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Abstract

In this paper, we study the short-time behavior of the implied volatility for short-time
floating strike Asian options. Our method is based on Malliavin calculus techniques
and allows us to construct an approximation formula for the corresponding option
prices. Numerical examples are given.
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1 Introduction

This paper is devoted to the study of floating strike Asian options, that is, European
options whose payoff is of the form

(St — A1)+,

where S denotes the asset price process and A7 := k% fOT S, du, for some positive
constant k. These options can be seen as random strike options (RSO), where the strike
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is allowed to be random. Other classical examples of RSOs include exchange options,
spread options or forward starting options. It is well known that, under the Black—
Scholes model, some RSOs have an explicit expression for their price. This is the case
of exchange options (see Margrabe 1978) or forward start options (see Rubinstein
1991; Wilmott 2002). In other cases, this explicit expression is not available, and
only some approximations can be used. For example, spread option prices can be
approximated by Kirk’s formula (see Kirk 1995). In the case of floating strike Asian
options, there are not explicit pricing formulas and we need to apply numerical methods
(see, for example, Rogers and Shi 1995; Vecer 2001; Dubois and Lelievre 2004, among
others). We remark that Asian options have arelevant role in energy markets (see Benth
and Detering 2015).

In Alos and Leén (2016), we provided a systematic procedure to construct short-
time option pricing approximation formulas for RSOs. Toward this end, we defined the
implied volatility of our RSO as the inverse of the Black—Scholes function, but where
the strike was taken to be equal to the expectation of the corresponding random strike.
Notice that, due to the randomness of the strike, the behavior of this implied volatility
is not the same as in the vanilla case. In particular, we recall that this implied volatility
is not a constant, even in the context of the Black—Scholes model. The methodology
of these paper consists in computing the short-time level and skew of this implied
volatility by means of a change of numéraire and Malliavin calculus techniques. This
approach was proved to be an efficient tool in the study of spread options (see again
Alods and Le6n 2016). Nevertheless, the proofs in this work are not valid when the
strike is adapted to the same Brownian motion as the asset price. Then, these results
cannot be directly applied to the study of floating strike options.

Our aim in this paper is to adapt the ideas in Alos and Leén (2016) to develop
an approximation formula for floating strike Asian options. Toward this end, we will
apply Malliavin calculus techniques to compute the short-time level and skew of the
corresponding implied volatility. This will allow us to construct an approximation for
this implied volatility and then, an approximation for the Asian option price.

The paper is organized as follows. Section 2 is devoted to present the framework
and the notation that we use in this paper. In Sect. 3, we prove a decomposition
formula for the option price that will allow us to deduce a first-order approximation
result. In Sect. 4, we compute the derivative of the implied volatility with respect to
the parameter k. Section 5 is devoted to study the short-time limit of this derivative.
This will allow us to construct a second-order approximation formula. The numerical
examples in Sect. 6 show that this formula is highly accurate and improves the first-
order approximation presented in Sect. 3. Finally, our conclusions are presented in
Sect. 7.

2 Statement of the model and notation
In this paper, we consider a Black—Scholes model, where we consider r = 0 for the

sake of simplicity. More precisely, we assume the following model for the log price
of a stock under a risk-neutral probability measure Q:
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0_2
dXt = —?dt + O'dW[. (1)

Here W is a Brownian motion and o is a positive constant. We denote by F" the
augmentation under the underlying probability measure of the filtration generated by
Ww.

This work is devoted to study floating strike Asian options with payoff h(X7) :=
(S — Ar), where S, = X1, 1 € [0, T], and A7 = k= [;| S,du. Notice that the
corresponding option price at t < T is given by

V,=E [(eXT - AT>+ |f,W} . 2)

