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Abstract
In this paper, we study the short-time behavior of the implied volatility for short-time
floating strike Asian options. Our method is based on Malliavin calculus techniques
and allows us to construct an approximation formula for the corresponding option
prices. Numerical examples are given.
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1 Introduction

This paper is devoted to the study of floating strike Asian options, that is, European
options whose payoff is of the form

(ST − AT )+,

where S denotes the asset price process and AT := k 1
T

∫ T
0 Sudu, for some positive

constant k. These options can be seen as random strike options (RSO), where the strike
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is allowed to be random. Other classical examples of RSOs include exchange options,
spread options or forward starting options. It is well known that, under the Black–
Scholes model, some RSOs have an explicit expression for their price. This is the case
of exchange options (see Margrabe 1978) or forward start options (see Rubinstein
1991; Wilmott 2002). In other cases, this explicit expression is not available, and
only some approximations can be used. For example, spread option prices can be
approximated by Kirk’s formula (see Kirk 1995). In the case of floating strike Asian
options, there are not explicit pricing formulas andweneed to apply numericalmethods
(see, for example, Rogers and Shi 1995;Vecer 2001;Dubois and Lelièvre 2004, among
others).We remark thatAsian options have a relevant role in energymarkets (seeBenth
and Detering 2015).

In Alòs and León (2016), we provided a systematic procedure to construct short-
time option pricing approximation formulas for RSOs. Toward this end, we defined the
implied volatility of our RSO as the inverse of the Black–Scholes function, but where
the strike was taken to be equal to the expectation of the corresponding random strike.
Notice that, due to the randomness of the strike, the behavior of this implied volatility
is not the same as in the vanilla case. In particular, we recall that this implied volatility
is not a constant, even in the context of the Black–Scholes model. The methodology
of these paper consists in computing the short-time level and skew of this implied
volatility by means of a change of numéraire and Malliavin calculus techniques. This
approach was proved to be an efficient tool in the study of spread options (see again
Alòs and León 2016). Nevertheless, the proofs in this work are not valid when the
strike is adapted to the same Brownian motion as the asset price. Then, these results
cannot be directly applied to the study of floating strike options.

Our aim in this paper is to adapt the ideas in Alòs and León (2016) to develop
an approximation formula for floating strike Asian options. Toward this end, we will
apply Malliavin calculus techniques to compute the short-time level and skew of the
corresponding implied volatility. This will allow us to construct an approximation for
this implied volatility and then, an approximation for the Asian option price.

The paper is organized as follows. Section 2 is devoted to present the framework
and the notation that we use in this paper. In Sect. 3, we prove a decomposition
formula for the option price that will allow us to deduce a first-order approximation
result. In Sect. 4, we compute the derivative of the implied volatility with respect to
the parameter k. Section 5 is devoted to study the short-time limit of this derivative.
This will allow us to construct a second-order approximation formula. The numerical
examples in Sect. 6 show that this formula is highly accurate and improves the first-
order approximation presented in Sect. 3. Finally, our conclusions are presented in
Sect. 7.

2 Statement of themodel and notation

In this paper, we consider a Black–Scholes model, where we consider r = 0 for the
sake of simplicity. More precisely, we assume the following model for the log price
of a stock under a risk-neutral probability measure Q:
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dXt = −σ 2

2
dt + σdWt . (1)

Here W is a Brownian motion and σ is a positive constant. We denote by FW the
augmentation under the underlying probability measure of the filtration generated by
W .

