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Abstract
In this article, we analyse a duopolistic Cournotian game with firms producing differ-
entiated goods, marginal costs are constant and demand functions are microfounded.
We consider firms adopting different decisional mechanisms which are based on a
reduced degree of rationality. In particular, we assume that a firm adopts the local
monopolistic approximation approach, while the rival adjusts its output level accord-
ing to the gradient rule.We provide conditions for the stability of the Nash equilibrium
and investigate some bifurcation scenarios as parameters vary. The main finding of
the article is that both a high level and a low level in goods differentiation may have
a destabilising role in the system.

Keywords Bifurcation · Cournot game · Heterogeneous players · Product
differentiation

JEL Classification L13 · C62

1 Introduction

The purpose of this article is to discuss the role of horizontal product differentiation in
a nonlinear Cournot duopoly in which firms adopt different decisional mechanisms.

Based on the pioneering work of Cournot (1838), in the last decades, several works
have shown that oligopoly models may lead to complex behaviours, as described
in Rand (1978), who discussed the emergence of random-like exotic effects in the
dynamics of a simple Cournot duopoly, and in Puu (1991). In particular, the latter one
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proposed a duopoly model with unimodal reaction functions obtained by solving the
profit maximisation problem for the two firms. In the case of constant marginal costs,
Cobb–Douglas preferences and isoelastic demand function, the author showed that the
outputs of each firm can evolve through a sequence of period-doubling bifurcations
leading to chaos. As the firms have a perfect knowledge of the market demand, the
decision mechanism analysed by Puu (1991) is the myopic best reply. By assuming
that the rival does not change its decisions on the production, the firm solves its
profit maximisation problem. Following these seminal works, the focus has shifted
to less demanding decisional mechanisms regarding the ability of firms in exploring
the demand side of the market. In particular, the literature has greatly deepened two
mechanisms known as (i) the gradient-like mechanism and (ii) the local monopolistic
approximation (LMA hereafter).

The gradient-like approach describes firms that do not have a complete knowledge
of demand and cost functions (see Bischi et al. 1999). They use a local estimation of
the marginal profit to update the production level. In particular, the output increases
(decreases, respectively) if the marginal profit is positive (negative, respectively). A
crucial role in defining the stability is then played by the parameter measuring the
magnitude of this deviation in production, called speed of adjustment (see Cavalli and
Naimzada 2014; Cavalli et al. 2015).

In the LMA approach, proposed for the first time in Silvestre (1977), firms con-
jecture a linear demand function and estimate it through the current knowledge of the
market in terms of quantities and price. Based on this estimate and assuming that com-
petitors do not vary their production levels, the firm chooses the output that maximises
the conjectured profit function (see Tuinstra 2004; Bischi et al. 2007).

Recently, several authors have started to investigate the effects generated by the
interaction of firms adopting different decision-making mechanisms. Assuming firms
that produce a homogeneous good, their analysis focused on the heterogeneity in the
supply side of the market. In particular, (Tramontana 2010) analysed a duopoly model
where one firm has incomplete information and adopts the gradient-like mechanism,
whereas the rival has complete information and adopts the best reply. Instead, Cavalli
and Naimzada (2014) and Cavalli et al. (2015)1 have characterised the dynamic prop-
erties of a model in which firms are heterogeneous in decisional mechanisms and they
have restricted information on market demands (gradient-like approach vs. LMA).

Unlike the works mentioned above, whose analysis focuses on the supply side of
the market, a strand of the literature focused on the study of the effects generated by
product differentiation, or how the features related to the consumers’ perception of
goods may affect the duopolistic dynamics. To this purpose, this analysis has been
carried out especially in Bertrand models where the product differentiation allows to
overcome the so-called Bertrand paradox.2 In particular, Ahmed et al. (2015), Bri-
anzoni et al. (2015) and Gori and Sodini (2017) analyse the dynamics of a Bertrand
duopoly where homogeneous decisional mechanisms and horizontal product differen-
tiation are considered. In such models, the authors showed that the degree of product

1 In Cavalli and Naimzada (2014), the authors consider the speed of adjustment as exogenous, i.e. inde-
pendent on the level of production, while in Cavalli et al. (2015) it is taken as endogenous.
2 The Bertrand paradox describes the situation in which a price war is waged between firms, leading the
system on a state of perfect competition where the extra-profits of both firms are zero.
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differentiation may play a destabilising role when it is set at too high or too low lev-
els. Instead, Agliari et al. (2016) discussed the effects of product differentiation in a
Cournot framework where firms adopt the same decisional mechanism (the gradient
rule) and showed that unlike the literature on Bertrand models, only high levels of
differentiation may have a destabilising effect on the system.

