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Abstract
We define a premium principle under the continuous cumulative prospect theory
which extends the equivalent utility principle. In prospect theory, risk attitude and
loss aversion are shaped via a value function, whereas a transformation of objective
probabilities,which is commonly referred as probabilityweighting,models probabilis-
tic risk perception. In cumulative prospect theory, probabilities of individual outcomes
are replaced by decision weights, which are differences in transformed, through the
weighting function, counter-cumulative probabilities of gains and cumulative prob-
abilities of losses, with outcomes ordered from worst to best. Empirical evidence
suggests a typical inverse-S shaped function: decision makers tend to overweight
small probabilities, and underweight medium and high probabilities; moreover, the
probability weighting function is initially concave and then convex. We study some
properties of the behavioral premium principle. We also assume an alternative fram-
ing of the outcomes; then, we discuss several applications to the pricing of insurance
contracts, considering different value functions and probability weighting functions
proposed in the literature, and an alternative mental accounting. Finally, we focus on
the shape of the probability weighting function.
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1 Introduction

According to prospect theory, individuals do not always take their decisions consis-
tently with the maximization of expected utility. Decision makers are risk averse when
they evaluate gains and risk seeking with respect to losses. They are also loss averse,
as they are more sensitive to losses than gains of comparable magnitude. Investment
opportunities are evaluated based on potential gains and losses relative to a reference
point, rather than in terms of final wealth. Moreover, decision makers apply decision
weights that are biased with respect to objective probabilities; in particular, they tend
to underweight medium and high probabilities and overweight low probabilities of
extreme outcomes (Quiggin 1993), they are more sensitive to changes in the proba-
bility of extreme outcomes than mid outcomes. Kahneman and Tversky (1979) and
many other studies based on survey data reported such behaviors.

Risk attitude and loss aversion are shaped via a value function and objective
probabilities through a probability weighting (or distortion) function, which mod-
els probabilistic risk perception. In cumulative prospect theory, decision weights are
differences in transformed, through the weighting function, counter-cumulative prob-
abilities of gains and cumulative probabilities of losses, with outcomes ordered from
worst to best, and not the probabilities of individual outcomes.

In this contribution, we define a premiumprinciple under the continuous cumulative
prospect theory (Tversky and Kahneman 1992; Davies and Satchell 2007) based on
the equivalent utility, or zero utility, principle introduced by Gerber (1979), extending
previous work of Kaluszka and Krzeszowiec (2012).

A few contributions study premium principles under rank-dependent utility theory
(e.g., Heilpern 2003, and Goovaerts et al. 2010); van der Hoek and Sherris (2001) con-
sider different probability weighting functions for gains and losses, with linear utility;
Kaluszka and Krzeszowiec (2012) extend the equivalent premium principle under
cumulative prospect theory for linear and exponential utility functions; Kaluszka and
Krzeszowiec (2013) study iterativity conditions of the premium principle defined in
Kaluszka and Krzeszowiec (2012). Also Sung et al. (2011) apply cumulative prospect
theory in order to study the optimality of insurance from the viewpoint of the insured
maximizing her/his prospect value subject to a proportional premiumprinciple adopted
by the insurer.

The premium principles we discuss have some common features with respect to the
approach based on distortion riskmeasures. Distorted probabilities were introduced by
Wang (1996) in the definition of a premium principle based on a proportional hazard
transform of the decumulative distribution function of the insurance risk.Wang (2000)
applies distortion operators in order to price financial and insurance risks; the approach
is more related to the dual theory of Yaari (1987). Along the same line of research,
one may include the contributions of van der Hoek and Sherris (2001), Hamada and
Sherris (2003), Balbás et al. (2009), Tsanakas (2009), Belles-Sampera et al. (2013)
and Belles-Sampera et al. (2016).

We also discuss some examples under the rank-dependent utility and the dual theory
as particular cases. Differently from previous contributions, here we focus on the
representation of the cumulative prospect theory value for continuous distributions
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Behavioral premium principles 231

(Davies and Satchell 2007). We study some properties of the premium principle,
providing alternative proofs under continuous cumulative prospect theory.

Moreover, we introduce the assumption that alternative framing (see Thaler 1985)
of the results may be evaluated by the insurer into different mental accounts. Decision
makers may aggregate or segregate outcomes, leading to different premium principles.
In the segregated model, we obtain explicit solutions for the premium. Under specific
assumptions on the value function and the probabilityweighting function, the premium
has an integral representation and can be computed by numerical approximation.

Then, we discuss several applications to the pricing of insurance contracts, consid-
ering alternative value functions and probability weighting functions proposed in the
literature, and different mental accounting.

Finally, we focus on the transformation of objective probabilities and provide some
remarks on the shape of the probability weighting function. Empirical evidence sug-
gests a typical inverse-S shaped function: decision makers tend to overweight small
probabilities, and underweightmedium and high probabilities;moreover, the probabil-
ity weighting function is initially concave and then convex. We will see that curvature
and elevation of the weighting function have an interesting interpretation in terms of
probabilistic optimism and pessimism.

The paper is organized as follows. Section 2 summarizes themain features of cumu-
lative prospect theory. Section 3 introduces the behavioral premium principles and
some of their properties. Section 4 analyzes applications to the evaluation of insurance
contracts. Section 5 presents a review on probability weighting functions suggested in
the literature. Section 6 discusses an example assuming particular functional forms for
the value function, the probability weighting function and the continuous distribution
of the claim. Section 7 concludes.

2 Cumulative prospect theory

Prospect theory has been proposed by Kahneman and Tversky (1979) as an alternative
to expected utility theory to explain actual behaviors. Formally, prospect theory relies
on two key transformations: the value function v, which replaces the utility function
for the evaluation of outcomes, and a probability weighting, or probability distortion,
function for objective probabilities w, which models probabilistic risk behavior. Risk
attitudes are derived from the shapes of these functions as well as their interaction.

Prospect theory,1 in its formulation initially proposed by Kahneman and Tversky
(1979), is based on the subjective evaluation of prospects. A preference relation is
introduced over the set of all prospects; originally prospect theory deals only with a
limited set of prospects. With n possible future outcomes {x1, x2, . . . , xn}, a prospect
is a vector of pairs (� xi , pi ), for i = 1, 2, . . . , n. A probability pi is assigned to each
outcome. Assume � xi ≤ � x j , for i < j , with � xi ≤ 0 for i ≤ k and � xi > 0 for
i > k. Infinitely many outcomes may also be considered (Schmeidler 1989).

Outcome�xi is defined relative to a certain reference point x∗; xi being the absolute
outcome, we have�xi = xi − x∗. Zero is usually taken as a reference point (the status

1 The book of Wakker (2010) provides a thorough treatment on prospect theory.
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Fig. 1 Value function v+(x) = xa (x ≥ 0), v−(x) = −λ(−x)b (x < 0) with parameters λ = 2.25 and
a = b = 0.88

quo), even though prospect theory does not explain clearly how to locate such reference
points (see Shiller 1999; Werner and Zank 2018). It is also relevant to separate gains
from losses, as negative andpositive outcomesmaybe evaluated differently bydecision
makers: results are evaluated through a strictly increasing value function v, which is
typically convex and steeper in the range of losses (loss aversion) and concave in
the range of gains. An important feature of prospect theory, with respect to expected
utility, is the discontinuity in the slope of v in correspondence of the reference point.
The curvature of the value function represents sensitivity to values away from the
reference point, rather than marginal returns (see Davies and Satchell 2007).

