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Abstract
An alternative notion of conditional probability (sayAN) is discussed and investigated.
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AN is provided. Also, some consequences of AN are pointed out, with reference to
Bayesian statistics, exchangeability and compatibility.
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4 P. Berti et al.

1 Introduction

This note is split into two parts: The first (Sect. 2) deals with conditional probability,
from a general point of view, while the second (Sects. 3 and 4) highlights some
consequences of adopting an alternative notion of conditional probability.

Let us call SN the standard notion of conditional probability (i.e., regular conditional
distributions) and AN the alternative notion quoted above. Roughly speaking, AN is
obtained from SN giving up the measurability constraint and adding a properness
condition. As easily expected, this has both advantages and disadvantages. One major
drawback of AN is that essential uniqueness is lost. This is certainly disappointing,
but possibly not so crucial in the subjective view of probability. As to the advantages,
AN allows to overcome various paradoxes occurring with SN. This is because, thanks
to properness, one is actually conditioning on events (and not on sub-σ -fields, as it
happens under SN).

Finally, among the possible consequences of AN, we focus on those related to
Bayesian statistics, exchangeability and compatibility.

2 Conditional probability

In the sequel, (�,A, P) is a probability space, G ⊂ A a sub-σ -field, and

Q = {Q(ω) : ω ∈ �}

a collection of probability measures on A. We denote by Q(ω, A) the value of Q(ω)

at A ∈ A. Also, σ(Q) is the σ -field on � generated by the maps ω �→ Q(ω, A) for
all A ∈ A.

In this notation, Q is a regular conditional distribution (r.c.d.) given G if

(a) σ(Q) ⊂ G;
(b) P(A ∩ B) = ∫

B Q(ω, A) P(dω) for all A ∈ A and B ∈ G.

An r.c.d. can fail to exist. However, it exists and is a.s. unique under reasonable
conditions, such as A countably generated and P perfect; see, e.g., Jirina (1954).

(We recall that P is perfect if, for eachA-measurable f : � → R, there is I ∈ B(R)

such that I ⊂ f (�) and P( f ∈ I ) = 1. If � is separable metric and A = B(�),
perfectness is equivalent to tightness.)

This is the standard notion of conditional probability, based on Kolmogorov’s
axioms and adopted almost universally. Indeed, apart from rare exceptions, a con-
ditional probability is meant as an r.c.d.

Using r.c.d.’s, however, one is conditioning on a σ -field and not on a specific event.
What does it mean? What is the information provided by a σ -field? According to the
usual naive interpretation, the information provided by G is:

(*) For each event B ∈ G, it is known whether B is true or false.

Attaching interpretation (*) to r.c.d.’s is quite dangerous.
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A notion of conditional probability and some of its consequences 5

Example 1 (Continuous time processes) Let X = {Xt : t ≥ 0} be a real-valued process
on (�,A, P), adapted to a filtration {Ft : t ≥ 0}, and let X be the set of all functions
from [0,∞) into R. Define N = {A ∈ A : P(A) = 0} and suppose that

N ⊂ F0 and {X = x} ∈ N for each x ∈ X .

Even if very usual for continuous time processes, the above assumption conflicts with
(*). In fact, since {X = x} ∈ F0 for each x ∈ X , interpretation (*) would imply that
the actual X -path is already known at time 0. See also (Berti and Rigo 2008, Example
3).

Example 2 (Borel–Kolmogorov paradoxes) Let X and Y be random variables on
(�,A, P) such that {X = x} = {Y = y} for some x and y. Using r.c.d.’s, the condi-
tional probability given X = x is taken to be P(· | X = x) = QX (ω), where QX is an
r.c.d. given σ(X) andω ∈ � is such that X(ω) = x . Similarly, P(· | Y = y) = QY (ω)

where QY is an r.c.d. given σ(Y ) and Y (ω) = y. But since X and Y are different, it
may be that P(· | X = x) 	= P(· | Y = y) even if {X = x} = {Y = y}.
Example 3 (Properness) For interpretation (*) to make sense, Q should be everywhere
proper, in the sense that

Q(ω) = δω on G for each ω ∈ �.

In that case,

B = {ω ∈ � : Q(ω, B) = 1} ∈ σ(Q) for each B ∈ G,

so that G = σ(Q). Also, σ(Q) is countably generated whenever A is countably
generated. Thus, Q fails to be everywhere proper if A is countably generated, but G
is not. A weaker notion of properness is

Q(ω) = δω on G for each ω ∈ B0 (1)

where B0 ∈ G and P(B0) = 1. But even condition (1) typically fails unless G is
countably generated. In fact, condition (1) holds if and only if G ∩ B0 is countably
generated for some B0 ∈ G with P(B0) = 1; see Berti and Rigo (2007).

