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Abstract
The goal of this paper is to provide a novel quantitative framework to describe the
Bitcoin price behavior, estimate model parameters and study the pricing problem for
Bitcoin derivatives. To this end, we propose a continuous time model for Bitcoin
price motivated by the findings in recent literature on Bitcoin, showing that price
changes are affected by sentiment and attention of investors, see e.g., (Kristoufek in
Sci Rep 3:3415, 2013, PLoS ONE 10(4):e0123923, 2015; Bukovina and Marticek in
Sentiment and bitcoin volatility. Technical report, Mendel University in Brno, Faculty
of Business and Economics 2016). Economic studies, such as Yermack (Handbook of
Digital Currency, chapter second. Elsevier, Amsterdam, pp 31–43, 2015), have also
classified Bitcoin as a speculative asset rather than a currency due to its high volatility.
Building on these outcomes, the price dynamics in our suggestion is indeed affected
by an exogenous factor which represents market attention in the Bitcoin system. We
prove the model to be arbitrage-free under a mild condition and we fit the model to
historical data for the Bitcoin price; after obtaining a approximate formula for the
likelihood, parameter values are estimated by means of the profile likelihood method.
In addition, we derive a closed pricing formula for European-style derivatives on
Bitcoin, the performance of which is assessed on a panel of market prices for Plain
Vanilla options quoted on www.deribit.com.
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1 Introduction

Bitcoin was first introduced in 2009 by a computer scientist, known under the
pseudonym Satoshi Nakamoto, as an electronic payment system between peers and
is based on an open-source software which generates a peer-to-peer network, see
(Nakamoto 2008). Opposite to traditional transactions, which are based on trust in
financial intermediaries, this system relies on the network, on the fixed rules and
on cryptography. Bitcoins can be purchased on online trading platforms (so-called
exchanges) by using fiat currencies. Further, payments can be made in Bitcoins for
several online services and goods and its use is increasing. At very low expenses it
is also possible to send the cryptocurrency internationally. Concerns about the use of
Bitcoin include reputation issues due anonymous transactions, such as money laun-
dering or the possible financing of criminal activities , and cyber-security issues, since
it can be only deposited in digital wallets which are vulnerable to hacking attacks. In
spite of the above critics, Bitcoin has experienced a rapid growth both in value and in
the number of transactions. From an economic viewpoint, one of the main concerns
about Bitcoin is whether it should be considered a currency, a commodity or a stock.
The conclusion in Yermack (2015) is that Bitcoin behaves as a high volatility stock
and that most transactions on Bitcoins are aimed to speculative investments. Recently,
literature about Bitcoin has paid much attention to Bitcoin price dynamics and, in
particular, to the identification of possible price drivers. In Kristoufek (2013, 2015);
Kim et al. (2015), Figà-Talamanca and Patacca (2019) it is shown that Bitcoin price
and volatility are affected by the volume or number of transactions, by the number of
Google searches on the topic, and by Wikipedia inquires on Bitcoin. Alternatively, in
Bukovina andMartiček (2016) Bitcoin price is related to a sentimentmeasure obtained
from the Web site1 Sentdex.com.

It is also worth noticing that a market for derivatives on Bitcoin has recently raised
on appropriate Web sites such as https://coinut.com and https://deribit.com trading
European Calls and Puts and others are likely to come soon according to The Wall
Street Journal (2017b), Binary options are also traded in some platforms endorsing
the idea in Yermack (2015) that Bitcoins are traded for speculative purposes. Besides
and more importantly, the Chicago Board Options Exchange (CBOE) has launched
standardized Future contracts on the cryptocurrency in December 2017; this has given
rise to a new era for Bitcoin trades and probably opened the way to other standardized
derivatives, see (The Wall Street Journal 2017a). Motivated by the evidences in the
above quoted papers and the increasing interest in Bitcoin derivatives, we propose a
bivariate model in continuous time to describe the dynamics of both price and market
attention for Bitcoin. As an additional novel feature, we allow for a possible delay
between the attention factor and its delivered effect on Bitcoin price. We assume that
the price and the attention factor are two observable variables, each described by a
continuous time diffusion process; in addition, we assume that the attention factor
influences directly the drift and the diffusion functions describing the price. In the

1 This Web site collects data on sentiment through an algorithm, based on Natural Language Processing
techniques, which is capable of identifying string of words conveying positive, neutral or negative sentiment
on a topic (Bitcoin in this case).
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numerical exercise, we use some proxies for the attention factor, such as the trading
volume and the volume of internet searches. An alternative specification which takes
into account market attention is suggested in Kou (2002) where the author assumes
that the dynamics of the stock price is a jump diffusion and sudden jumps in returns
may be induced by outside news. However, the jump process is not directly related to
some attention factor or news indicator.

In this paper, we give several contributions: first, the market model is defined and it
is proven that a strong solution exists; then, mild conditions are given for the model to
be arbitrage-free and its statistical properties are investigated. Further, the likelihood
for a discrete sample of the model is computed and an approximated closed formula
is derived, so that maximum likelihood estimates are obtained for model parameters.
Precisely,we apply the profile likelihoodmethod described inDavison (2003), Pawitan
(2001) to fit the model to Bitcoin market data from January 15, 2015 to March 31,
2017; market attention is measured either through the traditional trading volume, see
(Barber and Odean 2007; Gervais et al. 2001; Hou et al. 2009), or by the Google SVI
search volume index, as suggested in Da et al. (2011). Finally, based on risk-neutral
evaluation, a quasi-closed formula is derived for any European-style derivative on the
Bitcoin, which makes it possible to price derivatives when their values are not known
or to calibrate model parameters when derivative prices are given by market trades or
quotations.

The paper is organized as follows. In Sect. 2 we describe the model for the Bitcoin
price dynamics, discuss its statistical properties and show that the market is arbitrage-
free. In Sect. 3, we compute the joint distribution of the discretely sampled model as
well as a closedformapproximationwhich is useful to introduce a parameter estimation
procedure. Section 4 is devoted to test possible proxies for the attention factor and to
estimate model parameters on historical market data obtained from http://blockchain.
info. In Sect. 5, we prove a quasi-closed formula for European-style derivatives with
detailed computations for Plain Vanilla and Binary option prices, while in Sect. 6.2
we give some further insights on numerical applications of the pricing formula. Some
concluding remarks are given in Sect. 7 as well as directions for interesting future
investigations. For the sake of readability, side results as well as most technical proofs
are collected in Appendices.

2 The Bitcoinmarket model

We fix a probability space (�,F,P) endowed with a filtration F = {Ft , t ≥ 0}
that satisfies the usual conditions of right-continuity and completeness. On the given
probability space, we consider a main market in which heterogeneous agents buy or
sell Bitcoins and denote by S = {St , t ≥ 0} the price process of the cryptocurrency.
Following an idea suggested in Cretarola et al. (2018), we assume that the Bitcoin
price dynamics is described by the following equation:

dSt = μS Pt−τ Stdt + σS
√
Pt−τ StdWt , S0 = s0 ∈ R+, (2.1)

whereμS ∈ R\{0}, σS ∈ R+, τ ∈ R+ represent model parameters;W = {Wt , t ≥ 0}
is a standard F-Brownian motion on (�,F,P) and P = {Pt , t ≥ 0} is a
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stochastic factor, representing the attention index in the Bitcoin market, and satis-
fying

dPt = μP Ptdt + σP PtdZt , Pt = φ(t), t ∈ [−L, 0]. (2.2)

Here, μP ∈ R\{0}, σP ∈ R+, L ∈ R+are constant parameters, Z = {Zt , t ≥ 0}
is a standard F-Brownian motion on (�,F,P), which is P-independent of W , and
φ : [−L, 0] → [0,+∞) is a continuous (deterministic) initial function. Note that,
the nonnegative property of the function φ corresponds to requiring that the minimum
level for attention is zero.

We assume that the reference filtration F = {Ft , t ≥ 0}, describing the information
on the Bitcoin market, is of the form

Ft = FW
t ∨ FZ

t , t ≥ 0,

where FW
t and FZ

t denote the σ -algebras generated by W and Z , respectively, up to
time t ≥ 0. Note thatFZ

t = FP
t , for each t ≥ 0, withFP

t being the σ -algebra generated
by P up to time t ≥ 0. Since at any time t the Bitcoin price dynamics is affected by
the attention index only up to time t − τ , we consider the filtration F̃ = {F̃t , t ≥ 0},
defined by

F̃t = FW
t ∨ FP

t−τ , t ≥ 0.

to describe the traders information on the digital market. This assumption plays an
important role in the derivation of the pricing formula in Sect. 5. We also remark that
all filtrations satisfy the usual conditions of completeness and right-continuity (see
e.g., Protter 2005).

In (2.1), the attention factor P affects explicitly both the drift and the diffusion
of the Bitcoin price St , up to a certain preceding time t − τ . We further assume that
τ < L and that the process P is observed within the period [−L, 0], to make the
bivariate model jointly feasible. It is worth noticing that the instantaneous variance
of the Bitcoin price process increases with the delayed process P; this may appear
counter-intuitive if P is interpreted only as a positive attention indicator. However,
in our perspective, the factor P is mathematically a nonnegative process but does not
necessary represent a positive attention. Possible proxies for P are the volume or the
number of daily transactions as well as the number of internet searches.

It is well known that the solution of (2.2) is available in closedform and that Pt has
a log-normal distribution for each t > 0, see (Black and Scholes 1973). Further, we
also prove that the system given by equations (2.1) and (2.2) admits a unique strong
solution in R+ which is given in explicit form, see Theorem B.2 in “Appendix B”.

In order to visualize the dynamics implied by the model in equations (2.1) and
(2.2), we plot in Fig. 1 a possible simulated path of daily observations for the attention
factor P and the corresponding Bitcoin prices S within one year horizon by letting τ

vary; as expected, market reaction to attention is delayed when τ increases.
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Market attention and Bitcoin price modeling... 191

Fig. 1 An example of Bitcoin price dynamics given the evolution of the attention index (red): τ = 1 day
(black), τ = 10 days (blue). Model parameters are set to μP = 0.03, σP = 0.35, μS = 10−5, σS = 0.04

Let us introduce a key definition for the rest of the paper, the integrated attention
process X τ = {X τ

t , t ≥ 0}, associated to the factor P , given by:

X τ
t :=

{∫ t
0 Pu−τdu = ∫ 0

−τ
φ(u)du + ∫ t−τ

0 Pudu = X τ
τ + ∫ t−τ

0 Pudu, 0 ≤ τ ≤ t,
∫ t−τ

−τ
φ(u)du, 0 ≤ t ≤ τ.

(2.3)
Note that, for t ∈ [0, τ ], we have X τ

t = ∫ t−τ

−τ
φ(u)du which is deterministic. In

addition, for a finite time horizon T > 0, the corresponding change over the interval
[t, T ], for t ≤ T , is defined as X τ

t,T := X τ
T − X τ

t . Obviously, X
τ
T ,T = 0; moreover,

for t < T ,

X τ
t,T :=

⎧
⎪⎪⎨

⎪⎪⎩

∫ T−τ

t−τ
Pudu if 0 ≤ τ ≤ t < T ,

∫ 0
t−τ

φ(u)du + ∫ T−τ

0 Pudu if 0 ≤ t ≤ τ < T ,
∫ T−τ

t−τ
φ(u)du if 0 ≤ t < T ≤ τ.

Note that for T ≤ τ , we get X τ
t,T = ∫ T−τ

t−τ
φ(u)du which is deterministic. Basic

statistical properties for the integrated attention process and for its changes are given
in Lemma B.1 in “Appendix B”.