By removing the assumption that firms adopt the same decisional mechanism and
assuming a not overly demanding framework in terms of rationality and information,
we consider a duopoly with nonlinear market demands for products of both varieties
where firms (i) adopt, respectively, the gradient rule and the LMA approach and
(ii) produce heterogeneous goods. In the analysis, we discuss how some relevant
parameters (such as the speed of adjustment, the degree of differentiation and the
marginal costs ratio) affect the stability of the Nash equilibrium and we show how the
assumption of heterogeneous decisional mechanisms induces a partial change in the
role played by the differentiation on the stability. Indeed, our investigation confirms
the result shown in Agliari et al. (2016). Indeed, starting from a situation of stability
for the Nash equilibrium, an increase in the differentiation destabilises the system, but
we further show that also a low extent of product differentiation may be destabilising.
From a dynamic point of view, we notice that a destabilisation may occur through
Flip and/or Neimark–Sacker bifurcations. Finally, we prove the existence of complex
dynamics and the coexistence of attractors.

The economic intuition behind our findings is the following: (i) if the degree of
product differentiation is high, then the goods will tend to be independent and con-
sequently, competition is less. In a context of isoelastic demands, this implies that
prices will react little to changes in quantities produced and are not able to bring
the market back to a stationary equilibrium; on the other hand, (ii) if the degree of
product differentiation is low, then the goods will tend to be indistinguishable and
consequently, competition is high. This implies that prices will react excessively to
changes in quantities produced and are not able to bring themarket back to a stationary
equilibrium.

The rest of the paper is organised as follows: Sect. 2 shows the main features of
the static duopolistic game and proves the existence of the Nash equilibrium; Sect. 3
describes the adjustment process of the firms; Sect. 4 refers to the local and global
analysis of the model and Sect. 5 concludes.

2 The static model

We consider a duopoly market in which every firm i produces a differentiated good,
whose prices and quantities are denoted by pi and qi , respectively, with i ∈ {1, 2}.
Moreover, a continuum of identical consumers with preferences towards the two com-
modities q1 and q2 is assumed.
In particular, following Agliari et al. (2016), we determine the nonlinear demand func-
tions from a monotonic transformation of a CES utility function (Mas-Colell et al.
1995) where the exponent is associated with the degree of product differentiation.
Then, the utility function of the agents is
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U (q1, q2) = qα
1 + qα

2 , (1)

where 0 < α ≤ 13 represents the degree of substitutability (differentiation) among
the commodities. This utility function is maximised subject to the budget constraint

p1q1 + p2q2 = 1, (2)

in which the consumers’ income is assumed to be constant and equal to 1.
From the agents’ allocative problem, the following inverse demand functions are
derived:

p1 = g1(q1, q2) := qα−1
1

qα
1 + qα

2
(3)

p2 = g2(q1, q2) := qα−1
2

qα
2 + qα

1
. (4)

We notice that if α = 1, the commodities are indistinguishable and consumers regard
them as identical. Lower values of α make the commodities as interchangeable, and
furthermore, as α tends to zero, they become independent.

On the production side, the two duopolistic firms are characterised by a linear cost
function given by

Ci (qi ) = ciqi with i = 1, 2 (5)

where ci represent the positive constant marginal costs. Then, the expected profit
function for the i-th firm is

πi (qi , q
e
j ) = pi (qi , q

e
j )qi − ciqi with i, j = 1, 2; i �= j (6)

in which qej is the expected output level of the rival.
Therefore, the unique Nash equilibrium of the Cournotian game can be derived (see

Agliari et al. 2016):

Proposition 1 The Nash equilibrium of the static Cournotian game is unique, and it
is given by

E∗ =
(

αcα−1
1 cα

2(
cα
1 + cα

2

)2 ,
α cα

1 cα−1
2(

cα
1 + cα

2

)2
)

.

3 LMA versus gradient learning

In an oligopolistic competition, theNash equilibriumnotion is based on the assumption
that each firm knows what the rivals decide to do. In particular, each firm is assumed

3 For α = 0, we notice that from the consumer problem, any pair on the budget constraint is a solution
of the optimisation problem. This causes problems in defining demand functions. Ultimately, in a static
context, this phenomenon generates a not interesting problem from an economic point of view, in the sense
that the definition of supplies is irrelevant in the utility of the agents.

123



Heterogeneous players in a Cournot model… 281

to know the entire demand curve for the good it produces. Then, the Nash equilibrium
turns out to be highly demanding in terms of rationality and information. Indeed, it
becomes interesting to investigate whether the Nash equilibrium describes the long-
run behaviour of the market, that is if there exist mechanisms that, although they do
not allow to achieve such equilibrium in one shot, lead to the Nash equilibrium at
least asymptotically. In this case, we consider two different adjustment mechanisms
requiring a low degree of rationality: the LMA approach and the gradient adjustment
process.