This work is devoted to study floating strike Asian options with payoff h(XT ) :=
(ST − AT )+, where St = eXt , t ∈ [0, T ], and AT = k 1

T

∫ T
0 Sudu. Notice that the

corresponding option price at t < T is given by

Vt = E

[(
eXT − AT

)

+
∣
∣FW

t

]

. (2)

In the sequel, we will make use of the following notation:

• MT
t := E

[
AT |FW

t

]
. Notice that

MT
t = k

1

T

(

St (T − t) +
∫ t

0
Sudu

)

= kSt F(T , t) + k
1

T

∫ t

0
Sudu, (3)

where F(T , t) := T−t
T . Moreover, the integration by parts formula implies

dMT
t = kσ St F(T , t)dWt . (4)

• vt :=
(

Yt
T−t

) 1
2
, with Yt := ∫ T

t a2udu, where

a2udu := σ 2du − 2
d

〈
MT , X

〉
u

MT
u

+ d
〈
MT , MT

〉
u

(
MT

u

)2 .

Note that

a2u = σ 2 − 2k
σ 2Su F(T , u)

MT
u

+ k2
σ 2S2u F

2(T , u)

(MT
u )2

= σ 2
(

1 − k
Su F(T , u)

MT
u

)2

= k2

T 2 σ 2

(∫ u
0 Sθdθ

MT
u

)2

= σ 2

( ∫ u
0 Sθdθ

Su(T − u) + ∫ u
0 Sθdθ

)2

,
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which does not depend on k. Moreover, although the right-hand side of the last
equality depends on T , we denote it by a2u in order to simplify the notation. Also,
notice that

lim
T→0

1

T

∫ T

0
a2udu = lim

T→0

k2

T 3

∫ T

0
σ 2

(∫ u
0 Sθdθ

MT
u

)2

du

= lim
T→0

σ 2

T 3

∫ T

0
u2du

= σ 2

3
. (5)

• BS(t, x, k, σ ) denotes the price of an European call option under the classical
Black–Scholes model with constant volatility σ , current log stock price x , time to
maturity T − t , strike price k and interest rate 0. Remember that in this case:

BS(t, x, k, σ ) = ex N (d+) − kN (d−),

where N denotes the cumulative probability function of the standard normal law
and

d± := x − x∗
t

σ
√
T − t

± σ

2

√
T − t,

with x∗
t := ln k.

• LBS
(
σ 2

)
stands for the Black–Scholes differential operator, in the log variable,

with volatility σ :

LBS

(
σ 2

)
= ∂t + 1

2
σ 2∂2xx − 1

2
σ 2∂x ·

It is well known that LBS
(
σ 2

)
BS(·, ·, σ ) = 0.

Nowwe describe some basic notation that is used in this article. For this, we assume
that the reader is familiarwith the elementary results of theMalliavin calculus, as given,
for instance, in Nualart (2006).

We denote by D
1,2
W the domain of the derivative operator DW in the Malliavin

calculus sense. D1,2
W is a dense subset of L2(�), and DW is a closed and unbounded

operator from L2(�) into L2([0, T ] × �). We also consider the iterated derivatives
DW ,n , for n > 1, whose domains are denoted by D

n,2
W .

The adjoint of the derivative operator DW , denoted by δW , is an extension of the
Itô integral in the sense that the set L2

a([0, T ] × �) of square integrable and adapted
processes (with respect to the filtration generated by W ) is included in DomδW and
the operator δW restricted to L2

a([0, T ] × �) coincides with the Itô integral. We make

use of the notation δW (u) = ∫ T
0 utdWt and δW (u1[0,t]) = ∫ t

0 usdWs . We recall that

L
n,2
W := L2([0, T ];Dn,2

W ) is included in the domain of δW for all n ≥ 1.
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Remark 1 Assume model (1), where σ is a positive constant. Then, for all r < u,

DW
r a2u = 2k2

T 2 σ 2

(∫ u
0 Sθdθ

MT
u

)
MT

u

∫ u
r Dr Sθdθ − ∫ u

0 Sθdθ(DrMT
u )

(MT
u )2

. (6)

Now, taking into account (3), we get

DW
r MT

u = k(Dr Su)F(T , u) + k
1

T

∫ u

r
Dr Sθdθ

= kσ Su F(T , u) + kσ

T

∫ u

r
Sθdθ. (7)