3 Statistical properties of discretely observed quantities and
parameter estimation

In this section,we derive statistical properties for a sample of discretely observed prices
and suggest a possible closedform approximation for the joint probability density of
the discrete sample. Let us fix a discrete observation step � and consider the discrete
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time process {Si , i ∈ N}, where Si := Si�. Define the corresponding logarithmic
returns process {Ri , i ∈ N} as

Ri = log(Si ) − log(Si−1),

where

log(Si ) = log(S0) +
(

μS − σ 2
S

2

)∫ i�

0
Pu−τdu + σS

∫ i�

(0

√
Pu−τdWu,

see Theorem B.2 in “Appendix B”. Define

Mi :=
∫ i�

(i−1)�

√
Pu−τdWu, ∀i ∈ N,

so that we can write,

Ri =
(

μS − σ 2
S

2

)

Aτ
i + σSMi , i ∈ N,

where Aτ
i := X τ

(i−1)�, i�, with X τ
t,T being the variation of the integrated attention

process introduced in (2.3); since τ is fixed we omit hereafter the dependence on it
and, without loss of generality we assume τ < � so that A1 = X τ

τ + ∫ �−τ

0 Pudu.
Note that if j� ≤ τ < ( j + 1)� the quantities A1, . . . , A j are deterministic and

the outcomes in what follows still hold if A1 is replaced by the first non-deterministic
value A j+1.

Let us consider a finite time horizon T = n�; under model assumptions the condi-
tional probability distribution of the vectorM = (M1, M2, . . . , Mn), given the vector
A = (A1, A2, . . . , An), is a multivariate normal with covariance matrix Diag(A).

Hence, the vector of discretely observed logarithmic returnsR = (R1, R2, . . . , Rn),

conditionally on A, is jointly normal with mean

(
μS − σ 2

S
2

)
A and covariance matrix

� = σ 2
S Diag(A) where we have omitted the superscript τ for the ease of reading.

The application of Bayes’ rule allows to write the unconditional joint probability
distribution of (R,A), i.e., the density function f(R,A) : Rn × R

n+ × Nn −→ R as

f(R,A)(r, a) = f A1(a1)
n∏

i=2

f(Ai |Ai−1)(ai )
n∏

i=1

1
√
2πσ 2

S ai
e
− 1

2

(

ri−
(

μS− σ2S
2

)

ai

)2

σ2S ai . (3.1)

with r = (r1, r2, . . . , rn) ∈ R
n and a = (a1, a2, . . . , an) ∈ R

n+.
The probability distribution functions f A1(.) and f Ai |Ai−1(.) for i = 2, 3, . . . , n

are not available in closedform; though, several approximations exist among which
those introduced in Levy (1992) and Milevsky and Posner (1998). Of course, any
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approximation available for such densities can be applied in order to find a closed
formula approximating the joint density f(R,A) (r, a); in what follows we adopt the
one suggested in Levy (1992), see “Appendix A” for further details. Note that the
inverse gamma approach suggested in Milevsky and Posner (1998) holds in the limit
when T tends to infinity, a condition which is not at all consistent with the applications
we have in mind; further discussion on the approximating distribution is beyond the
scope of our paper.

3.1 The approximated likelihood

One of the pillar in statistical inference is the maximum likelihood (in short ML)
estimation approach where model parameters are estimated so as to maximize the
probability of the realized sample to be extracted randomly; the likelihood function
shares the same mathematical expression of the probability density function but it is
computed “ex-post” when a realization of involved random variables is available and
assuming the underlying model parameters to be unknown. It is well known that ML
estimates are consistent and asymptotically normal and they achieve efficiency, i.e.,
they have the lowest variance among estimators sharing the same asymptotic properties
(see Davison 2003).

By applying the approximation of Levy (1992), we prove the following Lemma.

Lemma 3.1 Let φ(t) > 0, for each t ∈ [−L, 0], in (2.2) and τ < �. Then, in the
market model outlined in Sect. 2, we have

(i) the distribution of A1 − X τ
τ is approximated by a log-normal with mean α1 and

variance ν21 given by

α1 = logφ(0) + 2 log
eμP (�−τ) − 1

μP

− 1

2
log

(
2

μP + σ 2
P

[
e(2μP+σ 2

P )(�−τ) − 1

2μP + σ 2
P

− eμP (�−τ) − 1

μP

])

ν21 = log

(
2

μP + σ 2
P

[
e(2μP+σ 2

P )(�−τ) − 1

2μP + σ 2
P

− eμP (�−τ) − 1

μP

])

− 2 log

(
eμP (�−τ) − 1

μP

)

(ii) the distribution of Ai given Ai−1 (shortly Ai |Ai−1), for i = 1, . . . , n, is approxi-
mated by a log-normal with means αi and variances ν2i given by

αi = log (Ai−1) +
(

μP − σ 2
P

2

)

�, for i = 1, . . . , n,

ν2i = σ 2
P�, for i = 1, . . . , n.
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The proof is postponed to “Appendix B”.
Now, we are in the position to state the following theorem.

Theorem 3.2 Under the same assumptions of Lemma 3.1, given the realized sample
(r̄, ā), the log-likelihood function logLR,A(μP , μS, σP , σS) : R2 × R

2+ −→ R can
be approximated by

logLR,A(μP , μS, σP , σS) =
n∑

i=1

⎡

⎢⎢⎢
⎣
log

⎛

⎝ 1
√
2πσ 2

S ai

⎞

⎠− 1

2

(
ri −

(
μS − σ 2

S
2

)
ai

)2

σ 2
S ai

⎤

⎥⎥⎥
⎦

+
n∑

i=1

[

log

(
1

aiνi
√
2π

)
− (log(ai ) − αi )

2

2ν2i

]

,

(3.2)
where upper case letters are used for random variables and lowercase for the corre-
sponding realizations.

Proof First, recall that the likelihood function of a parameter corresponds to the prob-
ability density function where random variables are replaced by they realizations and
parameters are unknown. Then, by simply applying the logarithmic function to (3.1)
we get

log f(R,A)(r, a) = −1

2

n∑

i=1

⎡

⎢⎢⎢
⎣
log

(
2πσ 2

S ai
)

+

(
ri −

(
μS − σ 2

S
2

)
ai

)2

σ 2
S ai

⎤

⎥⎥⎥
⎦

+ log
(
f A1(a1)

) +
n∑

i=2

log
(
f Ai |Ai−1(ai )

)
. (3.3)

Replacing the unknown densities in (3.3) according to Lemma 3.1 gives the desired
result. 
�

Maximum likelihood estimates for the model can be obtained by maximizing the
log-likelihood approximation in (3.2), i.e.,

(μ̂P , μ̂S, σ̂P , σ̂S) = arg max
μP ,μS
σP ,σS

logLR,A(μP , μS, σP , σS).

In this case, the methodology is referred to as Quasi-Maximum Likelihood since
the exact expression of the likelihood is not available; under suitable conditions,
quasi-maximum likelihood estimates are asymptotically equivalent to the Maximum
Likelihood estimates, see e.g., (White 1982; Gourieroux et al. 1984). We also per-
formed a simulation study to assess the finite sample behavior of the estimates which
is summed up in “Appendix C”.
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It is worth to stress that the above estimation method does not assume the process
P to be observed, as far as X τ

τ and Ai , i ≥ 1 are known (note that Ai is the cumulative
of P along the time interval [(i − 1)� − τ, i� − τ ]).

3.2 Estimation of the delay parameter

The delay parameter τ directly affects the definition of the discrete process Ai . Hence,
in order to proceed with its estimation we need to observe the process P at a finer
observation step δ with respect to the log-returns. In what follows we set � = δr
and we adopt a two step estimation procedure known as Profile Likelihood in order to
estimate the delay. We briefly describe the Profile Likelihood approach to estimation
and its application in our specific case; interested readers are referred to Davison
(2003), Pawitan (2001) for details on the profile likelihood. The basic idea of this
approach is to split the parameter vector which has to be estimated, say θ , in two sub-
vectors, one representing the parameter of interest and the other the so-called nuisance
parameter, i.e., θ = (β, λ); to estimate β and λ jointly we should maximize at once
the likelihood, i.e.,

max
β,λ

logL (β, λ).

When this is not feasible and provided the likelihood computed with respect to the
nuisance parameter vector λ is available and easy to maximize, we can apply a two
step procedure by maximizing, for each β in its parametric space,

Lp(β) = max
λ

L(β, λ) = L(β, λ̂β),

where p is the length of parameter β and λ̂β is the maximum likelihood estimate of λ

for fixed β. Then, the best estimate for β is obtained as

β̂ = argmax
β

logLp(β).

Classical confidence intervals cannot be defined in this setting; indeed, it is possible
to obtain a confidence region for β using the likelihood ratio statistics (see Davison
2003), defined as

Wp(β0) = 2
{
L(β̂, λ̂) − L(β0, λ̂β0)

}
,

where
Wp(β0)

D−→ χ2
p

and β0 is an assigned value for β. These results imply that the confidence region for
β is the set {

β : Lp(β) ≥ Lp(β̂) − 1

2
cp(1 − 2α)

}
, (3.4)

with cp(α) is the α-quantile of the χ2
p distribution.

In our exercise we split θ := (μP , μS, σP , σS, τ ) in θ = (τ, λ) where τ is the
parameter on which we are focusing and λ = (μP , μS, σP , σS) is the nuisance param-
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eter vector. The Profile Likelihood approach is feasible in our case since a closed
approximating expression for the likelihood with respect to the nuisance parameter is
indeed available. The parametric space for β := τ is the interval [0, L] in this case
but, for practical purposes, τ is chosen on a grid, i.e., τ ∈ {τ0, τ1, τ2, . . . , τk}; the
maximization of the likelihood logLR,A(r, a) is then performed with respect to λ for
each value τ j in the grid, obtaining Lp(τ j ) for j = 0, 1, . . . , k. An estimate for τ is
then obtained as τ̂ = argmax j Lp(τ j ). Finally we get θ̂ = (

τ̂ , λ̂τ̂

)
. Of course, the

estimation error decreases with the mesh of the grid so that it sufficiently spans the
parametric set for τ .

4 Model fitting on historical data

In order to fit the model described in (2.1)–(2.2) on real data we need samples for both
the Bitcoin price and the attention indicator. Recently, in Da et al. (2011) the authors
suggest a new and direct measure of investor attention using cumulative internet search
frequency. This measure is particularly consistent with our approach since Bitcoin is
an internet-based digital currency and internet users commonly collect information
through a search engine such as Google2. Besides, “the search volume is likely to
be representative of the internet search behavior of the general population and more
critically, search is a revealed attention measure: if you search for a stock in Google,
you are undoubtedly paying attention to it. Therefore, aggregate search frequency in
Google is a direct and unambiguous measure of attention”, quoting (Da et al. 2011).
The authors in Da et al. (2011) also find strong evidence that search volume index
(SVI), provided by Google, captures the attention of individual/retail investors, i.e.,
of non informed investors, that we named as followers in the Introduction.

Further, the number and volume of transactions, which are examples of tradi-
tional measures for investor attention, as well as the SVI volume of Google searches
or Wikipedia requests have been proven to affect Bitcoin prices in Kristoufek
(2015), Kristoufek (2013).

Hence, once consistency is investigated, for the above measures of attention, with
the dynamics assumed in (2.2), we fit themodel to both the attention factor and Bitcoin
prices data. Daily observations for Bitcoin prices, volume and number of transactions
are obtained through the Web site http://blockchain.info which provides an average
price amongmain exchanges trading onBitcoin and the total exchanged volume. Daily
data for Wikipedia requests on the term “bitcoin” are obtained through the Web site
http://tools.wmflabs.org/pageviews. Google computes the search volume index (SVI)
for a search term as the number of searches for that term scaled by its time series
average and make this measure available by the Web site Google-trends http://www.
google.com/trends from which we obtained weekly data for the number of Google
searches on the term “bitcoin” (daily data are not available at the time of writing).

