsmooth analysis refers
to differential analysis in the absence of differentiability. It can be regarded as a
subfield of that vast subject known as nonlinear analysis. While nonsmooth analysis
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has classical roots, it is only in the last decades that the subject has grown rapidly. To
the point, in fact, that further development has sometimes appeared in danger of being
stymied, due to the plethora of definitions and unclearly related theories. For more
details, discussion, and applications, see (Clarke 1983; Hiriart-Urruty and Lemarechal
1991). Our notation and terminology are basically standard. As usual, ||x || stands for
the Euclidean norm of x ∈ R

n , and Bn denotes the closed unit ball in R
n . Given

x, y ∈ R
n , we write x � y (resp. x < y) when xi ≤ yi (resp. xi < yi ) for all

i ∈ {1, . . . , n}. Moreover, we write x ≤ y when x � y and x �= y. The zero vector of
R
n is denoted by 0n . Given a nonempty set A ⊆ R

n , we denote by A, conv(A), and
cone(A), the closure of A, the convex hull and convex cone (containing the origin)
generated by A, respectively. Also, we denote the Clarke tangent cone of A at x̂ ∈ A
by �(A, x̂), i.e.,

�(A, x̂) := {
v ∈ R

n | ∀{xr } ⊆ A, xr → x̂, ∀tr ↓ 0,

∃vr → v such that xr + trvr ∈ A ∀r ∈ N
}
.

Let x̂ ∈ R
n and let ϕ : R

n → R be a locally Lipschitz function. The Clarke directional
derivative of ϕ at x̂ in the direction v ∈ R

n and the Clarke subdifferential of ϕ at x̂
are, respectively, given by

ϕ0(x̂; v) := lim sup
y→x̂, t↓0

ϕ(y + tv) − ϕ(y)

t

and

∂cϕ(x̂) := {
ξ ∈ R

n | 〈ξ, v〉 ≤ ϕ0(x̂; v) for all v ∈ R
n}.

The Clarke subdifferential is a natural generalization of the classical derivative since it
is known that when function ϕ is continuously differentiable at x̂ , ∂cϕ(x̂) = {∇ϕ(x̂)}.
Moreover, when a function ϕ is convex, the Clarke subdifferential coincides with
∂ϕ(x̂), the subdifferential in the sense of convex analysis, i.e.,

∂ϕ(x̂) := {
ξ ∈ R

n | ϕ(x) ≥ ϕ(x̂) + 〈
ξ, x − x̂

〉 ∀ x ∈ R
n}.

It is worth to observe that if x̂ is a minimizer of locally Lipschitz function φ on a set
C , then

0 ∈ ∂cφ(x̂) + N (C, x̂),

where N (C, x̂) denotes the Clarke normal cone of C at x̂ , i.e.,

N (C, x̂) := {
x ∈ R

n | 〈x, a〉 ≤ 0, ∀a ∈ �(C, x̂)
}
.

In the following theorem, we summarize some important properties of the Clarke
subdifferential from Clarke (1983) which are widely used in what follows.

123



Optimality and duality in... 507

Theorem 1 Let ϕ and φ be functions from R
n to R which are Lipschitz near x̂ . Then,

(i) ∂c(ϕ + φ)(x̂) ⊆ ∂cϕ(x̂) + ∂cφ(x̂).

(ii) ∂c
(
λϕ

)
(x̂) = λ∂cϕ(x̂), ∀λ ∈ R.

(iii) ∂c
(
max{ϕ, φ})(x̂) ⊆ conv

(
∂cϕ(x̂) ∪ ∂cφ(x̂)

)
.

(iv) ∂cϕ(x̂) is a nonempty, convex, and compact subset of R
n.