In the sequel, we will make use of the following notation:

e M! ;= E[Ar| F)"]. Notice that

1 t
MI =k— <S,(T —1) +/ Sudu>
T 0

1 t
=kS,F(T,t)+k?/ S, du, (3)
0

where F(T,t) := % Moreover, the integration by parts formula implies

dM! = ko S, F(T, t)dW,. (4)
1
o U = (%)2, with ¥, = ftT a2du, where
d(M",X) N d(M’, MmT)
mr (A4T)2

u

u

a’du = o’du —2

Note that

s, 028, F(T,u)  ,0*S2F*(T,u)
d =0 =k (MT)?
u u

2
_ 2 (1 _kSuF(T,u)>
My
2
_ ﬁaz o Sed6
T2 mT

2
_ 2 o Sedo
Su(T —u) + [y Spdo |
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746 E. Alos, J. A. Ledn

which does not depend on k. Moreover, although the right-hand side of the last
equality depends on T, we denote it by aﬁ in order to simplify the notation. Also,

notice that
2
17 k* [T " Spdo
lim —/ a’du = lim —/ o? Jo So du
T—-0T 0 T—0 T?’ 0 MT

|
=
Si
| %
S—
3
=
o
o
=

-—. 5)

e BS(z, x, k, o) denotes the price of an European call option under the classical
Black—Scholes model with constant volatility o, current log stock price x, time to
maturity 7 — ¢, strike price k and interest rate 0. Remember that in this case:

BS(t,x,k,0) = e*N(dy) —kN(d-),

where N denotes the cumulative probability function of the standard normal law
and

dm TN L0
N T ’

with xJ 1= Ink.
e Lps (02) stands for the Black—Scholes differential operator, in the log variable,
with volatility o

1 1
LBs (0'2) =0; + 50’23?}( — 5028)(.

It is well known that Lgs (02) BS(-, -, o) = 0.

Now we describe some basic notation that is used in this article. For this, we assume
that the reader is familiar with the elementary results of the Malliavin calculus, as given,
for instance, in Nualart (2006).

We denote by ID)%,{,2 the domain of the derivative operator D" in the Malliavin
calculus sense. ]D)%,“,z is a dense subset of LZ(R2), and DY is a closed and unbounded
operator from L%(Q) into L2([0, T] x ). We also consider the iterated derivatives
DY-" forn > 1, whose domains are denoted by D"ﬂ(,z.

The adjoint of the derivative operator D", denoted by §", is an extension of the
1t6 integral in the sense that the set Li([O, T] x 2) of square integrable and adapted
processes (with respect to the filtration generated by W) is included in Doms" and
the operator 8V restricted to Lg ([0, TT x €2) coincides with the It6 integral. We make
use of the notation §% (1) = fOT u dW, and 8% (uljg ) = fé u,dWy. We recall that
L2 == L2([0, T]; D};?) is included in the domain of 8" forall n > 1.
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Remark 1 Assume model (1), where o is a positive constant. Then, for all r < u,

DV 2 %02 Jo Sed6\ M [ D,Sydo — [ Sedo(D, M) ©
ru T 2 T T)\2 :
T M (M)
Now, taking into account (3), we get
l u
pYm! =k(D,Su)F(T,u)+ka D, Spd6
r
ko [
= koS, F(T,u) + A Spd6. (7
r
Hence, we obtain that, for all r < u,
u u
MMT/ DrWSng—/ Sedo(DY M)
0
! u kU u u
= koS, F(T, u)/ Spdf + — (/ S,dr) (/ Sgd@)
r T 0 r
u kU u u
— ko S, F(T, u) (/ S9d9> - — </ Sgd@) (/ Sgd@)
0 T \J: 0
,
— ko F(T, u)S, / Spdo. ®)
0
Therefore, (6) and (8) give us that
DY = _203k3SL,F(T, w)  Jo Sedd\ [o S@de. )
T2 Ml ] M])?
In a similar way, fort < r < u,
wow o 203 (D S)F(T,u) [ [y Sed0\ [y Sed6  203S,k3F (T, u)
DD, a,=— 2 T 72 2
T M] (M) T
ko F(T,u)Sy (fy Sedf) [y Sedo
* M)
o (5500 (201 DY ME) (fy Sod0) L DY (fy Syco)
My (M (MI)* '
(10)

3 A decomposition result and a first-order approximation formula

Before proving an extension of the Hull and White formula, we state the following
result, which is needed in the remaining of the paper.
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748 E. Alos, J. A. Ledn

Lemma2 Let0 <t < T andn > 0. Then, there exists C > 0 such that

—%(n+1)

T
(@2 = HBS e, X ] v)| = oM] (/ a§d9>
t

Proof This result follows from a direct computation of the derivatives of the function
BS and the fact that the function f defined by f(x) := xe™" is bounded. O

Lemma3 Let p > 1l andt € [0, T). Then,

-5 n+1)

T
E | (/ a§d9> < 0.
t

Proof Since o is a constant, we clearly have that E ((M;)P) < oo, for any p > 1.