Specific parametric forms have been suggested in the literature for the value func-
tion. Let x be an outcome, a function which is used in Tversky and Kahneman (1992)
and in many empirical studies is

v(x) =
{

v+(x) = xa x ≥ 0
v−(x) = −λ(−x)b x < 0,

(1)

with positive parameters that control risk attitude (curvature), 0 < a ≤ 1 and 0 <

b ≤ 1, and loss aversion, λ ≥ 1. v− and v+ denote the value function for losses
and gains, respectively. Function (1) is continuous, strictly increasing, has zero as
reference point; it is concave for positive outcomes and convex for negative ones, it
is steeper for losses. Parameters values equal to one imply risk and loss neutrality.
Figure 1 shows the value function defined in Eq. (1) with parameters λ = 2.25 and
a = b = 0.88 as estimated by Tversky and Kahneman (1992).

Subjective values v(�xi ) are not multiplied by objective probabilities pi , but using
decision weights πi = w(pi ), computed via a probability weighting (or probabil-
ity distortion) function. The shape of the value function and the weighting function
becomes significant in capturing the full complexity of actual choice patterns.

A weighting function w is a strictly increasing function which maps the probabil-
ity interval [0, 1] into [0, 1], with w(0) = 0 and w(1) = 1. In this work, we will
assume continuity of w on [0, 1], even thought in the literature discontinuous weight-
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ing functions are also considered. Evidence suggests a typical inverse-S shape: small
probabilities of extreme events are overweighted, w(p) > p, whereas medium and
high probabilities are underweighted,w(p) < p. The curvature of theweighting func-
tion is related to the risk attitude toward probabilities; the function is initially concave
(probabilistic risk seeking or optimism) for probabilities in the interval (0, p∗), and
then convex (probabilistic risk aversion or pessimism) in the interval (p∗, 1), for a
certain value of p∗. A linear weighting function describes probabilistic risk neutral-
ity or objective sensitivity toward probabilities, which characterizes expected utility.
Empirical findings indicate that the intersection (elevation) between the weighting
function and the 45 degrees line, w(p) = p, is for p around 1/3.

Let us now denote with�xi , for−m ≤ i < 0, negative outcomes and for 0 < i ≤ n
positive outcomes, with �xi ≤ �x j for i < j . The subjective value of a prospect is
displayed as follows:

V =
n∑

i=−m

πi · v(�xi ), (2)

with decision weights πi and values v(�xi ) based on relative outcomes. In the case
of expected utility, the weights are πi = pi and a utility function is considered. In the
following, in order to simplify the notation, it will be convenient to write xi instead
of �xi for the net outcomes, but still considering outcomes interpreted as deviations
from a reference point.

Cumulative prospect theory developed by Tversky and Kahneman (1992) over-
comes some drawbacks (such as violations of first-order stochastic dominance) of the
original prospect theory. In cumulative prospect theory, the prospect value depends
also on the rank of the outcomes, and decision weights πi are defined as differences in
transformed (through the function w) cumulative probabilities of losses and counter-
cumulative probabilities of gains. Formally:

πi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w−(p−m) i = −m

w−
(∑i

j=−m p j

)
− w−

(∑i−1
j=−m p j

)
i = −m + 1, . . . ,−1

w+
(∑n

j=i p j

)
− w+

(∑n
j=i+1 p j

)
i = 0, . . . , n − 1

w+(pn) i = n,

(3)

where w− denotes the weighting function for losses and w+ for gains, respectively.
As above, we consider outcomes ranked from worst to best.

As Quiggin (1993) pointed out:2“The general notion of a weighting function
depending on the entire vector of probabilities rather than on the probabilities of
individual events was first proposed by Allais (1953). Allais did not, at that time,
suggest a functional form or a set of axioms, and the idea remained undeveloped for
another 25years”. Later Quiggin (1982) introduced the rank-dependent expected util-
ity theory;Yaari (1987) developed the dual theory; Allais (1988) discussed his cardinal
utility; Tversky and Kahneman (1992) proposed the cumulative version of prospect

2 See Quiggin (1993), p. 56.
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Fig. 2 Weighting function w(p) = pγ

(pγ +(1−p)γ )1/γ
for different values of the parameter γ < 1. As γ

approaches the value 1, w tends to the identity function

theory (Kahneman and Tversky 1979). All such theories have been developed almost
independently and share the idea that individual probabilities are distorted through a
weighting function and the degree of risk aversion or risk seeking appears to depend
not only on the values, but also on the probability and ranking of the outcomes.

Different parametric forms for the weighting function with the above-mentioned
features have been proposed in the literature, and their parameters have been estimated
in many empirical studies. Some forms are derived axiomatically or are based on psy-
chological factors. Single parameter and two (or more) parameter weighting functions
have been suggested; some functions have linear, polynomial or other forms, and
there is also some interest for discontinuous (such as neo-additive) weighting func-
tions. Two commonly applied weighting functions are those proposed by Tversky
and Kahneman (1992) w(p) = pγ

(pγ +(1−p)γ )1/γ
, with w(0) = 0 and w(1) = 1, and

γ > 0 (with some constraint in order to have an increasing function); and Prelec
(1998) w(p) = e−δ(− ln p)γ , with w(0) = 0 and w(1) = 1, 0 < δ < 1, γ > 0.
When γ < 1, one obtains the inverse-S shape. Figure 2 shows some examples of the
weighting function used in Tversky and Kahneman (1992).

A short discussion on the shape of the probability weighting function is postponed
to Sect. 5.

2.1 Cumulative prospect theory for continuous distributions

Prospects may involve a continuum of values, in particular when considering appli-
cations in finance and insurance; hence, prospect theory cannot be applied directly in
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its original or cumulative versions. In this work, we consider the cumulative prospect
value for a continuous random variable as defined by Davies and Satchell (2007).3

Let w+ and w− be strictly increasing functions with w+(0) = w−(0) = 0 and
w+(1) = w−(1) = 1, and v a strictly increasing function (denoting v+(x) for x > 0
and v−(x) for x < 0, with v(0) = 0). A preference relation can be expressed by the
continuous cumulative prospect value

V (v(X)) =
∫ 0

−∞
v−(x) ψ−[F(x)] f (x) dx +

∫ +∞

0
v+(x) ψ+[1 − F(x)] f (x) dx,

(4)

where ψ = dw(p)
dp is the derivative of the weighting function w with respect to the

probability variable, F is the cumulative distribution function and f is the probability
density function of the random outcomes X . If we use the notation Ew(v(X)) (when
w+ = w− = w) and Ew+w−(v(X)), in much analogy with the notation in Heilpern
(2003) and Kaluszka and Krzeszowiec (2012), we can also define the continuous
cumulative prospect value as V (v(X)) = Ew+w−(v(X)).

