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Abstract
Groundwater is a common resource that has been wasted for years. Today, we pay the
consequences of such inappropriate exploitation and we are aware that it is necessary
to realize policies in order to guarantee the use of this resource for future generations.
In fact, the irrational exploitation of water by agents, nevertheless it is a renewable
resource, may cause its exhaustion. In our paper, we develop a differential game to
determine the efficient extraction of groundwater resource among overlapping genera-
tions. We consider intragenerational as well as intergenerational competition between
extractors that exploit the resource in different time intervals, and so the horizons of
the players in the game are asynchronous. Feedback equilibria have been computed in
order to determine the optimal extraction rate of “young” and “old” agents that coexist
in the economy. The effects of the withdrawal by several generations are numerically
and graphically analyzed in order to obtain results on the efficiency of the groundwater
resource.
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1 Introduction

The intensive exploitation of groundwater resources represents an issue that must be
addressednot only for the current generations but also for future ones. In fact, the social,
economic and environmental consequences due to the intensive use of the groundwa-
ter require greater attention and a more parsimonious use policy to preserve these
resources for future generations. Some negative consequences can be, for instance,
land subsidence, increment in the vulnerability of agriculture, increases in pumping
costs and so on. Groundwater resources are often exploited under a common prop-
erty regime; that is, the access is restricted to land owners situated over the aquifer.
Gisser and Sanchez (1980) propose their seminal work about aquifer management
regime, and they estimate that welfare gains from policy intervention are inefficient
with respect to competitive outcomes. Gisser and Sanchez’s theoretical prediction is
that if the storage capacity of the aquifer is relatively large, then the two approaches
would be very close. These results have produced a large literature about groundwater
management, see Koundouri (2004). Using the game theory approach, some authors
assume that farmers are myopic and take decisions over a short period of time, without
considering the impact of the other users or future generations on the available water
stock. Instead, other authors propose the exploitation of the water resource in the long
period. Negri (1989) determines open-loop and feedback Nash solutions showing that
the open-loop equilibrium captures only the pumping cost externality, instead in the
feedback approach, also the strategic externalities emerge. However, if the objective
function of the problem is concave, Provencher andBurt (1993) show that the feedback
solution increases in inefficiency in comparison with the socially optimal outcome.
Starting from Gisser and Sanchez’ model, Rubio and Casino (2001, 2003) propose a
differential game studying open-loop and feedback scenarios over an infinite planning
horizon and determine analytical solutions of the social optimum. Their results are in
line with those of Negri (1989) and Gisser and Sanchez (1980). In fact, they show that
strategic behavior increases the exploitation of the aquifer compared with the open-
loop solution, but if the groundwater storage capacity is large, then the difference
between the social optimum and private extraction is negligible. Esteban and Albiac
(2011) introduce ecosystem damages showing that these environmental externalities
can change results substantially. In Biancardi and Maddalena (2018), Biancardi and
Maddalena (2019), authors consider heterogeneous farmers in terms of behavior. In
particular, cooperators and outsiders are considered in the exploitation of the water
resource.

The problem of groundwater exploitation is strictly connected with intergenera-
tional equity. In fact, extraction activity of present generations influences the choices
of future generations. In the past, authors that have analyzed the intertemporal exploita-
tion of renewable resources have been, for instance, Chiarella et al. (1984), Kaitala
(1993), Clemhout et al. (1985), Jørgensen and Yeung (1996) and so on. The quoted
literature assumes that the players have identical infinite time horizons. The sustain-
ability of resource extraction among generations has been considered for the first
time by Burton (1993) that analyzes intertemporal preferences and intergenerational
equity in a renewable resource harvesting. Mourmouras (1993) examines government
policies in an overlapping generations model with renewable resources. Carrera and
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Moran (1995) assume that agents make decisions only in the first period and ana-
lyze the dynamics obtained by the equilibrium solution in an overlapping generations
model. However, these papers do not address the problem from the perspective of the
game theory analysis.

Following the approach given by Jørgensen and Yeung (1999) and Grilli (2008),
we propose a differential game to determine the efficient extraction of groundwa-
ter resources among overlapping generations considering intragenerational as well as
intergenerational competition. Our approach is based on the asynchronous horizons
of the players resulting from overlapping generations. We assume that players that use
the groundwater resource are active during their entire economic life span. We obtain
feedback Nash equilibria which describe strategies of extractors. Finally, we empha-
size our results in terms of efficiency (see Banker 1980; Banker et al. 1989) of the
groundwater pumping system proposing same numerical applications. The paper is
organized in the following way. Section 2 presents the model, and in Sect. 3, we inves-
tigate feedback Nash equilibrium. In Sect. 4, we propose some numerical applications,
and finally, in Sect. 5, we conclude.