3 On the weak efficiency

In this paper, we consider the following multiobjective semi-infinite programming
problem:

(P) inf
(
f1(x), f2(x), . . . , f p(x)

)

s.t. gt (x) ≤ 0 t ∈ T ,

x ∈ R
n,

where fi , i ∈ I := {1, 2, . . . , p} and gt , t ∈ T are locally Lipschitz functions from
R
n to R, and the index set T is arbitrary, not necessarily finite (but nonempty). An

important feature of problem (P) is that the index set T is arbitrary, i.e., may be infinite
and also noncompact. When T is finite, (P) is a multiobjective optimization problem,
and when p = 1 and T is infinite, (P) is a semi-infinite optimization problem. The
feasible set of (P) is denoted by M , i.e.,

M := {x ∈ R
n | gt (x) ≤ 0, ∀t ∈ T }.

For each x̂ ∈ M , set

Fx̂ :=
⋃

i∈I
∂c fi (x̂) and Gx̂ :=

⋃

t∈T (x̂)

∂cgt (x̂),

where T (x̂) := {t ∈ T | gt (x̂) = 0}. A feasible point x̂ is said to be efficient solution
[resp. weakly efficient solution] for (P) if and only if there is no x ∈ M satisfying
f (x) ≤ f (x̂) [resp. f (x) < f (x̂)]. Recall that the problem (P) is said to be continuous
when T is a compact metric space, gt (x) is a continuous function of (t, x) in T × R

n ,
and t �→ ∂cgt (x) is an upper semicontinuous (set-valued) mapping for each x ∈ R

n .
At almost all articles in (multiobjective) semi-infinite programming, the continuity of
problem is assumed, even in differentiable case Caristi et al. (2010). The continuity of
(P) implies the compactness of Fx̂ ∪ Gx̂ by Kanzi (2015); then, the strict separation
theorem implies that 0 ∈ conv(Fx̂ ∪ Gx̂ ) when x̂ is a weakly efficient solution of
the considered problem, and hence, the Fritz–John (FJ)-type necessary condition is
satisfied for continuous (P) at a weakly efficient solution. For extension of this well-
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known result to noncontinuous (P), we recall the following definition from (Kanzi
2011, 2014).

Definition 1 We say that (P) has the Pshenichnyi–Levin–Valadier (PLV in short)
property at x̂ ∈ M , if �(·) is finite-valued Lipschitz around x̂ , and

∂c�(x̂) ⊆ conv
( ⋃

t∈T (x̂)

∂cgt (x̂)
)

= conv
(
Gx̂

)
,

where �(·) is defined as

�(x) := sup
t∈T

gt (x), ∀x ∈ M .

It should be observed from (Goberna and Kanzi 2017; Kanzi 2014) that the PLV
property is strictly weaker than continuity for (P). Thus, the following simple theorem
is better than its continuous versions Caristi et al. (2010).

Theorem 2 (FJ necessary condition) Let x̂ be a weakly efficient solution of (P). If
the PLV property holds at x̂ , then there exist αi ≥ 0 (for i ∈ I ), and βt ≥ 0, (for
t ∈ T (x̂)), with βt �= 0 for finitely many indexes, such that

0n ∈
p∑

i=1

αi∂c fi (x̂) +
∑

t∈T (x̂)

βt∂cgt (x̂), and
p∑

i=1

αi +
∑

t∈T (x̂)

βt = 1.

Proof It is easy to see that x̂ is a global minimizer for the function

ϑ(x) := max{�(x),�(x)},

where �(x) := maxi∈I { fi (x) − fi (x̂)} and �(x) is defined as Definition 1. Thus, by
PLV property we deduce that

0n ∈ ∂cϑ(x̂) ⊆ conv
(
∂c�(x̂) ∪ ∂c�(x̂)

) ⊆ conv
([
conv(Fx̂ )

] ∪ [
conv(Gx̂ )

])
.

This means 0n ∈ conv(Fx̂ ∪ Gx̂ ), as required. ��

As well as in the classical case, the optimality implies the Karush–Kuhn–Tucker
(KKT) condition, provided some constraint qualifications are satisfied (see Caristi
et al. 2010; Gao 2012, 2013; Goberna and Kanzi 2017; Guerra-Vazquez and Todorov
2016; Goberna et al. 2013; Kanzi 2015; López and Vercher 1983). Slater’s condition
(SC) is said to be satisfied for problem (P) if there exists a Slater point, (x∗) < 0 for all
t ∈ T . It is easy to see that the SC cannot play the role of such constraint qualification
without additional convexity assumption on the restriction functions. Also, the SC
works only for continuous (multiobjective) semi-infinite problems (SIP). In fact, the
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Slater constraint qualification (SCQ) for (multiobjective) SIP consists of the following
three conditions (see López and Vercher 1983):

⎧
⎨

⎩

(I): Continuity of (P).