To be precise, we assume that firm 1 adopts the LMA approach that is a bounded
rational adjustment process based on the assumption that the firm has only a limited
knowledge of the demand function (see Bischi et al. 2007; Naimzada and Tramontana
2009; Cavalli et al. 2015). We assume that the firm 1 knows the market price, the
output produced by the firm and the output produced by the rival at time t , that is
p1,t , q1,t and q2,t , respectively. Moreover, the firm is able to get a correct estimate of

the partial derivative ∂ g1(q1,t ,q2,t )
∂ q1,t

. As in Bischi et al. (2007), firm 1 conjectures that
q2,t+1 = q2,t and a linear price function. Therefore, the expected price at time t + 1 is

pe1,t+1 = p1,t + ∂ g1(q1,t , q2,t )

∂ q1,t
(q1,t+1 − q1,t ) (7)

from which, by considering the expression in (3), we get the following:

pe1,t+1 = qα−1
1,t

qα
1,t + qα

2,t
−

(
(1 − α) qα−2

1,t qα
2,t + q2 α−2

1,t

)
(
qα
1,t + qα

2,t

)2
(
q1,t+1 − q1,t

)
. (8)

The output to produce at t+1 can be determined as the solution of themaximisation
problem for the expected profit:

q1,t+1 = argmax
q1,t+1

[pe1,t+1q1,t+1 − c1q1,t+1], (9)

which leads to the equation4

q1,t+1 = 1

2

⎡
⎢⎢⎣

(
qα−1
1,t

qα
1,t+qα

2,t
− c1

) (
qα
1,t + qα

2,t

)2

qα−2
1,t

[
(1 − α)qα

2,t + qα
1,t

] + q1,t

⎤
⎥⎥⎦ (10)

Differently, we assume that firm 2 adopts the gradient rule. In particular, we assume
that firm 2 does not have a global knowledge of the demand function and tries to
investigate how the market responds to its production changes through an empirical

4 We notice that, for α = 0, Eq.10 becomes q1,t+1 = q1,t (1 − c1q1,t ) that defines dynamics converging
to zero. This paradoxical result, typical of isoelastic demands, can be overcome by considering bounded
demand functions (see Agliari et al. 2002).
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estimate of the marginal profit. This estimate may be obtained by market researches
carried out at the beginning of the period t , and then we assume that although the
firm is unaware of the market demand, it can obtain a correct empirical estimate of
the marginal profit, ∂π2

∂q2
. With this type of information, the firm increases (decreases,

respectively) its production if it perceives a positive (negative, respectively) marginal
profit. We assume that the dynamic adjustment mechanism for firm 2 reads as

q2,t+1 = q2,t + k
∂π2(q1,t , q2,t )

∂q2,t
, (11)

where k > 0 represents the coefficient measuring the speed of adjustment of the output
for firm 2 at time t + 1 with respect to the marginal profit at time t .5

By taking into account expressions in (10) and (11), the two-dimensional system
characterising the dynamics of the Cournot duopoly with differentiated products is
the following:

M :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
q

′
1 = 1

2

⎡
⎣

(
qα−1
1

qα
1 +qα

2
−c1

)
(qα

1 +qα
2 )

2

qα−2
1 [(1−α)qα

2 +qα
1 ]

+ q1

⎤
⎦

q
′
2 = q2 + k

(
α qα−1

2 qα
1

(qα
1 +qα

2 )
2 − c2

) (12)

where the symbol ′ is the unit-time advancement operator and, as aforementioned,
α ∈ (0, 1] while k, c1, c2 > 0. Due to the presence of a denominator with q1 and q2,
we focus on dynamics which stay in the set FS for any iterations, where

FS = {
(q1, q2) : q1 > 0, q2 > 0}. (13)

Analogously to Agliari et al. (2016), we have the following result:

Proposition 2 The Nash equilibrium E∗ is a steady state of the system M described
in (12). Contrariwise, the unique steady state of (12) is the Nash equilibrium.

4 Dynamic properties of themodel

In order to investigate the local stability of the Nash equilibrium, we consider the
Jacobian matrix of the system (12), evaluated at E∗, JE∗ =

=
⎡
⎣− 1

2
(α2−3α+2)c2α

1 −cα
2 (α+4)(α−1)cα

1+2 c2 α
2

((α−1)cα
1−cα

2 )(c
α
1+ cα

2 )
1
2

cα
1 c2 (c

α
1−cα

2 )α
2

((α−1)cα
1−cα

2 )(c
α
1+cα

2 )c1
kc1 c2 (cα

1−cα
2 )(c

α
1+cα

2 )
cα
1 c

α
2

− c22k(α+1)c2α
1 +(

2 c22k−α
)
cα
2 c

α
1−c2α+2

2 k(α−1)
cα
2 α cα

1

⎤
⎦ .