Hence, we obtain that, for all r < u,

MT
u

∫ u

r
DW
r Sθdθ −

∫ u

0
Sθdθ(DW

r MT
u )

= kσ Su F(T , u)

∫ u

r
Sθdθ + kσ

T

(∫ u

0
Sτdτ

) (∫ u

r
Sθdθ

)

− kσ Su F(T , u)

(∫ u

0
Sθdθ

)

− kσ

T

(∫ u

r
Sθdθ

) (∫ u

0
Sθdθ

)

= −kσ F(T , u)Su

∫ r

0
Sθdθ. (8)

Therefore, (6) and (8) give us that

DW
r a2u = −2σ 3k3Su F(T , u)

T 2

(∫ u
0 Sθdθ

MT
u

) ∫ r
0 Sθdθ

(MT
u )2

. (9)

In a similar way, for τ < r < u,

DW
τ DW

r a2u =−2σ 3k3(Dτ Su)F(T , u)

T 2

(∫ u
0 Sθdθ

MT
u

) ∫ r
0 Sθdθ

(MT
u )2

+ 2σ 3Suk3F(T , u)

T 2

×
[
kσ F(T , u)Su

(∫ r
0 Sθdθ

) ∫ τ

0 Sθdθ

(MT
u )4

+
(∫ u

0 Sθdθ

MT
u

)(
2MT

u (DW
τ MT

u )
(∫ r

0 Sθdθ
)

(MT
u )4

− (MT
u )2DW

τ

(∫ r
0 Sθdθ

)

(MT
u )4

)]

.

(10)

3 A decomposition result and a first-order approximation formula

Before proving an extension of the Hull and White formula, we state the following
result, which is needed in the remaining of the paper.

123
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Lemma 2 Let 0 ≤ t < T and n ≥ 0. Then, there exists C > 0 such that

∣
∣
∣
(
(∂n+2

x − ∂n+1
x )BS(t, Xt , M

T
t , vt )

)∣
∣
∣ ≤ CMT

t

(∫ T

t
a2θdθ

)− 1
2 (n+1)

.

Proof This result follows from a direct computation of the derivatives of the function
BS and the fact that the function f defined by f (x) := xe−x is bounded. �	
Lemma 3 Let p ≥ 1 and t ∈ [0, T ). Then,

E

⎛

⎝(MT
t )p

(∫ T

t
a2θdθ

)− p
2 (n+1)

⎞

⎠ < ∞.

Proof Since σ is a constant, we clearly have that E ((Mt )
p) < ∞, for any p ≥ 1.

Hence, we only need to show that E

((∫ T
t a2θdθ

)−p
)

< ∞, for p > 0. To do so, we

study the integral
∫ T
t

(
1 − k Su F(T ,u)

MT
u

)2
du now.

We have, by (3),

∫ T

t

(

1 − k
Su F(T , u)

MT
u

)2

du =
∫ T

t

1

(MT
u )2

(
MT

u − kSu F(T , u)
)2

du

=
∫ T

t

1

(MT
u )2

(
k

T

∫ u

0
Srdr

)2

du

=
(
k

T

)2 ∫ T

t

( ∫ u
0 Srdr

kSu F(T , u) + k
T

∫ u
0 Srdr

)2

du

=
∫ T

t

( ∫ u
0 Srdr

Su(T − u) + ∫ u
0 Srdr

)2

du.