2 It is well documented that Google is the most popular search engine.
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4.1 Proxies for attention

The univariate process P is a geometric Brownian motion; it is well known that
the corresponding discrete process of logarithmic changes, with time step δ, is a
sequence of independent and identically distributed normal random variables with

mean

(
μP − σ 2

P
2

)
δ and variance σ 2

Pδ. Simple tests, such as the augmented Dickey–

Fuller test, see (Tsay 2005), and the one-sample Kolmogorov-Smirnov test, see
(Massey 1951), are applied in what follows to investigate such property on candi-
date proxies for the process P .

We consider the number and the volume of transactions as possible traditional
attention measures and the number of Google searches and Wikipedia requests
as examples of web-based attention indicators. The first three series were investi-
gated from 01/01/2015 to 31/03/2017 while Wikipedia requests are considered from
01/07/2015 to 31/03/20173

Non-stationarity is rejected for all proxies, whereas log-normality is not rejected
only for the trading volume and the SVI index. For this reason, we used the these two
proxies for our empirical estimation.

4.2 Estimation results

According to the outcomes in previous subsection, we consider the daily time series
of the volume of transactions and the weekly time series of the Google searches from
01/01/2015 to 31/03/2017 as suitable proxies for process P . Hence, we fit the model
described in (2.1) and (2.2) by applying the procedure described in Sect. 3, that we
may briefly refer as Profile Quasi-Maximum Likelihood (PQML). Bitcoin prices are
considered from 15/01/2015 in order to account for a maximum of two weeks for
the time delay with respect to attention measures. Note that Google-trends provides a
scaled time series for the number of searches so the maximum value is 100; in order to
compare outcomes we do the same for the trading volume time series. In what follows
we assume that �=1 week is the observation step for Bitcoin log-returns.

4.2.1 Attention measured by volume

Given daily observations {Pi }i of the volume of transactions we are able to compute
the cumulative weekly attention {Ai }i ; for τ = 0 Ai is simply the mean volume during
the preceding week, i.e.,

Ai =
∫ i�

(i−1)�
Pudu =

7∑

j=1

∫ (i−1)�+ jδ

(i−1)�+( j−1)δ
Pudu =

7∑

j=1

P(i−1)�+ jδδ

=
∑7

j=1 P(i−1)�+ jδ

7
�.

3 Data available only from 01/07/2015.
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Table 1 Parameter fit with
τ = 5

Variable Fitted value SE t value P (> |t |)
μP 1.0404 0.7373 1.4110 0.1610

σP 1.1092 0.0725 15.2924 0.0000

μS 0.0153 0.0083 1.8434 0.0679

σS 0.0830 0.0054 15.2403 0.0000

The generalization to τ > 0 is straightforward as soon as we assume τ = rδ for some
positive integer r ; in which case Ai would be the mean volume of the 7 days preceding
time i� − rδ.

By applying the PQMLmethod we obtain τ = 5 days; the estimated value of other
parameters is summed up in Table 1.

In order to assess significance of parameters, the usual t-statistics is also computed
and shown in the table as well as the p-value of the t test. It is clear from Table 1 that
μP is not statistically significant and thatμS is weakly significant. Finally, we evaluate
the confidence region for τ using (3.4) and τ ∈ {0, 1, 2, . . . , 10} days. We find that
the confidence region is given by T = {2, 3, 4} days. Estimates of other parameters
are indeed very similar for any τ ∈ T and analogous comments apply. We stress that
the value 0 is not within the confidence region, meaning that the introduction of the
delay parameter is relevant in the model specification.

4.2.2 Attention measured by Google searches

Assume now that Google searches are representative of attention on Bitcoin. Since we
have weekly data, we should aggregate both Google searches and Bitcoin returns to
a coarser observation step; however, this would reduce the time series length dramat-
ically and corresponding estimates might be unreliable. Hence, we assume that the
available observations correspond to the cumulative attention time series Ai and we
assume there exists a nonnegative integer c such that τ = c�; in this case, τ is on a
weekly scale and not on a daily scale as in the previous case.

By applying the PQML procedure we obtain τ = 1 week; the estimated value of
other parameters is displayed in Table 2.

The t- statistics and its p-value are also reported for all parameters, as in Sect. 4.2.1.
Again, μP is not statistically significant and μS is weakly significant. Note that, the
confidence region for τ only includes τ =1 week.

Table 2 Parameter fit with
τ = 1

Variable Fitted value SE t value P (> |t |)
μP 0.9573 0.7315 1.3087 0.1935

σP 1.0818 0.0714 15.1611 0.0000

μS 0.0181 0.0092 1.9534 0.0535

σS 0.0867 0.0057 15.1774 0.0000
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5 Risk-neutral evaluation of European-type contingent claims

In this section results concerning arbitrage-free conditions and pricing for European-
style derivatives are discussed. Precisely, we derive a closedform pricing formula for
European-style derivatives and, once parameter are estimated via the PQML method
described above, we comparemodel prices with real quotations reported on the trading
platform www.deribit.com, where standard and binary option on Bitcoin are issued
regularly. Though Bitcoin is traded on different exchanges with different prices, the
derivative contracts in the platform assume that the underlying price is given by the
value of the Bitcoin Index available in www.blockchain.info , computed as a weighted
average of prices on major exchanges. Here, we use the same approach and consider
a single price for one Bitcoin.

Let us fix a finite time horizon T > 0 and assume the existence of a riskless asset,
say the money market account, whose value process B = {Bt , t ∈ [0, T ]} is given
by

Bt = e
∫ t
0 r(s)ds, t ∈ [0, T ],

where r : [0, T ] → R is a bounded, deterministic function representing the instanta-
neous risk-free interest rate. To exclude arbitrage opportunities, we need to check that
the set of all equivalent martingale measures for the Bitcoin price process S is non-
empty. More precisely, it will contain more than a single element, since P does not
represent the price of any tradable asset, and therefore the underlying market model
is incomplete, as shown in Lemma B.3 in “Appendix B”.

Simple examples of candidate equivalent martingale measures are obtained under
the assumption of a constant price γ of attention risk. Specifically these are defined
as probability measures Qγ with the following density

dQγ

dP

∣∣∣∣
FT

=: LQγ

T , P − a.s.,

where LQγ

T is the terminal value of the (F,P)-martingale LQγ = {LQγ

t , t ∈ [0, T ]}
given by

LQγ

t := E

(
−

∫ ·

0

μS Ps−τ − r(s)

σS
√
Ps−τ

dWs −
∫ ·

0
γ dZs

)
, t ∈ [0, T ],

for a constant parameter γ .
The dynamics of the (non-discounted) Bitcoin price with respect to the minimal

martingale measure Qγ is given by

{
dSt = r(t)Stdt + σS

√
Pt−τ StdŴt , S0 = s0 ∈ R+,

dPt = (μP − γ σP )Ptdt + σP Ptd Ẑt , Pt = φ(t), t ∈ [−L, 0],

123

www.deribit.com
www.blockchain.info


200 A. Cretarola et al.

where Ŵ = {Ŵt , t ∈ [0, T ]} and Ẑ = {Ẑt , t ∈ [0, T ]} are (F,Qγ )-Brownian
motions defined, respectively, by

Ŵt := Wt +
∫ t

0

μS Ps−τ − r(s)

σS
√
Ps−τ

ds, t ∈ [0, T ],
Ẑt := Zt + γ t, t ∈ [0, T ].

A very special case within this family is the so-called minimal martingale measure
(see e.g., Föllmer and Schweizer 1991, 2010), obtained by setting γ = 0, and denoted
by P̂. Note that, in this case, the Brownianmotion driving the attention factor as well as
its dynamics is not affected by the change of measures, i.e., Ẑt := Zt . The interested
reader may find further details in “Appendix B”.

Let us consider in what follows a European-type contingent claim, expiring at time
T , traded on the underlying market and we assume that its final payoff is described
by a F̃T -measurable random variable H = ϕ(ST ), with ϕ : R → R being a Borel-
measurable function4 such that H is integrable under Qγ .

Recall that X τ
t,T = X τ

T − X τ
t , for each t ∈ [0, T ), refers to the variation of the

process X τ defined in (2.3), over the interval [t, T ]. Then, denote by E
Qγ

[
·
∣∣∣F̃t

]
the

conditional expectation with respect to F̃t under the probability measure Qγ and so
on.

Theorem 5.1 Let H = ϕ(ST ) be the payoff a European-type contingent claim with
date of maturity T . Then, the risk-neutral price �t (H) at time t of H is given by

�t (H) = E
Qγ

[
ψ(t, St , X

τ
t,T )

∣∣∣∣St

]
, t ∈ [0, T ),

where ψ : [0, T ) × R+ × R+ −→ R is a Borel-measurable function such that

ψ(t, St , X
τ
t,T ) = BtE

Qγ

[
1

BT
G

(
t, St , X

τ
t,T ,Yt,T

)
∣∣∣∣F

W
t ∨ FP

T−τ

]
, (5.1)

for a suitable function G depending on the contract such that G
(
t, St , X τ

t,T ,Yt,T
)
is

Qγ -integrable.

Proof For the sake of simplicity suppose that τ < T and set Yt,T := ∫ T
t

√
Pu−τdŴu ,

for each t ∈ [0, T ). Then, the risk-neutral price �t (H) at time t of a European-type
contingent claim with payoff H = ϕ(ST ) is given by

4 The function ϕ is usually referred to as the contract function.
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�t (H) = BtE
Qγ

[
ϕ(ST )

BT

∣∣∣∣F̃t

]

= BtE
Qγ

⎡

⎢⎢⎢⎢
⎣
E
Qγ

⎡

⎢⎢⎢⎢
⎣

ϕ

(

Ste
∫ T
t r(u)du− σ2S

2 Xτ
t,T +σSYt,T

)

BT

∣∣∣∣∣∣∣∣∣∣

FW
t ∨ FP

T−τ

⎤

⎥⎥⎥⎥
⎦

∣∣∣∣∣∣∣∣∣∣

F̃t

⎤

⎥⎥⎥⎥
⎦

,

(5.2)

where E
Qγ

[
·
∣∣∣F̃t

]
denotes the conditional expectation with respect to F̃t under the

equivalent martingale measure Qγ . More generally, (5.2) can be written as

�t (H) = BtE
Qγ

[
E
Qγ

[
G(t, St , X τ

t,T ,Yt,T )

BT

∣∣∣∣F
W
t ∨ FP

T−τ

] ∣∣∣∣F̃t

]
, (5.3)

for a suitable function G depending on the contract function ϕ. We can apply the
same arguments used in point (ii) of the proof of Theorem B.2, to get that, for each
t ∈ [0, T ), the random variable Yt,T conditioned on FP

T−τ is Normally distributed

with mean 0 and variance X τ
t,T . Then, we can write (in law) that Yt,T =

√
X τ
t,T ε,

where ε is a standard Normal random variable and this allows to find a function ψ

such that (5.1) holds, which means that the conditional expectation with respect to
FW
t ∨FP

T−τ in (5.3) only depends on St and X τ
t,T , for every t ∈ [0, T ). Consequently,

the risk-neutral price �t (H) can be written as

�t (H) = E
Qγ

[
ψ(t, St , X

τ
t,T )

∣∣∣∣F̃t

]
= E

Qγ

[
ψ(t, St , X

τ
t,T )

∣∣∣∣St

]
, (5.4)

where the last equality holds since S is F̃-adapted and X τ
t,T is independent of F̃t , for

each t ∈ [0, T ), see e.g., (Pascucci 2011, Lemma A.108). More precisely, we have

E
Qγ

[
ψ(t, St , X

τ
t,T )

∣∣∣∣F̃t

]
= E

Qγ

[
ψ(t, St , X

τ
t,T )

∣∣∣∣St

]
= g(St ),

where

g(s) = E
Qγ

[
ψ(t, s, X τ

t,T )

∣∣∣∣St = s

]
, s ∈ R+.