A seminal paper on properness is Blackwell and Dubins (1975). Other related
references are Berti andRigo (2007), Berti andRigo (2008),Maitra andRamakrishnan
(1988).

To make interpretation (*) effective, the notion of r.c.d. is to be modified. We first
recall that, for each ω ∈ �, the G-atom including ω is

H(ω) =
⋂

ω∈B∈G
B.
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6 P. Berti et al.

We also let

� = {H(ω) : ω ∈ �}.

Note that � is a partition of � and each element of G is a union of elements of �.
Say that Q is a strategy given G, or a G-strategy, if

(a∗) Q(x) = Q(y) whenever x, y ∈ � and H(x) = H(y);
(b∗) There is a probability measure P̂ on σ(Q) such that

P(A) =
∫

Q(ω, A) P̂(dω) for all A ∈ A;

(c) Q is everywhere proper, i.e., Q(ω) = δω on G for each ω ∈ �.

The above notion of G-strategy is inspired to Blackwell and Dubins (1975) while
the term “strategy” is borrowed from Dubins (1975).

Some obvious properties of G-strategies are collected in the next lemma.

Lemma 4 Let Q be a G-strategy. Then, G ⊂ σ(Q) and

P(A ∩ B) =
∫

B
Q(ω, A) P̂(dω) for all A ∈ A and B ∈ G.

In particular, P̂ = P on G. Moreover, P̂ = P on A ∩ σ(Q) provided � ⊂ G.

Proof Let B ∈ G. By (c), B = {ω : Q(ω, B) = 1} ∈ σ(Q). Further,

P(A ∩ B) =
∫

Q(ω, A ∩ B) P̂(dω) =
∫

B
Q(ω, A) P̂(dω) for each A ∈ A,

where the first equality is by (b∗) and the second by (c). Finally, suppose � ⊂ G and
fix A ∈ A ∩ σ(Q). By (a∗), each element of σ(Q) is a union of G-atoms. Hence,

Q(ω, A) ≥ Q(ω, H(ω)) = δω(H(ω)) = 1 whenever ω ∈ A.

Similarly, Q(ω, A) = 0 if ω /∈ A. Therefore,

P(A) =
∫

Q(ω, A) P̂(dω) =
∫

1A(ω) P̂(dω) = P̂(A).

��
ByLemma4, aG-strategy Q satisfies condition (b)wheneverσ(Q) ⊂ G. Generally,

however, ω �→ Q(ω, A) is not G-measurable (or even A-measurable) and cannot be
integrated against P . This is the reason for amixingmeasure P̂ is involved in condition
(b∗).

Condition (a∗) is a weaker version of (a) (it is in fact a consequence of (a)). Roughly
speaking, the motivation of (a∗) is that, conditionally on G, one is actually observing
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A notion of conditional probability and some of its consequences 7

an element of the partition � rather than a point of �. Thus, x and y provide the same
information if H(x) = H(y).

Essentially, a G-strategy depends on G only through its atoms. In particular, if G
includes the singletons, then � = {{ω} : ω ∈ �} ⊂ G and the only G-strategy is
Q(ω) = δω on A for all ω ∈ �. As an example, take G = {A ∈ A : P(A) ∈ {0, 1}}
and suppose that {ω} ∈ A and P({ω}) = 0 for every ω ∈ �. Then, G includes
the singletons, so that Q(ω) = δω is the only G-strategy, while an r.c.d. given G is
Q(ω) = P . As a further example, take another sub-σ -field F ⊂ A. If F has the same
atoms as G and � ⊂ F ∩ G, then Q is an F-strategy if and only if is a G-strategy.

A last remark is that G-strategies are not uniquely determined by P . In particular,
they are not essentially unique. This is technically a drawback, as well as a major
difference with r.c.d.’s. However, in the subjective view of probability, non uniqueness
is possibly not so crucial. In a sense, just as the choice of P is subjective, the choice
of Q (once P is given) can be seen as a subjective act as well.

Let us turn now to existence issues. Recall that (�,A) is a standard space if � is a
Borel subset of a Polish space andA = B(�). For an r.c.d. given G to exist, it suffices
that (�,A) is a standard space. Instead, for a G-strategy to exist, one needs conditions
on both (�,A) and G. The next statement is a translation of some results from Berti
and Rigo (1999), Berti and Rigo (2002) concerning existence of disintegrations.