Hence, the Hölder inequality, together with the convention Z∗ = exp
(
maxs∈[0,T ] |σ

Ws − σ2
2 s

∣
∣), implies

∫ T

t

(

1 − k
Su F(T , u)

MT
u

)2

du

≥ 1

T − t

(∫ T

t

∫ u
0 Srdr

Su(T − u) + ∫ u
0 Srdr

du

)2

≥ 1

(T − t)(Z∗)2

(∫ T

t

∫ u
0 Srdr

(T − u) + ∫ u
0 1dr

du

)2

= 1

(T − t)(T Z∗)2

(∫ T

t

∫ u

0
Srdrdu

)2
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≥ exp
(−4maxs∈[0,T ]

∣
∣σWs − σ2

2 s
∣
∣)

(T − t)T 2

(∫ T

t

∫ u

0
drdu

)2

= exp
(−4maxs∈[0,T ]

∣
∣σWs − σ2

2 s
∣
∣
)

4(T − t)T 2

(
T 2 − t2

)2

= exp
(−4maxs∈[0,T ]

∣
∣σWs − σ2

2 s
∣
∣)

4(T − t)T 2 ((T + t)(T − t))2

≥ (T − t)

4
exp

(

−4 max
s∈[0,T ]

∣
∣
∣
∣σWs − σ2

2
s

∣
∣
∣
∣

)

.

Thus, we have shown that the inequality

(∫ T

t

(

1 − k
Su F(T , u)

MT
u

)2

du

)−1

≤ 4

(T − t)
exp

(

4 max
s∈[0,T ]

∣
∣
∣
∣σWs − σ2

2
s

∣
∣
∣
∣

)

≤ 4e2Tσ 2

(T − t)
exp

(

4 max
s∈[0,T ] |σWs |

)

.

On the other hand, by de la Peña and Eisenbaum (1997), we have

E

(

exp

(

p max
s∈[0,T ] |Ws |

))

≤ 80 exp

(

182
p2

2
T

)

< ∞,

for any p ≥ 1. Thus, the proof is complete. �	
Theorem 4 Consider model (1). Then, it follows that

V0 = E
(
BS(0, X0, M

T
0 , v0)

)

+σ

2
E

∫ T

0

(
∂3xxx − ∂2xx

)
BS(u, Xu, M

T
u , vu)�

W
u 	udu, (11)

where �W
u := DW

u

∫ T
u a2r dr and 	u :=

∫ u
0 Sθdθ

Su(T−u)+∫ u
0 Sθdθ

.

Proof This proof is similar to the one of the main theorems in Alòs et al. (2007)
(Theorem 4.2), so we only sketch it. Notice that BS(T , XT , MT

T , vT ) = VT . Then,
from (2), we have

Vt = E(BS(T , XT , kT , vT )|Ft ).

Now, using the Itô’s formula to the process

t → BS(t, Xt , M
T
t , vt )
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750 E. Alòs, J. A. León

and proceeding as in Alòs et al. (2007) (see also Nualart 2006), we can write

BS(T , XT , MT
T , vT ) = BS(0, X0, M

T
0 , v0)

+
∫ T

0
LBS(v

2
u)BS(u, Xu, M

T
u , vu)du

+
∫ T

0
∂xBS(u, Xu, M

T
u , vu)σudWu

+
∫ T

0
∂kBS(u, Xu, M

T
u , vu)dM

T
u

+
∫ T

0
∂2xkBS(u, Xu, M

T
u , vu)d

〈
MT , X

〉

u

+1

2

∫ T

0
∂σBS(u, Xu, M

T
u , vu)

v2u − a2u
vu(T − u)

du

+
∫ T

0
∂2xσBS(u, Xu, M

T
u , vu)

σ�W
u

2vu(T − u)
du

+ k
∫ T

0
∂2kσBS(u, Xu, M

T
u , vu)

�W
u σ Su F(T , u)

2vu(T − u)
du

+1

2

∫ T

0

(
∂2xx − ∂x

)
BS(u, Xu, M

T
u , vu)

(
σ 2 − v2u

)
du

+1

2

∫ T

0
∂2kkBS(u, Xu, M

T
u , vu)d

〈
MT , MT

〉

u
.