�
Since the martingale measure is fixed, the risk-neutral price obtained above agrees

with the arbitrage-free price for those payoffs which can be replicated by investing on
the underlying market. Forward prices at settlement can also be obtained, by imposing
an initial zero cash-flow between counterparts in the pricing formula.
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Remark 5.2 It is worth to remark that ψ(t, St , x), with x ∈ R+, represents the risk-
neutral price at time t ∈ [0, T ) of the contract H = ϕ(ST ) in a Black & Scholes
framework, where the constant volatility parameter σ BS is defined by

σ BS := σS

√
x

T − t
.

This is proved explicitly in Corollary 5.4 for the special case of a Plain Vanilla Euro-
pean Call option.

Remark 5.3 A pricing formula analogous to (5.4) is conjectured in Hull and White
(1987) for a special example of the model suggested here (corresponding to τ = 0
and σS = 1). However, the authors assumed from the very beginning to be within a
risk-neutral setting, without defining the dynamics under the physical measure and
without the need for a proof of the existence of any equivalent martingale measure.
Theorem 5.1 extends their results to the more general case and gives a rigorous proof.

5.1 A Black & Scholes-type option pricing formula

We consider here the special case of a European Call option with strike price K and
maturity T . Define the function CBS : [0, T ) × R+ × R+ −→ R as follows

CBS(t, s, x) := sN(d1(t, s, x)) − Ke− ∫ t
0 r(u)duN(d2(t, s, x)), (5.5)

where

d1(t, s, x) = log
( s
K

) + ∫ t
0 r(u)du + σ 2

S
2 x

σS
√
x

and d2(t, s, x) = d1(t, s, x) − σS
√
x , or more explicitly

d2(t, s, x) = log
( s
K

) + ∫ t
0 r(u)du − σ 2

S
2 x

σS
√
x

.

Here, N stands for the standard Gaussian cumulative distribution function

N(y) = 1√
2π

∫ y

−∞
e− z2

2 dz, ∀ y ∈ R.

Corollary 5.4 The risk-neutral price Ct at time t of a European Call option written on
the Bitcoin with price S expiring in T and with strike price K is given by the formula

Ct = E
Qγ

[
CBS(t, St , X

τ
t,T )

∣∣∣∣St

]
, t ∈ [0, T ), (5.6)

where the function CBS is defined in (5.5).

123



Market attention and Bitcoin price modeling... 203

Proof As in the proof of Theorem 5.1, let us assume that τ < T . Under the martingale
measure Qγ , the risk-neutral price Ct at time t ∈ [0, T ) of a European Call option
written on the Bitcoin with price S expiring in T and with strike price K , is given by

Ct = BtE
Qγ

[
max (ST − K , 0)

BT

∣∣∣∣F̃t

]

= BtE
Qγ

[
S̃T 1{ST >K }

∣∣∣F̃t

]
− Ke− ∫ T

t r(u)du
E
Qγ

[
1{ST >K }

∣∣∣F̃t

]

= Bt J1 − Ke− ∫ T
t r(u)du J2,

where we have set J1 := E
Qγ

[
S̃T 1{ST >K }

∣∣∣F̃t

]
and J2 := E

Qγ
[
1{ST >K }

∣∣∣F̃t

]
. Setting

Yt,T := ∫ T
t

√
Pu−τdŴu , for every t ∈ [0, T ), the term J2 can be written as

J2 = E
Qγ

[
E
Qγ

[
1{ST >K }|FW

t ∨ FP
T−τ

] ∣∣∣F̃t

]

= E
Qγ

[

P̂

(

Ste
∫ T
t r(u)du− σ2S

2 Xτ
t,T +σSYt,T > K

∣∣∣∣F
W
t ∨ FP

T−τ

) ∣∣∣∣F̃t

]

= E
Qγ

⎡

⎢
⎣P̂

⎛

⎜
⎝− Yt,T√

X τ
t,T

<
log

(
St
K

)
+ ∫ T

t r(u)du − σ 2
S
2 X τ

t,T

σS

√
X τ
t,T

∣∣∣∣F
W
t ∨ FP

T−τ

⎞

⎟
⎠

∣∣∣∣F̃t

⎤

⎥
⎦

= E
Qγ

[
N

(
d2(t, St , X

τ
t,T )

)
∣∣∣∣F̃t

]
,

as for each t ∈ [0, T ), the random variable − Yt,T√
X τ
t,T

, given FW
t ∨ FP

T−τ , has a

standard Gaussian lawN(0, 1) underQγ . Concerning J1, let us introduce the auxiliary
probability measure Q̄ on (�,FT ) defined as follows:

dQ̄
dQγ

:= e− σ2S
2

∫ T
0 Pu−τ du+σS

∫ T
0

√
Pu−τ dŴu , P̂ − a.s..

By Girsanov’s Theorem, we get that the process W̄ = {W̄t , t ∈ [0, T ]}, given by

W̄t := Ŵt − σS

∫ t

0

√
Pu−τdu, t ∈ [0, T ],

follows a standard (F, Q̄)-Brownian motion. In addition, using (B.16) in “Appendix
B”, we obtain

S̃T = S̃t e
σS

∫ T
t

√
Pu−τ dW̄u+ σ2S

2

∫ T
t Pu−τ du,
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for every t ∈ [0, T ]. Since S is F̃-adapted, by (B.16) and the Bayes formula on the
change of probability measure for conditional expectation, for every t ∈ [0, T )we get

J1 = E
Qγ

[
S̃T 1{ST >K }

∣∣∣F̃t

]

= S̃t

E
Qγ

[
e− σ2S

2 Xτ
T +σSY0,T 1{ST >K }

∣∣∣∣F̃t

]

e− σ2S
2 Xτ

t +σSY0,t

= S̃tE
Q̄

[
1{

S̃T >K B−1
T

}
∣∣∣∣F̃t

]

= S̃tE
Q̄

⎡

⎣E
Q̄

⎡

⎣1{
σS Ȳt,T >log

(
K
St

)
−∫ T

t r(u)du− σ2S
2 Xτ

t,T

}

∣∣∣∣F
W
t ∨ FP

T−τ

⎤

⎦
∣∣∣∣F̃t

⎤

⎦

= S̃tE
Q̄

⎡

⎢
⎣Q̄

⎛

⎜
⎝− Ȳt,T√

X τ
t,T

<
log

(
St
K

)
+ ∫ T

t r(u)du + σ 2
S
2 X τ

t,T

σS

√
X τ
t,T

∣∣∣∣F
W
t ∨ FP

T−τ

⎞

⎟
⎠

∣∣∣∣F̃t

⎤

⎥
⎦

= S̃tE
Q̄

[
N

(
d1(t, St , X

τ
t,T )

)
∣∣∣∣F̃t

]
, (5.7)

with

d1(t, St , X
τ
t,T ) = d2(t, St , X

τ
t,T ) + σS

√
X τ
t,T .

In the above computations, analogously to before,wehave set Ȳt,T := ∫ T
t

√
Pu−τdW̄u ,

for each t ∈ [0, T ). Consequently, we have that Ȳt,T conditional on FP
T−τ , is a Nor-

mally distributed random variable with mean 0 and variance X τ
t,T , for each t ∈ [0, T ),

since Z is not affected by the change of measure fromQγ to Q̄. Indeed, by the change
of numéraire theorem, we have that the probability measure Q̄ turns out to be the min-
imal martingale measure corresponding to the choice of the Bitcoin price process as
benchmark. Further, by applying again the Bayes formula on the change of probability
measure for conditional expectation, we get

J1 = S̃tE
Q̄

[
N

(
d1(t, St , X

τ
t,T )

)
∣∣∣∣F̃t

]

= S̃t

E
Qγ

[
N

(
d1(t, St , X τ

t,T )
)
e− σ2S

2

∫ T
0 Pu−τ du+σS

∫ T
0

√
Pu−τ dŴu

∣∣∣∣F̃t

]

e− σ2S
2

∫ t
0 Pu−τ du+σS

∫ t
0

√
Pu−τ dŴu

= S̃tE
Qγ

[

N
(
d1(t, St , X

τ
t,T )

)
e− σ2S

2 Xτ
t,TE

Qγ

[
eσSYt,T

∣∣∣∣F
W
t ∨ FP

T−τ

] ∣∣∣∣F̃t

]

= S̃tE
Qγ

[
N

(
d1(t, St , X

τ
t,T )

)
∣∣∣∣F̃t

]
, (5.8)
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since the conditional Gaussian distribution of Yt,T gives

E
Qγ

[
eσSYt,T

∣∣∣∣F
W
t ∨ FP

T−τ

]
= e

σ2S
2 Xτ

t,T .

Finally, gathering the two terms (5.8) and (5.7), for every t ∈ [0, T ) we obtain

Ct = StE
Qγ

[
N

(
d1(t, St , X

τ
t,T )

)
∣∣∣∣F̃t

]
− Ke− ∫ T

t r(u)du
E
Qγ

[
N

(
d2(t, St , X

τ
t,T )

)
∣∣∣∣F̃t

]

= E
Qγ

[
CBS(t, St , X

τ
t,T )

∣∣∣∣F̃t

]
= E

Qγ

[
CBS(t, St , X

τ
t,T )

∣∣∣∣St

]
,

where the last equality follows again from (Pascucci 2011, Lemma A.108), since for
each t ∈ [0, T ), X τ

t,T is independent of F̃t and St is F̃t -measurable. 
�

It is worth noticing that the option pricing formula (5.6) only depends on the distribu-
tion of X τ

t,T which is the same both under measureQγ and Q̄. As observed in Remark
5.2, formula (5.6) evaluated in St corresponds to the Black & Scholes price at time
t ∈ [0, T ) of a European Call option written on S, with strike price K and maturity

T , in a market where the volatility parameter is given by σS

√
x

T−t . Then, for every

t ∈ [0, T ) it may be written as:

Ct =
∫ +∞

0
CBS(t, St , x) fXτ

t,T
(x)dx,

where fXτ
t,T

denotes the density function of X τ
t,T , for each t ∈ [0, T ), under measure

Qγ . The price at time t for a Plain Vanilla European option may also be written as a
Black & Scholes style price:

Ct = St Q1 − Ke− ∫ T
t r(u)ds Q2,

where

Q1 := E
Qγ

[
N

(
d1(t, St , X

τ
t,T )

)
∣∣∣∣St

]
=

∫ +∞

0
N (d1(t, St , x)) fXτ

t,T
(x)dx,

and

Q2 := E
Qγ

[
N

(
d2(t, St , X

τ
t,T )

)
∣∣∣∣St

]
=

∫ +∞

0
N (d2(t, St , x)) fXτ

t,T
(x)dx .

Similar formulas can be computed for other European-style derivatives as for binary
optionswhich, indeed, are quoted in Bitcoinmarkets. For the case of a Cash orNothing
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Call, which is essentially a bet of A on the exercise event, the risk-neutral pricing
formula is given by

CBin
t = Ae− ∫ T

t r(u)ds
E
Qγ

[
N

(
d2(t, St , X

τ
t,T )

)
∣∣∣∣St

]

= Ae− ∫ T
t r(u)ds

∫ +∞

0
N (d2(t, St , x)) fXτ

t,T
(x)dx, t ∈ [0, T ).

To compute derivative prices by applying the above formulas, we need an explicit
form for the distribution function of X τ

t,T . One possible approach is to approximate
this distribution by applying the outcomes in Levy (1992) where the author suggests
a log-normal distribution as a proper choice. Specifically, the price at time t = 0 of
Call option pricing formula reads:

C0 =
∫ +∞

0
CBS(0, S0, x)LNpd fα(T−τ),ν2(T−τ) (x) dx, (5.9)

which can be computed numerically, once parameters α(T − τ), ν(T − S), defined
in “Appendix B” are obtained. Similarly, the price at t = 0 of a Binary Options with
terminal value A when in the money, is given by:

CBin
0 = A

∫ +∞

0
N (d2(T − t, S0, x))LNpd fα(T−τ),ν2(T−τ) (x) dx .

6 Numerical applications

6.1 Sensitivity analysis of the pricing formula

In this subsection, we compute European Plain Vanilla and Binary option prices
assuming that model parameters are known and considering several strike prices and
expiration dates. Since the main features in the suggested model are the introduc-
tion of an attention process and a delay in the dependence of the price upon such
stochastic factor, we believe it is important to further understand their contribution
to the option price formation. To this end, we compute option prices by letting both
the initial attention and the delay values change, while other parameters are set to
μP = 0.03, σP = 0.35, σS = 0.04, γ = 0 and r = 0.01; we assume, without loss of
generality, that the Bitcoin price at time t = 0 is S0 = 450.