Theorem 5 Let

G = {
(x, y) ∈ � × � : H(x) = H(y)

}
.

There is a G-strategy provided (�,A) is a standard space and at least one of the
following conditions is satisfied:

(i) G is a co-analytic subset of � × �;
(ii) G is an analytic subset of � × � and all but countably many elements of � are

Fσ or Gδ .

Proof In viewof (Berti andRigo 1999, Theorem2) and (Berti andRigo 2002, Theorem
8) under (i) or (ii), P admits a σ -additive disintegration on the partition�. This means
that, under (i) or (ii), there is a pair (α, β) such that:

• α(· | H) is a probability measure on σ(A ∪ �) such that α(H |H) = 1 for each
H ∈ �;

• β is a probability measure on σ(α), where σ(α) is the σ -field over � generated
by the maps H �→ α(A|H) for all A ∈ A;

• P(A) = ∫
�

α(A|H) β(dH) for all A ∈ A.

Given such (α, β), to obtain a G-strategy, it suffices to let

Q(ω, A) = α
(
A | H(ω)

)
for all ω ∈ � and A ∈ A.

In fact, Q meets (a∗) and (c) (to check (c), just recall that each member of G is a
union of elements of �). To prove (b∗), for each S ⊂ �, denote by S∗ the subset of
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8 P. Berti et al.

� obtained as the union of the elements of S. Then, σ(Q) = {S∗ : S ∈ σ(α)}. Thus,
letting P̂(S∗) = β(S), one trivially obtains

P(A) =
∫

�

α(A|H) β(dH) =
∫

�

Q(ω, A) P̂(dω) for all A ∈ A.

��
Theorem 5 implies that a G-strategy exists whenever (�,A) is a standard space

and G is a Borel subset of � × �. This happens in several meaningful situations,
including the cases where G is a tail or a symmetric sub-σ -field. In these cases, thus,
a G-strategy is available while a proper r.c.d. fails to exist in general; see Blackwell
and Dubins (1975) and Example 7.

To close this section, it would be nice to exhibit an example where a G-strategy
fails to exist. If � ⊂ G and (�,A) is a standard space, however, such example is not
available under the usual axioms of set theory (the so called ZFC set theory). Take in
fact � = [0, 1], A = B([0, 1]), and consider the assertion:

“For every Borel partition 	 of [0, 1], the Lebesgue measure on A admits a
strategy given σ(	)”.

Then, as shown by Dubins and Prikry (1995, Theorem 2), such an assertion is unde-
cidable in ZFC, in the sense that the assertion and its negation are both consistent with
ZFC.

Incidentally, as regards existence and nonexistence of G-strategies, things are quite
different in a finitely additive framework; see, e.g., Dubins (1975) and Prikry and
Sudderth (1982).

3 Bayesian statistical inference

Let (X , E) and (
,F) bemeasurable spaces to be regarded, respectively, as the sample
space and the parameter space. For the sake of simplicity, the E-atoms are assumed to
be the singletons. A statistical model is a measurable collection

P = {Pθ : θ ∈ 
}

of probability measures on E , where measurability means that θ �→ Pθ (A) is F-
measurable for each A ∈ E . A prior is a probability measure on F .

Roughly speaking, the problem is to make inference on the parameter θ given the
data x . To this end, in the notation of Sect. 2, one lets

(�,A) = (X × 
, E ⊗ F)

and takes G to be the sub-σ -field of A generated by the data, namely

G = {A × 
 : A ∈ E}.
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A notion of conditional probability and some of its consequences 9

Since the E-atoms are the singletons, the partition of � in the G-atoms is

� = {{x} × 
 : x ∈ X
}
.

Also, given a statistical model P and a prior ν, the reference probability measure P
on A is

P(C) =
∫ ∫

1C (x, θ) Pθ (dx) ν(dθ) for all C ∈ A.

In this framework, a posterior is a conditional probability for P given G. Thus,
technically, how to define a posterior depends on the adopted notion of conditional
probability. Let

Q = {Qx : x ∈ X }

be a collection of probability measures on F , and let σ(Q) be the σ -field over X
generated by the maps x �→ Qx (B) for all B ∈ F .

As noted in Sect. 2, a conditional probability is usually meant as an r.c.d. In that
case, Q is a posterior provided

σ(Q) ⊂ E and P(C) =
∫ ∫

1C (x, θ) Qx (dθ)mν(dx) for all C ∈ A

where

mν(A) = P(A × 
) =
∫

Pθ (A) ν(dθ) for all A ∈ E .