-p
Hence, we only need to show that £ ((ftT aéd@) > < 00, for p > 0. To do so, we

2
study the integral ftT (1 — k%) du now.
We have, by (3), !

r Su F(T u)
/t (1 g2 ) / (MT)2 — kS, F(T, u))
k [v 2
:/; (MMT)2< /(; S,dr) du
O (s
\17) ) \ks,Fra@ow+ £ fisar)
=/T f(;d Srdr 2du
i \Su(T —u)+ [y Sedr

Hence, the Holder inequality, together with the convention Z* = exp (maxse[o,r] lo

W, — %zsi), implies
T
/ (1 M) du
1 mr
1 /T Jo Srdr q :
u
T—t\J; S.(T—u +f0” S,dr
2
T u

- 1 / I Srdru du

(T =0)(Z? \J: (T —u)+ [y 1dr

1 T u 2
S / / Srdrdu>
(T —1)(TZ*)? ( ¢ Jo
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2
_ exp (=4 maxscpo 1y [o Wy — %s]) (/T /udrdu)
t 0

- (T —1)T?
_ exp (—4maxseo.ry o Ws — %) (Tz _ tz)z
o HT —1)T?
exp (—4maxs€[0’T] |0WS — %SD 5
= T+0)(T—t
T D12 (T 4 1)( )
(T —1) o2
> exp| —4 max (oW, — —s|].
4 s€[0,T] 2

Thus, we have shown that the inequality

T 2 -
(/ (1 —k—S“F(T’“)> du)
: mr

< 02
exp [ 4 max

oWy — —s

2

=
5€[0,7]

)

(T —1)
4€2T02

(T —1)

=

4 Wil ).
eXP( (max lo s|>

On the other hand, by de la Pefia and Eisenbaum (1997), we have

2
E <exp (psg[l&);] |W5|)) < 80exp (182%T) < 00,

for any p > 1. Thus, the proof is complete. O
Theorem 4 Consider model (1). Then, it follows that
Vo=E (BS(O, Xo, M7, vo))

o T
+5E/O (a;xx - agx) BS(u, Xy, M7, v,) AV Tdu, (11)

h AW . DW fT Zd dT, ‘= f(;l Spdo
wnere u = u u a, ar an u = Su(T—u)+f0MSgd9‘

Proof This proof is similar to the one of the main theorems in Alds et al. (2007)
(Theorem 4.2), so we only sketch it. Notice that BS(T', X7, Mf, vr) = Vr. Then,
from (2), we have

Vi = EBS(T, Xr, kr, vr)|F7).
Now, using the 1t6’s formula to the process

t — BS(, X;, M, vy)
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and proceeding as in Alos et al. (2007) (see also Nualart 2006), we can write

BS(T, X7, MF, vr) = BS(0, Xo, M{', vo)

T
+/ LpsWHBS(u, X,,, MT', v,)du
0
T
+ / 8BS, Xu. M!, v)0udW,
0
T
+/ WBS@u, X, M, v,)dM]
0

u

T
+/ akaS(u,Xu,Mj,vu)d<MT,x>
0

1T - v:—a2
— | 8,BS(u, Xy, M}, v,)—4—"—d
+2f0 o BS(u, Xy, M, vu)vu(T_u) u
T w
oA
+ | 92 BS(u, Xy, M, v,)——*—d
/o o B30 X M w5 =y
T w
AV oS, F(T, u)
2 T
+k\/(; akO.BS(u,XM,Mu,UM)M—_u) u

1 T
+5 fo (aﬁx - ax) BS(u, Xy, M7, v,) (62 - vﬁ) du

1 T
+§/ 92 BS(u, Xy, MT, vu)d<MT, MT> .
O u

Hence, the fact that Lgg (v,%)BS(u, Xu, MMT , Uy) = 0, and taking expectations, we can
establish