5 Trajectories of (11) may become negative. However, the analysis focuses only on initial values and
parameters for which q2,t assumes a positive value.
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The Nash equilibrium is locally asymptotically stable if the following Jury condi-
tions (Elaydi 2007) are satisfied:

⎧⎪⎨
⎪⎩
1 − Tr(JE∗) + Det(JE∗) > 0

1 + Tr(JE∗) + Det(JE∗) > 0

1 − Det(JE∗) > 0.

(14)

We can notice that the first condition in (14)

1 − Tr(JE∗) + Det(JE∗) = 1

2

[
c22k(c1α + c2α)2

c2α((1 − α)c1α + c2α)

]
> 0 (15)

is always fulfilled.
In order to determine the stability region of the Nash equilibrium in the space of

parameters, inwhat followswewill characterise the boundary of such a region, defined
by the equations

1 + Tr(JE∗) + Det(JE∗) = 0, (16)

and
1 − Det(JE∗) = 0. (17)

By introducing the change of variable x := ( c1
c2

)α , if

h(α, x) =
(

α2 + 1

4
α − 1

)
x2 −

(
α2 − 5

4
α + 2

)
x + α − 1, (18)

z(α, x) =
(

α2 + 1

2
α − 1

)
x2 −

(
α2 − 3

2
α + 2

)
x + α − 1 (19)

are different from zero, both the relationships in (16) and (17) define k as function of
α, c1 and c2, namely Fl(α, c1, c2) with l = 1, 2, respectively. Since these functions
are both homogeneous of degree −2 with respect to c1 and c2, without loss of gen-
erality, (16) and (17) define the following functions fl : (α, x) → k̃ with l = 1, 2,
respectively:6

f1(α, x) := 1

2

(
α x

(x + 1)2

)−(α2 − 5α + 4)x2 + (α2 + 5α − 8)x − 4

h(α, x)
; (20)

f2(α, x) := 1

2

(
α x

x + 1

)2
(1 − α)x + (α + 1)

z(α, x)
(21)

where k̃ = k
c22
. We note that x is increasing with respect to c1

c2
and it varies in the

interval (0 + ∞).

6 We note that, because of the homogeneity of degree −2 of functions Fl , the relations Fl (α, c1, c2) =
fl (α,x)
c22

with l = 1, 2 hold.
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The (i) shape of the graphs of these functions, (ii) their intersection points and (iii)
the study of inequalities in (14) allow characterising the different dynamic properties
of the Nash equilibrium and the local bifurcations around it in terms of k and x . It is
worth noting that since α appears in the definition of x , the analysis will be set in terms
of the original parameters of the model, by fixing α. This investigation will then allow
us to define the dynamic properties of the model in terms of marginal costs’ ratio and
the speed of adjustment, for a fixed level of α.

Remark 1 The case in which both denominators in (20) and (21) are equal to zero
simplifies the analysis, and such occurrence will be discussed at the end of the section.

Remark 2 The expressions in (20) and (21) do not allow to obtain a functional relation
binding α to k and the marginal costs’ ratio. Because of the crucial role of differenti-
ation, we will discuss through numerical analysis how the parameter α is decisive in
defining the dynamics of the model.

4.1 Shapes of graphs of f1 and f2

In order to describe the behaviour of the graphs of the functions defined in (20) and (21),
we can first notice that (i) limx→ 0 f1(α, x) = limx→ 0 f2(α, x) = 0 that is both curves
approach the origin of the axes in the plane (x, k̃) and (ii) limx→+∞ fl(α, x) = 0 with
l = 1, 2 that is the x-axis represents a horizontal asymptote for both curves. By a
direct inspection of h(α, x) and z(α, x), we get the following Lemma:

Lemma 1 Let h(α, x), z(α, x), f1(α, x) and f2(α, x) be defined in (18), (19), (20) and
(21), respectively.

(a) If α2 + 1
4 α − 1 > 0, then there exists a unique x1 ∈ (0,+∞) such that h = 0.

Therefore, f1 is not defined in x = x1. Otherwise, f1 is defined for every x in
(0,+∞);

(b) if α2 + 1
2 α − 1 > 0, then there exists a unique x2 ∈ (0,+∞) such that z = 0.

Therefore, f2 is not defined in x = x2. Otherwise, f2 is defined for every x in
(0,+∞).

Proof (a) Consider the function h(α, x) defined in (18).We have that α2− 5
4 α+2 > 0.

Being the � of h(α, x) always positive, we can notice that the potential changes of
sign for h(α, x) depend on the sign assumed by α2 + 1

4 α − 1. In particular, for
α2 + 1

4 α − 1 > 0, we have that h(α, x) changes its sign at most one time and then
there exists a unique positive value x1 such that h(α, x1) = 0; for α2 + 1

4 α − 1 = 0,
h(α, x) becomes a polynomial of degree 1 w.r.t. x and it assumes only negative values;
for α2 + 1

4 α − 1 < 0, h(α, x) is the sum of three negative terms and then it assumes
always negative values. Finally, the result follows.