(II): SC.
(III): Convexity of gt functions for t ∈ T .

In the line of extension of KKT necessary condition for (P), we are going to change:
(I) the continuity of (P) by PLV property; (II) the SC by weak Slater’s condition,
introduced in Definition 2; and (III) the convexity of gts by (�, ρ)-invexity of them,
defined in Definition 3. We will use the following weaker form of SC for SIP appeared
in Hettich and Kortanek (1993).

Definition 2 We say that the weak Slater’s condition (WSC in brief) is satisfied for
(P) at x0 ∈ M if for each finite index set T ∗ ⊆ T (x0), there exists a point xT∗ ∈ R

n

such that gt (xT∗ ) < 0 for all t ∈ T ∗. Also, (P) is satisfied in global WSC (GWSC,
briefly) if for each finite index set T ∗ ⊆ T , there exists a point xT∗ ∈ R

n such that
gt (xT∗ ) < 0 for all t ∈ T ∗.

Clearly, WSC at a point is strictly weaker than GWSC. The following example
shows that the GWSC is strictly weaker than SC.

Example 1 Let T := N ∪ {0}, and

gt (x) :=
{
x − 1

t
if t ∈ N,

−x if t = 0.

It is easy to check that M = {0}, and SC does not hold. Now, assume that T ∗ is a finite
subset of T . Take max(T ∗) := q and xT∗ := 1

q+1 . Then,

gt (xT∗ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xT∗ − 1

t
= 1

q + 1
− 1

t
< 0 if t ∈ N ∩ T ∗,

−xT∗ = − 1

q + 1
< 0 if t = 0.

Thus, the GWSC holds.

Definition 3 Suppose that the functions � : R
n × R

n × R
n × R → R and ρ :

R
n × R

n → R, and the nonempty set X ⊆ R
n are given. A locally Lipschitz function

� : R
n → R is said to be (�, ρ)-invex at x∗ ∈ X with respect to X , if for each x ∈ X

one has:

�
(
x, x∗, 0n, r

) ≥ 0 for all r ≥ 0, (1)

�(x, x∗, ., .) is convex on R
n × R, (2)

�
(
x, x∗, ξ, ρ(x, x∗)

)
≤ �(x) − �(x∗), ∀ξ ∈ ∂c�(x∗). (3)
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Remark 1 Since in Antczak (2015), Antczak and Stasiak (2011), Antczak (2012) the
considered ρ is real number, Definition 2 is more general than them.

As mentioned by Antczak (2015), the definition of (�, ρ)-invexity generalizes the
almost all concepts of invexity and convexity. Also, some (�, ρ)-invex functions are
presented by Antczak (2015) which are not convex. The following example shows that
the (�, ρ)-invexity is strictly weaker than invexity.

Example 2 Consider a function � : R × R × R × R → R defined by

�(x, y, u, w) :=

⎧
⎪⎨

⎪⎩

w − u

3y2
|x3 − y3| if y �= 0,

w|x3| if y = 0.

Let x and x̂ be arbitrary elements of R. Since �(x, x̂, ., .) is a linear function and

�(x, y, 0, r) =
{
r if y �= 0,
r |x3| if y = 0,

conditions (1) and (2) hold. Take ρ(x, y) := −1 for all x, y ∈ R, and �(x) := x3.
Since �(.) is continuously differentiable on R, ∂c�(x̂) = {3x̂2}. Thus, the following
relations show that �(.) is a (�, ρ)-invex function at each x̂ ∈ R with respect to R,

�(x, x̂, 3x̂2,−1) =
{−1 − |x3 − x̂3| if x̂ �= 0,

−|x3| if x̂ = 0,

≤ x3 − x̂3 = �(x) − �(x̂).