In Table 3, Call option prices are reported for T = 3 months, τ= 5 days. Rows
correspond to different values of P0 while columns to different values for the strike
price. As expected, Call option prices are increasing with respect to initial attention
for the Bitcoin and decreasing with respect to strike price.

In Table 4, Call option prices are summed up, for P0 = 100, by letting the expiration
date T and the delay τ vary. Again as expected, for Plain Vanilla Calls the price
increases with time to maturity. Increasing the delay reduces option prices; of course,
the spread is inversely related to the time to maturity of the option.
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Table 3 Call option prices against different strikes K and for different values of P0: S0 = 450, r =
0.01, μP = 0.03, σP = 0.35, σS = 0.04, T = 3 months, τ = 1 week (5 days)

K 400 425 450 475 500

P0 = 10 51.24 28.35 11.46 3.09 0.54

P0 = 100 64.12 48.05 34.94 24.69 16.97

P0 = 1000 128.68 117.75 107.77 98.66 90.35

Table 4 Call option prices against different Strikes K and for different values of T and τ : S0 = 450, r =
0.01, μP = 0.03, σP = 0.35, σS = 0.04 and P0 = 100

K 400 425 450 475 500

T = 1 month, τ = 1 week 52.85 33.09 18.27 8.81 3.71

T = 1 month, τ = 2 weeks 51.58 30.62 15.18 6.13 2.00

T = 3 months, τ = 1 week 64.12 48.05 34.94 24.69 16.97

T = 3 months, τ = 2 weeks 62.95 46.65 33.42 23.18 15.60

Table 5 Digital Cash or Nothing
prices against different Strikes
K and for different values of P0
on Bitcoins

K 400 425 450 475 500

P0 = 10 97.17 82.77 50.31 18.87 4.24

P0 = 100 70.07 58.38 46.58 35.66 26.27

P0 = 1000 45.70 41.77 38.14 34.79 31.72

Market parameters are S0 = 450, r = 0.01, μP = 0.03, σP = 0.35,
σS = 0.04, T = 3 months, τ = 5 days. The prize of the option is set
to A = 100

In Tables 5 and 6, analogous results are reported for Binary Options with outcome
A = 100; Table 5 sums up Binary Cash or Nothing prices for S0 = 450, r = 0.01,
μP = 0.03, σP = 0.35, σS = 0.04, T = 3 months, τ = 1 week (5 working days)
against several strikes (in columns). Rows correspond to different values P0 for the
initial attention on Bitcoins. As expected, prices are decreasing with respect to strike
prices. Here, in themoney (ITM) options values are decreasingwith respect to P0 while
out of the money (OTM) ones are increasing. The difference in ITM and OTM prices is
large for low values of P0, while it is very small for a high level of the initial attention
factor in Bitcoins. This may be justified by the fact that, when the attention factor in
the Bitcoin is strong, all bets are worth, even the OTMones, since the underlying value
is expected to blow up. Binary Call prices decrease with respect to time to maturity for
ITM options and increase for OTM options which becomemore likely to be exercised.
The influence of the delay value is tiny, as for vanilla options, being larger for short
time to maturities.
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Table 6 Digital Cash or Nothing prices against different Strikes K and for different values of T and τ

K 400 425 450 475 500

T = 1 month, τ = 1 week 86.93 69.97 48.27 28.11 13.83

T = 1 month, τ = 2 weeks 91.50 74.23 48.69 24.84 9.80

T = 3 months, τ = 1 week 70.07 58.38 46.58 35.66 26.27

T = 3 months, τ = 2 weeks 71.21 59.10 46.77 35.36 25.62

Market parameters are S0 = 450, r = 0.01, μP = 0.03, σP = 0.35, σS = 0.04 and P0 = 100. The prize
of the option is set to A = 100

6.2 Pricing performance onmarket option prices

In this subsection, we compute option prices in the case where model parameters are
not simply assigned by the authors but are estimated on market data for Bitcoin prices.
Againwe assume that the attention price of risk is γ = 0 for twomain reasons. The first
one, as already remarked, becausewe do not expect the dynamics of the attention factor
to change much from a risk-averse to a risk-neutral setting; the second motivation is
that this parameter does not appear in the dynamics of the system under the physical
measure P, so it can not be estimated on historical data for Bitcoin price and market
attention. Of course, its value might be obtained by calibration, i.e., by minimizing a
suitable measure for the difference betweenmodel andmarket option prices on a given
date, such as the Mean Squared Error (MSE) or its square root (RMSE). However,
this approach considers option prices as given data; this is opposite to our purpose
of computing market option prices by using data on the underlying. Nevertheless, the
closed formula in 5.6makes it possible to calibrate of parameterswithin our framework
if we considered options prices as given. An example is given in following subsection5.

Once model prices for options are computed these values are compared to corre-
sponding market price. Data for market prices of options on Bitcoin may be retrieved
from online platforms where it is possible to trade on Plain Vanilla and Binary options
on the Bitcoin. A relevant platform where bid-ask quotes are publicly available is
www.deribit.com, where the underlying is the Bitcoin average price available from
blockchain.info; we consider the mid-value of the Bid-Ask range in this plat-
form as a benchmark market price for assessing our pricing formula performance. We
discard options for which there was no transactions. Every day two different expiration
dates are available corresponding to a onemonth and twomonths maturity at issue.We
are aware of possible synchronicity problems but as a first evaluation of the suggested
pricing formula we intentionally neglect this friction. We compute the price of each of
the traded options in our sample (from July 20 to July 31, 2017) according to formula
(5.9) by plugging proper values for the strike price and the expiration date and for
model parameters, estimated according to the profile likelihood method described in
Sect. 3. In order to assess pricing performance, we compute the Root Mean Squared
Error (RMSE) of model prices with respect to market prices across all the considered

5 We thank an anonymous referee for this suggestion.
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Table 7 Option Price with t=28 July and T=25 August

K Bid Ask Model (Vol.) Model (Google) BS

2200 0.2200 0.2455 0.2125 0.2196 0.2110

2300 0.1956 0.2210 0.1820 0.1909 0.1799

2400 0.1600 0.1983 0.1538 0.1645 0.1510

2500 0.1280 0.1774 0.1281 0.1404 0.1248

2600 0.1050 0.1582 0.1052 0.1187 0.1015

2700 0.0850 0.1407 0.0867 0.0995 0.0812

2800 0.0703 0.1247 0.0696 0.0827 0.0640

2900 0.0540 0.1104 0.0482 0.0698 0.0497

RMSE mean bid/ask 0.0266 0.0140 0.0294

The strike prices K are reported in US Dollar while all other data are reported in BTC. The underlying
Bitcoin price is 2760.93 $

sample of options and of suitably chosen subsamples6. The same is done when prices
are computed with the benchmark Black & Scholes model, where market attention is
not accounted for. Of course, the latter is estimated on the same time series of Bitcoin
prices; note that only the volatility estimation matters since we set r = 0 for both
models. It is worth noticing that parameters are given by the estimation procedure
on historical data hence the RMSE value is the output of our analysis, not the input
function to be minimized, as it is done when a model is calibrated to market option
prices in order to derive the underlying parameter. An example in this direction will
be given in next subsection.

In Tables 7 and 8 we report market as well as model option prices for July 28, 2017.
Black & Scholes prices are also reported and the RMSE is displayed in the last row.
On the sample days available maturities were July 27 (options from July 20 to July
27), August 25 (options from July 28 to July 31) and September 29 (all options). Since
the bid-ask range on the trading platform is quite large the choice of the best model
is subjective and depends on which criteria are prioritized. Tables 7 and 8 evidence
that Black and Scholes price is often out of bid-ask range while the proposed model
performs better.

In Tables 9 and 10 we report the RMSE for the complete sample of options as well
as for specific subsamples obtained according to moneyness and to maturity across
all trading days. RMSE values are also computed and reported in the tables for the
benchmark Black & Scholes model. Overall our pricing formula does much better
than the benchmark in all cases. Highlighted in the tables (in bold) are the few cases
where Black & Scholes model does better than the model we suggest, according to
the RMSE.

Indeed, the pricing performance of themodel depends on the choice for the attention
measure to be considered which introduce another source of model risk7; however, it

6 The Root Mean Squared Error is computed as the square root of the sum, across all options in the sample
or subsample, of the squared differences between model and market prices.
7 We thank an anonymous referee for pointing this.
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Table 8 Option price with t =28 July and T =29 September

K Bid Ask Model (Vol.) Model (Google) BS

2200 0.2108 0.2764 0.2350 0.2981 0.2297

2300 0.1881 0.2547 0.2091 0.2779 0.2029

2400 0.2004 0.2343 0.1851 0.2589 0.1781

2500 0.1700 0.2154 0.1631 0.2411 0.1555

2600 0.1650 0.1950 0.1431 0.2244 0.1349

2700 0.1168 0.1710 0.1249 0.2087 0.1164

2800 0.1044 0.1630 0.1086 0.1941 0.0999

2900 0.0934 0.1490 0.0940 0.1804 0.0853

RMSE mean bid/ask 0.0256 0.0543 0.0329

The strike prices K are reported in US Dollar while all other data are reported in BTC. The underlying
Bitcoin price is 2760.93 $

Table 9 RMSE Option Price with Volume of Transactions

Options Num. RMSE Mod.
(in BTC)

RMSE BS
(in BTC)

RMSE Mod. (in %) RMSE BS (in %)

All 144 0.0257 0.0407 12.55% 14.14%

Very Shorts 16 0.0225 0.0204 35.62% 32.32%

1 Month 32 0.0200 0.0256 2.00% 2.56%

2 Months 32 0.0231 0.0310 2.31% 3.10%

ITM 54 0.0209 0.0356 3.75% 7.03%

ATM 36 0.0281 0.0437 10.94% 13.22%

OTM 54 0.0283 0.0432 18.05% 19.16%

is worth noticing that when attention is measured by Google Searches the model tends
to overprice long-term options while it is the very best for shorter term options as if
this attention indicator is driven by enthusiasm giving a sudden impulse to options.
This evidence can lead to the proper choice of the attention proxy depending on the
expiration date of options to be priced. It would be interesting to consider a weighted
mean of these two factors as a proxy of market attention rather than focusing on only
one of them; this will be subject of future research.

6.3 Calibration of parameters

The availability of a closed formula for option prices makes it possible to derive
parameters’ value from market option prices rather than from historical prices of the
underlying: this procedure is usually referred to as calibration; alternatively, different
subsets of parameters may be derived by using market option data and underlying
data, respectively.

Calibration is based on the minimization, with respect to model parameters, of a
suitably defined distance between model prices and corresponding market prices for
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Table 10 RMSE Option Price with Google Searches

Options Num. RMSE Mod.
(in BTC)

RMSE BS
(in BTC)

RMSE Mod. (in %) RMSE BS (in %)

All 144 0.0290 0.0416 19.39% 28.40%

Very Shorts 16 0.0130 0.0229 24.71% 45.67%

1 Month 32 0.0110 0.0256 9.63% 24.02%

2 Months 32 0.0426 0.0310 27.21% 19.98%

ITM 54 0.0268 0.0366 12.13% 16.60%

ATM 36 0.0277 0.0448 16.76% 26.76%

OTM 54 0.0318 0.0441 25.86% 37.39%

a family of financial derivatives for which a market price, resulting from either a trade
or a market maker quotation, is observed.