2 Themodel

The model proposes a dynamic equation for the water table and a set of net benefits
from groundwater use. The differential equation which describes the dynamic of the
water table is obtained as the difference between natural recharge and net extractions

Ḣ = 1

�S

[
R + (γ − 1)W

] ; H(0) = H0 (1)

where H is the height of the aquifer, R denotes the natural recharge, �S is the area
of the aquifer, 0 < γ < 1 is the constant return flow coefficient of irrigation water, W
is the amount of the groundwater pumped, and H0 is the initial value of groundwater
table level in the first period t0 = 0.

As inGisser andSanchez (1980),we assume that the demand ofwater is a negatively
sloped linear function

W = g + kP (2)

where k < 0 and g > 0 are the price coefficient and the intercept, respectively. Under
free market, the current value of the marginal physical product of the water is

P = W

k
− g

k
(3)

We suppose that there are J + 1 overlapping generations that access the resource for
their needs and that in each generation there are n ≥ 2 identical resource extractors.
Let denote by w

j
i (s) the rate of water pumping of the representative extractor i in

generation j at time s, for i ∈ N = {1, 2, . . . , n} and j ∈ {0, 1, 2, . . . , J }. Following
Jørgensen and Yeung (1999) and Grilli (2008), the economy life span of each genera-
tion is T , except for the first one, namely generation 0, which is T /2. Any generation
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Fig. 1 Overlapping generation
structure

co-exists with an “old” (preceding) generation in the first half of its life span and a
“young” (subsequent) generation in the second half. Generation j ∈ {1, 2, . . . , J }
starts its pumping activities at time t j and ends these activities at time t j + T . Thus,
extraction activities of this generation are restricted to the time interval [t j , t j + T ];
in the interval [t j , t j + T /2], there are n “old” extractors from generation j − 1 and
n “new” extractors from generation j . The “old” extractors are in the second half of
their life span and will exit the game at the instant [t j + T /2]. The “young” extractors
compete with the “old” ones until [t j + T /2]. Then, they will become “old” and face
the competition of the new generation j + 1.

In the last period, after generation J − 1 has left the game, generation J remains
alone in the last sub-interval. The following relationships underline the dynamic of
overlapping generations: [t j , t j + T /2] = [t j−1 + T /2, t j−1 + T ] and [t j + T /2, t j +
T ] = [t j+1, t j+1 + T /2].

Figure 1 shows the structure of overlapping generations.
The amount of groundwater pumped in every time interval is:

W j (s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

h=1

w
j−1
h (s) +

n∑

h=1

w
j
h(s) for s ∈ [t j , t j + T /2)

n∑

h=1

w
j
h(s) +

n∑

h=1

w
j+1
h (s) for s ∈ [t j + T /2, t j + T ]

and each farmers’ revenue is:

R j (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢
⎣

n∑

h=1
w

j−1
h (s) +

n∑

h=1
w

j
h(s)

k
− g

k

⎤

⎥⎥
⎦w

j
i (s) for s ∈ [t j , t j + T /2)

⎡

⎢⎢
⎣

n∑

h=1
w

j
h(s) +

n∑

h=1
w

j+1
h (s)

k
− g

k

⎤

⎥⎥
⎦w

j+1
i (s) for s ∈ [t j + T /2, t j + T ]
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The total payoff of player i ∈ N in generation j ∈ {1, 2, . . . , J − 1} is:

�
j
i =

∫ t j+T /2

t j
e−r(s−t j )

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
n∑

h=1
w

j−1
h (s) +

n∑

h=1
w

j
h (s)

]
w

j
i (s)

k
−
( g
k

)
w

j
i (s) − [c0 − c1H(s)]w j

i (s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ds

+
∫ t j+T

t j+T /2
e−r(s−t j−T /2)

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
n∑

h=1
w

j
h (s) +

n∑

h=1
w

j+1
h (s)

]
w

j
i (s)

k
−
( g
k

)
w

j
i (s) − [c0 − c1H(s)]w j

i (s)

⎤

⎥⎥
⎥
⎦

ds

(4)

where r > 0 is a discount rate which is common to all extractors in all generations
and

C j
i [w j

i (s), H(s)] = [c0 − c1H(s)]w j
i (s) (5)

are the costs of water pumping that depend on the quantity of water extracted w
j
i (s)

and on the height of the groundwater table H(s). In particular, c0 > 0 represents
the fixed cost, with respect to the aquifer height, linked with the hydrologic cone and
c1 > 0 is the marginal pumping cost of water extracted. This assumption implies that
the cost per unit of water pumped increases when the height of water table goes down
and it is proportional to extraction rate w

j
i (s).