A special case of (4) iswhen the value function is linear and, in particular, v(x) = x :

V (X)=Ew+w−(X) =
∫ 0

−∞
x ψ−[F(x)] f (x) dx+

∫ +∞

0
x ψ+[1−F(x)] f (x) dx;

(5)

and when w+ = w− = w, we have

V (X) = Ew(X) =
∫ +∞

−∞
x ψ[1 − F(x)] f (x) dx . (6)

For an arbitrary random variable, the cumulative prospect value can also be defined
using the generalized Choquet integral:

Ew+w−(v(X)) =
∫ +∞

0
w+ (

P(v+(X) > y)
)
dy

−
∫ 0

−∞
[
1 − w− (

P(v−(X) > y)
)]

dy;

with special cases

Ew+w−(X) =
∫ +∞

0
w+ (P(X > x)) dx −

∫ 0

−∞
[
1 − w− (P(X > x))

]
dx

and

Ew(X) =
∫ +∞

−∞
w (P(X > x)) dx .

3 See also Rieger and Wang (2008), Wakker (2010), and Kothiyal et al. (2011).
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3 A behavioral premium principle under continuous cumulative
prospect theory

Let u denote the utility function, and W be the initial wealth; the utility indifference
price P is the premium from the insurer’s viewpoint which satisfies (if it exists) the
condition:

u(W ) = E[u(W + P − X)], (7)

where X is the claim amount; the severity of the loss caused by a risk event can be
modeled by a non-negative random variable. The premium P makes indifferent the
insurance company about accepting the risky position and not selling the insurance
policy. The well-known equivalent utility principle has been introduced by Gerber
(1979) for concave utility functions; we refer to the zero utility principle when the
initial wealth isW = 0 or the utility function is defined with respect to the a reference
point which is set equal to the status quo û(x) = u(W + x) (see Heilpern 2003).

Differently from expected utility theory, in prospect theory individuals are risk
averse when considering gains and risk seeking with respect to losses; moreover, they
are more sensitive to losses than to gains of comparable magnitude (loss aversion).
The final result W + P − X in (7) could be positive or negative. The relative result
W + P − X will be considered through a value function v, which is continuous and
strictly increasing, with v(0) = 0. Objective probabilities are replaced by decision
weights, as defined in the previous section.

The equivalent utility principle (7) under cumulative prospect theory becomes

v+(W ) = V [v(W + P − X)] = Ew+w−[v(W + P − X)]. (8)

Heilpern (2003) introduces a zero utility principle under rank-dependent utility the-
ory, Kaluszka and Krzeszowiec (2012) extend the definition of the premium principle
in a cumulative prospect framework, discussing some special cases with linear and
exponential utility functions and the properties of the related premium.

In the present work, we adopt the continuous cumulative prospect theory repre-
sentation as defined in (4). Let the loss severity X be modeled by a non-negative
continuous random variable, with distribution function FX and probability density
function fX ,4 then condition (8) becomes

v+(W ) =
∫ W+P

0
v+(W + P − x) ψ+[FX (x)] fX (x) dx

+
∫ +∞

W+P
v−(W + P − x) ψ−[1 − FX (x)] fX (x) dx .

(9)

As already pointed out, in prospect theory results are evaluated considering potential
gains and losses relative to a reference point, rather than in terms of final wealth; the

4 When there is no ambiguity, we simply use the notation F(x) = P(X ≤ x) and S(x) = 1 − F(x) =
P(X > x), and f for the probability density function of the random loss X .
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value function may be non differentiable at the reference point. When zero is assumed
as reference point (the status quo), or taking W = 0 in (9), then the premium P for
insuring X is defined by the condition

V [v(P − X)] = Ew+w−[v(P − X)] = 0,

and is implicitly determined by the following equation

0 =
∫ P

0
v+(P − x) ψ+[FX (x)] fX (x) dx

+
∫ +∞

P
v−(P − x) ψ−[1 − FX (x)] fX (x) dx . (10)

Condition (10) defines the zero prospect value premium principle based on cumulative
prospect theory for continuous random variables.

3.1 Properties of the behavioral premium principle

We discuss some properties of the principles defined above. It is easy to show that,
when the utility or value functions are identity functions, u(x) = x or v(x) = x , and
probabilities are not distorted, w(p) = p, then the behavioral premium is equal to the
equivalence premium,

P = E(X).

When probabilities are not distorted and we consider a utility function u, we have

V (u(W + P − X)) = E[u(W + P − X)],

and the equivalent utility premium principle follows.
Let u(x) = x and w = w+ = w−, which corresponds to the dual utility model

(see Yaari 1987); then V (Y ) = Ew(Y ) as defined in (6), for any continuous random
variable,

V (Y ) = Ew(Y ) =
∫ +∞

−∞
y ψ[1 − FY (y)] fY (y) dy.

Define Y = W + P − X , then

Ew(W + P − X) =
∫ +∞

0
(W + P − x) ψ[FX (x)] fX (x) dx

= (W + P)[w(1) − w(0)] −
∫ +∞

0
x ψ[FX (x)] fX (x) dx

= (W + P) − Ew(X),

123
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where w is the dual probability weighting function w(p) = 1 − w(1 − p), with
w′(p) = w′(1 − p). Note that Ew(−X) = −Ew(X). If we impose condition

u(W ) = Ew[u(W + P − X)]

(we can also consider W = 0), the solution is the following premium principle

P = Ew(X). (11)

It is worth noting that when w is concave (convex), w is convex (concave).5 More
generally, if w has an inverse-S shape (S-shape), w has an S-shape (inverse-S shape).
The shape of the probability weighting function, and its interpretation in terms of
probabilistic optimism and pessimism, will be explained later in Sect. 5. In Sect. 4, we
will discuss the case with linear utility and different probability distortions for positive
and negative outcomes w+ �= w−, and two cases with exponential utility functions
with both w+ = w− and w+ �= w−.

The premium principle under continuous cumulative prospect theory satisfies the
following properties.

No unjustified safety (or risk) loading: P(a) = a, for all constants a.

This is a consequence of the definition of the premium principle, strict monotonicity
of v, and property Ew+w−(c) = c, so that

v(W ) = Ew+w−(v(W + P(a) − a)) = v(W + P(a) − a),

thus P = a. �	
Non-excessive loading:when v is a continuous and increasing function, with v(0) = 0,
and w+ and w− are probability weighting functions, P(X) ≤ sup(X).

Given Ew+w−c = c, for all c, and Ew+w−(X) ≤ Ew+w−(Y ), if X ≤ Y , then

v(W ) = Ew+w−(v(W + P − X))

≥ Ew+w−(v(W + P − sup X))

= v(W + P − sup X),

hence P ≤ sup(X). �	
Translation invariance: P(X + b) = P(X) + b, for all b.

Indeed, we have

v(W ) = Ew+w−[v(W + P(X + b) − (X + b))]
= Ew+w−[v(W + P(X) + b − (X + b))],

5 The premium principle defined in Wang (1996) assumes an increasing and concave distortion function
and maintains the second-order stochastic dominance.
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or using the representation (4) we can prove that

v(W ) =
∫ W+P(X+b)−b

0
v+(W + P(X + b) − (X + b))ψ+(FX (x)) fX (x) dx

+
∫ +∞

W+P(X+b)−b
v−(W + P(X + b) − (X + b))ψ−(1 − FX (x)) fX (x) dx

=
∫ W+P(X)

0
v+(W + P(X) + b − (X + b))ψ+(FX (x)) fX (x) dx

+
∫ +∞

W+P(X)

v−(W + P(X) + b − (X + b))ψ−(1 − FX (x)) fX (x) dx,

so that P(X + b) = P(X) + b. �	
Positive scale invariance: P(aX) = aP(X), for a > 0.