Furthermore, as it follows byBen-Israel andMond (1986), �(.) is not an invex function
on R with respect to any η : R × R → R.

It is noteworthy that the strength of the Example 2 is that �(.) is (�, ρ)-invex for
any x̂ ∈ R

n but its weakness is that �(.) is continuously differentiable and ρ is a fixed
number. The following example presents a function � : R → R that is nonsmooth at
x∗ = 0 and (�, ρ)-invex at x̂ for a ρ that depends on x and x∗.
Example 3 Consider the functions � : R × R × R × R → R and ρ : R × R → R,
respectively, defined as

�(x, y, u, w) :=

⎧
⎪⎨

⎪⎩

w − u

3y2
|x3 − y3| if y �= 0,

(w + u2)|x3| if y = 0.

ρ(x, y) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − 1
x2

) + xy if x > 0,

−(1 + 1
x2

) + y if x < 0,

1 + y if x = 0.
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Let x∗ = 0 and � : R → R as �(x) := x3 − |x |, obviously the conditions (1) and (2)
hold. For checking condition (3), we observe that for each ξ ∈ ∂c�(x∗) = [−1, 1] and
x ∈ R we have:
�(x, x∗, ξ, ρ(x, x∗)) = (ρ(x, 0) + ξ2)|x3| ≤ ρ(x, 0)|x3|

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − 1
x2

)|x3| if x > 0,

−(1 + 1
x2

)|x3| if x < 0,

|x3| if x = 0.

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x3 − x) if x > 0,

(x3 + x) if x < 0,

0 if x = 0.

= (x3 − |x |) = �(x) = �(x) − �(x∗).

Everywhere in the following, we will assume X equals to feasible solution of (P),
i.e., X = M , but for the sake of simplicity we will omit to mention X . The following
definition is motivated by above comments.

Definition 4 Let � : R
n × R

n × R
n × R → R be a given function, and x̂ ∈ M . We

say that (P) satisfies the �-weak SCQ (�-WSCQ, briefly) at x̂, if

– the PLV property holds at x̂ ,
– WSC is satisfied at x̂ ,
– for each t ∈ T (x̂), the gt function is (�, ρt )-invex at x̂ for some given function

ρt : R
n × R

n → R.

Normally, we are interested to show Karush–Kuhn–Tucker necessary condition
for (P) under �-WSCQ assumption. In fact, the following theorem guaranties that
�-WSCQ is a constraint qualification.

Theorem 3 (KKT necessary condition) Let x̂ be a weak efficient solution of (P).
Suppose that the�-WSCQ is satisfied at x̂ with ρt (x, x̂) ≥ 0 for every (x, t) ∈ R

n×T .
Then, there exist αi ≥ 0 (for i ∈ I ) with

∑p
i=1 αi = 1, and βt ≥ 0, (for t ∈ T (x̂)),

with βt �= 0 for finitely many indexes, such that

0n ∈
p∑

i=1

αi∂c fi (x̂) +
∑

t∈T (x̂)

βt∂cgt (x̂). (4)

Proof Applying Theorem 2, we find some αi ≥ 0 and ξi ∈ ∂c fi (x̂) for i ∈ I , βt ≥ 0
and ζt ∈ ∂cgt (x̂) for t ∈ T ∗ ⊆ T (x̂) with |T ∗| < ∞, such that

∑

i∈I
αiξi +

∑

t∈T ∗
βtζt = 0n,

∑

i∈I
αi +

∑

t∈T ∗
βt = 1.
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All we need to prove is that at least one αi should be positive. If it is not this case,
then

∑

t∈T ∗
βtζt = 0n,

∑

t∈T ∗
βt = 1.

Thus, owing to
∑

t∈T ∗
βtρt (xT∗ , x̂) ≥ 0 and Definition 2, we get

0 ≤ �
(
xT∗ , x̂,

∑

t∈T ∗
βtζt ,

∑

t∈T ∗
βtρt (xT∗ , x̂)

)

≤
∑

t∈T ∗
βt�

(
xT∗ , x̂, ζt , ρ(xT∗ , x̂)

)

≤
∑

t∈T ∗
βt

(
gt (xT∗ ) − gt (x̂)

) =
∑

t∈T ∗
βt gt (xT∗ ) < 0.