(b) Analogously, consider the function z(α, x), defined in (19). We have that α2 −
3
2 α + 2 > 0. Being the � of z(α, x) always positive, we can notice that changes
of sign in z(α, x) depend on the sign assumed by α2 + 1

2 α − 1. In particular, for
α2+ 1

2 α−1 > 0, the sign of z(α, x) changes at most one time and there exists a unique
positive x2 such that z(α, x2) = 0; forα2+ 1

2 α−1 = 0, z(α, x) becomes a polynomial
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of degree 1 w.r.t. x and it assumes only negative values; for α2 + 1
2 α − 1 < 0, z(α, x)

is the sum of three negative terms and then it assumes only negative values. Therefore,
the result follows. 	


On the basis of the previous Lemma, we can state the following proposition:

Proposition 3 Let α1 = 1
8 (

√
65 − 1) and α2 = 1

4 (
√
17 − 1). Then,

(a) For α ∈ (0, α2), x1 and x2 do not exist;
(b) for α ∈ (α2, α1), x2 exists while x1 does not exist;
(c) for α ∈ (α1, 1), x1 and x2 exist.

Proof By solving α2 + 1
4 α − 1 = 0 and α2 + 1

2 α − 1 = 0, we obtain the values of
α1 and α2,respectively. Therefore, the relation α2 < α1 is straightforward.

(a) From Lemma 1, we can deduce that in the interval (0, α2), x2 does not exist
and then the inequality α2 < α1 guarantees that also x1 does not exist. (b) The same
inequality implies that there exists a range (α2, α1) in which only x2 exists and then
the asymptote for f2 is the unique admitted. (c) Finally, at the right of α1, both x1 and
x2 exist. 	

Remark 3 In the previous proposition, we analyse the conditions for which x1 and x2
exist. We notice that both values are exclusively dependent on α (x1 = x1(α), x2 =
x2(α)). Regarding the original parameters of the model, given α, we have that positive
values of c1 and c2 exist such that

(
c1
c2

)α

= xi , i = 1, 2

holds. In particular, being α ∈ (0, 1], if xi > 1, we have c1
c2

> 1 while if xi < 1, we
have c1

c2
< 1.

In order to have a graphical insight into what is shown above, we refer the reader
to Fig. 1.

4.2 Intersections between graphs of f1 and f2

The existence of intersection points between f1 and f2 can be analysed in the plane
(x, k̃), as α varies. As far as this is concerned, the following proposition holds:

Proposition 4 There exists a unique intersection point (x∗, k̃∗) = ( 4
5α−4 ,

8(5α−4)
25α

)
between the curves k̃ = f1 and k̃ = f2 in the plane (x, k̃). It is feasible that is
x∗, k̃∗ > 0, if and only if α > α∗ = 4

5 .

Proof Solving the equation
f1(α, x) = f2(α, x) (22)

in terms of x , we have that a unique solution x∗ = 4
5α−4 .

Therefore, x∗ ∈ (0,+∞) if and only if α > 4
5 . By evaluating f1 (or f2) at x∗, the

positive value k̃∗ = 8(5α−4)
25α is derived. 	
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Corollary 1 The positive intersection point (x∗, k̃∗) = ( 4
5α−4 ,

8(5α−4)
25α

)
exists if and

only if x2 exists, where x2 is defined in Lemma 3.

Proof Recalling the definition of x2 in Lemma 1 and that α2 = 1
4 (

√
17−1), the proof

is straightforward because α2 < α∗. 	

Remark 4 The equation (

c1
c2

)α

= 4

5α − 4

has a solution in terms of α in the interval ( 45 , 1] only if c1
c2

> 1. The equation has no
solutions when c1

c2
< 1.

Remark 5 The previous propositions allow to deduce that (i) in the interval (0, α2),
f1 assumes only positive values while f2 assumes only negative ones and (ii) in the
interval (α2, α

∗), both f1 and f2 assume only positive values but f2 assumes higher
values than f1.

4.3 Local stability of the Nash Equilibrium

In the light of the results discussed above, we can formulate the following proposition
on the local stability of E∗:

Proposition 5 (a) If (i) α ∈ (0, α∗), then E∗ is locally asymptotically stable for
k̃ < f1(α, x); (ii) for α = α∗, E∗ loses its stability through a Flip bifurcation;
(iii) otherwise, E∗ is unstable.

(b) If (i) (0, x∗) the following cases arise: for α = α∗, E∗ loses its stability through
a Flip bifurcation while, for α ∈ (α∗, 1), E∗ is locally asymptotically stable for
k̃ < f1(α, x). (ii) If (x∗,+∞), the following cases arise: for α = α∗, E∗ loses
its stability through a Neimark–Sacker bifurcation while, for α ∈ (α∗, 1), E∗ is
locally asymptotically stable for k̃ < f2(α, x). (iii) Otherwise, E∗ is unstable.