There has been a long debate in the literature whether calibration methodology is a
sound estimation method; it is beyond the scope of this paper to go through pros and
cons of the procedure. We just mention that calibration is usually performed when the
market prices for derivatives are observed in large and trusted derivative exchanges;
this is not the case in our setting, where at the time of writing, financial derivatives on
Bitcoin are traded on online platforms which are not always trustworthy8. Neverthe-
less, if we want to consider a non-zero price γ for attention risk we need to resort, at
least for this parameter, to calibration.

For the sake of completeness, we give a numerical example on how parameter γ

can be calibrated on the options that we considered in the previous subsection, under
the assumption that their price is given by the mid-value of the bid-ask market range.
As for a suitable distance between model and market price we consider the Mean
Squared Error.

More precisely, denotewithCt = Ct (μP , σP , γ, μS, σS, τ, K , T ) the pricing func-
tion in t of a Call Option exiting at time T with strike price K where we have stressed
the dependence onmodel parameters. Besides, denote withC∗

t (T , K ) themarket price
of a Call option with same characteristics.

Due to the tiny option market where Bitcoin options are traded, we believe that the
PQML estimation procedure should be chosen when it is possible and we apply (6.1).
Hence, we estimate (μP , σP , μS, σS, τ )with the PQMLmethod introduced in Sect. 4
and derive γ obtained as:

γ̄ = argmin
J∑

j=1

(
Ct (μ̂P , σ̂P , γ, μ̂S, σ̂S, τ̂ , K j , Tj ) − C∗

t (K j , Tj )
)2

, (6.1)

where J is the cardinality of the set of options forwhich amarket value is available, and
(K j , Tj ) for j = 1, 2, . . . , J are the characteristics of these options. By considering
options traded on July 28, 2017 and assuming that their market price is the midprice

8 With the exception of Futures, traded on both the CBOE and CME, which are not suited for calibration.
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of the bid-ask displayed, respectively, in Tables 7 and 8 we obtain, according to (6.1),
γ̄ = −0.90 and γ̄ = 2.05 for the trading volume and the SVI index, respectively,
leading to minimum values for the RMSE of 0.0183 and 0.0121 in the two cases. The
difference in sign evidences that in a risk-neutral world the increasing yield of the
trading volume would be higher that in the real world why the opposite happens for
the internet searches volume.

If we wanted to calibrate all of the parameters their value would be derived as:

(μ̄P , σ̄P , γ̄ , μ̄S, σ̄S, τ̄ ) = argmin
J∑

j=1

(
Ct (μP , σP , γ, μS, σS, τ, K j , Tj )

−C∗
t (K j , Tj )

)2

but in this case the number J of options in the sample should be the very large to
make estimation consistent, and, as already noticed, the Exchange trading the options
should be a reference for the whole market.

7 Concluding remarks

In this paper, we assume that Bitcoin prices are driven by investors’ attention as
suggested in recent literature; main references in this area areKristoufek (2013, 2015),
Kim et al. (2015), Figà-Talamanca and Patacca (2019). In order to account for such
behavior we develop a stochastic model in continuous time describing the dynamics
of two factors, one representing the attention index on the Bitcoin system and the other
representing the Bitcoin price itself, which is directly affected by the first factor; we
also take into account a delay between the attention index and its delivered effect on
the Bitcoin price. We investigate statistical properties of the proposed model and we
show its arbitrage-free property. Further, under suitable model assumptions we derive
a closedform approximation for the joint density of the discretely observed process and
we propose a statistical estimation to fit themodel to real data. By applying the classical
risk-neutral evaluation we are able to derive a quasi-closed formula for European-style
derivatives on the Bitcoin with special attention on Plain Vanilla and Binary options
for which a market already exists (e.g., https://deribit.com, https://coinut.com). Of
course, attention about Bitcoin or, more generally, on cryptocurrencies, is not directly
observed but several variables may be considered as indicators. Here, we analyzed the
trading volume, see (Kristoufek 2015), and more unconventional attention indicators
such as the number of Google searches on the word “bitcoin”, as suggested by Da
et al. (2011). Firstly, we investigated whether these proxies were consistent with the
suggested model and we proved that both the volume of transactions and the number
of Google searches give a good fit of the dynamics described in the model. Finally,
we fit the model using real data of Bitcoin price with the volume of transactions
and the Google searches index, respectively. The ability of our pricing formula on
capturing market option prices is also assessed on a sample of options traded on www.
deribit.com; the overall performance outperforms substantially the benchmark Black
& Scholes pricing formula.
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A calibration example is also provided in order to estimate the price of attention risk
on available option prices. There is still space for improvement in the suggested model
to take into account stylized facts of observed price evidenced in Catania and Grassi
(2017), Guo and Li (2017), Chu et al. (2015). Indeed, even if empirical evidence
suggests that market attention/sentiment drives Bitcoin price behavior, other sources
of randomness should be added to properly model its stochastic volatility. However,
the specification given in Eqs. (2.1)–(2.2) allows to get several nice results, as the
quasi-closed pricing formula for European-style derivatives on Bitcoin; the effects
of including jumps in the price dynamics, generalizing the approach in Kou (2002)
will be investigated. In a companion paper, Cretarola and Figà-Talamanca (2019), we
consider a non-zero correlation between the two factors, focusing on the case of no
delay; high correlation is shown to be linked to bubbles in the price dynamics, which
have been also evidenced for the Bitcoin, see e.g., (Fry and Cheah 2015; Malhotra and
Maloo 2014; Donier and Bouchaud 2015; Corbet et al. 2018; Bistarelli et al. 2019b).

Finally, we believe it is important to stress that another specific feature of Bitcoin
is the existence of different prices for trades in different online platforms; hence, even
considering the bid-ask mid price, several prices are available for the same asset at the
same time. This characteristic makes arbitrage opportunities arise across exchanges,
since the law of unique price is not fulfilled. In the present paper we ignore this
issue by assigning to Bitcoin the average price computed and provided by the Web
site https://blockchain.info; this choice is consistent with most literature on Bitcoin
price behavior but we plan to give a multivariate specification of the suggested model.
Preliminary results in this direction, to account for a multi-exchange framework and
possible cross-exchange arbitrage opportunities, are discussed inBistarelli et al. (2018,
2019a).
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Appendix A: Levy approximation

In Levy (1992) the author proves that the distribution of the mean integrated Brownian
motion 1

s

∫ s
0 Pudu can be approximated with a log-normal distribution, at least for

suitable values of the model parameters μP , σP ; the parameters of the approximating
log-normal distribution are obtained by applying a moment matching technique. Set
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I P(s) :=
∫ s

0
Pudu, s > 0. (A.1)

Of course, the distribution of I P(s) can also be approximated by a log-normal for s >

0. By applying the moment matching technique the parameters of the corresponding
log-Normal distribution for I P(s) are given by

α(s) = log

⎛

⎝ E [I P(s)]2
√
E

[
I P(s)2

]

⎞

⎠ ,

ν2(s) = log

(
E

[
I P(s)2

]

E [I P(s)]2

)

.

The approximate distribution density function f I P(s) of I P(s) is thus given by

f I P(s)(x) = LNpd fα(s),ν2(s) (x) , if s > 0,

where LNpd fm,v denotes the probability distribution function of a log-normal distri-
bution with parameters m and v, defined as

LNpd fm,v(y) = 1

y
√
2πv

e− (log(y)−m)2

2v , ∀ y ∈ R
+.

In the paper the above approximation is applied twice with completely different pur-
poses. In Sect. 4, once τ < � is assigned, the Levy approximation is applied to derive
the distribution of A1 and of Ai given Ai−1 where A1 = X τ

τ + I P(� − τ) and,

for i ≥ 2, Ai = ∫ i�−τ

(i−1)�−τ
Pudu = ∫ �−τ

−τ
Pu+(i−1)�du = P(i−1)�

∫ �−τ

−τ
Pudu =

P(i−1)�
(
X τ

τ + I P(� − τ)
)
.

In Sect. 5 it is applied to derive an approximate distribution for the integrated
attention process starting at t = 0, i.e., to X τ

0,T = X τ
τ + I P(T − τ). Note that

X τ
0,T − X τ

τ = I P(T − τ) hence the derivations of its distribution is trivial once that
of I P(T − τ) is known.

Appendix B: Technical proofs

The following result provides basic statistical properties for the integrated attention
process X τ defined in (2.3), as well as for its variation in case they are not fully
deterministic.

Lemma B.1 In the market model outlined in Eqs. (2.1)–(2.2), we have:
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(i) For t > τ ,

E
[
X τ
t

] = X τ
τ + φ(0)

μP

(
eμP (t−τ) − 1

)
;

Var[X τ
t ] = 2φ2(0)

(
μP + σ 2

P

) (
2μP + σ 2

P

)
(
e
(
2μP+σ 2

P

)
(t−τ) − 1

)

− 2φ2(0)

μP
(
μP + σ 2

P

)
(
eμP (t−τ) − 1

)
−

(
φ(0)

μP

(
eμP (t−τ) − 1

))2

.

(ii) For τ ≤ t < T ,

E
[
X τ
t,T

] = φ(0)eμP (t−τ)

μP

(
eμP (T−t) − 1

)
;

Var[X τ
t,T ] = 2φ2(0)e

(
2μP+σ 2

P

)
(t−τ)

(
μP + σ 2

P

) (
2μP + σ 2

P

)
(
e
(
2μP+σ 2

P

)
(T−t) − 1

)

− 2φ2(0)eμP (t−τ)

μP
(
μP + σ 2

P

)
(
eμP (T−t) − 1

)

−
(

φ(0)eμP (t−τ)

μP

(
eμP (T−t) − 1

))2

.

(iii) For t ≤ τ < T ,

E
[
X τ
t,T

] =
∫ 0

t−τ

φ (u) du + φ(0)

μP

(
eμP (T−τ) − 1

)
;

Var[X τ
t,T ] = 2φ2(0)

(
μP + σ 2

P

) (
2μP + σ 2

P

)
(
e
(
2μP+σ 2

P

)
(T−τ) − 1

)

− 2φ2(0)

μP
(
μP + σ 2

P

)
(
eμP (T−τ) − 1

)
−

(
φ(0)

μP

(
eμP (T−τ) − 1

))2

.

In Hull andWhite (1987) similar outcomes are claimed for τ = 0without providing
a proof; for the sake of clarity, we give here a self-contained proof.

Proof In order to prove the Lemma let us first compute the mean and the variance of
I P(s) given in (A.1) for each s > 0.

Fix s > 0. Since Pu > 0 for each u ∈ (0, s], by applying the Fubini theorem we
get

E [I P(s)] = E

[∫ s

0
Pudu

]
=

∫ s

0
E [Pu] du,
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where, for each u ≥ 0, we have

E [Pu] = φ(0)e

(
μP− σ2P

2

)
u
E

[
eσP Zu

]
= φ(0)eμPu,

since P is a geometric Brownian motion with P0 = φ(0). Hence

E [I P(s)] = φ(0)
∫ s

0
eμPudu = φ(0)

μP

(
eμP (s) − 1

)
.

As for the variance of I P(s), we have

Var[I P(s)] = Var

[∫ s

0
Pudu

]
= E

[(∫ s

0
Pudu

)2
]

− E

[∫ s

0
Pudu

]2
,

with

E

[(∫ s

0
Pudu

)2
]

= 2E

[∫ s

0
Pvdv

∫ v

0
Pudu

]
= 2E

[∫ s

0

∫ v

0
Pu Pvdvdu

]

= 2
∫ s

0

∫ v

0
E [Pu Pv] dvdu, (B.1)

where the last equality again holds thanks to Fubini’s theorem. Moreover, by the
independence property of the increments of Brownian motion, for 0 < u < v ≤ s,
we get

E [Pu Pv] = E

⎡

⎣P2
u e

(
μP− σ2P

2

)
(v−u)+σP (Zv−Zu)

⎤

⎦

= e

(
μP− σ2P

2

)
(v−u)

E

[
P2
u E

[
eσP (Zv−Zu)|FP

u

]]

= e

(
μP− σ2P

2

)
(v−u)

E

[
P2
u

]
E

[
e

σ2P (v−u))

2

]
= eμP (v−u)

E

[
P2
u

]
.