This contradiction justifies the result. ��
In order to recall the role of (�, ρ)-invexity in KKT sufficient condition, we recall

the following result from Kanzi (2017). It is noteworthy that the following theorem
is proved in Caristi et al. (2010) for MPVCs with differentiable data, and for the case
p = 1, |T | < ∞ in Antczak and Stasiak (2011).

Theorem 4 (KKT sufficient condition) Suppose that there exist a feasible solution
x̂ ∈ M, and scalars αi ≥ 0 (for i ∈ I ) with

∑p
i=1 αi = 1, and a finite set T ∗ :=

{t1, t2, . . . , tm} ⊆ T (x̂), and scalars β js ≥ 0 (for s ∈ {1, 2, . . . ,m}) such that

0 ∈
p∑

i=1

αi∂c fi (x̂) +
m∑

s=1

βts∂cgts (x̂). (5)

Moreover, if the fi functions are generalized (�, ρi )-invex at x̂ and the gt functions
are generalized (�, ρt )-invex at x̂ (for (i, t) ∈ I × T (x̂)), and

∑p
i=1 αiρi (x, x̂) +∑m

s=1 βtsρts (x, x̂) ≥ 0 for all x ∈ M, then x̂ is a weak efficient solution for (P).

Now, in accordance with Caristi et al. (2006) and similar to Antczak (2009a, b),
we introduce a dual of Mond and Weir (1981) type for (P) that is in connection with
weak efficiency. For y ∈ R

n , T ∗ ⊆ T with |T ∗| < ∞, and β := (βt )t∈T ∗ ≥ 0|T ∗|,
put

f �(y, β, T ∗) :=
(
f1(y) +

∑

t∈T ∗
βt gt (y), . . . , f p(y) +

∑

t∈T ∗
βt gt (y)

)
.

Consider the following dual problem:

(D�
1) : max

{
f �(y, β, T ∗) | ∃α := (αi )i∈I , (α, y, β, T ∗) ∈ M�

1

}
,
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where the feasible set M�
1 is defined by

M�
1 :=

{
(α, y, β, T ∗) | y ∈ R

n, T ∗ ⊆ T , |T ∗| < ∞, (βt )t∈T ∗ ≥ 0|T ∗|,

(αi )i∈I ≥ 0p,
p∑

i=1

αi = 1, 0n ∈
p∑

i=1

αi∂c fi (y) +
∑

t∈T ∗
βt∂cgt (y)

}
.

Since the proofs of following two theorems are similar to Antczak (2015) and Caristi
et al. (2010), we omit them. Notice that we can rewrite the proofs of Theorems 9 and
10 (which will be expressed in the next section) with a little change for the following
theorems.

Theorem 5 (weak duality for (D�
1)) Let x ∈ M and (α, y, β, T ∗) ∈ M�

1 . If the fi
functions for i ∈ I are (�, ρi )-invex at y, the gt functions for t ∈ T ∗ are (�, ρt )-invex
at y, and

∑p
i=1 αiρi (x, y) + ∑

t∈T ∗ βtρt (x, y) ≥ 0, then f (x) ≮ f �(y, β, T ∗).

Theorem 6 (strong duality for (D�
1)) Suppose that x̂ is a weak efficient of (P) and

that �-WSCQ is satisfied at x̂ . If each fi functions (for i ∈ I ) is (�, ρi )-invex at
x̂ with ρi (x, x̂) ≥ 0 for every x ∈ R

n, then there exist α̂i ≥ 0 (for i ∈ I ) with∑p
i=1 α̂i = 1, and T ∗

1 ⊆ T (x̂) with |T ∗
1 | < ∞, and β̂t ≥ 0 (for t ∈ T ∗

1 ), such that

(α̂, x̂, β̂, T ∗
1 ) ∈ M�

1 and f (x̂) = f �(x̂, β̂, T ∗
1 ). Furthermore, (α̂, x̂, β̂, T ∗

1 ) is a weak

efficient solution for dual problem (D�
1).