The payoff of the first generation (generation 1) is given only of the second expres-
sion on the right-hand side of Eq. (4). Otherwise, the payoff of the last generation
(generation J ) is given by the two expressions of the right-hand side of Eq. (4), with
w J+1
i = 0 for all i ∈ N .
The natural growth of the groundwater resource stock can bewritten in the following

way:

Ḣ(s) = 1

�S

[

R + (γ − 1)
n∑

h=1

w
j−1
h (s) + (γ − 1)

n∑

h=1

w
j
h (s)

]

for s ∈ [t j , t j + T /2)

and

Ḣ(s) = 1

�S

[

R + (γ − 1)
n∑

h=1

ω
j
h(s) + (γ − 1)

n∑

h=1

w
j+1
h (s)

]

for s ∈ [t j + T /2, t j + T ]

(6)
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3 Feedback Nash equilibrium

We study the following differential game

max
w

j
i

�
j
i = max

w
j
i

∫ T f

t j
e−r(s−t j )

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
n∑

h=1
w

j−1
h (s) +

n∑

h=1
w

j
h(s) +

n∑

h=1
w

j+1
h (s)

]
w

j
i (s)

k

−
(g
k

)
w

j
i (s) − [c0 − c1H(s)]w j

i (s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ds (7)

subject to the dynamic of the groundwater given by Eq. (6).
The game begins at the instant t1 = t0+T /2when the initial generation (generation

0) starts its “old” interval and the first generation enters into the market of the water
extraction as “young” generation. The terminal instant of the game is T f = t j +T /2
if s ∈ [t j , t j + T /2] or T f = t j + T if s ∈ [t j + T /2, t j + T ].

We determine feedback Nash equilibria of the game so that every agent takes
decisions about their behavior in dependence of the groundwater level H , taking as
given the decision rules of the other players.

Let denote the value function of extractor i ∈ {1, 2, . . . , n} in generation j ∈
{1, 2, . . . , J } by

V j
i (H , t) =

{
V j∗
i (H , t) for t ∈ [t j , t j + T /2],

V j∗∗
i (H , t) for t ∈ [t j + T /2, t j + T ] (8)

The value functions V j
i (H , t)must satisfy the continuity conditions that are equivalent

to V j∗
i (H , t j + T /2) = V j∗∗

i (H , t j + T /2) and the final condition V j∗∗
i (H , t j +

T ) = 0 for the i th player for generation j . This last condition is used as terminal
condition in order to solve the problem when an agent is “old” and exits the game. The
value function V j∗

i (H , t j + T /2) is used as terminal condition by “young” agents.
Obviously, the first generation, (generation 0), lives alone in the interval [t0, t0 +T /2]
and determines its optimal strategy when it is “old.” Its terminal condition becomes
V 0∗∗
i (H , t0 + T /2) = 0.
In the subinterval [t j , t j+T /2], the gameplayedby the i th agent from the generation

j and by the i th agent from the generation j − 1 is the following:

max
w

j
i

�
j
i = max

w
j
i

∫ t j+T /2

t j
e−r(s−t j )
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×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
n∑

h=1
w

j−1
h (s) +

n∑

h=1
w

j
h (s)

]

k
w

j
i (s) −

( g
k

)
w

j
i (s) − [c0 − c1H(s)]w j

i (s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ds

+V j∗∗
i (H , t j + T /2) (9)

max
w

j−1
i

�
j−1
i = max

w
j−1
i

∫ t j−1+T

t j−1+T /2
e−r(s−t j−T /2)

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
n∑

h=1
w

j−1
h (s) +

n∑

h=1
w

j
h (s)

]
w

j−1
i (s)

k

−
( g
k

)
w

j−1
i (s) − [c0 − c1H(s)]w j−1

i (s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ds (10)

subject to the groundwater dynamic:

Ḣ(s) = 1

�S

[

R + (γ − 1)
n∑

h=1

w
j−1
h (s) + (γ − 1)

n∑

h=1

w
j
h(s)

]

Following Basar and Olsder (1995), a set of strategies w
j∗
i (t) = φ

j∗
i (H , t) and

w
j−1∗∗
i (t) = φ

j−1∗∗
i (H , t) is a feedback Nash equilibrium if there exist value

functions V j∗
i (H , t) and V j−1∗∗

i (H , t) that satisfy the Hamilton–Jacobi–Bellman
equations:

− ∂V j∗
i (H , t)

∂t
= max

w
j
i

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢
⎢⎢
⎢
⎣

(
n∑

h=1
φ
j−1∗∗
h (H , t) +

n∑

h=1,h �=i
φ
j∗
h (H , t) + w

j
i (t)