This property holds under rank-dependent utility if and only if the value function is
linear (for the proof, see Heilpern 2003). Under cumulative prospect theory, Kaluszka
andKrzeszowiec (2012) prove that scale invariance holds when: (i)W = 0, if and only
if v− = c1(−x)d and v+ = c2(x)d , for d > 0, c1 < 0 < c2; (ii)W > 0, for a random
variable X such that P(X = 0) = 1− q and P(X = s) = q (s > 0, q ∈ [0, 1]), if and
only if v(x) = cx , c > 0 and w+ = w−. �	

Additivity for independent risks, additivity for comonotonic risks, sub-additivity,
stop-loss order preserving are studied and proved under rank-dependent utility and
cumulative prospect theory (see Gerber 1985; Heilpern 2003; Goovaerts et al. 2004,
2010; Kaluszka and Krzeszowiec 2012) for a class of functions including linear and
exponential utility, with some restrictions on the value function and on the shape of
the probability weighting function. The assumptions we make about v andw are more
general; in particular, for the shape of the probability weighting function, an inverse-S
is more realistic.

3.2 Behavioral premium principle and framing

In this contribution, we also assume that decision makers are not indifferent among
frames of cash flows: the framing of alternatives exerts a crucial effect on actual
choices. People may keep different mental accounts for different types of outcomes,
and when combining these accounts to obtain overall result, typically they do not
simply sum up all monetary amounts, but intentionally use hedonic framing (Thaler
1985) such that the combination of the outcomes appears more favorable and increases
their utility. The term framing is also used to refer to theway inwhich alternatives (e.g.,
outcomes fromfinancial investments, products sold in-bundle, insurance or derivatives
embedded in some other contracts) are presented and explained to the decision maker,
and may influence mental accounting.

Outcomes are aggregated v(x + y) or segregated v(x) + v(y) depending on what
leads to the highest possible prospect value: multiple gains are preferred to be segre-
gated, v+(x) + v+(y) (with x > 0, y > 0); losses are preferred to be integrated with
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240 M. Nardon, P. Pianca

other losses, v−(x + y) (with x < 0, y < 0), or large gains, in order to ease the pain
of the loss. Mixed outcomes would be integrated in order to cancel out losses when
there is a net gain or a small loss; for large losses and a small gain, they usually are
segregated in order to preserve the silver lining.6 This is due to the shape of the value
function in prospect theory, characterized by risk seeking or risk aversion, diminishing
sensitivity and loss aversion.

Regarding the valuation of insurance contracts, different aggregations or segrega-
tions of the results are possible. One can consider a single position (narrow framing)
or a portfolio of insurance policies. In the premium principle defined by (10) narrow
framing is applied, where X is the random amount that will be paid by the insurer to
settle each claim; moreover, the random result on a single policy is considered in a
mental account separated from the wealth own by the insurance company and zero is
the reference point.

It is also possible to segregate results across time: e.g., one can evaluate separately
the cashed premium and the final loss. Moreover, when time is relevant,7 one can
assume that the premium received at time t = 0 is invested at the risk-free interest
rate r , obtaining PerT at some maturity T of the contract.

If we segregate the cashed premium from the possible loss and evaluate the results
in two separate mental accounts, condition (10) becomes

0 = v+(P) +
∫ +∞

0
v−(−x) ψ−[1 − FX (x)] fX (x) dx, (12)

and the premium can be determined as

P = ϕ−1 (−Ew−(v−(−X))
)
, (13)

where ϕ = v+, and Ew−(v−(−X)) = ∫ +∞
0 v−(−x) ψ−[1 − FX (x)] fX (x) dx .

Equation (12) defines an alternative premium principle based on continuous cumu-
lative prospect theory when the premium is segregated from the random loss. Hence,
premium principle in (10) is the one determined in the aggregated model.

It is worth noting that, when the value function is linear, in particular a = b = 1 and
λ = 1 for function (1), and there is no probability distortion, w+(p) = w−(p) = p,
the resulting premium is P = E(X). Properties discussed in the previous subsection
for the premium principle obtained in the aggregated model may be in general no
longer valid.

4 Applications of the behavioral premium principle

Alternative functional forms both for the utility or value function and the probabil-
ity weighting function, embedded in rank-dependent utility and cumulative prospect

6 See Thaler (1985), p. 202.
7 Time-value of money is normally disregarded when dealing with non-life insurance contracts, but may
become important on a multi-year horizon.
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theory, yield different models with potentially different implications for choice behav-
ior. In this section, we discuss several examples and some properties of the related
premium principle.

In the first example, we consider the premium principle defined by (8) with a linear
value function. This case generalizes a property previously discussed and it has also
been analyzed by Kaluszka and Krzeszowiec (2012).

Example 1 Let v(x) = c x , with c > 0. Consider alsoW ≥ 0. Condition (8) is satisfied
when8

W =
∫ W+P

0
(W + P − x) ψ+[FX (x)] fX (x) dx

+
∫ +∞

W+P
(W + P − x) ψ−[1 − FX (x)] fX (x) dx .

It is possible to show that9

Ew+w−(W + P − X) = −
∫ +∞

0
xψ−(1 − FX (x)) fX (x) dx + (W + P)

+
∫ W+P

0
(W + P − x)[ψ+(FX (x)) − ψ−(1 − FX (x))] dx

= −Ew−(X) + (W + P)

+
∫ W+P

0
[w−(1 − FX (x)) − w+(1 − FX (x))] dx,

where Ew−(X) = ∫ +∞
0 xψ−(1 − FX (x)) fX (x) dx .

Hence, condition (8) can also be expressed as follows

W + Ew−(X) = (W + P) +
∫ W+P

0
[w−(1 − FX (x)) − w+(1 − FX (x))] dx .

Let us denote t = W + P , then the right-hand side is a function G(t) with G ′ =
1 + (w−(1 − FX (t)) − 1 + w+(FX (t))) > 0.

The resulting premium is solution of

P = G−1(W + Ew−(X)) − W ,

8 Note that Ew+w− (cX) = cEw+w− (X), for c ≥ 0.
9 In general, linearity does not hold for the generalized Choquet integral. In Sect. 3.1, we discussed the
case with w+ = w−. When w+ �= w−, and c ∈ R, we apply the following result

Ew+w− (X + c) = Ew+w− (X) + c +
∫ c

0
[w−(P(−X > s)) − w+(P(−X > s))] ds,

where w is the dual probability weighting function. See Kaluszka and Krzeszowiec (2012) for the proof
and discussion of further properties of the generalized Choquet integral.
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and for W = 0 we have

P = G−1(Ew−(X)), (14)

which requires numerical computation. �	
In the next two examples, we consider the behavioral premium principle with expo-

nential utility functions under rank-dependent utility theory (see also Heilpern 2003,
and Tsanakas 2009) and cumulative prospect theory (see also Kaluszka and Krzes-
zowiec 2012); we provide also an alternative discussion of the results based on the
continuous representation (4).

Example 2 Exponential premium principle under rank-dependent utility theory
Assume a utility function10 u(x) = (1 − e−bx )/a, with a > 0 and b > 0. With
W ≥ 0, we have u(W ) = (1 − e−bW )/a. When w+ = w− = w, the right-hand side
of condition (8) is equal to

V (u(W + P − X)) =
∫ +∞

0
u(W + P − x) ψ(FX (x)) fX (x) dx

=
∫ +∞

0

1

a

(
1 − e−b(W+P−x)

)
ψ(FX (x)) fX (x) dx

= 1

a

(
1 − e−b(W+P)

∫ +∞

0
ebx ψ(FX (x)) fX (x) dx

)

= 1

a

(
1 − e−b(W+P)

Ew

(
ebX

))
.