4 On the proper efficiency

Proper efficiency is a very important notion used in studying multiobjective optimiza-
tion problems. There are many definitions of proper efficiency in literature, as those
introduced by Geoffrion, Benson, Borwein, and Henig; see Guerraggio et al. (1994)
for a comparison among the main definitions of this notion. We recall the following
definition from Gopfert et al. (2003).

Definition 5 A point x̂ ∈ M is called a properly efficient solution of (P) when there
exists a λ > 0p such that

〈λ, f (x̂)〉 ≤ 〈λ, f (x)〉, ∀x ∈ M .

As proved in Ehrgott (2005), the above definition of proper efficiency is weaker than
its other definitions (under some assumed conditions). Thus, the following theorem
can be extended to other sense of proper efficiency under further assumptions.

Theorem 7 (KKT strong necessary condition) Let x̂ be a proper efficient solution of
(P). Suppose that the �-WSCQ is satisfied at x̂ with ρt (x, x̂) ≥ 0 for every x ∈ R

n.
Then, there exist αi > 0 (for i ∈ I ) with

∑p
i=1 αi = 1, and βt ≥ 0, (for t ∈ T (x̂)),

with βt �= 0 for finitely many indexes, such that (4) fulfilled.
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Proof By the definition of proper efficiency, there exist some scalars λi > 0 (for i ∈ I )
such that x̂ is a minimizer of the following scalar semi-infinite problem:

min
x∈M

p∑

i=1

λi fi (x).

Applying Theorem 3, we get

0n ∈ ∂
( p∑

i=1

λi fi (·)
)
(x̂) +

∑

t∈T (x̂)

μt∂cgt (x̂) ⊆
p∑

i=1

λi∂c fi (x̂) +
∑

t∈T (x̂)

μt∂cgt (x̂),

for some μt ≥ 0, (t ∈ T (x̂)), with μt �= 0 for finitely many indexes. For each i ∈ I
take αi := λi∑p

i=1 λi
, and for each t ∈ T (x̂) put βt := μt∑p

i=1 λi
. ��

Now, we state the sufficient condition for proper efficiency of (P) as follows.

Theorem 8 (KKT strong sufficient condition) Let x̂ ∈ M. Suppose that there exist
some scalarsαi > 0 (for i ∈ I ) with

∑p
i=1 αi = 1, a finite set T ∗ := {t1, t2, . . . , tm} ⊆

T (x̂), and some scalars βts ≥ 0 (for s ∈ {1, 2, . . . ,m}) such that (4) holds. Moreover,
if the fi functions for i ∈ I are (�, ρ)-invex at x̂ (this means that all ρi s are equal
to ρ for i ∈ I ), and the gts functions for s ∈ {1, . . . ,m} are (�, ρts )-invex at x̂ , and∑p

i=1 αiρi (x, x̂) + ∑m
s=1 βtsρts (x, x̂) ≥ 0 for all x ∈ M, then x̂ is a proper efficient

solution for (P).

Proof Owing to (4), we can find some ξi ∈ ∂c fi (x̂) and ζts ∈ ∂cgts (x̂) for i ∈ I and
s ∈ {1, . . . ,m}) such that

p∑

i=1

αiξi +
m∑

s=1

βts ζts = 0n,
p∑

i=1

αi +
m∑

s=1

βts > 0.