Proof (a) By recalling Remark 5, in the interval (0, α∗) we have that E∗ is stable for
every k̃ < f1(α, x). On the contrary, for every k̃ > f1(α, x) E∗ loses its stability
due to a Flip bifurcation, generated in the geometric place of the points (x, k̃) such
that k̃ = f1(α, x).

(b) In the interval (α∗, 1), the positive intersection point x∗ exists. By considering that
limx→ 0 fl(α, x) = limx→+∞ fl(α, x) = 0with l = 1, 2,we have that E∗ is stable
for k̃ < f1 in the interval (0, x∗) and for k̃ < f2 in the interval (x∗,+∞). On the
contrary, the couples (x, k̃) such that k̃ = f1 define the geometric place of points
in which the fixed point is destabilised through a Flip bifurcation in the interval
(0, x∗), while the couples (x, k̃) such that k̃ = f2 the geometric place of points in
which the fixed point is destabilised through a Neimark–Sacker bifurcation in the
interval (x∗,+∞).

	

For the sake of completeness, the following proposition discusses the stability of

E∗ in such cases where h(α, x) or z(α, x) vanish:
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Proposition 6 (a) If h(α, x) = 0 and α ∈ (α1, 1), then E∗ may lose its stability via
Neimark–Sacker bifurcation;

(b) if z(α, x) = 0 and α ∈ (α2, 1), then E∗ may lose its stability via Flip bifurcation.

Proof (a) h(α, x) is equal to zero if and only if x = x∗
1 or x = x∗

2 where

x∗
1,2 = 1

2

4α2 − 5α + 8 ± √
137α2 − 104α3 + 16α4

4α2 + α − 4
.

We have that x∗
1 > 0 for α ∈ (α1, 1) while x∗

2 < 0 for every α. By substituting x∗
1 in

the second condition of (14), we have that the inequality 1+Tr(JE∗)+Det(JE∗) > 0
is fulfilled by every α ∈ (α1, 1). This implies that in the interval (α1, 1), the Jury
conditions are satisfied if and only if the condition 1 − Det(JE∗) > 0 is satisfied; (b)
z(α, x) is equal to zero if and only if x = x∗

3 or x = x∗
4 , where

x∗
3,4 = 1

2

2α2 − 3α + 4 ± √
33α2 − 28α3 + 4α4

2α2 + α − 2
.

We have that x∗
3 > 0 for α ∈ (α2, 1) while x∗

4 < 0 for every α. By substituting x∗
3 in

the third condition of (14), we have that the inequality 1 − Det(JE∗) > 0 is fulfilled
by every α ∈ (α2, 1). This implies that, in the interval (α2, 1), the Jury conditions are
satisfied if and only if the condition 1 + Tr(JE∗) + Det(JE∗) > 0 is satisfied. 	

Remark 6 Proposition 5 allows to deduce that a destabilisation via Neimark–Sacker
with respect to the parameter k̃ may occur only for high values of α (α ∈ (α∗, 1)). In
addition, by combining Propositions 4 and 5, it must hold:

c1
c2

>

(
4

5α − 4

) 1
α

. (23)

The inequality in (23) implies that for α ∈ (α∗, 1), E∗ may be destabilised via
Neimark–Sacker only if c1 is at least the quadruple of c2.

The graphs in Fig. 1 illustrate the main results stated in Propositions 3, 4 and 5.
In particular, Panels (a) and (b) refer to the case (a) in Proposition 5 while Panel (c)
shows a numerical example of case (b) in Proposition 5. Finally, Panel (d) describes
the stability region for a value of α such that (i) f1 and f2 are not defined at a point (x1
and x2, respectively), as stated in Proposition 3 and (ii) f1 and f2 have an intersection
point (x∗, k̃∗), as stated in Proposition 4. Moreover, with regard to the results shown
in Proposition 6, Panel (d) in Fig. 1 allows to notice that, at x1 and x2, the Nash
equilibrium is stable if the configuration of the parameters defines a point in the
region depicted in green.7

Considering the results of the local analysis, in what follows we will discuss some
dynamic scenarios.