Hence, the fact thatLBS(v
2
u)BS(u, Xu, MT

u , vu) = 0, and taking expectations, we can
establish

E
(
BS(T , XT , MT

T , vT )
)

= E

{

BS(0, X0, M
T
0 , v0) +

∫ T

0
∂2xkBS(u, Xu, M

T
u , vu)d

〈
MT , X

〉

u

+1

2

∫ T

0
∂σBS(u, Xu, M

T
u , vu)

v2u − a2u
vu(T − u)

du

+1

2

∫ T

0
∂2xσBS(u, Xu, M

T
u , vu)

σ�W
u

vu(T − u)
du

+k
∫ T

0
∂2kσBS(u, Xu, M

T
u , vu)

σ Su F(T , u)�W
u

2vu(T − u)
du

+1

2

∫ T

0

(
∂2xx − ∂x

)
BS(u, Xu, M

T
u , vu)

(
σ 2 − v2u

)
du

+1

2

∫ T

0
∂2kkBS(u, Xu, M

T
u , vu)d

〈
MT , MT

〉

u

}

.
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Consequently, the classical relationships between the Greeks

∂2xxBS − ∂xBS = ∂σBS
1

σ(T − u)

∂2xkBS = −∂σBS
1

kσ(T − u)

∂2kkBS = ∂σBS
1

k2σ(T − u)

give

E
(
BS(T , XT , MT

T , vT )
)

= E

{

BS(0, X0, M
T
0 , v0) −

∫ T

0
∂σBS(u, Xu, M

T
u , vu)

1

MT
u vu(T − u)

d
〈
MT , X

〉

u

+ 1

2

∫ T

0
∂σBS(u, Xu, M

T
u , vu)

v2u − a2u
vu(T − u)

du

+ 1

2

∫ T

0
∂2xσBS(u, Xu, M

T
u , vu)

σ�W
u

vu(T − u)
du

+ k
∫ T

0
∂2kσBS(u, Xu, M

T
u , vu)

�W
u σ Su F(T , u)

2vu(T − u)
du

+ 1

2

∫ T

0
∂σBS(u, Xu, M

T
u , vu)

(
σ 2 − v2u

) 1

vu(T − u)
du

+ 1

2

∫ T

0
∂σBS(u, Xu, M

T
u , vu)

1

M2
uvs(T − u)

d
〈
MT , MT

〉

u

}

.

That is,

E
(
BS(T , XT , MT

T , vT )
)

= E

{

BS(0, X0, M
T
0 , v0) +

∫ T

0

∂σBS(u, Xu, MT
u , vu)

vu(T − u)

×
[

−d
〈
MT , X

〉
u

MT
u

+ 1

2

(
v2u − a2u

)
du + 1

2

(
σ 2 − v2u

)
du + 1

2

d
〈
MT , MT

〉
u

(
MT

u

)2

]

+
∫ T

0
∂2xσBS(u, Xu, M

T
u , vu)

σ�W
u

2vu(T − u)
du

+ k
∫ T

0
∂2kσBS(u, Xu, M

T
u , vu)

�W
u σ Su F(T , u)

2vu(T − u)
du

}

.
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752 E. Alòs, J. A. León

Since a2udu := σ 2du − 2
d
〈
MT ,X

〉
u

MT
u

+ d
〈
MT ,MT

〉
u

(MT
u )

2 , we obtain

E
(
BS(T , XT , MT

T , vT )
)

= E

{

BS(0, X0, M
T
0 , v0) +

∫ T

0
∂2xσBS(u, Xu, M

T
u , vu)

σ�W
u

2vu(T − u)
du

+k
∫ T

0
∂2kσBS(u, Xu, M

T
u , vu)

�W
u σ Su F(T , u)

2vu(T − u)
du

}

.