Instead, if a conditional probability is meant as a strategy, Q is a posterior
whenever

P(C) =
∫ ∫

1C (x, θ) Qx (dθ)m(dx), C ∈ A, (2)

where m is any probability measure on σ(Q). Note that Lemma 4 yields m = mν on
E , so that m is actually an extension of mν .

Therefore, the class of posteriors becomes larger if conditional probabilities are
meant as strategies and not as r.c.d.’s. Indeed, for Q to be a posterior, equation (2)
is enough and no measurability constraints are required to Q. This fact has some
consequences.

In the next result, a posterior is actually meant as a G-strategy, namely a collection
Q = {Qx : x ∈ X } of probability measures on F satisfying equation (2) for some m.

Theorem 6 LetP be a statistical model, ν a prior probability onF and Y : (X , E) →
(Y,H) a measurable map. Suppose:

• card (E) ≤ card (R), card (F) ≤ card (R), and H is countably generated and
includes the singletons;
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10 P. Berti et al.

• Pθ is a perfect probability measure such that Pθ (Y = y) = 0 for all θ ∈ 
 and
y ∈ Y .

Then, there is a posterior Q = {Qx : x ∈ X } such that

x1, x2 ∈ X and Y (x1) = Y (x2) ⇒ Qx1 = Qx2 .

Proof Two known facts are to be recalled. Let (D,D, μ) be any probability space.

(j) IfD is countably generated, μ is perfect and μ(F) = 0 for eachD-atom F , then
the collection of D-atoms has the cardinality of the continuum; see (Berti and
Rigo 1996, Lemma 2.3);

(jj) Let 
 be a class of probability measures onD and� the σ -field over 
 generated
by the maps γ �→ γ (D) for all D ∈ D. Suppose μ(D) = ∫



γ (D) β(dγ ) for

all D ∈ D, where β is a finitely additive probability on �. Then, β is σ -additive
provided each γ ∈ 
 is 0-1-valued; see Theorem 11 and Example 15 of Berti
and Rigo (2018).

Next, recall that (�,A) = (X × 
, E ⊗ F) and define

V = {C ∈ A : P(C) > 0} and

L(C) = {
y ∈ Y : (x, θ) ∈ C for some (x, θ) ∈ � with Y (x) = y

}
where C ⊂ �.

This proof is split into two parts: First, we prove the theorem under the assumption

card (L(C)) ≥ card (R) for all C ∈ V, (3)

and then, we show that (3) is actually true.
Suppose condition (3) holds. Then, since card (A) ≤ card (R), one obtains

card (L(C)) ≥ card (A) ≥ card (V) for all C ∈ V.

Hence, there is an injective map f : V → Y such that f (C) ∈ L(C) for each C ∈ V;
see (Berti and Rigo 1996, Lemma 2.1). For each y ∈ Y , select a probability measure
Uy on F as follows: If y is not in the range of f , define Uy = δθ0 where θ0 ∈ 
 is
arbitrary. Otherwise, if y = f (C) for some (unique) C ∈ V , take (x, θ) ∈ C with
Y (x) = y and set Uy = δθ . For x ∈ X , define also

Qx = UY (x) and Tx (C) = Qx {θ ∈ 
 : (x, θ) ∈ C} for all C ∈ A.

Then, Tx is a probability measure on A such that Tx
({x} × 


) = 1. Further,

for each C ∈ V, there is x ∈ X such that Tx (C) = 1.

By (Berti and Rigo 1996, Lemma 2.2) and the above condition, there is a finitely
additive probability m0 on the power set of X such that

∫ ∫
1C (x, θ) Qx (dθ)m0(dx) =

∫
Tx (C)m0(dx) = P(C) for all C ∈ A.
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A notion of conditional probability and some of its consequences 11

Let Q = {Qx : x ∈ X } and let m be the restriction of m0 on σ(Q). Then, m is
σ -additive because of (jj). Therefore,Q is a posterior such that Qx1 = Qx2 whenever
Y (x1) = Y (x2). This concludes the first part of the proof.

Finally, we prove (3). It suffices to show that P(C) = 0 whenever C ∈ A and
card (L(C)) < card (R). Fix one such C and take A ∈ E with

A ⊂
⋃

y∈L(C)

{
x ∈ X : Y (x) = y

}
.