Given the definition and properties of the Choquet integral, one obtains the same
result:

Ew(u(W + P − X)) = Ew

(
1 − e−b(W+P−X)

a

)
= 1

a

(
1 − e−b(W+P)

Ew

(
ebX

))
,

where Ew

(
ebX

) = ∫ +∞
0 ebx ψ(FX (x)) fX (x) dx .

By imposing the condition u(W ) = Ew(u(W + P − X)) and after some algebraic
manipulation,11 we obtain the following exponential premium principle under rank-
dependent utility theory:

P = 1

b
lnEw

(
ebX

)
. (15)

Using analogous arguments, one can derive an exponential premium principle
adopting the utility function12 u(x) = (ebx − 1)/a, with a > 0 and b > 0. With

10 We have u(0) = 0, u′ > 0, u′(0) = b/a, u′′ < 0. Heilpern (2003) considers the normalized case a = b.
11 The same result arises also when a = b and with W = 0.
12 We have u(0) = 0, u′ > 0, u′(0) = b/a, and u′′ > 0, which may be useful to model the value function
in the domain of losses.
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W ≥ 0, we have u(W ) = (ebW − 1)/a. When w+ = w− = w, the right-hand side of
condition (8) is equal to

V (u(W + P − X)) =
∫ +∞

0
u(W + P − x) ψ(FX (x)) fX (x) dx

=
∫ +∞

0

1

a

(
eb(W+P−x) − 1

)
ψ(FX (x)) fX (x) dx

= 1

a

(
−1 + eb(W+P)

∫ +∞

0
e−bx ψ(FX (x)) fX (x) dx

)

= 1

a

(
−1 + eb(W+P)

Ew

(
e−bX

))
.

Equivalently, we have

Ew

(
1

a

(
eb(W+P−X) − 1

))
= 1

a
eb(W+P)

Ew

(
e−bX

)
− 1

a
,

where Ew

(
e−bX

) = ∫ +∞
0 e−bx ψ(FX (x)) fX (x) dx . Condition (8) yields

P = −1

b
ln

(
Ew

(
e−bX

))
, (16)

an alternative exponential premium principle under rank-dependent utility theory. �	
Example 3 Exponential premium principle under continuous cumulative prospect the-
ory
Assume a utility function u(x) = (1− e−bx )/a, with a > 0 and b > 0. With W ≥ 0,
we have u(W ) = (1 − e−bW )/a. When w+ �= w−, the right-hand side of condition
(8) is equal to

V (u(W + P − X)) =

= 1

a

∫ W+P

0
(1 − e−b(W+P−x)) ψ+(FX (x)) fX (x) dx

+ 1

a

∫ +∞

W+P

(
1 − e−b(W+P−x)

)
ψ−(1 − FX (x)) fX (x) dx

= 1

a
Ew−

(
1 − e−b(W+P−X)

)

+ 1

a

∫ W+P

0
(1 − e−b(W+P−x)) [ψ+(FX (x)) − ψ−(1 − FX (x))] fX (x) dx

= 1

a
− 1

a
e−b(W+P)

Ew−
(
ebX

)

+ 1

a

∫ W+P

0
(1 − e−b(W+P−x)) [ψ+(FX (x)) − ψ−(1 − FX (x))] fX (x) dx .
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Using the same result as in the first example, it is possible to show that

Ew+w−
(
1 − e−b(W+P−X)

)
= 1 − Ew−

(
e−b(W+P−X)

)

+
∫ 1

0
[w−(1 − FY (y)) − w+(1 − FY (y))] dy,

where Y = e−b(W+P−X), and

Ew−
(
e−b(W+P−X)

)
=

∫ +∞

0
e−b(W+P−x)ψ−(1 − FX (x)) fX (x) dx .

After substitution into (8)

1 − e−bW = 1 − e−b(W+P)
Ew−

(
ebX

)
+

∫ 1

0
[w−(1 − FY (y)) − w+(1 − FY (y))] dy

and a transformation of random variable,

e−b(W+P)
Ew−

(
ebX

)
= e−bW

+ e−b(W+P)

∫ exp(b(W+P))

0
[w−(P(ebX > s)) − w+(P(ebX > s))] ds,

we obtain

Ew−
(
ebX

)
= ebP +

∫ exp(b(W+P))

0
[w−(P(ebX > s)) − w+(P(ebX > s))] ds.

When W = 0, we have

Ew−
(
ebX

)
= ebP +

∫ exp(bP)

0
[w−(P(ebX > s)) − w+(P(ebX > s))] ds

= ebP +
∫ exp(bP)

0
ebx [ψ+(FX (x)) − ψ−(1 − FX (x))] dx .

Let us denote t = ebP , then the right-hand side is a function G(t) with G ′ > 0, and
the premium is solution of

P = 1

b
ln

(
G−1

(
Ew−(ebX )

))
,

which generalizes the exponential premium principle (15) obtained in the case w+ =
w−.
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As an alternative, if we consider the utility function u(x) = (ebx − 1)/a, we can
derive a premium which is solution of

P = −1

b
ln

(
G−1

(
Ew+(e−bX )

))
,

where G(t) is a function of t = e−bP for which G−1 exists. �	

The value function under cumulative prospect theory should display a combination
of risk aversion for gains and risk seeking for losses, and loss aversion. A function
with these features is (see also Davies and Satchell 2007)

v(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v+(x) = 1 − e−ax

a
x ≥ 0

λv−(x) = λ
ebx − 1

b
x < 0,

(17)

where λ ≥ 1 is the loss aversion parameter; parameters a and b govern curvature.
When a > 0 and b > 0, the function v is convex for negative results, concave for
positive outcomes, steeper for losses depending on the value of the parameter λ (λ > 1
implies loss aversion). This function could be used in the case discussed in the previous
example. In Sect. 6, we will obtain an explicit solution for the premium combining the
value function defined in Eq. (17), a probability weighting function proposed by Prelec
(1998) and a Weibull distribution under cumulative prospect theory in the segregated
model.

A usual choice for the value function, widely applied in the literature, is defined by
(1) presented above,

v(x) =
{

v+(x) = xa x ≥ 0
v−(x) = −λ(−x)b x < 0.

In the following examples, we adopt such a value function.

Example 4 Let v be defined by (1); then Eq. (10) becomes

0=
∫ P

0
(P−x)a ψ+[FX (x)] fX (x) dx−λ

∫ +∞

P
(x − P)b ψ−[1−FX (x)] fX (x) dx,

which requires numerical solution for P .
In the segregated model, equating at zero and solving for P , gives the explicit

formula

P =
(

λ

∫ +∞

0
xb ψ−[1 − FX (x)] fX (x) dx

)1/a

,
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which requires numerical approximation of the integral. The premium is increasing
with loss aversion λ, which appears not so obvious in the aggregated case; given that
0 < a ≤ 1 and 0 < b ≤ 1. �	

Remember the property P ≤ sup X (non-excessive loading) presented above.
Kaluszka and Okolewski (2008) analyze a premium principle when the utility func-
tion is linear and the function w+ and w− are neo-additive weighting functions,
w− = a + bp and w+ = c + dp (b, d > 0, a + b < 1, c + d < 1), and sup X = W .
In the next example, we assume that the random variable X is bounded.