Now, taking into account that

1 − k
Su F(T , u)

MT
u

=
∫ u
0 Sθdθ

Su(T − u) + ∫ u
0 Sθdθ

the proof is complete. Notice that, due to Remark 1, and Lemmas 2 and 3, all the
integrals in this proof are well defined. �	
Remark 5 Notice that, from the above theorem, E

(
BS(0, X0, MT

0 , v0)
)
can be seen as

a first-order approximation for the option price.Moreover, (5) gives us that a short-time
approximation for this term will be given by

E

(

BS(0, X0, M
T
0 ,

σ√
3

)

. (12)

4 Derivative of the implied volatility

Let It (k) denote the implied volatility process, which satisfies by definition Vt =
BS(t, Xt , MT

t , It (k)).
In this section, we prove a formula for its at-the-money derivative that we use in

Sect. 5 to study the short-time behavior of the implied volatility as a function of k

Proposition 6 Assume model (1). Then, it follows that

∂ I0
∂k

(1) =
E

(∫ T
0 (MT

u ∂k F(u, Xu, MT
u , vu) − 1

2 F(u, Xu, MT
u , vu))du

)

∂σBS(0, X0, MT
0 , I0(1))

∣
∣
∣
∣
∣
∣
k=1

, a.s.

where

F(u, Xu, M
T
u , vu) = 1

2

(
∂3xxx − ∂2xx

)
BS(u, Xu, M

T
u , vu)σ�W

u 	u .

Proof Using Theorem 4 and the expression Vt = BS(t, Xt , MT
t , It (k)), we obtain

∂V0
∂k

= ∂kBS(0, X0, M
T
0 , I0(k))

MT
0

k
+ ∂σBS(0, X0, M

T
0 , I0(k))

∂ I0(k)

∂k
(13)
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A note on the implied volatility of floating strike Asian… 753

and

∂V0
∂k

= E(∂kBS(0, X0, M
T
0 , v0))

MT
0

k

+ 1

k
E

(∫ T

0
MT

u ∂k F(u, Xu, M
T
u , vu)du

)

. (14)

We can check that the expectation E
(∫ T

t MT
u ∂k F(u, Xu, MT

u , vu)du
)
is well defined

and finite a.s. due to Lemmas 2 and 3. Thus, (13) and (14) imply

∂ I0
∂k

(1) = 1

∂σBS(0, X0, MT
0 , I0(1))

×
[
MT

0 (E(∂kBS(0, X0, M
T
0 , v0)) − MT

0 ∂kBS(0, X0, M
T
0 , I0(1)))

+E

(∫ T

0
MT

u ∂k F(u, Xu, M
T
u , vu)du

)]∣
∣
∣
∣
k=1

. (15)

Now using the fact that

MT
0 ∂kBS(0, X0, M

T
0 , σ )

∣
∣
∣
k=1

= −eX0N

(

−1

2
σ
√
T − t

)∣
∣
∣
∣
k=1

.

Straightforward calculations and Theorem 4 lead us to

MT
0 E(∂kBS(0, X0, M

T
0 , v0) − MT

0 ∂kBS(0, X0, M
T
0 , I0(1))

∣
∣
∣
k=1

= 1

2
E(BS(0, X0, M

T
0 , v0) − V0)

∣
∣
∣
∣
k=1

= −1

2
E

(∫ T

0
F(u, Xu, M

T
u , vu)du

)∣
∣
∣
∣
k=1

.

This, together with (15), implies that the result holds. �	

5 Short-time behavior and second-order approximation formulas

In this section, we study the short-time behavior of the implied volatility in order to
describe its dependence on the asset price. More precisely, this section is devoted to
study the limit of ∂ I0

∂k (1) as T ↓ 0.
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Proposition 7 Assume that model (1) holds. Then,

∂σBS(0, X0, M
T
0 , I0(1))

∂ I0
∂k

(1)

= 1

2
E

((

MT
0 ∂k − 1

2

)(
∂3xxx − ∂2xx

)
BS(0, X0, M

T
0 , v0)

∫ T

0
σ�W

u 	udu

) ∣
∣
∣
k=1

+ h(T ),

where E
(
h(T )√

T

)
→ 0 as T → 0.