Let D = A ∩ σ(Y ) = {A ∩ B : B ∈ σ(Y )}. Since H is countably generated, σ(Y ) is
countably generated, which in turn implies that D is countably generated. Toward a
contradiction, suppose Pθ (A) > 0 for some θ ∈ 
. Then, one can define

μ(A ∩ B) = Pθ (A ∩ B)

Pθ (A)
for all B ∈ σ(Y ).

Since Pθ is perfect, μ is a perfect probability measure on D. Each atom F of D is of
the form F = A ∩ {Y = y} for some y, and

μ(F) = Pθ (A ∩ {Y = y})
Pθ (A)

= 0.

In view of (j), the set of D-atoms has the cardinality of the continuum, so that

card (L(C)) ≥ card {y ∈ Y : {Y = y} ∩ A 	= ∅} = card {D-atoms} = card (R).

This is a contradiction, since card (L(C)) < card (R). Hence, it must be Pθ (A) = 0
for all θ . To conclude the proof, just note that

{x : (x, θ) ∈ C} ⊂
⋃

y∈L(C)

{
x ∈ X : Y (x) = y

}
for all θ.

It follows that

P(C) =
∫

Pθ {x : (x, θ) ∈ C} ν(dθ) = 0.

Hence, (3) holds and this concludes the proof. ��
Theorem 6 improves (Berti and Rigo 1996, Theorem 3.1) where the probability m

involved in equation (2) is only finitely additive.
In the subjective framework, Theorem 6 has a nice interpretation in terms of suf-

ficiency; see Berti and Rigo (1996). In fact, think of Y as a statistic. Also, given a
posterior Q, say that Y is sufficient for Q if Qx1 = Qx2 whenever Y (x1) = Y (x2).
Then, Theorem 6 essentially states that, for any prior ν and any statistic Y , there is
a posterior Q which makes Y sufficient provided only that Pθ (Y = y) = 0 for all
θ and y. This seems in line with both the substantial meaning of sufficiency and the
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12 P. Berti et al.

subjective view of probability. Indeed, the assessment ofQ can be split into two steps:
First, the inferrer selects a partition of X , by grouping those samples which, accord-
ing to him/her, have the same inferential content. This step precisely amounts to the
choice of a sufficient statistic Y . Subsequently, a probability law on F is attached to
every element in the partition. If no such element has positive probability under the
statistical model, Theorem 6 implies that at least a posterior Q is consistent with this
procedure.

In addition to sufficiency, another intriguing point is whether improper priors can be
recovered when posteriors are regarded as strategies. This issue is actually connected
to compatibility. Thus, improper priors are postponed to Example 9.

4 Further consequences

In principle, in every framework where conditional probability plays a role, things are
quite different according to whether conditional probability is meant as an r.c.d. or as
a strategy. In Bayesian statistics, for instance, Theorem 6 would not be available if a
posterior would be regarded as an r.c.d. This section is in the spirit of the previous one;
namely, the different behaviors of r.c.d.’s and strategies are compared in some special
situations. Needless to say that many other analogous examples could be given.

Example 7 (Exchangeability) Let (�,A) = (X∞, E∞) where (X , E) is a standard
space. To each n ∈ N and each permutation (π1, . . . , πn) of (1, . . . , n), we can
associate a function f : � → � defined by

f (x1, x2, . . .) = (xπ1 , . . . , xπn , xn+1, xn+2, . . .) for all (x1, x2, . . .) ∈ �.

Let F denote the class of all such functions, for all n ∈ N and all permutations of
(1, . . . , n). A probability measure P on A is exchangeable if P ◦ f −1 = P for all
f ∈ F . The symmetric sub-σ -field is

G = {A ∈ A : f −1(A) = A for all f ∈ F}.

Note that the G-atoms can be written as

H(ω) = { f (ω) : f ∈ F} for all ω ∈ �.

Suppose P exchangeable and P(�) = 0, where � = {(x, x, . . .) : x ∈ X } is the
diagonal. Since (X , E) is a standard space, there is an r.c.d. Q∗ for P given G. Since
P is exchangeable, by de Finetti’s theorem, Q∗(ω) is an i.i.d. probability measure
on A = E∞ for almost all ω ∈ �. Now, an i.i.d. probability measure vanishes on
singletons unless it is degenerate. Since P(�) = 0 and H(ω) is countable, it follows
that

Q∗(ω, H(ω)) = 0 for almost all ω ∈ �.
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A notion of conditional probability and some of its consequences 13

On the other hand, because of Theorem 5, P also admits a G-strategy Q. By definition,
Q satisfies

Q (ω, H(ω)) = 1 for all ω ∈ �.