Example 5 If the set of possible outcomes for the claim X is [0, x], for some limit
value x > 0, then the premium in the aggregated model is defined by

0=
∫ P

0
v+(P−x) ψ+[FX (x)] fX (x) dx+

∫ x

P
v−(P − x) ψ−[1 − FX (x)] fX (x) dx,

and considering the value function (1) yields

0 =
∫ P

0
(P − x)a ψ+[FX (x)] fX (x) dx −

∫ x

P
λ(x − P)b ψ−[1 − FX (x)] fX (x) dx .

In the segregated model (12), the premium is the solution of

0 = v+(P) +
∫ x

0
v−(−x) ψ−[1 − FX (x)] fX (x) dx;

substituting (1), we have

P =
(

λ

∫ x

0
xb ψ−[1 − FX (x)] fX (x) dx

)1/a

.

Also in this case, the higher the loss aversion of the insurer, the higher the premium.
�	

Premium principles (10) and (12) can be adjusted in order to take into consideration
some policy conditions such as deductibles. The next two examples discuss the cases
of fixed-percentage and fixed-amount deductibles.

Example 6 Fixed-percentage deductible
If we consider a fixed-percentage deductible, the part of the risk θX is retained by the
insured, while (1− θ)X is transferred to the insurer, for 0 ≤ θ ≤ 1. In the aggregated
model (10), the premium can be determined from the following equation

0 =
∫ P/(1−θ)

0
v+ (P − (1 − θ)x) ψ+[FX (x)] fX (x) dx

+
∫ +∞

P/(1−θ)

v− (P − (1 − θ)x) ψ−[1 − FX (x)] fX (x) dx,
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solving numerically for P . Taking v as in (1) as a special case, we have

0 =
∫ P/(1−θ)

0
(P − (1 − θ)x)a ψ+[FX (x)] fX (x) dx

− λ

∫ +∞

P/(1−θ)

((1 − θ)x − P)b ψ−[1 − FX (x)] fX (x) dx .

In the segregated model (12), the premium is defined by

0 = v+(P) +
∫ +∞

0
v−(−(1 − θ)x) ψ−[1 − FX (x)] fX (x) dx;

in particular, we have the following result

P =
(

λ (1 − θ)b
∫ +∞

0
xb ψ−[1 − FX (x)] fX (x) dx

)1/a

.

It is interesting to observe that, in the last explicit formula, not only is the premium
increasing with loss aversion, modeled by the parameter λ, but also it is higher the
lower the retention θ is, which is also an intuitive result. In the aggregated model, the
resulting premium depends on the combined effect of risk-aversion and risk seeking
behaviors, together with loss aversion, of the value function. �	
Example 7 Deductible of fixed amount
If a deductible of fixed amount d ≥ 0 is considered, any loss less than or equal to d is
entirely retained by the insured, min(X , d), while losses higher than d are transferred
to the insurer for the amount exceeding the deductible, max(X −d, 0). In such a case,
it can be shown that in the aggregated model (10) the premium can be determined
from the following equation13

0 = v+(P)w+ (FX (d)) +
∫ d+P

d
v+ (P − (x − d)) ψ+ (FX (x)) fX (x) dx

+
∫ +∞

d+P
v− (P − (x − d)) ψ− (1 − FX (x)) fX (x) dx,

solving numerically for P .
In the segregated model (12), the premium is defined by

0 = v+(P) +
∫ +∞

d
v−(d − x) ψ−[1 − FX (x)] fX (x) dx;

and, in particular, we have the following result

P =
(

λ

∫ +∞

d
(x − d)b ψ−[1 − FX (x)] fX (x) dx

)1/a

.

13 Observe that
∫ c
0 ψ(F(x)) f (x)dx = w(F(c)).
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Also in this case, the premium is decreasing with respect to the fixed deductible d and
increasing with loss aversion of the insurer. �	

All the results presented above depend on the choice of the weighting function. So
far, we have assumed that w+ and w− were increasing functions w : [0, 1] → [0, 1],
with w(0) = 0 and w(1) = 1. Weighting functions are a key element in modeling
decisions under risk and uncertainty when one tries to capture behavioral patterns
which departure from expected utility theory. In the literature related to prospect
theory, in its original and cumulative versions, and rank-dependent utility theory,
several functional forms of probability weighting functions have been proposed and
tested in many theoretical and empirical studies. Different functional forms yield
different models; in particular, when the weighting function has an inverse-S shape,
very low probability of extreme events are overweighted, with possible implications
for the resulting premium.

5 Some remarks on the shape of the probability weighting function

In this section, we discuss some features of the probability weighting function (see
Nardon and Pianca 2018), which models probabilistic risk behavior. We recall from
previous sections that w is uniquely determined, it maps the probability interval [0, 1]
into [0, 1], and is strictly increasing, with w(0) = 0 and w(1) = 1. Here, we consider
continuous weighting functions.14

The curvature of the weighting function is related to the risk attitude toward prob-
abilities. Empirical evidence suggests a particular shape of probability weighting
functions: small probabilities are overweighted w(p) > p, whereas individuals tend
to underestimate large probabilitiesw(p) < p. The function is initially concave (prob-
abilistic risk seeking or optimism) for probabilities in the interval (0, p∗), and convex
(probabilistic risk aversion or pessimism) in the interval (p∗, 1), for a certain value of
p∗. This turns out in a typical inverse-S shape. A linear weighting function describes
probabilistic risk neutrality or objective sensitivity toward probabilities, which charac-
terizes expected utility. Empirical findings15 indicate that the intersection (elevation)
between the weighting function and the 45o line, w(p) = p, is for p in the interval
(0.3, 0.4).

The sensitivity toward probability is increased if (see Abdellaoui et al. 2010)
w(p)/p > 1, for p ∈ (0, δ), and (1−w(p))/(1− p) > 1, for p ∈ (1−ε, 1), whereas
a weighting function exhibits decreased sensitivity if w(p)/p < 1, for p ∈ (0, δ),
and (1 − w(p))/(1 − p) < 1, for p ∈ (1 − ε, 1), for some arbitrary small δ > 0
and ε > 0. Some weighting functions (e.g., the functions suggested by Goldstein and
Einhorn 1987; Tversky and Kahneman 1992; Prelec 1998) display extreme sensitivity,
in the sense that w(p)/p and (1− w(p))/(1− p) are unbounded as p tends to 0 and
1, respectively.

14 In the literature discontinuous (neo-additive) weighting functions are also considered.
15 See e.g., Prelec (1998), Abdellaoui (2000), Bleichrodt and Pinto (2000), Bleichrodt et al. (2001), and
Abdellaoui et al. (2007).
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An inverse-S shape of w combines the increased sensitivity with concavity for
small probabilities and convexity for medium and large probabilities. In particular,
such a form captures the fact that individuals are extremely sensitive to changes in
(cumulative) probabilities which approach to 0 and 1. Abdellaoui et al. (2010) discuss
how optimism and pessimism are possible sources of increased sensitivity.