Proof Proposition 6 yields

∂σBS(0, X0, M
T
0 , I0(1))

∂ I0
∂k

(1)

= 1

2
E

(∫ T

0

(

MT
u ∂k − 1

2

) (
∂3xxx − ∂2xx

)
BS(u, Xu, M

T
u , vu)σ�W

u 	udu

)

.

Now we prove that the right-hand side in the above equality is equal to

1

2
E

(

L(0, X0, M
T
0 , v0)

∫ T

0
σ�W

u 	udu

)

+ h (T ) , (16)

with L(u, Xu, MT
u , vu) = (

MT
u ∂k − 1

2

) (
∂3xxx − ∂2xx

)
BS(u, Xu, MT

u , vu) and

E
(
h(T )√

T

)
→ 0 as T → 0. In fact, we can write

1

2
E

∫ T

0
(MT

u ∂k − 1

2
)
(
∂3xxx − ∂2xx

)
BS(u, Xu, M

T
u , vu)σ�W

u 	udu

= 1

2
E

∫ T

0
L(u, Xu, M

T
u , vu)σ�W

u 	udu

+ 1

2
E

∫ T

0
(MT

u − MT
0 )∂k

(
∂3xxx − ∂2xx

)
BS(u, Xu, M

T
u , vu)σ�W

u 	udu

=: T1 + T2. (17)

Now the proof will be decomposed into two steps.

Step 1 Applying Itô formula to

L(u, Xu, M
T
u , vu)

(∫ T

u
σ�W

r 	rdr

)
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as in the proof of Theorem 4 and taking expectations, we obtain that

1

2
E

(∫ T

0
L(u, Xu, M

T
u , vu)σ�W

u 	udu

)

= 1

2
E

(

L(0, X0, M
T
0 , v0)

(∫ T

0
σ�W

u 	udu

))

+1

4
E

(∫ T

0
(∂3xxx − ∂2xx )L(u, Xu, M

T
u , vu)σ�W

u

×
(∫ T

u
σ�W

r 	rdr

)

du

)

+ 1

4
E

(∫ T

0
∂k(∂

2
xx − ∂x )L(u, Xu, M

T
u , vu)σ Su F(T , u)�W

u

×
(∫ T

u
σ�W

r 	rdr

)

du

)

+ 1

2
E

(∫ T

0
∂x L(u, Xu, M

T
u , vu)σ

(∫ T

u
(DW

u (�W
r 	r ))σdr

)

du

)

+ 1

2
E

(∫ T

0
∂k L(u, Xu, M

T
u , vu) σ Su F(T , u)

(∫ T

u
(DW

u (�W
r 	r ))σdr

)

du

)

=: 1
2
E

(

L(0, X0, M
T
0 , v0)

(∫ T

0
σ�W

u 	udu

))

+ T̃1 + T̃2 + T̃3 + T̃4.

Remark 1 and Lemmas 2 and 3 give us that T̃1 + T̃2 + T̃3 + T̃4 = O(T ).

Step 2 Here we consider the term T2 given in (17). From Remark 1 and Lemma 2, we
have that there is a constant C > 0 such that

|T2| ≤ C
∫ T

0

∣
∣
∣MT

u − MT
0

∣
∣
∣ MT

u

(∫ T

u
a2θdθ

)−3/2

(T − u)du.

Therefore, the proof of Lemma 3 yields that there exists G ∈ L p(�), for p ≥ 1, such
that

|T2| ≤ E

(

G

(

sup
s∈[0,T ]

MT
s

∣
∣
∣MT

s − MT
0

∣
∣
∣

)) ∫ t

0
(T − u)−3/2(T − u)du

= 2
√
T E

(

G

(

sup
s∈[0,T ]

MT
s

∣
∣
∣MT

s − MT
0

∣
∣
∣

))

,

which, together with Step 1, implies that the result is true. Thus, the proof is complete.
�	