Further,

E

[
P2
u

]
= φ2(0)e

2

(
μP− σ2P

2

)
u
E

[
e2σP Zu

]
= φ2(0)e

(
2μP+σ 2

P

)
u .

Hence
E [Pu Pv] = φ2(0)eμP (v−u)e

(
2μP+σ 2

P

)
u, (B.2)
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and by plugging (B.2) into (B.1), we have

E

[
I P(s)2

]
= 2φ2(0)

∫ s

0
eμPv

∫ v

0
e
(
μP+σ 2

P

)
ududv

= 2φ2(0)
(
μP + σ 2

P

) (
2μP + σ 2

P

)
(
e
(
2μP+σ 2

P

)
s − 1

)

− 2φ2(0)

μP
(
μP + σ 2

P

)
(
eμP s − 1

)
.

Finally, gathering the results we get

Var[I P(s)] = 2φ2(0)
(
μP + σ 2

P

) (
2μP + σ 2

P

)
[
e
(
2μP+σ 2

P

)
s − 1

]

− 2φ2(0)

μP
(
μP + σ 2

P

)
(
eμP s − 1

) −
(

φ(0)

μP

(
eμP s − 1

))2

.

Note that X τ
t , with t ∈ [0, τ ], and X τ

t,T , with t < T ≤ τ , are fully deterministic
and the computation is trivial.

To prove points (i)–(iii), it suffices to observe that

X τ
t = X τ

τ + I P(t − τ), t > τ,

X τ
t,T =

∫ 0

t−τ

φ(u)du + I P(T − τ), t ≤ τ < T ,

and the computation easily follows once those of I P(s) are known for s > 0.
To prove point (ii), it is worth noticing that given 0 ≤ v < s

I P(s) − I P(v) =
∫ s

v

Pudu =
∫ s

v

Pve

(
μP− σ2P

2

)
(u−v)+σP (Zu−Zv)

du

(law)= Pv

∫ s

v

e

(
μP− σ2P

2

)
(u−v)+σP Zu−v

du

= Pv

∫ s−v

0
e

(
μP− σ2P

2

)
r+σP Zr

dr = Pv I P(s − v), (B.3)

where r = u − v. To obtain the desired result, it suffices to note that, for τ ≤ t < T ,

X τ
t,T = I P(T − τ) − I P(t − τ)

and apply (B.3). The computation of the mean and variance of the above difference is
straightforward given the independence of Brownian increments. 
�

The systemgivenbyEqs. (2.1)–(2.2) iswell-defined inR+, as stated in the following
theorem, which also provides its explicit solution.
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Theorem B.2 In the market model outlined in (2.1)–(2.2), the followings hold:

(i) the bivariate stochastic delayed differential equation

{
dSt = μS Pt−τ Stdt + σS

√
Pt−τ StdWt , S0 = s0 ∈ R+,

dPt = μP Ptdt + σP PtdZt , Pt = φ(t), t ∈ [−L, 0], (B.4)

has a continuous, F-adapted, unique solution (S, P) = {(St , Pt ), t ≥ 0} given
by

St = s0e

(
μS− σ2S

2

)∫ t
0 Pu−τ du+σS

∫ t
0

√
Pu−τ dWu

, t ≥ 0, (B.5)

Pt = φ(0)e

(
μP− σ2P

2

)
t+σP Zt

, t ≥ 0. (B.6)

More precisely, S can be computed step by step as follows: for k = 0, 1, 2, . . .
and t ∈ [kτ, (k + 1)τ ],

St = Skτ e

(
μS− σ2S

2

)∫ t
kτ Pu−τ du+σS

∫ t
kτ

√
Pu−τ dWu

. (B.7)

In particular, Pt ≥ 0 P-a.s. for all t ≥ 0. If in addition, φ(0) > 0, then Pt > 0
P-a.s. for all t ≥ 0.

(ii) Further, for every t ≥ 0, the conditional distribution of St , given the integrated

attention X τ
t , is log-Normal with mean log (s0) +

(
μS − σ 2

S
2

)
X τ
t and variance

σ 2
S X

τ
t .

(iii) Finally, for every t ∈ [0, τ ], the random variable log (St ) has mean log (s0) +(
μS − σ 2

S
2

)
X τ
t and variance σ 2

S X
τ
t ; for every t > τ , log (St ) has mean and

variance, respectively, given by

E
[
log (St )

] = log (s0) +
(

μS − σ 2
S

2

)

E
[
X τ
t

] ;

Var
[
log (St )

] =
(

μS − σ 2
S

2

)2

Var[X τ
t ] + σ 2

SE
[
X τ
t

]
,

where E
[
X τ
t

]
and Var[X τ

t ] are both provided by Lemma B.1, point (i).

Proof Point (i). Clearly, S and P , given in (B.5) and (B.6), respectively, are F-adapted
processes with continuous trajectories. Similarly to (Mao and Sabanis 2013, Theorem
2.1), we provide existence and uniqueness of a strong solution to the pair of stochastic
differential equations in system (B.4) by using forward induction steps of length
τ , without the need of checking any assumptions on the coefficients, e.g., the local
Lipschitz condition and the linear growth condition.
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First, note that the second equation in the system (B.4) does not depend on S, and
its solution is well known for all t ≥ 0. Clearly, Eq. (B.6) says that Pt ≥ 0 P-a.s. for
all t ≥ 0 and that φ(0) > 0 implies that the solution P remains strictly greater than 0
over [0,+∞), i.e., Pt > 0, P-a.s. for all t ≥ 0.
Next, by the first Eq. (B.4) and applying Itô’s formula to log (St ), we get

d log (St ) =
(

μS − σ 2
S

2

)

Pt−τdt + σS
√
Pt−τdWt , (B.8)

or equivalently, in integral form

log

(
St
s0

)
=

(

μS − σ 2
S

2

)∫ t

0
Pu−τdu + σS

∫ t

0

√
Pu−τdWu, t ≥ 0. (B.9)

For t ∈ [0, τ ], (B.9) can be written as

log

(
St
s0

)
=

(

μS − σ 2
S

2

)∫ t

0
φ (u − τ) du + σS

∫ t

0

√
φ (u − τ)dWu, (B.10)

that is, (B.7) holds for k = 0.
Given that St is now known for t ∈ [0, τ ], we may restrict the first Eq. (B.4) on

t ∈ [τ, 2τ ], so that it corresponds to consider (B.8) for t ∈ [τ, 2τ ]. Equivalently, in
integral form,

log

(
St
Sτ

)
=

(

μS − σ 2
S

2

)∫ t

τ

Pu−τdu + σS

∫ t

τ

√
Pu−τdWu .

This shows that (B.7) holds for k = 1. Similar computations for k = 2, 3, . . ., give
the final result.
Point (ii). Set Yt := ∫ t

0

√
φ (t − τ)dWu , for t ∈ [0, τ ] and Yt := Ykτ +∫ t

kτ

√
Pu−τdWu , for t ∈ [kτ, (k + 1)τ ], with k = 1, 2, . . .. Then, by applying the

outcomes in Point (i) and the decomposition

log

(
St
s0

)
= log

(
St
Skτ

)
+

k−1∑

j=0

log

(
S( j+1)τ

S jτ

)
,

for t ∈ [kτ, (k + 1)τ ], with k = 1, 2, . . ., we can write

log (St ) = log(s0) +
(

μS − σ 2
S

2

)

X τ
t + σSYt , t ≥ 0. (B.11)

To complete the proof, it suffices to show that, for each t ≥ 0 the random variable
Yt , conditional on X τ

t , is Normally distributed with mean 0 and variance X τ
t . This

123



220 A. Cretarola et al.

is straightforward from (B.10) if t ∈ [0, τ ]. Otherwise, we first observe that since
Zu−τ is independent of Wu for every τ < u ≤ t , the distribution of Yt , conditional on
{Zu−τ : τ < u ≤ t − τ } = {Pu−τ : τ < u ≤ t − τ } = FP

t−τ , is Normal with mean 0
and variance σ 2

S X
τ
t .

Now, for each t > τ , the moment-generating function of Yt , conditioned on the history
of the process P up to time t − τ , is given by

E

[
eaYt

∣∣∣FP
t−τ

]
= e

∫ t
0

a2
2 Pu−τ du = e

a2
2

∫ t
0 Pu−τ du

= e
a2
2

(√
Xτ
t

)2

, a ∈ R,

that only depends on X τ
t up to time t , that is,

E

[
eaYt

∣∣∣FP
t−τ

]
= E

[
eaYt

∣∣∣X τ
t

]
, t > τ.

Point (iii). The proof is trivial for t ∈ [0, τ ]. If t > τ , (B.11) and Lemma B.1, point
(i), together with the null-expectation property of the Itô integral, give

E
[
log (St )

] = log (s0) +
(

μS − σ 2
S

2

)(
X τ

τ + φ(0)

μP

(
eμP (t−τ) − 1

))
.

Now, we compute the variance of log (St ). Since for each t > τ the random variable
Yt has mean 0 conditional on FP

t−τ , we have

Var
[
log (St )

] = E

[
log2 (St )

]
− (

E
[
log (St )

])2

=
(

μS − σ 2
S

2

)2

E

[
(X τ

t )
2
]

+ 2

(

μS − σ 2
S

2

)

E

[
X τ
t E

[
Yt

∣∣∣FP
t−τ

]]

+ σ 2
SE

[
X τ
t

] −
(

μS − σ 2
S

2

)2

E
[
X τ
t

]2

=
(

μS − σ 2
S

2

)2

Var[X τ
t ] + σ 2

SE
[
X τ
t

]
.

Thus, the proof is complete. 
�
Let T > 0 be a fixed and finite time horizon. The following result ensures that the

model given in (2.1)–(2.2) is arbitrage-free.