)

w
j
i (t)

k

−
( g
k

)
w

j
i (t) − [c0 − c1H(t)]w j

i (t)
]
e−r(t−t j )

+∂V j∗
i (H , t)

∂H

[
1

�S

(

R + (γ − 1)
n∑

h=1

φ
j−1∗∗
h (H , t)

+ (γ − 1)
n∑

h=1,h �=i

φ
j∗
h (H , t) + (γ − 1)w j

i (t)

⎞

⎠

⎤

⎥
⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11)

with the boundary condition:

V j∗
i (H , t j + T /2) = V j∗∗

i (H , t j + T /2) ∀H ≥ 0
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and

− ∂V j−1∗∗
i (H , t)

∂t
= max

w
j−1
i

⎧
⎨

⎩

⎡

⎣

(∑n
h=1,h �=i φ

j−1∗∗
h (H , t) + w

j−1
i (t) +∑n

h=1 φ
j∗
h (H , t)

)
w

j−1
i (t)

k

−
( g
k

)
w

j−1
i (t) − [c0 − c1H(t)]w j−1

i (t)
]
e−r(t−t j−T /2)

+ ∂V j−1∗∗
i (H , t)

∂H

⎡

⎣ 1

�S

⎛

⎝R + (γ − 1)
n∑

h=1,h �=i

φ
j−1∗∗
h (H , t)

+ (γ − 1)w j−1
i (t) + (γ − 1)

n∑

h=1

φ
j∗
h (H , t)

)]}

(12)

with the boundary condition:

V j−1∗∗
i (H , t j−1 + T ) = 0 ∀H ≥ 0

In the subinterval [t j + T /2, t j + T ], the game played by the i th agent from the
generation j and by the i th agent from the generation j + 1 is the following:

max
w

j
i

�
j
i = max

w
j
i

∫ t j+T

t j+T /2
e−r(s−t j−T /2)

×
⎧
⎨

⎩

[∑n
h=1 w

j
h(s) +∑n

h=1 w
j+1
h (s)

]

k
w

j
i (s)

−
(g
k

)
w

j
i (s) − [c0 − c1H(s)]w j

i (s)
}
ds + V j∗∗

i (H , t j + T )

(13)

max
w

j+1
i

�
j+1
i = max

w
j+1
i

∫ t j+1+T /2

t j+1

e−r(s−t j+1)

×
⎧
⎨

⎩

[∑n
h=1 w

j
h(s) +∑n

h=1 w
j+1
h (s)

]
w

j+1
i (s)

k

−
(g
k

)
w

j+1
i (s) − [c0 − c1H(s)]w j+1

i (s)
}
ds (14)

subject to the groundwater dynamic:

Ḣ(s) = 1

�S

[

R + (γ − 1)
n∑

h=1

w
j
h(s) + (γ − 1)

n∑

h=1

w
j+1
h (s)

]

A set of strategies w
j∗∗
i (t) = φ

j∗∗
i (H , t) and w

j+1∗
i (t) = φ

j+1∗
i (H , t) is a feed-

back Nash equilibrium if there exist value functions V j∗∗
i (H , t) and V j+1∗

i (H , t) that
satisfy the Hamilton–Jacobi–Bellman equations:
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− ∂V j∗∗
i (H , t)

∂t
= max

w
j
i

⎧
⎨

⎩

⎡

⎣

(∑n
h=1 φ

j+1∗
h (H , t) +∑n

h=1,h �=i φ
j∗∗
h (H , t) + w

j
i (t)

)
w

j
i (t)

k

−
( g
k

)
w

j
i (t) − [c0 − c1H(t)]w j

i (t)
]
e−r(t−t j−T /2)

+ ∂V j∗∗
i (H , t)

∂H

[
1

�S

(

R + (γ − 1)
n∑

h=1

φ
j+1∗
h (H , t)

+(γ − 1)
n∑

h=1,h �=i

φ
j∗∗
h (H , t) + (γ − 1)w j

i (t)

⎞

⎠

⎤

⎦

⎫
⎬

⎭
(15)

with the boundary condition:

V j∗∗
i (H , t j + T ) = 0 ∀H ≥ 0

and

− ∂V j+1∗
i (H , t)

∂t
= max

w
j+1
i

⎧
⎨

⎩

⎡

⎣

(∑n
h=1,h �=i φ

j+1∗
h (H , t) + w

j+1
i (t) +∑n

h=1 φ
j∗∗
h (H , t)