Put α̂i := αi∑p
i=1 αi+∑m

s=1 βts
and β̂ts := βts∑p

i=1 αi+∑m
s=1 βts

. Due to assumptions of theo-

rem, the following inequalities hold:

0 ≤ �
(
x, x̂,

p∑

i=1

α̂iξi +
m∑

s=1

β̂ts ζts ,

p∑

i=1

α̂iρi (x, x̂) +
m∑

s=1

β̂tsρts (x, x̂)
)

≤
p∑

i=1

α̂i�
(
x, x̂, ξi , ρi (x, x̂)

) +
m∑

s=1

β̂ts�
(
x, x̂, ζts , ρts (x, x̂)

)
. (6)

On the other hand, the (�, ρts )-invexity of gts functions implies that for each s ∈
{1, . . . ,m} we get

�
(
x, x̂, ζts , ρts (x, x̂)

) ≤ gts (x) − gts (x̂) = gts (x) ≤ 0. (7)
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From (6) and (7), we conclude that

p∑

i=1

α̂i�
(
x, x̂, ξi , ρi (x, x̂)

) ≥ 0 ⇒
p∑

i=1

αi�
(
x, x̂, ξi , ρi (x, x̂)

) ≥ 0. (8)

Employing [Antczak and Stasiak (2011), Proposition 11] and
∑p

i=1 αi = 1,we deduce
that

∑p
i=1 αi fi is a (�, ρ)-invex function. Therefore, (8) yields that

p∑

i=1

αi fi (x̂) ≤
p∑

i=1

αi fi (x), ∀x ∈ M .

Since αi > 0 for all i ∈ I , we can take λi = αi in Definition 5, and the proof is
complete. ��

For given y ∈ R
n , T ∗ ⊆ T with |T ∗| < ∞, and β := (βt )t∈T ∗ ≥ 0|T ∗|, set

the f �(y, β, T ∗) function as previous section. In connection with the problem (P),
we consider the following dual of Mond–Weir-type problem (which is different with
(D�

1)):

(D�
2) : max

{
f �(y, β, T ∗) | ∃α := (αi )i∈I , (α, y, β, T ∗) ∈ M�

2

}
,

in which M�
2 is defined as

M�
2 :=

{
(α, y, β, T ∗) | y ∈ R

n, T ∗ ⊆ T , |T ∗| < ∞, (βt )t∈T ∗ ≥ 0|T ∗|,

(αi )i∈I > 0p,
p∑

i=1

αi = 1, 0n ∈
p∑

i=1

αi∂c fi (y) +
∑

t∈T ∗
βt∂cgt (y)

}
,

Remark 2 It should be noted that the dual problems presented in some articles are
constructed with infinite index sets (unlike the problems (D�

1) and (D�
2)); to study such

problems, we can refer to surveys (Hettich and Kortanek 1993; López and Still 2007)
and their references. Clearly, dual problems defined by a finite index set (including
the problems (D�

1) and (D�
2)) are more efficient and usable in terms of application.

The next two theorems describe (weak and strong) duality relations between the prime
problem (P) and the dual problem (D�

2).

Theorem 9 (weak duality for (D�
2)) Let x ∈ M and (α, y, β, T ∗) ∈ M�

2 . If the fi
functions for i ∈ I are (�, ρi )-invex at y, the gt functions for t ∈ T ∗ are (�, ρt )-invex
at y, and

∑p
i=1 αiρi (x, y) + ∑

t∈T ∗ βtρt (x, y) ≥ 0, then f (x) � f �(y, β, T ∗).
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Proof Assume on the contrary that f (x) ≤ f �(y, β, T ∗). Thus, there exists an index
k ∈ I such that

{
fi (x) ≤ fi (y) + ∑

t∈T ∗ βt gt (y), ∀i ∈ I \ {k},
fk(x) < fk(y) + ∑

t∈T ∗ βt gt (y).
(9)

For each i ∈ I and t ∈ T ∗, set

α̃i := αi

1 + ∑
t∈T ∗ βt

, and β̃t := βt

1 + ∑
t∈T ∗ βt

.