E (BS(T, Xr, MY, vT)>

u>
u

T
=E{BS(O, Xo, MOT,UO)JFf 9% BS(u, Xy, M7 vu)d<MT,X>
0

+1fT8BS( X, MT )”5_“5d
A I/l, ’ ’ v — . au
200 7 e Ty (T = u)

1 7 5 T O’AZV
+§ ) BMBS(u, Xu, Mu 5 Uu)mdu

T, r  oSuF(T,u)A)Y

+k ) 8kO,BS(I/t, Xu, Mu s Uu)mdu

1 T 2 T 2 2
5 (% - ax) BS(, Xy, M, v,) <a - vu) du

1 T
+§/0 BkaS(u,Xu,MuT,vu)d(MT,MT>M}.
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Consequently, the classical relationships between the Greeks

32 BS — 9,BS = 9,BS

o(T —u)
32,BS = —9 Bs;
xk " ko (T —u)
9% BS = § BS;
fek k26 (T — u)

give

E (BS(T, X7, ME, UT)>

1

T
= E {BS(0, Xo, M, vy) — 9,BS(u, Xy, M, v)) ———
{ ( 0, Mg Vo) /(; > BS(u, X, u vu)MuTUu(T ~ )

d<MT, X>
u
T 2 2
+%fo 9, BS(u, Xu,MuT,vu)—U:’(’T__a’;)du
GA;’V
v (T — u)
AVoS,F(T,u)

20, (T — u)

Lt 2 T
+ = 0 BS(u, X\, M, , vy,) du

2 Jo

T
+k/ 3]?(TBS(M, Xu, M,f» Vy)
0

+1/Ta BS(u, X MTv)(oz—vz);du
2 0 o ’ us u > vu u Uu(T—M)

2 0 7 ’ " ur o Ml UX(T — M) ’ u ’
That iS,

E (BS(T, X7, MT, vr))
T 9,BS(u, X\, MT , v,)
V(T —u)

dM".X), 10, L2 2 1d{m’. M')
><|:—M—14T”+5<vu—au)du+§(o —vu>du+§(M—T)2“

u

=E {BS(O, Xo, M, vo) +/
0

UAXV
20, (T — u)
A;VoSuF(T,u)du
20, (T — u)

T
+ / 32 BS(u, X,,, MI' v,) du
0

T
+k/ ey BS(u, X, M|, v1)
0
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752 E. Alos, J. A. Ledn

d(M x) dmM™ . m7)

(M7

Since aﬁdu = o2du — L4 L we obtain

E (BS(T, X7, MF, w))

4
oA,

T
=E{BS(O, XO,M()T,v0)+/() angS(u,Xu,MuT,vu)m u

T AVeS,F(T,
+k/ 92 BS(u, Xy, M7, v, ”U"—(u)du}
0

20,(T — u)
Now, taking into account that

SuF (T, u) Jo Sed6

1—k =
mr Su(T —u) + [ Spdo

the proof is complete. Notice that, due to Remark 1, and Lemmas 2 and 3, all the
integrals in this proof are well defined. O

Remark 5 Notice that, from the above theorem, E (BS(O, Xo, MOT , vo)) can be seen as
afirst-order approximation for the option price. Moreover, (5) gives us that a short-time
approximation for this term will be given by

E (BS(O xo, MT, 2 ) (12)
k] 0, 0> .
Ne

4 Derivative of the implied volatility

Let I;(k) denote the implied volatility process, which satisfies by definition V; =
BS(t, X;, MT, I, (k)).