)
w

j+1
i (t)

k

−
( g
k

)
w

j+1
i (t) − [c0 − c1H(t)]w j+1

i (t)
]
e−r(t−t j+1)

+ ∂V j+1∗∗
i (H , t)

∂H

⎡

⎣ 1

�S

⎛

⎝R + (γ − 1)
n∑

h=1,h �=i

φ
j+1∗
h (H , t)

+ (γ − 1)w j+1
i (t) + (γ − 1)

n∑

h=1

φ
j∗∗
h (H , t)

)]}

(16)

with the boundary condition:

V j+1∗
i (H , t j+1 + T /2) = V j+1∗∗

i (H , t j+1 + T /2) ∀H ≥ 0

See “Appendix” for the solution of the game.
It is important to underline that, solving the game for generations j and j − 1

in the interval [t j , t j + T /2], we obtain the result of the game in the next interval
[t j + T /2, t j + T ]. In fact, in this last period generation j acts as “old” generation
and generation j + 1 acts as “young” generation.

In order to compute the solutions of Eqs. (33) and (34) in “Appendix,” given the
linear quadratic structure of the model, we guess that the optimal value functions are
quadratic, and consequently, the equilibrium strategies are linear with respect to the
state variable. Precisely, we postulate that:

V j∗
i (H , t) = [A j∗

i (t)H2 + B j∗
i (t)H + C j∗

i (t)]e−r(t−t j ) (17)

for (H , t) ∈ R+ × [t j , t j + T /2] and

V j∗∗
i (H , t) = [A j∗∗

i (t)H2 + B j∗∗
i (t)H + C j∗∗

i (t)]e−r(t−t j−T /2) (18)

123



548 M. Biancardi et al.

for (H , t) ∈ R+ × [t j + T /2, t j + T ].
So we have that:

dV j∗
i

dt
=
[
dA j∗

i (t)

dt
H2 + dB j∗

i (t)

dt
H + dC j∗

i (t)

dt

]

e−r(t−t j ) −

−re−r(t−t j )[A j∗
i (t)H2 + B j∗

i (t)H + C j∗
i (t)] (19)

dV j∗
i

dH
= [2H A j∗

i (t) + B j∗
i (t)]e−r(t−t j ) (20)

and

dV j∗∗
i

dt
=
[
dA j∗∗

i (t)

dt
H2 + dB j∗∗

i (t)

dt
H + dC j∗∗

i (t)

dt

]

e−r(t−t j ) −

−re−r(t−t j )[A j∗∗
i (t)H2 + B j∗∗

i (t)H + C j∗∗
i (t)] (21)

dV j∗∗
i

dH
= [2H A j∗∗

i (t) + B j∗∗
i (t)]e−r(t−t j ) (22)

Let denote by A j∗∗
i (t) = A∗∗(t− t j −T /2); A j∗

i (t) = A∗(t− t j ); B
j∗∗
i (t) = B∗∗(t−

t j − T /2); B j∗
i (t) = B∗(t − t j ); C

j∗∗
i (t) = C∗∗(t − t j − T /2); C j∗

i (t) = C∗(t − t j ).
Substituting the previous notations in Eqs. (33) and (34), we obtain the following
system:

dA∗(t − t j )

dt
= −4α6[A∗∗(t − t j−1 − T /2) + A∗(t − t j )]2

+(r − 2α5)A
∗(t − t j ) − α3 − 2α8A

∗∗(t − t j−1 − T /2)

dB∗(t − t j )

dt
= −4α6[B∗∗(t − t j−1 − T /2) + B∗(t − t j )]

×[A∗∗(t − t j−1 − T /2) + A∗(t − t j )]
+(r − α5)B

∗(t − t j ) − α8B
∗∗(t − t j−1 − T /2)

−2α7A
∗∗(t − t j−1 − T /2) − α2 − 2α4A

∗(t − t j )

dC∗(t − t j )

dt
= −rC∗(t − t j ) − α1 − α4B

∗(t − t j ) − α7B
∗∗(t − t j−1 − T /2)

dA∗∗(t − t j − T /2)

dt
= −4α6[A∗(t − t j+1) + A∗∗(t − t j − T /2)]2

+(r − 2α5)A
∗∗(t − t j − T /2) − α3 − 2α8A

∗(t − t j+1)

dB∗∗(t − t j − T /2)

dt
= −4α6[B∗(t − t j+1) + B∗∗(t − t j − T /2)]

×[A∗(t − t j+1) + A∗∗(t − t j − T /2)]
+(r − α5)B

∗∗(t − t j − T /2)) − α8B
∗(t − t j+1)