7 The configurations in Panels (c) and (d) of Fig. 1 can be obtained only when c1 > c2.

123



288 A. Caravaggio, M. Sodini

Fig. 1 Different stability regions (areas in green) of E∗ in the plane (x, k̃), defined by the bifurcation curves
f1 (depicted in black) and f2 (depicted in red). a The fixed point may lose its stability only through a Flip
bifurcation, α = 0.55; b both the bifurcations curve are in the positive plane, but E∗ may destabilise itself
only through a Flip bifurcation, α = 0.798; c the stability region when both the bifurcation curves are in
the positive plane and intersect each other in x∗, α = 0.83; d the stability region when there exist both the
intersection point (x∗, k̃∗) and the asymptotes x1 and x2, α = 0.95 (colour figure online)

4.4 Bifurcations and stability

The stability conditions provided in Proposition 5 allow us to deduce relevant infor-
mation on the effect of both the speed of adjustment and the marginal costs ratio. In
particular, starting from a parameter configuration for which the equilibrium is stable,
an increase of k, leaving all the other parameters as fixed, implies a destabilisation of
E∗ through a Flip or Neimark–Sacker bifurcation, in line with the results of Agliari
et al. (2016) and the majority of literature focused on dynamic interactions in duopoly
markets. The hump-shaped behaviour of the graph of f1 induces a twofold role for x .
Indeed, as suggested by the Panel (a) in Fig. 1, for a not too large value of the speed of
adjustment, as x varies, we have that starting from zero the Nash equilibrium is first
unstable, then stable and finally unstable again.

The bifurcation diagrams in Fig. 2, performed with respect to the speed of adjust-
ment k, numerically show the theoretical results proved in Proposition 5. In Panel (a)
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Fig. 2 (i) Bifurcation diagrams of strategy q2 as k varies: a Parameter set:α = 0.4, c1 = 0.064, c2 = 1. The
Nash equilibrium loses its stability through a Flip bifurcation; b largest Lyapunov exponent with respect to
k associated with Panel (a); c Parameter set: α = 0.97, c1 = 10, c2 = 1. E∗ undergoes a Neimark–Sacker
bifurcation. d Parameter set: α = 0.19, c2 = 1, k = 0.13. Bifurcation diagram of strategy q2 as c1 varies
in the interval [0.002, 3], where E∗ is destabilised in both cases c1 < c2 and c1 > c2

of Fig. 2, we can notice that the Nash equilibrium is locally stable for low values of
k and it undergoes a Flip bifurcation at k = kFlip � 0.18859649 generating a stable
two-period cycle. As the speed of adjustment further increases, a sequence of period-
doubling bifurcations generates cycles of a higher period leading to chaos. Differently,
Panel (c) of Fig. 2 shows an example in which, as k varies, a Neimark–Sacker bifur-
cation takes place for k = kns � 0.036752. Finally, Panel (d) of Fig. 2 describes a
numerical example of how instability and complex phenomena may occur regardless
of marginal costs ratio. Indeed, the graph shows that for both c1 < c2 and c1 > c2,
chaotic regimes may arise. From an economic point of view, we can then observe that
scenarios of instability may occur both if the largest impact on the market is held by
the firm adopting the LMA (case c1 < c2) and if the largest impact is held by the firm
adopting the gradient-like mechanism (case c1 > c2).

In order to deepen the dynamic properties of the system with respect to α, we focus
on the study of the Jury conditions assuming, without loss of generality, c2 = 1. By
studying the system defined by the second and third inequalities in (14) in the space
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Fig. 3 a Portion of the stability region S in the space of parameters (k, c1, α), bounded by multicolour
surface and a light-red surface. b Parameter set: c1 = 15.8. A slice of the stability region (depicted in
green) in the plane (α, k) (colour figure online)

of parameters (c1, k, α), we notice that as α varies, different stability switchings may
arise (see Fig. 3).8

This result reveals that the degree of differentiation may have an ambiguous role
and as a consequence, given an appropriate parameter set, both low and high values
of α may induce instability. In particular, we have that (i) α is destabilising when
it assumes low values (as in Agliari et al. 2016) and (ii) differently from Agliari
et al. (2016), the fixed point may be destabilised also for high levels of α (that is,
when goods are increasingly perceived as indistinguishable) via Flip bifurcation and,
if c1 is sufficiently larger than c2 (see Remark 6), via Neimark–Sacker bifurcation.
From an economic point of view, these results induce interesting conclusions. The
results (i) suggest that for α → 0 goods are basically independent and firms operate
in distinct markets, characterised by isoelastic demands with elasticity close to 1,
where they act as monopolists. In such a case, prices react little to changes in the
number of goods placed on the market and are not able to bring the market back to a
stationary equilibrium.9 Instead, The result (ii) suggests that for a lowdegree of product
differentiation, the goods start to be perceived as indistinguishable and competition is
high. In such a case, prices excessively react to changes in the amount of goods and
are not able to bring the market back to a stationary equilibrium. A quite unexpected
result considering that also if the market is composed of two firms adopting LMA,
stability persists as a increases.10 Therefore, we can conclude that the main element

8 In dynamic exercises, we have considered values of α values such as to avoid negativity problems.
9 In this context, the marginal profit that drives the decision-making mechanism is such as to induce strong
fluctuations in the decisions of firm 2. Indeed, in order to maintain the nonnegativity of the produced
quantities, Eq. (11) (and therefore also the first equation in the map M) should be rewritten as q2,t+1 =
max

(
0, q2,t + k

∂π2(q1,t ,q2,t )
∂q2,t

)
.