Different parametric forms for the weighting function with the above-mentioned
features have been proposed in the literature, and their parameters have been estimated
in many empirical studies. Single parameter probability weighting functions are those
proposed by Karmarkar (1978, 1979), Röell (1987), Currim and Sarin (1989), Tversky
and Kahneman (1992), Luce et al. (1993), Hey and Orme (1994), Prelec (1998), Safra
and Segal (1998), and Luce (2000). Two (or more) parameter probability weighting
functions have been proposed by Bell (1985), Goldstein and Einhorn (1987), Allais
(1988), Currim and Sarin (1989), Lattimore et al. (1992), Wu and Gonzalez (1996),
Prelec (1998), Luce (2001), Loomes et al. (2002), Walther (2003), Rieger and Wang
(2006), Diecidue et al. (2009), Abdellaoui et al. (2010), and Pfiffelmann (2011).

Karmarkar (1978) considers the following function

w(p) = pγ

pγ + (1 − p)γ
, (18)

with γ > 0. Function (18) is a special case (when δ = 1) of the two parameter family
proposed by Wu and Gonzalez (1996),

w(p) = pγ

(pγ + (1 − p)γ )δ
, (19)

with δ and γ positive.
Allais (1988) suggests the expression

w(p) = m′ p
a − p

[1 + (m′ − 1)a](a − p) − a(a − 1)(m m′ − 1)(1 − p)

[1 + (m′ − 1)a][1 + (m′ − 1)p] − (a − 1)(m m′ − 1)(1 − p)
,

(20)

withw(0) = 0,w(1) = 1,m′ = ∂w
∂ p

∣∣∣
p=0

,m = ∂w
∂ p

∣∣∣
p=1

. The function depends on three

parameters:m,m′, and a. Based on observed data (subjective answer to questionnaires)
and the properties of function (20), the parameters are such that m > 1, 0 < m′ < m,
m m′ > 1, 1 < a < m/(m − 1). Parameters m and m′ govern curvature of the
weighting function. In particular, Allais (1988) points out that m can be interpreted as
an indicator of the preference for security andm′ as an indicator of preference for risk
for small probabilities. As ∂w/∂a < 0, the parameter a can be viewed as an indicator
of the preference for security given the values ofm andm′; hence, it controls elevation.

Tversky and Kahneman (1992) use the Quiggin (1982) functional of the form

w(p) = pγ

(pγ + (1 − p)γ )1/γ
, (21)
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where γ is a positive constant. The parameter γ captures the degree of sensitiv-
ity toward changes in probabilities from impossibility (zero probability) to certainty
(Tversky and Kahneman 1992). When γ < 1, one obtains the typical inverse-S shape
form; the lower the parameter, the higher is the curvature of the function. Note that
w(0) = 0 and w(1) = 1 for the above defined functions.

Prelec (1998) suggests a two parameter compound-invariant function16 of the form

w(p) = e−δ(− ln p)γ , p ∈ (0, 1), (22)

with w(0) = 0 and w(1) = 1. The parameter δ (with 0 < δ < 1) governs elevation
of the weighting function relative to the 45o line, while γ (with γ > 0) governs
curvature and the degree of sensitivity to extreme results relative tomediumprobability
outcomes. When γ < 1, one obtains the inverse-S shape function. In this model, the
parameter δ influences the tendency of over- or underweighting the probabilities, but
it has no direct meaning.

As an alternative, one can also consider the more parsimonious single parameter
Prelec’s weighting function

w(p) = e−(− ln p)γ , p ∈ (0, 1), (23)

which only allows for curvature to be varied. Note that, in this case, the unique solution
of equation w(p) = p for p ∈ (0, 1) is p = 1/e � 0.367879 and does not depend on
the parameter γ .

In an empirical study, Wu and Gonzalez (1999) consider both the Prelec (1998)
weighting function and the linear in log odds function proposed by Goldstein and
Einhorn (1987),

w(p) = δ pγ

δ pγ + (1 − p)γ
. (24)

Function (24) has also been used by Lattimore et al. (1992) in a variant functional
form, Tversky and Fox (1995), Birnbaum and McIntosh (1996), and Kilka and Weber
(2001). The weighting function proposed by Karmarkar (1978, 1979) is a special case
of (24) with δ = 1.

An interesting parametric function is the switch-power weighting function proposed
by Diecidue et al. (2009), which consists in a power function for probabilities below a
certain value p̂ ∈ (0, 1) and a dual power function for probabilities above p̂; formally
w is defined as follows:

w(p) =
{
cpa if 0 ≤ p ≤ p̂,
1 − d(1 − p)b if p̂ < p ≤ 1,

(25)

with five parameters a, b, c, d, and p̂. All the parameters are strictly positive, assuming
continuity and monotonicity of w. When p̂ approaches 1 or 0, w reduces to a power

16 In the same paper, Prelec derives two other probability weighting functions: the conditionally-invariant
exponential-power and the projection-invariant hyperbolic-logarithm function.
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or a dual power probability weighting function, respectively. Diecidue et al. (2009)
provide preference foundation for such a family of parametric weighting functions and
inverse-S shape under rank-dependent utility based on testable preference conditions.

Parameters in (25) reduce to three (a, b, and p̂) by assuming continuity ofw(p) at p̂
and differentiability. For a, b ≤ 1, the function w is concave on (0, p̂) and convex on
( p̂, 1) (it has an inverse-S shape), while for a, b ≥ 1 the weighting function is convex
for p < p̂ and concave for p > p̂ (it has an S-shape). Both parameters a and b govern
the curvature of w when a �= b. In particular, parameter a describes probabilistic
risk attitude for small probabilities; whereas parameter b describes probabilistic risk
attitude for medium and large probabilities. In the case with a �= b, parameter p̂,
which signals the point where probabilistic risk attitudes change from risk aversion to
risk seeking (for an inverse-S shape function), may not lie on the 45o line, hence it has
not the meaning of dividing the region of over- and underweighting of the probability.

When a = b, one obtains a two parameter probability weighting function, which
intersects the 45o line at p̂. The parameter p̂ separates the regions of over- and under-
weighting of probabilities. If we denote δ = p̂ and a = γ , the result is the constant
relative sensitivity weighting function considered by Abdellaoui et al. (2010):

w(p) =
{

δ1−γ pγ if 0 ≤ p ≤ δ,

1 − (1 − δ)1−γ (1 − p)γ if δ < p ≤ 1,
(26)

with γ > 0 and δ ∈ [0, 1]. For γ < 1 and 0 < δ < 1, it has an inverse-S shape.
The derivative of w at δ equals γ ; this parameter controls for the curvature of the
weighting function. The parameter δ indicates whether the interval for overweighting
probabilities is larger than the interval for underweighting, and therefore controls for
the elevation. Hence, such a family of weighting functions allows for a separate and
direct modeling of these two features. Figure 3 shows the plots of the constant relative
sensitivity weighting function for different values of the parameters.

Fig. 3 Instances of the two parameter constant relative sensitivity probability weighting function, with
different elevation (left) for γ = 0.3 and δ = 0.1, 0.3, 0.5, 0.7 (for higher values of δ the function is more
elevated), and curvature (right) for δ = 0.3 and γ = 0.1, 0.3, 0.5, 0.7 (for lower values of γ the function
exhibits higher curvature)
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Remember that a convex weighting function characterizes probabilistic risk aver-
sion and a concave weighting function characterizes probabilistic risk proneness,
whereas a linear weighting function characterizes probabilistic risk neutrality. Then,
the role of δ is to demarcate the interval of probability risk seeking from the interval
of probability risk aversion.17 In such a case, overweighting corresponds to risk seek-
ing (or optimism) and underweighting corresponds to risk proneness (or pessimism).
Elevation represents the relative strength of optimism versus pessimism, hence it is a
measure of relative optimism, and δ may be interpreted as an index of relative opti-
mism.