−2α7A
∗(t − t j+1) − α2 − 2α4A

∗∗(t − t j − T /2))

dC∗∗(t − t j − T /2)

dt
= −rC∗∗(t − t j − T /2) − α1 − α4B

∗∗(t − t j − T /2)

−α7B
∗(t − t j+1)
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The boundary conditions on the equations system are:

A∗(T /2) = A∗(0); B∗(T /2) = B∗(0);
C∗(T /2) = C∗(0) for t ∈ [t j , t j + T /2]

and

A∗∗(T /2) = B∗∗(T /2) = C∗∗(T /2) = 0 for t ∈ [t j + T /2, t j + T ]

Substituting the value functions into the expressions (29) and (30), we obtain the level
of pumping rates:

φ
j∗
i (H , t) = g + k[c0 − c1H(t)] − k(n + 1)[2H(t)A∗(t − t j ) + B∗(t − t j )] (γ−1)

�S

(1 + 2n)

+nk[2H(t)A∗∗(t − t j−1 − T /2) + B∗∗(t − t j−1 − T /2)] (γ−1)
�S

(1 + 2n)
(23)

for t ∈ [t j , t j + T /2] and

φ
j∗∗
i (H , t) = g + k[c0 − c1H(t)] + nk[2H(t)A∗(t − t j+1) + B∗(t − t j+1)] (γ−1)

�S

(1 + 2n)

−k(n + 1)[2H(t)A∗∗(t − t j − T /2) + B∗∗(t − t j − T /2)] (γ−1)
�S

(1 + 2n)

(24)

for t ∈ [t j + T /2, t j + T ].
Equations (23) and (24) are linear in the state variable H , and the pumping rates are

linear with respect to the height of the water table. The following numerical analysis
allows us to obtain economical results and better interpretations about the influence
of the model parameters on the Feedback equilibria.

4 Numerical applications

The numerical simulation is performed on the basis of parameters given in Gisser and
Sanchez (1980). We estimate that the return flow coefficient γ = 0.27, the natural
recharge R = 173,000 ac ft/year, the interest rate r = 0.10, the area of aquifer
�S = 135,000 ac ft/year, the fixed cost, with respect to the aquifer height, linked with
the hydrologic cone c0 = 125 dollars/ac ft, the marginal pumping cost per acre foot
of water pumped c1 = 0.035 dollars/ac ft per foot of lift and the initial water table
elevation H0 = 3400 feet above sea level. Moreover, the intercept of the demand for
water function stated in Gisser and Sanchez (1980) is g = 470,365 ac ft/year, and
the decrease in demand for water per 1$ increase in price is k = −3259 ac ft/year.
We assume that the deadline of our game is T f = 760 years and, about the longevity
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Fig. 2 Optimal groundwater
table with T = 60 and n = 100

of each generation, we consider three scenarios: T = 60, 80 and 100. For instance,
if T = 60 years, this means that two generations coexist every 30 years. Assuming
that t0 = 0, the game starts at time t1 = t0 + T

2 = 30 years and the number of
generations until the deadline T f is J = 26. Moreover, concerning the number of
economic agents who operate in the area �S, we consider three cases: a low density
and therefore n = 10, a medium density with n = 100 and a high density, and so
n = 500.

Solving numerically the system (23), we determine the value functions A∗(t −
t j ), B∗(t − t j ),C∗(t − t j ) and A∗∗(t − t j − T /2), B∗∗(t − t j − T /2),C∗∗(t − t j −
T /2). Substituting these values in Eqs. (23) and (24), we determine the pumping
level φ j∗

i (H , t) and φ
j∗∗
i (H , t) for the i th player when is young and old, respectively,

considering that he belongs to generation j . Obviously, all players in the j th generation
are symmetric. Finally, substituting these values in Eq. (6), we obtain the dynamic of
water table and we realize the optimal path of groundwater table H(t).

Some interesting interpretations in terms of efficiency can be deduced from the
analysis of Figs. 2 and 3a–c. First of all, it is clear that the trend of the height of the
water, determined with the optimum pumping levels, is convex. Obviously, this means
that the initial generations make a more intensive use of the aquifer. After reaching a
minimum threshold, the future generations commit themselves to guaranteeing protec-
tion and bringing back the height of the aquifer to its initial level. This behavior can be
determined by an increase in pumping costs caused by a lowering of the aquifer which
leads to lower withdrawals. For instance, when T = 60 and n = 100, as illustrated
in Fig. 2, the minimum water table level is reached at time t = 490 years during the
sixteenth generation. After that, a more conservative exploitation will begin. A com-
parison among the different scenarios can be made analyzing Fig. 3. It is clear that an
increase in population size n entails a greater exploitation of the aquifer. Furthermore,
the exploitation rate is more sensitive when the population size is low. This means that,
when the community expands, it puts in placemeasures to avoid an overexploitation of
aquifer. However, an increase in the longevity of generations causes a negative effect
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Fig. 3 Evolution of optimal path of water table elevation H(t) in the three scenarios. The green line denotes
the case with n = 10. The blue line the case n = 100, while the red line n = 500 (color figure online)

on the groundwater level and also postpones the instant of time in which the minimum
level is obtained.