10 We have verified such result by assuming that our two firms as LMA.
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Fig. 4 Parameter set: c1 = 15.8, c2 = 1, k = 0.1125. The bifurcation diagram with respect to α shows
several stability switchings for the Nash equilibrium and the destabilising role of both low and high values
of the parameter

Fig. 5 Bifurcation diagram with
respect to k for α = 0.985,
c1 = 10, and c2 = 1

generating instability is specifically the interaction between heterogeneous decisional
mechanisms, namely the gradient-like mechanism and LMA.

The occurrence of several stability switchings, as α varies, is highlighted by the
bifurcation diagram in Fig. 4. In particular, by starting from the initial condition
(q01 , q

0
2 ) = (0.00416, 0.079), we observe that as α is really close to 0 (not shown in the

graph), the system is completely unstable (that is, almost all trajectories diverge). By
increasing α, dynamics become chaotic and then, as α continues to increase, the Nash
equilibrium becomes stable until the value α = αFlip � 0.6813 where it undergoes
a Flip bifurcation. By considering values of α larger than 0.6813, we notice (i) the
existence of quasiperiodic orbits around a cycle of period 4 and then, after a phase of
stability for α ∈ [0.8261, 0.8756), (ii) the fixed point undergoes a Neimark–Sacker
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Fig. 6 Parameter set: α = 0.985, c1 = 10, c2 = 1. From left to right, top to bottom. Phase plane diagrams
for different values of the parameter k. a k = 0.0303597; b k = 0.0335548; c k = 0.0336313 d k =
0.0336568; e k = 0.03449750
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Fig. 7 Parameter set: α = 0.88, c1 = 5, c2 = 1, k = 0.22857. The stable 4-cycle, represented by the time
series depicted in blue (q1(0) = 0.018606), coexists with the stable 12-cycle described by the time series
depicted in red (q1(0) = 0.02) (colour figure online)

bifurcation for α = αNS � 0.8756, leading to a quasiperiodic regime around the
Nash equilibrium.

Remark 7 Numerical experiments performed above suggest that the Flip bifurcation
has always a supercritical nature. Differently, the Neimark–Sacker bifurcation may
experience a switch from a supercritical nature to a subcritical one.

Figure 5 furnishes another interesting numerical example. More in depth, the graph
shows that starting from the initial condition (q01 , q

0
2 ) = (0.0016, 0.1) and varying

the speed of adjustment k, a Neimark–Sacker bifurcation takes place at k = k̂ns �
0.02924342. Passing the critical value k̂ns , a quasiperiod behaviour starts and lasts until
k � 0.03254934 from which such regime is replaced by a sequence of frequency-
locking intervals. In these intervals, the motion along the stable closed invariant curve
becomes captured by a periodic cycle therein contained. As the graph suggests, for
values of k sufficiently high, the system falls in a chaotic regime.

Regarding the role of k, in Fig. 6 we provide some phase plane diagrams, which
show (i) the initial quasiperiodic dynamics with an attracting invariant closed curve
(see Panels (a) and (b)), (ii) the successive period-46 cycle generated by one of the
frequency-locking intervals (see Panel (c)) and (iii) the unconnected cyclical areas
after the frequency-locking (Panels (d)). As the speed of adjustment further increases,
(iv) a nine-piece chaotic attractor appears (see Panel (e)). For k � 0.03449750, a final
bifurcation occurs and almost all trajectories become unfeasible.

Finally, Fig. 7 shows that starting from two different initial conditions for q1 (given
the same initial value forq2), after the transient phase, dynamics settle down to different
periodic cycles. Then, the coexistence of two attractors appears.
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5 Conclusions

In this article, we analysed the dynamics of a Cournot duopoly with differentiated
goods and boundedly rational firms adopting heterogeneous decisional mechanisms
to adjust the quantity of output produced.We showed that the differentiation parameter
has an ambiguous role because both high and low levels of product differentiation may
destabilise the Nash equilibrium, leading to cyclical behaviours and chaotic dynamics
as well. This is a really counterintuitive result both compared with those presented in
Agliari et al. (2016), where both firms adopt a gradient-like decisional mechanism, and
the possible scenario in which the market is composed of two firms adopting LMA,
for whom stability persists as the degree of differentiation varies. Therefore, we can
conclude that the main element generating instability is specifically the interaction
between heterogeneous decisional mechanisms, namely the gradient-like mechanism
and LMA. With regard to this destabilising role of product differentiation, we also
provided different parameter configurations forwhich the equilibrium loses its stability
through Flip and/or Neimark–Sacker bifurcations.

In addition, we have found ranges of parameters for which chaotic dynamics, as
well as coexistence of attractors, appear.
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