Lemma B.3 Let φ(t) > 0, for each t ∈ [−L, 0], in (2.2). Then, every equivalent
martingale measure Q for S defined on (�,FT ) has the following density

dQ
dP

∣∣∣∣
FT

=: LQ
T , P − a.s.,
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where LQ
T is the terminal value of the (F,P)-martingale LQ = {LQ

t , t ∈ [0, T ]} given
by

LQ
t := E

(
−

∫ ·

0

μS Ps−τ − r(s)

σS
√
Ps−τ

dWs −
∫ ·

0
γsdZs

)

t
, t ∈ [0, T ], (B.12)

for a suitable F-progressively measurable process γ = {γt , t ∈ [0, T ]}.
Proof Firstly, we prove that formula (B.12) defines a probabilitymeasureQ equivalent
to P on (�,FT ). This means we need to show that LQ is an (F,P)-martingale, that is,

E

[
LQ
T

]
= 1. Since the F-progressively measurable process γ can be suitably chosen,

to prove this relation we can assume γ ≡ 0, without loss of generality. Set

αt := −μS Pt−τ − r(t)

σS
√
Pt−τ

, t ∈ [0, T ]. (B.13)

We observe that since φ(t) > 0, for each t ∈ [−L, 0], in (2.2), by Theorem B.2,
point (i), we have that Pt−τ > 0, P-a.s. for all t ∈ [0, T ], so that the process α =
{αt , t ∈ [0, T ]} given in (B.13) is well-defined, as well as the random variable LQ

T .
Clearly, α is an F-progressively measurable process. Moreover, since the trajectories
of the process P are continuous, then P is almost surely bounded on [0, T ] and this
implies that

∫ T
0 |αu |2du < ∞ P-a.s.; on the other hand, the condition φ(t) > 0,

for every t ∈ [−L, 0], implies that almost every path of
{

1
σS

√
Pt−τ

, t ∈ [0, T ]
}
is

bounded on the compact interval [0, T ]. Set FP
t := FP

0 = {�,∅}, for t ≤ 0. Then,
αu , for every u ∈ [0, T ], is FP

T−τ -measurable. Since Zu−τ is independent of Wu , for

every u ∈ [τ, T ], the stochastic integral ∫ T
0 αudWu conditioned on FP

T−τ has a normal

distribution with mean zero and variance
∫ T
0 |αu |2du. Consequently, the formula for

the moment-generating function of a normal distribution implies

E

[
e
∫ T
0 αudWu

∣∣∣∣F
P
T−τ

]
= e

1
2

∫ T
0 |αu |2du,

or equivalently

E

[
e
∫ T
0 αudWu− 1

2

∫ T
0 |αu |2du

∣∣∣∣F
P
T−τ

]
= 1. (B.14)

Taking the expectation of both sides of (B.14) immediately yields E
[
LQ
T

]
= 1. Now,

set S̃t := St
Bt

, for each t ∈ [0, T ]. It remains to verify that the discounted Bitcoin

price process S̃ = {S̃t , t ∈ [0, T ]} is an (F,Q)-martingale. By Girsanov’s theorem,
under the change of measure from P toQ, we have two independent (F,Q)-Brownian
motions WQ = {WQ

t , t ∈ [0, T ]} and ZQ = {ZQ
t , t ∈ [0, T ]} defined, respectively,

by

WQ
t := Wt −

∫ t

0
αudu, ZQ

t := Zt +
∫ t

0
γudu, t ∈ [0, T ].
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Under the martingale measure Q, the discounted Bitcoin price process S̃ satisfies the
following dynamics

dS̃t = S̃tσS
√
Pt−τdW

Q
t , S̃0 = s0 ∈ R+,

which implies that S̃ is an (F,Q)-local martingale. Finally, proceeding as above it is
easy to check that S̃ is a true (F,Q)-martingale. 
�

Here E(Y ) denotes the Doléans-Dade exponential of an (F,P)-semimartingale Y .
Then, Lemma B.3 ensures that the space of equivalent martingale measures for S is
described by (B.12). Note that the attention factor dynamics under Q in the Bitcoin
market is given by

dPt = (μP − σPγt )Ptdt + σP PtdZ
Q
t , Pt = φ(t), t ∈ [−L, 0].

The process γ can be interpreted as the price for attention risk, i.e., the perception
associated to the future direction of investor attention on the Bitcoin market. The
probability measure which corresponds to the choice γ ≡ 0 in (B.12) is the so-called
minimal martingale measure. Let us focus on the special case of a constant process
γ ; in this setting the equivalent martingale measure, denoted byQγ , is parameterized
by the constant γ which governs the change of drift of the (F,P)-Brownian motion
Z . As a special case of the above dynamics, the two independent (F,Qγ )-Brownian
motions Ŵ = {Ŵt , t ∈ [0, T ]} and Ẑ = {Ẑt , t ∈ [0, T ]} are defined, respectively,
by

Ŵt := Wt +
∫ t

0

μS Ps−τ − r(s)

σS
√
Ps−τ

ds, t ∈ [0, T ],
Ẑt := Zt + γ t, t ∈ [0, T ].

Denote by S̃t = {S̃t , t ∈ [0, T ]} the discounted Bitcoin price process defined as

S̃t := St
Bt

, for each t ∈ [0, T ]. Then, on the probability space (�,F,Qγ ), the pair

(S̃, P) satisfies the following system of stochastic delayed differential equations:

{
dS̃t = σS

√
Pt−τ S̃tdŴt , S̃0 = s0 ∈ R+,

dPt = (μP − γ σP )Ptdt + σP Ptd Ẑt , Pt = φ(t), t ∈ [−L, 0], (B.15)

By Theorem B.2, point (i), the explicit expression of the solution to (B.15), which
provides the discounted Bitcoin price S̃t , at any time t ∈ [0, T ], is given by

S̃t = s0e
σS

∫ t
0

√
Pu−τ dŴu− σ2S

2

∫ t
0 Pu−τ du, t ∈ [0, T ], (B.16)

with the representation of the attention factor P still provided by (B.6) where the
parameter μP is replaced by μ̃P = μP − γ σP . All the outcomes on the integrated
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attention variable Xt,T hold under the transformed probability measureQγ by replac-
ing parameter μP with μ̃P .

In what follows we prove Lemma 3.1.

Proof of Lemma 3.1 By applying (Levy 1992) we have (see “Appendix A”) that the
distribution of A1 − X τ

τ can be approximated by a log-normal with parameters

α1 = log

(
E[I P(� − τ)]2

√
E[I P(� − τ)2]

)

, ν21 = log

(
E[I P(� − τ)2]
E[I P(� − τ)]2

)
.

By applying the outcomes of Lemma B.1, we have

E
Qγ [A1] = E[P0]e

μ̃P (�−τ) − 1

μ̃P
= P0

eμ̃P (�−τ) − 1

μ̃P

E
Qγ [A2

1] = P2
0

(
2

μ̃P + σ 2
P

[
e
(
2μ̃P+σ 2

P

)
(�−τ) − 1

2μ̃P + σ 2
P

− eμ̃P (�−τ) − 1

μ̃P

])

.

Hence

α1 = log

⎛

⎜⎜⎜⎜
⎝

P0
(
eμ̃P�−1

μ̃P

)2

√
2

μ̃P+σ 2
P

[
e(2μ̃P+σ2P)�−1

2μ̃P+σ 2
P

− eμ̃P�−1
μ̃P

]

⎞

⎟⎟⎟⎟
⎠

ν21 = log

⎛

⎜⎜
⎝

2
μ̃P+σ 2

P

[
e(2μ̃P+σ2P)�−1

2μ̃P+σ 2
P

− eμ̃P�−1
μ̃P

]

(
eμ̃P�−1

μ̃P

)2

⎞

⎟⎟
⎠ .

By applying simple computation, we get the outcomes for part (i). Moreover,

E
Qγ [Ai ] = E

Qγ [Pi−1]e
μ̃P� − 1

μ̃P
= E

Qγ [Pi−2] eμ̃P� eμ̃P� − 1

μ̃P
= E[Ai−1] eμ̃P�

E
Qγ [A2

i ] = E
Qγ [P2

i−1]
(

2

μ̃P + σ 2
P

[
e
(
2μ̃P+σ 2

P

)
� − 1

2μ̃P + σ 2
P

− eμ̃P� − 1

μ̃P

])

= E
Qγ [P2

i−2]e
(
2μ̃P+σ 2

P

)
�

(
2

μ̃P + σ 2
P

[
e
(
2μ̃P+σ 2

P

)
� − 1

2μ̃P + σ 2
P

− eμ̃P� − 1

μ̃P

])

= E
Qγ [A2

i−1] e
(
2μ̃P+σ 2

P

)
�.
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Then

αi = log

⎛

⎝ E
Qγ [Ai ]2√
EQγ [A2

i ]

⎞

⎠ = log

⎛

⎝ E
Qγ [Ai−1]2

(
eμ̃P�

)2
√
EQγ [A2

i−1] e
(
2μ̃P+σ 2

P

)
�

⎞

⎠

= log

⎛

⎝ E
Qγ [Ai−1]2√
EQγ [A2

i−1]

⎞

⎠ + log

( (
eμ̃P�

)2
√
e
(
2μ̃P+σ 2

P

)
�

)

= αi−1 +
(

μ̃P − σ 2
P

2

)

�,

ν2i = log

(
E
Qγ [A2

i ]√
EQγ [Ai ]2

)

= log

(
E
Qγ [A2

i−1] e
(
2μ̃P+σ 2

P

)
�

EQγ [Ai−1]2 e(μ̃P�)2

)

= log

(
E
Qγ [A2

i−1]√
EQγ [Ai−1]2

)

+ log

(
e
(
2μ̃P+σ 2

P

)
�

e(μ̃P�)2

)

= ν2i−1 + σ 2
P�.

Conditioning to Ai−1, we get

αi = log (Ai−1) +
(

μ̃P − σ 2
P

2

)

�,

ν2i = σ 2
P�,

which gives part (ii). 
�

Appendix C: Finite sample behavior of QML estimates

In order to check the goodness of the log-likelihood approximation introduced in
Theorem 3.2, we apply the proposed estimation method to simulated data and assume,
for the sake of simplicity, τ = 0.We simulatem samples of length n for the processes in
(2.1) and (2.2) assuming a constant finer observation step δ; we extract corresponding
samples forR,A at a lower frequency, with observation step� = rδ. In the numerical
exercise we choose n = 730, m = 1000, δ = 1

365 (daily observations), � = 7δ
(weekly observations); parameters values are set as μP = 2, σP = 0.5 μS = 0.05,
σS = 0.3. We end with 1000 samples of 104 observations for (R,A); for each sample
we estimate the parameters by means of the quasi-maximum likelihood as suggested
in previous subsection. The results are summed up in Table 11.

We also performed a t test in order to check for estimation bias. The fitted values of
μP , μS, σS are close in mean to their theoretical value and with a reasonable standard
deviation; the p-values of the t test confirm that estimated are not biased. Different
conclusions are in order as for parameter σP which estimations is by no doubt biased.
In Fig. 2we plot the histograms of the estimated aswell as the fitted normal distribution
and the expected mean of the asymptotic distribution. Pictures confirm the biasedness
of the estimator for σP but all other estimates performwell and outcomes may become
better by increasing the sample length. The simulation exercise have been repeated
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Table 11 Parameter fit with simulated data of QML method

Variable Theor. value Fitted value SE t value P (> |t |) RMSE

μP 2.0000 1.9759 0.3675 −0.0655 0.9478 11.6475

σP 0.5000 0.4089 0.0302 −3.0170 0.0026 3.0358

μS 0.0500 0.0497 0.0112 −0.0297 0.9763 0.3544

σS 0.3000 0.2978 0.0210 −0.1032 0.9178 0.6687

Fig. 2 Histogram of parameter fit with simulated data of QML method

Table 12 Parameter fit with simulated data of Moments method

Variable Theor. value Fitted value SE t value P (> |t |) RMSE

μP 2.0000 2.0104 0.3638 0.0286 0.9772 11.5034

σP 0.5000 0.4995 0.0135 −0.0385 0.9693 0.4282

by letting the parameters values, the number and the sample length vary obtaining
analogous qualitative results.

In order to disentangle the contribution of the Levy approximation (Levy 1992) to
the estimation bias, we suggest to apply the method of moments to estimate μP and
σP considering the whole sample for P generated at the finer observation step δ to
compute the sample mean and sample variance of the attention realizations. If we then
we plug the estimated values in the likelihood (3.2) in order to estimate {μS, σS} these
two estimates remain unchanged; in fact the likelihood may be maximized separately
with respect to μP , σP and μS, σS since each of the two addend in the likelihood
expression depends on just one of this pairs. The results of this alternative estimation
method are reported in Table 12.

To visualize the bias of {σP } we plot in Fig. 3 the histogram of parameter {μP , σP }
fit with simulated data using the two methods. As we can see using the two step
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Fig. 3 Histogram of parameter {μP , σP } fit with simulated data of QML method and Moments method at
finer step δ

procedure we obtain better estimates of {σP } both in terms of expected value and
standard deviation. It is evident from Table 12 and Fig. 3 that the estimation of σP is
not biased in this case hence the estimation bias may essentially be attributed to the
aggregation of the attention over time intervals and to the corresponding approximating
distribution. Hence, whether the attention factor is observed at a finer step than the
price, the above separate estimation is more reliable.
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