Another interesting application is the evolution of H(t) when the natural recharge
R changes. As shown in Table 1 and Fig. 4, we observe that a scarcity of the rainfall
rate leads to a greater minimum level of the aquifer.

Finally, another important parameter that influences the optimal evolution of the
groundwater height H(t) is the return flow coefficient γ . In fact, this parameter is low if
the community has a scarce technical availability about the irrigation and vice versa, it
increases if there is adequate technology that preserves the height of thewater. Figure 5
illustrates three different cases assuming γ = 0.10, 0.30 and 0.60. We remark how,
when γ is low, the groundwater level reaches a minimum value of Hmin = 2904.24
after t = 486 years and it increases to Hmin = 3087.94 when t = 487 years. On the
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Table 1 Minimum level of the
optimal water height Hmin and
instant of time tmin in which the
minimum is reached when R
changes

R Hmin tmin

50,000 2679.50 684

75,000 2690.00 645

100,000 2793.58 606

125,000 2890.52 566

150,000 2980.95 528

Fig. 4 Optimal water table
evolution H(t) when R changes.
The gray line denotes
R = 150,000, while the
turquoise denotes R = 125,000;
purple, brown and gold lines
represent R = 100,000,
R = 75,000 and R = 50,000,
respectively (color figure online)

Fig. 5 Optimal water table when
γ changes. The blue line denotes
γ = 0.10, and the green one
represents γ = 0.30, while the
red line denotes γ = 0.60 (color
figure online)

other hand, when the parameter γ is high, the aquifer level is protected reaching a
minimum level Hmin = 3394.24 in t = 190 years.

5 Conclusions

In our paper, we have proposed a differential game in order to study the efficient extrac-
tion of groundwater resource among agents belong to overlapping generations. We
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have considered intragenerational and intergenerational competition between extrac-
tors that exploit the resource in different time intervals, and so the horizons of the
players in the game are asynchronous. Feedback equilibria have been computed in
order to determine the optimal extraction rate of “young” and “old” agents that coex-
ist in the economy. The use of Feedback solution captures the strategic externalities
and so it considers that each player adopts a state-dependent decision rule. We have
shown that the optimal pumping rates are linear in the state variable H . By a numerical
analysis, we have emphasized how the technology, the size and the longevity of agents
that make up the generations and environmental parameters, such as the rainfall rate,
influence the efficiency of the water pumping system.

Appendix A

Performing the maximization problem in Eqs. (11) and (12) with respect to w
j
i and

w
j−1
i , for t ∈ [t j , t j + T /2], we obtain:

2φ j∗
i (H , t) +

n∑

h=1
φ
j−1∗∗
h (H , t) +

n∑

h=1,h �=i
φ
j∗
h (H , t) − g

k

= [c0 − c1H(t)] − ∂V j∗
i (H , t)

∂H
· (γ − 1)

�S
er(t−t j ) (25)

and

2φ j−1∗∗
i (H , t) +

n∑

h=1,h �=i
φ
j−1∗∗
h (H , t) +

n∑

h=1
φ
j∗
h (H , t) − g

k

= [c0 − c1H(t)] − ∂V j−1∗∗
i (H , t)

∂H
· (γ − 1)

�S
er(t−t j ) (26)

Adding in Eqs. (25) and (26) over all extractors living in the time interval [t j , t j+T /2],
that is, all the n “young” agents for the generation j and the n “old” agents for the
generation j − 1, we obtain:

2nφ
j∗
i (H , t) + n2φ j−1∗∗

h (H , t) + n(n − 1)φ j∗
h (H , t)

k

= ng

k
+ n[c0 − c1H(t)] −

n∑

i=1

∂V j∗
i (H , t)

∂H
· (γ − 1)

�S
er(t−t j ) (27)

for all i th extractor in the j th generation and

2nφ
j−1∗∗
i (H , t) + n2φ j∗

h (H , t) + n(n − 1)φ j−1∗∗
h (H , t)

k
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= ng

k
+ n[c0 − c1H(t)] −

n∑

i=1

∂V j−1∗∗
i (H , t)

∂H
· (γ − 1)