Therefore, Q(ω) and Q∗(ω) are even singular for almost all ω ∈ �. Another curious
fact is that Q∗(ω) can be shown to be {0, 1}-valued on G, despite Q∗(ω, H(ω)

) = 0,
for almost all ω ∈ �; see Berti and Rigo (2008).

Example 8 (Compatibility) Let (�,A) be a measurable space, Gi ⊂ A a sub-σ -field
and Qi = {Qi (ω) : ω ∈ �} a collection of probability measures onA, where i = 1, 2.
Generally speaking, Q1 and Q2 are compatible if there is a probability measure P on
Awhich admits Q1 and Q2 as conditional probabilities given G1 and G2, respectively;
see, e.g., Berti et al. (2014) and references therein. Once again, this general idea can
be realized differently according to the selected notion of conditional probability.

If conditional probabilities are meant as r.c.d.’s, a necessary condition for compat-
ibility is σ(Q1) ⊂ G1 and σ(Q2) ⊂ G2. In that case, Q1 and Q2 are compatible if
there is a probability measure P on A such that

P(A ∩ B) =
∫

B
Qi (ω, A) P(dω) whenever i = 1, 2, B ∈ Gi and A ∈ A. (4)

If conditional probabilities are meant as strategies, the necessary condition for
compatibility turns into

Qi (ω) = Qi (υ) if Hi (ω) = Hi (υ) and Qi (ω) = δω on Gi

for i = 1, 2 and all ω, υ ∈ �, where Hi (ω) is the Gi -atom including ω. Under such
condition, Q1 and Q2 are compatible whenever

∫
Q1(ω, A) P̂1(dω) =

∫
Q2(ω, A) P̂2(dω), A ∈ A, (5)

for some probability measures P̂1 on σ(Q1) and P̂2 on σ(Q2).
Condition (5) looks intriguing and possibly easier than (4) to work with.
A weaker version of (5) is obtained allowing P̂1 and P̂2 to be finitely additive

probabilities. In that case, compatibility essentially reduces to a notion of consistency,
introduced in Lane and Sudderth (1983) for Bayesian statistical inference; see also
Heath and Sudderth (1978).

Example 9 (Improper priors) We adopt the notation and the assumptions of Sect. 3.
In addition, we assume the model P = {Pθ : θ ∈ 
} dominated, namely Pθ (dx) =
f (x, θ) λ(dx) for all θ ∈ 
, where λ is a σ -finite measure on E and f a nonnegative
measurable function on (�,A) = (X × 
, E ⊗ F). An improper prior is a σ -finite
measure γ on F such that γ (
) = ∞. Let

ψ(x) =
∫

f (x, θ) γ (dθ) for all x ∈ X .
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A standard practice is to fix an improper prior γ and to let

Qx (dθ) = f (x, θ)

ψ(x)
γ (dθ) whenever ψ(x) ∈ (0,∞). (6)

Notice that no prior probability on F has been selected. In the sequel, we assume
ψ(x) ∈ (0,∞) for all x ∈ X , and we let Q = {Qx : x ∈ X } with Qx given by (6).

Define

G1 = {
A × 
 : A ∈ E

}
and G2 = {

X × B : B ∈ F
}
.

For C ∈ A and ω = (x, θ) ∈ �, define also

T1(ω)(C) = Qx {t ∈ 
 : (x, t) ∈ C} and T2(ω)(C) = Pθ {z ∈ X : (z, θ) ∈ C}.

Then, G1 and G2 are sub-σfields ofAwhile T1(ω) and T2(ω) are probability measures
on A. We say that P and Q are compatible to mean that T1 and T2 are compatible,
where Ti = {Ti (ω) : ω ∈ �} for i = 1, 2.

From the point of view of probability theory, using Q as a posterior makes sense
only if P and Q are compatible; see also (Berti et al. 2014, Example 3). However,
measurability of f impliesσ(Ti ) ⊂ Gi for i = 1, 2. Therefore, as regards compatibility
of P andQ, using r.c.d.’s or strategies is equivalent. The situation is slightly different
if the assumption 0 < ψ < ∞ is dropped.

On the other hand, in most real problems, P and Q fail to be compatible. To get
compatibility and thus to make improper priors admissible, finitely additive probabil-
ities are to be involved; see Heath and Sudderth (1978), Heath and Sudderth (1989)
and Lane and Sudderth (1983).
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