Figure 4 shows the dependence of the decision weights π on rank r , when results
are ordered from best to worst, for the weighting function defined in Eq. (26). The
decision weights w(p + r) − w(r) can be approximated by pw′(r) for objective
individual probability p (such a probability is represented by the dashed line which
depicts neutral psychology). The curvature parameter is γ = 0.6, and we consider
different values for the elevation parameter. For δ = 0.2, the dotted curve illustrates
relative pessimism (probabilities of extreme good outcomes and small probabilities of
bad outcomes are overweighted), for δ = 0.5 the solid line illustrates that good and bad
outcomes are overweighted, while intermediate results are underweighted, and for δ =
0.8 the dashed-dotted curve illustrates relative optimism (small probabilities of good
outcomes are overweighted, probabilities of extreme bad outcomes are overweighted).
As γ approaches the value 1 (for lower curvature), the weights tend to the objective
probabilities.

Gonzalez and Wu (1999) and Abdellaoui et al. (2010) find that the weighting
function is more elevated for losses than for gains. In Abdellaoui et al. (2010), the
relative index of optimism for gains δ+ is lower than the relative index of pessimism
for losses δ−.

Curvature is a measure of the degree of sensitivity to changes from impossibility
to possibility (Tversky and Kahneman 1992), it represents the diminishing effect of
optimism and pessimism when moving away from extreme probabilities 0 and 1.
Hence, parameter γ , controlling for curvature, measures the relative sensitivity of the
weighting function. This suggests an interpretation for such a parameter as ameasure of
relative risk aversion.The indexof relative sensitivity (seeAbellaoui et al. 2010) ofw as

defined in (26) is −p ∂2w(p)
∂ p2

/ ∂w(p)
∂ p for p ∈ (0, δ] and −(1− p) ∂2(1−w(p))

∂(1−p)2
/ ∂(1−w(p))

∂(1−p)
for p ∈ (δ, 1), it is constant and equals 1 − γ .

The constant relative sensitivity weighting function has been used by Nardon and
Pianca (2018) in a behavioralmodel for the evaluation of European options. The choice
of the probabilityweighting function should be driven by the followingmotivations: its
empirical properties, intuitive and empirically testable preference conditions, nonlin-
ear behavior of the probability weighting function. Moreover, a parametric probability
weighting function should be parsimonious (remaining consistent with the properties
suggested by empirical evidence), in particular when we consider different parameters
for the weighting of probability of gains and losses. Two parameters allow for sepa-
rate control of curvature and elevation, and the constant relative sensitivity weighting

17 This is not the case for weighting function (25); when a �= b, both parameters controls for curvature
and all parameters may influence elevation.
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Fig. 4 Dependence of the decision weights on rank r (from best to worst) for w(p) defined as in Eq.
(26), with weights w(p + r) − w(r) ≈ pw′(r) for objective probability p = 0.01 (the dashed line depicts
neutral psychology). The parameters of probability weightingw are: γ = 0.6, letting elevation vary, δ = 0.2
(the dotted line curve illustrates relative pessimism), δ = 0.5 (the solid line illustrates that good and bad
outcomes are overweighted while intermediate results are underweighted) and δ = 0.8 (the dashed-dotted
curve illustrates relative optimism)

function, which governs distinctly these two features, is of particular interest also for
the premium principle in order to model probabilistic pessimism and optimism of the
insurer.

6 Behavioral premium principle withWeibull distribution and
Prelec’s probability weighting function

Let us recall the premium principle in the segregated model defined by condition (12),

0 = v+(P) +
∫ +∞

0
v−(−x) ψ−[1 − FX (x)] fX (x) dx;

with v+ a strictly increasing function, the premium P is solution to the previous
equation.

Assume a piecewise exponential value function as defined in (17),

v(x) =
{

v+(x) = 1−e−ax

a x ≥ 0

λv−(x) = λ ebx−1
b x < 0,
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where λ > 1, a > 0, and b > 0. Function v is continuous and strictly increasing,
convex for losses and concave for gains, steeper for losses.

Then, we obtain the following explicit solution for the premium

P = −1

a
ln

(
1 − λ

a

b

∫ +∞

0
(e−bx − 1) ψ−[1 − FX (x)] fX (x) dx

)
, (27)

where X is a non-negative continuous random variable, with cumulative distribution
FX and probability density function fX .

Consider the one parameter probability weighting function proposed by Prelec
(1998):

w(p) = e−(− ln p)γ ,

with

ψ(p) = w′(p) = 1

p
γ (− ln p)γ−1e−(− ln p)γ .

In what follows, for simplicity, we write w, ψ and γ instead of w−, ψ− and γ −, as
only the weighting function for probability of losses is involved in the computations.

Assume that the random variable X has a Weibull distribution with parameters
α > 0 and β > 0, with density

fX (x) = αβ−αxα−1e−xαβ−α = α

β

(
x

β

)α−1

e
−

(
x
β

)α

and cumulative distribution function

FX (x) = 1 − e
−

(
x
β

)α

.

So that

w(1 − FX (x)) = e
−

(
x
β

)αγ

,

and

ψ(1 − FX (x)) = γ

(
x

β

)α(γ−1)

e

(
x
β

)α−
(
x
β

)αγ

.

Substitution into (27), combining the Weibull distribution with the Prelec’s proba-
bility weighting function and an exponential value function, after a change of variable
z = (x/β)αγ , and some simplifications, give the resulting premium

P = −1

a
ln

(
1 − λ

a

b

∫ +∞

0
e−z

(
e−bβ z1/(αγ ) − 1

)
dz

)
, (28)
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which requires numerical computation. An analogous result for the premium P can be
obtained also adopting the more flexible two parameter Prelec’s weighting function
w(p) = e−δ(− ln p)γ . Observe that the premium principle (28) is of similar form of
premia discussed in Examples 2 and 3.

7 Conclusions

Prospect theory has begun to attract increasing interest in the insurance theory literature
and, in its cumulative version, it seems a promising alternative to other models (such
as the ranked dependent expected utility theory, the dual theory and risk measures
based on distorted probabilities) for its potential to explain observed behaviors. In this
framework, we define a premium principle under cumulative prospect theory based
on the equivalent utility principle of Gerber (1979), extending behavioral premium
principles presented in the literature. In particular, we adopted the representation of
the cumulative prospect theory for continuous distributions, which allows us to review
and provide alternative proofs of previous results and properties of the related premium
principles.

We then assumed that framing of the alternatives matters: we apply the notion of
hedonic framing introduced by Thaler (1985) in order to define two different models
where the results are aggregated or segregated into separate mental accounts. In the
segregated model, we obtain explicit solutions for the premium. We also introduce
and discuss several applications, under specific assumptions on the value function and
the probability weighting function.

As future research, it will be interesting to study the decision problem also from
the viewpoint of the insured willing to buy protection, analyzing applications to other
form of insurance, with extensions to reinsurance and the choice of optimal retention
both in the proportional and non proportional case.
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