In this section, we prove a formula for its at-the-money derivative that we use in
Sect. 5 to study the short-time behavior of the implied volatility as a function of k

Proposition 6 Assume model (1). Then, it follows that

ol 1 (fOT(MuTakF(u,Xu, L) — 5 F(u, Xu,ML,,vu))du)

=Y _ , a.s.
o V= 0,BS(0, Xo. MT . Io(1)) _
where

1
Flu, X MT, v,) = (a;” afx) BS(u, Xy, MT v, )o AV T,
Proof Using Theorem 4 and the expression V; = BS(z, X/, M,T, I;(k)), we obtain

v, ml alo(k
ko = BS(0, Xo. M, Io(k))— + 3, BS(0, X0, M, In(k)) 0( )

13)
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and

Vi Mg
a_ko = E@BS(0. Xo. Mg . vo) ="

1 T
+E (/0 MI&Fu, X,, M}, vu)du> . (14)

We can check that the expectation E ( ftT MIocF(u, X, MT, vu)du) is well defined
and finite a.s. due to Lemmas 2 and 3. Thus, (13) and (14) imply

aly 1
— ) = i
ok 3sBS(0, Xo, M , Ip(1))

x | MJ (E@BS(O, Xo. M{ . v0)) = M{ 8BS (O, Xo, M7 . Io(1)))

T
+E (/ MI & F @, X, M!, vu)du)]
0

15)

k=1

Now using the fact that

1
M()TakBS(O, Xo, MoT, U)‘ki1 = —eXON (—Ea\/T — t)

k=1

Straightforward calculations and Theorem 4 lead us to
M{ E(®BS L) — M 4
0 k (07 XO’ M() ) UO) MO akBS(O’ XOa M() ) 10(1)) k=1

1
= S E®BS(0, Xo, M, vo) — Vo)

k=1

1 T
=—_E (/ Fu, X,, MT, vu)du)
2 0

This, together with (15), implies that the result holds. O

k=1

5 Short-time behavior and second-order approximation formulas
In this section, we study the short-time behavior of the implied volatility in order to

describe its dependence on the asset price. More precisely, this section is devoted to
study the limit of 2 (1) as 7 | 0.
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754 E. Alos, J. A. Ledn

Proposition 7 Assume that model (1) holds. Then,
a1
9BS (0. Xo. M. Io(1)) 32 (1)

1 1 T
= SE ((M()Tak - 5) (aﬁm - aﬁx) BS(0, X0, M, Uo)/ JAZVFL,du> ’
0

+ h(T),

k=1

where E (%) —>0asT — 0.

Proof Proposition 6 yields
T dly
95BS(0, Xo, M , 10(1))%(1)
1 ! T 1 3 2 T w
=3E() (Mo 3 (8300 — 02) BSGu, X, M7, v )0 Al Tudu )

Now we prove that the right-hand side in the above equality is equal to

1 T
EE (L(O, Xo, M{, UO)/ anVrudu> +h(T), (16)
0
with L(u, X, M, v) = (Mo —1) (33, —92)BS(u, X\, MI', v,) and
E (%) — 0as T — 0. In fact, we can write

1 (7 1
EE/ (M0 = 3) (afxx - aﬁx) BS(, Xy, MT, v,)0 AV T du
0
1 r T w
= EE L(u,X,, M, v,)oA, T'ydu
0

1 T
+ 5E/O M — M5a (a;xx - agx) BS(u, X, M7, v,)o AV T, du
=T+ 1. )

Now the proof will be decomposed into two steps.

Step 1 Applying Itd formula to

T
L(u, Xy, M,f, vy) (/ GA,WF,«dr>

u
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as in the proof of Theorem 4 and taking expectations, we obtain that
1 ! T w
—E L(u,X,,M,,v,)oA,T,du

0

2
1 T
— _ T w
= 2E (L(O, Xo, My , vo) (/ oA, Fud”>>
0

1 T
+ZE <f @ =92 )L, X, MT v)o AV
0
T

x (/ O‘A}Y‘/Frd}’) du)

1 ’ 2 T w
+LE </ Ok (02, — 9 L(, X, MT, 0,)5 S, F(T, u)A!
0

T
x (/ O‘A}Y‘/Frd}’) du)
u

1 T T
+5E <f dLu, Xy, M | v,)o (/ (D;”(A,Wr,))adr> du)
0 u

1 T T
+5E (/ L (u, Xy, MT  v,) 0 S, F(T, u) (/ (D;V(A,WF,))odr> du)
0 u

1 T S
= SE <L(0, Xo, Mg , vo) (/ UAXVFud”>> th+h+ L+ 1L
0

Remark 1 and Lemmas 2 and 3 give us that Tl + 7~“2 + T3 + f4 = 0(T).