Now we can state the main result of this paper.
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Theorem 8 Consider model (1). Then,

lim
T→0

∂ I0
∂k

(1) = −
√
3

40
. (18)

Proof We can write

∂σBS(0, X0, M
T
0 , I0(1))

∣
∣
∣
k=1

= exp (X0)e
−I0(1)2T

8
√
T√

2π

and

(

MT
0 ∂k − 1

2

) (
∂3xxx − ∂2xx

)
BS(0, X0, M

T
0 , v0)

∣
∣
∣
k=1

= exp(X0)√
2π

e− v2t T
8

(

v−3
0 T− 3

2 + 1

4
v−2
0 T−1

)

.

Then, Lemma 3 and Proposition 7 imply that

lim
T→0

∂ I0
∂k

(1) = σ

2
lim
T→0

v−3
0 T−2

∫ T

0
�W

u 	udu

= −σ 3 lim
T→0

v−3
0 T−6

∫ T

0
u2(T − u)

(∫ T

u
rdr

)

du

= −σ 3

2
lim
T→0

v−3
0 T−6

∫ T

0
u2(T − u)3du

= − σ 3

120
lim
T→0

v−3
0

= −
√
3

40
. (19)

Now the proof is complete. �	

The previous result gives us, using Taylor expansions, the following short-time
approximation for the implied volatility

Î0(k) = σ0√
3

−
√
3

40
(k − 1).

Then, the corresponding approximation for the option price will be given by

V̂0(k) = BS(0, X0, M
T
0 , Î0(k)). (20)
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Table 1 Approximated prices (T = 0.1)

k MC 1st order 2nd order Error (1st) (%) Error (2nd) (%)

0.9 10.5474 10.5330 10.5598 − 0.14 0.12

0.95 6.6054 6.5951 6.6178 − 0.17 0.37

1 3.6334 3.6406 3.6406 0.20 0.20

1.05 1.7301 1.7517 1.7275 1.20 − 0.15

1.1 0.7072 0.7325 0.6996 3.57 − 1.10

Table 2 Approximated prices (T = 0.5)

k MC 1st order 2nd order Error (1st) (%) Error (2nd) (%)

0.9 13.7743 13.7247 13.8258 − 0.36 0.37

0.95 10.6914 10.6740 10.7314 − 0.16 0.44

1 8.1084 8.1293 8.1293 0.26 0.26

1.05 6.0106 6.0685 6.0080 0.96 − 0.04

1.1 4.3538 4.4456 4.3315 2.11 − 0.51

Table 3 Approximated prices (T = 1)

k MC 1st order 2nd order Error (1st) (%) Error (2nd) (%)

0.9 16.6697 16.6152 16.7671 − 0.33 0.56

0.95 13.8843 13.8646 13.9466 − 0.14 0.45

1 11.4313 11.4766 11.4766 0.37 0.37

1.05 9.3278 9.4299 9.3436 1.10 0.17

1.1 7.5439 7.6962 7.5265 2.02 − 0.23

6 Numerical examples

This section is devoted to check numerically the goodness of the approximations
proposed in the previous sections. We consider σ = 0.5 and S0 = 100. The
benchmark values for the option prices have been obtained using a 107 simulations
Monte Carlo scheme with antithetic variates. In the following tables, we compare (for
T = 0.1, 0.5, 1 and for k = 0.90, 0.95, 1, 1.05, 1) the values of the MC approxima-
tion with the results given by first-order approximation formula (12) and second-order
approximation formula (20). The corresponding errors are given in% of theMC value.
We can see the maximum error is less for the second-order formula. Moreover, this
second approximation improves clearly the first one in the case k > 1 (Tables 1, 2, 3).
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7 Conclusions

By means of Malliavin calculus, we have developed closed-form approximation for-
mulas for short-time floating strike Asian options. The obtained approximations are
simple closed-form explicit expressions, and the numerical analysis show they are
extremely accurate.
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