�S
er(t−t j ) (28)

for all i th extractor in the j − 1th generation. Equations (27) and (28) represent
a system of linear equations in φ

j∗
i (H , t) and φ

j−1∗∗
i (H , t). The system admits a

unique solution:

φ
j−1∗∗
i (H , t) = g + k[c0 − c1H(t)] − k(n + 1)

∂V j−1∗∗
i (H ,t)

∂H · (γ−1)
�S er(t−t j )

(1 + 2n)

+nk
∂V j∗

i (H ,t)
∂H · (γ−1)

�S er(t−t j )

(1 + 2n)
(29)

φ
j∗
i (H , t) = g + k[c0 − c1H(t)] − k(n + 1)

∂V j∗
i (H ,t)
∂H · (γ−1)

�S er(t−t j )

(1 + 2n)

+nk
∂V j−1∗∗

i (H ,t)
∂H · (γ−1)

�S er(t−t j )

(1 + 2n)
(30)

Substituting Eqs. (29) and (30) into HJB given by Eqs. (11) and (12), we obtain the
following system of partial differential equations (dropping for notational convenience
the (H , t) arguments of the value functions):

− ∂V j∗
i

∂t
=
[

−(γ − 1)2n2er(t−t j )k

(2n + 1)2(�S)2

](
∂V j∗

i

∂t

)2

+
{
4[(R + g(γ − 1))n2 + n( 12 g(γ − 1) + R) + 1

4 (R + g(γ − 1))]
�S(2n + 1)2

+ [4(γ − 1)�S(c0 − c1H)(n2 + 1
2 n + 1

4 ) − 2(γ − 1)2n2er(t−t j ) ∂V j−1∗∗
i
∂H ]

(�S)2(2n + 1)2

⎫
⎬

⎭

×
(

∂V j∗
i

∂t

)

−

{[
(c0 − c1H)�S + (γ − 1)er(t−t j )n

∂V j−1∗∗
i
∂H

]
k + �Sg

}2

(�S)2(2n + 1)2ker(t−t j )
(31)

− ∂V j−1∗∗
i

∂t
=
[

−(γ − 1)2n2er(t−t j )k

(2n + 1)2(�S)2

](
∂V j−1∗∗

i

∂t

)2

+
{
4[(R + g(γ − 1))n2 + n( 12 g(γ − 1) + R) + 1

4 (R + g(γ − 1))]
�S(2n + 1)2

+ [4(γ − 1)�S(c0 − c1H)(n2 + 1
2 n + 1

4 ) − 2(γ − 1)2n2er(t−t j ) ∂V j−1∗∗
i
∂H ]

(�S)2(2n + 1)2

⎫
⎬

⎭

×
(

∂V j−1∗∗
i

∂t

)

−

{[
(c0 − c1H)�S + (γ − 1)er(t−t j )n

∂V j∗
i

∂H

]
k + �Sg

}2

(�S)2(2n + 1)2ker(t−t j )
(32)
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Rearranging Eqs. (31) and (32), we obtain that:

− ∂V j∗
i

∂t
= e−r(t−t j )

(
α1 + α2H + α3H

2
)

+ α4

(
∂V j∗

i

∂H

)

+ α5H

(
∂V j∗

i

∂H

)

+α7

(
∂V j−1∗∗

i

∂H

)

+ α8H

(
∂V j−1∗∗

i

∂H

)

+α6e
r(t−t j )

[(
∂V j∗

i

∂H

)

+
(

∂V j−1∗∗
i

∂H

)]2
(33)

and

− ∂V j−1∗∗
i

∂t
= e−r(t−t j )

(
α1 + α2H + α3H

2)+ α4

(
∂V j−1∗∗

i

∂H

)

+ α5H

(
∂V j−1∗∗

i

∂H

)

+ α7

(
∂V j∗

i

∂H

)

+ α8H

(
∂V j∗

i

∂H

)

+α6e
r(t−t j )

[(
∂V j−1∗∗

i

∂H

)

+
(

∂V j∗
i

∂H

)]2
(34)

where

α1 = − (kc0 + g)2

k(2n + 1)2
; α2 = 2c1(c0k + g)

(2n + 1)2
; α3 = −c21k

(2n + 1)2
;

α4 = [(γ − 1)(kc0 + g) + R](4n2 + 1) + 2n[(γ − 1)(kc0 + g) + 2R]
�S(2n + 1)2

;

α5 = −(γ − 1)(4n2 + 2n + 1)kc1
�S(2n + 1)2

; α6 = −(γ − 1)2n2k

(2n + 1)2(�S)2
;

α7 = − 2(γ − 1)gn

�S(2n + 1)2
; α8 = 2(γ − 1)c1nk

�S(2n + 1)2
.
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