Since (α, y, β, T ∗) ∈ M�
2, we have

∑p
i=1 α̃i + ∑

t∈T ∗ β̃t = 1, and

p∑

i=1

α̃iξi +
∑

t∈T ∗
β̃tζt = 0n, (10)

for some ξi ∈ ∂c fi (y), i ∈ I , and ζt ∈ ∂cgt (y), t ∈ T ∗. It follows from (9) and
(̃α1, . . . , α̃p) > 0p that

p∑

i=1

α̃i
(
fi (x) − fi (y)

)
<

p∑

i=1

[
α̃i

∑

t∈T ∗
βt gt (y)

]

=
( ∑

t∈T ∗
βt gt (y)

)( p∑

i=1

α̃i

)
≤

∑

t∈T ∗
βt gt (y). (11)

At the same time, Eq. (10) implies that

0 ≤ �
(
x, y,

p∑

i=1

α̃iξi +
∑

t∈T ∗
β̃tζt ,

p∑

i=1

α̃iρi (x, y) +
∑

t∈T ∗
β̃tρt (x, y)

)

≤
p∑

i=1

α̃i�
(
x, y, ξi , ρi (x, y)

) +
∑

t∈T ∗
β̃t�

(
x, y, ζt , ρt (x, y)

)

≤
p∑

i=1

α̃i
(
fi (x) − fi (y)

) +
∑

t∈T ∗
βt

(
gt (x) − gt (y)

)

≤
p∑

i=1

α̃i
(
fi (x) − fi (y)

) −
∑

t∈T ∗
βt gt (y),

where the last inequality holds by x ∈ M . The above inequality contradicts (11), and
the proof is complete. ��
Theorem 10 (strong duality for (D�

2)) Suppose that x̂ is a properly efficient solution
of (P) and that �-WSCQ is satisfied at x̂ . If each fi functions (for i ∈ I ) is (�, ρi )-
invex at x̂ with ρi (x, x̂) ≥ 0 for every x ∈ R

n, then there exist α̂i > 0 (for i ∈ I )
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with
∑p

i=1 α̂i = 1, and T ∗
1 ⊆ T (x̂) with |T ∗

1 | < ∞, and β̂t ≥ 0 (for t ∈ T ∗
1 ), such

that (α̂, x̂, β̂, T ∗
1 ) ∈ M�

2 and f (x̂) = f �(x̂, β̂, T ∗
1 ). Furthermore, (α̂, x̂, β̂, T ∗

1 ) is an

efficient solution for dual problem (D�
2).

Proof According to Theorem 7, there exist α̂ := (α̂i )i∈I > 0p, with
∑p

i=1 α̂i = 1,
and T ∗

1 ⊆ T (x̂) with |T ∗
1 | < ∞, and β̂t ≥ 0, t ∈ T ∗

1 such that

0n ∈
p∑

i=1

α̂i∂c fi (x̂) +
∑

t∈T ∗
1

β̂t∂cgt (x̂).

This means (α̂, x̂, β̂, T ∗
1 ) ∈ M�

2. Obviously, t ∈ T ∗
1 ⊆ T (x̂) implies

f �(x̂, β̂, T ∗
1 ) :=

(
f1(x̂) +

∑

t∈T ∗
1

βt gt (x̂), . . . , f p(x̂) +
∑

t∈T ∗
1

β̂t gt (x̂)
)

= f (x̂).

(12)

Now, invoking the weak duality result in Theorem 9, and take (12) into account, we
get f �(x̂, β̂, T ∗

1 ) � f �(y, β, T ∗) for any (α, y, β, T ∗) ∈ M�
2. This gives us that

(x̂, β̂, T ∗
1 ) is an efficient solution for the dual problem (D�

2). ��
Remark 3 Note that our strong duality result appeared in Theorem 10 is not in an
ordinary way; that is, the solution of the dual problem is not guaranteed properly
efficient, only efficient, although the solution to the prime one is properly efficient. It
is noteworthy that in [Antczak (2012), Theorem 19] a relationship has been established
between the properly efficient solutions of primary and dual problems; and this ismade
possible by choosing the concept of properly efficient in Geoffrion type in Antczak
(2012), which is weaker than properly efficient in type of Definition 5 [see Ehrgott
(2005), Theorem 3.11].

Remark 4 Similar to Caristi et al. (2010), we can define quasi (�, ρ)-quasiinvex
functions and (�, ρ)-pseudoinvex functions, and then, we can prove some weaker
optimality and duality results for (P). Since the proof of these extensions are similar
to previous theorems, we omit them.
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