Step 2 Here we consider the term 7> given in (17). From Remark 1 and Lemma 2, we
have that there is a constant C > 0 such that

T T -3/2
|T5| < C/ ‘MZ—M{}MMT (f a§d9> (T — u)du.
0 u

Therefore, the proof of Lemma 3 yields that there exists G € L? (), for p > 1, such
that

T2 < E{G| sup MST
5€[0,T]

t
M! —M()TD)/O (T = u)~>(T = w)du

)

which, together with Step 1, implies that the result is true. Thus, the proof is complete.
O

5€[0,T]

=2ﬁE(G< sup MST

Now we can state the main result of this paper.

@ Springer



756 E. Alos, J. A. Ledn

Theorem 8 Consider model (1). Then,

I 3
Proof We can write
_Iy(D2T
A 10(1))‘k=1 _exp (Xoie/z_;‘ﬁ

and

1
(MOTak - 5) (ajjxx - aﬁx) BS(0, Xo, M{, uo)‘k=1

2
= eXp(XO)eflTT v0_3T7% + l1)0_2T71 .
21 4

Then, Lemma 3 and Proposition 7 imply that

. 9lp o a1 w
05 V=g T /OAu Fudu

T T
—07 lim v0_3T_6[ u2(T —u) (/ rdr) du
T—0 0 u

o3 T
—— lim va3T_6/ uz(T — u)3du
2 T—0 0

03 . -3
= ——— lim Vo
120 7—0

V3
=~ 19)

Now the proof is complete. O

The previous result gives us, using Taylor expansions, the following short-time
approximation for the implied volatility

oo 3

IO(k)zﬁ_ﬁl_O

k—1).

Then, the corresponding approximation for the option price will be given by
Vo(k) = BS(0, Xo, M{ . fo(k)). (20)
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Table 1 Approximated prices (7 = 0.1)

k MC 1st order 2nd order Error (1st) (%) Error (2nd) (%)
0.9 10.5474 10.5330 10.5598 —0.14 0.12

0.95 6.6054 6.5951 6.6178 —0.17 0.37

1 3.6334 3.6406 3.6406 0.20 0.20

1.05 1.7301 1.7517 1.7275 1.20 —0.15

1.1 0.7072 0.7325 0.6996 3.57 —1.10

Table 2 Approximated prices (7 = 0.5)

k MC 1st order 2nd order Error (1st) (%) Error (2nd) (%)
0.9 13.7743 13.7247 13.8258 —0.36 0.37

0.95 10.6914 10.6740 10.7314 —0.16 0.44

1 8.1084 8.1293 8.1293 0.26 0.26

1.05 6.0106 6.0685 6.0080 0.96 —0.04

1.1 4.3538 4.4456 4.3315 2.11 —0.51

Table 3 Approximated prices (7 = 1)

k MC 1st order 2nd order Error (1st) (%) Error (2nd) (%)
0.9 16.6697 16.6152 16.7671 —0.33 0.56

0.95 13.8843 13.8646 13.9466 —0.14 0.45

1 11.4313 11.4766 11.4766 0.37 0.37

1.05 9.3278 9.4299 9.3436 1.10 0.17

1.1 7.5439 7.6962 7.5265 2.02 —0.23

6 Numerical examples

This section is devoted to check numerically the goodness of the approximations
proposed in the previous sections. We consider o = 0.5 and Sy = 100. The
benchmark values for the option prices have been obtained using a 107 simulations
Monte Carlo scheme with antithetic variates. In the following tables, we compare (for
T =0.1,0.5,1 and for k = 0.90, 0.95, 1, 1.05, 1) the values of the MC approxima-
tion with the results given by first-order approximation formula (12) and second-order
approximation formula (20). The corresponding errors are given in % of the MC value.
We can see the maximum error is less for the second-order formula. Moreover, this
second approximation improves clearly the first one in the case k > 1 (Tables 1, 2, 3).
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7 Conclusions

By means of Malliavin calculus, we have developed closed-form approximation for-
mulas for short-time floating strike Asian options. The obtained approximations are
simple closed-form explicit expressions, and the numerical analysis show they are
extremely accurate.
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