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Abstract
We propose a modelling approach to study Cournotian oligopolies of boundedly
rational firms which continuously update production decisions on the basis of infor-
mation collected periodically. The model consists of a system of differential equations
with piecewise constant arguments, which can be recast into a system of difference
equations. Considering different economic settings, we study the local stability of
equilibrium, proving the destabilizing role of the time lag between two consecutive
learning activities. We investigate some particular families of oligopolies showing
the occurrence of both flip and Neimark–Sacker bifurcations, as well as the evidence
of multistability with the coexistence between different attractors, occurring when
oligopolies consisting of both technologically different and identical firms are studied.

Keywords Cournot oligopolies · Learning and production decisions · Differential
equations with piecewise constant argument · Stability · Bifurcations · Multistability
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1 Introduction

In Cournotian oligopolies of boundedly rational firms, production decisions are
updated over time on the basis of collected information about the competitors’ choices
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and the environment. Several heuristics have been proposed to model the lack of com-
plete knowledge of the economy by the firms, in order to study the effects on the
resulting dynamics of fundamentalmarket characteristics, such as the shape of demand
and cost functions, the size of the oligopoly, the heterogeneity among firms and the
possibility for them to evolutionary switch among different decision rules.

If the modelling approach is based on dynamical systems, the literature can be
divided into two families, namely a former one adopting differential equations, and
hence assuming that economic variables are continuously updated, and a latter one
based on difference equations, so that the adjustment mechanisms periodically take
place, at a discrete time level. In addition, a different framework has been proposed
to overcome these approaches. In particular, it has been assumed that economic
choices (which take place continuously) are based on the past information given by
the economic performance to a specific data (discrete delay differential equations)
or a weighted average of past economic performances (distributed delay differential
equations). Such modelling approaches date back to the contributions in Howroyd
and Russell (1984) and Howroyd et al. (1986) and give rise to a large research strand
developed through the years (see, e.g. Matsumoto and Szidarovszky 2011).

In order to update output levels, firms actually have to face two kinds of tasks,
as they must collect information about the economic setting, performing a learning
activity, and they must decide the future production levels, relying on information
at their disposal, taking production decisions. Both adopting continuous and discrete
dynamical systems, the two tasks are assumed to be performed at the same time.
However, the learning activity requires economic resources and time, so in general it
is actually carried out just periodically, differently from production, that continuously
takes place and whose level is adapted more frequently. This suggests that a proper
modelling should not neglect the existence of two different time scales for the learning
activity and the production decisions that can be properly represented by a continuous
time level for the quantity adjustment mechanism and a discrete one for the process
of collecting information.

In the present contribution, we pursue this approach extending to oligopolies the
research we started for a monopoly in Cavalli and Naimzada (2016). We consider
oligopolies consisting of firms that, to choose their strategy, adopt a gradient mech-
anism, i.e. an heuristic based on a rule of thumb in which decisions depend on the
profitability signal coming from a local estimate of marginal profits. The production
choices are updated at a continuous time level depending on the marginal profits, an
estimation of which is conversely assumed to be obtained only at discrete times. The
model results in a system of differential equations with piecewise constant arguments
(DEPCA). We stress that even if time-multiscale modelling and hybrid systems are
quite common in several scientific fields, their application to economics is still limited
(see Lamantia and Radi 2015; Cavalli and Naimzada 2016). Moreover, from the math-
ematical point of view, the difference of the present setting with that in the literature
about delayed differential equations is that in latter one time delays are constant, while
in the present one time delays are not constant.

Studying a general market setting, we show that as in the monopolistic setting
(Cavalli andNaimzada (2016)), the presence of a discrete time level for the updating of
information is a potential source of instabilities in the system, arising as the frequency
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of estimation of the local marginal profits decreases. Differently from Cavalli and
Naimzada (2016), the strategic interaction between players makes it possible that
production decisions follow both periodic, chaotic and quasi-periodic trajectories.
Moreover, path dependency arises, with the occurrence of multistability.

The remainder of the paper is organized as follows: in Sect. 2, we introduce the
model and we study it. In Sect. 3, we present several examples and numerical simula-
tions. Section 4 collects conclusions and future research aims.

2 Model and analysis

We consider a Cournotian oligopoly, consisting of i = 1, . . . , N firms that, supply-
ing homogeneous goods, strategically compete in quantities. The i th firm produces
quantity qi ≥ 0 and faces production costs described by function ci : [0,+∞) →
[0,+∞), qi �→ ci (qi ), which is increasing and twice differentiable.1 The economy
is characterized by a generic twice differentiable, strictly decreasing inverse demand
function p : [0,+∞) → [0,+∞), Q �→ p(Q) where Q is the aggregated quantity
Q = ∑N

i=1 qi .
As a consequence, the profit functions πi : [0,+∞) → R of each firm result

πi (qi , q−i ) = p(Q)qi − ci (qi ),

where q−i is the vector collecting all strategies but the i th one.We assume that demand
and cost functions are such that there exists a unique equilibrium q∗ = (q∗

i )i=1,...,N ,
with strictly positive components q∗

i > 0 that satisfy

q∗
i = argmax

qi≥0
πi

(
qi ,q∗−i

)
, i = 1, . . . , N , (1)

where q∗−i is the vector collecting all q∗
j for j �= i . We stress q∗ corresponds to the

Nash equilibrium of a game where players are the firms, strategies are chosen in the
set of feasible quantities qi ≥ 0 and payoffs are given by the profit functions. As
shown in Bischi et al. (2010), a sufficient condition to guarantee the existence and
the uniqueness of q∗ is that the profit function of each player is strictly concave with
respect to variable qi , i.e.

∂2πi (qi ,q−i )

∂q2i
= p′′(Q)qi + 2p′(Q)qi − c′′

i (qi ) < 0, (2)

In what follows, we always assume that (2) holds true. Indeed, assumption (2) is
guaranteed if we impose

g1(qi , Q) = p′′(Q)qi + p′(Q) ≤ 0, (3a)

1 For the sake of simplicity, in this sectionwe assume that the involved functions are all defined on [0,+∞),
but this can be indeed relaxed and all results still hold with minor adjustments.
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and
g2(qi , Q) = p′(Q) − c′′

i (qi ) < 0, (3b)

for each i = 1, . . . , N . Beyond the usual condition g2(qi , Q) < 0, assumption
g1(qi , Q) ≤ 0 is guaranteed by either concave or “not too convex” demand functions.
We stress that such setting is only sufficient to provide the existence and uniqueness
of the equilibrium. Economically significant inverse demand functions fail to fulfil it,
as, for example, the isoelastic function p(Q) = 1/Q.

We assume that the firms populating the oligopoly are boundedly rational. More
specifically, they have neither perfect foresight of their competitors’ future production
decisions nor a global knowledge of the demand function, so they try to update their
current output level by means of some kind of rule of thumb. From the modelling point
of view, this essentially requires the introduction of time in order to describe how the
production decisions qi,t evolve over time t . During such adjustment process, firms
actually have to face two kinds of tasks, namely the collection of information about
the economic setting (learning activity), and the choice of the future production level,
relying on information at their disposal in order to improve realized profits (produc-
tion decisions). Since such activities are not performed with the same frequency, we
adopt two different time scales for the learning activity and the production decisions,
assuming a continuous time level t ∈ R

+ for the quantity adjustment mechanism and
a discrete one tn, n ∈ N for the updating information process, where tn is a strictly
increasing sequence of positive real numbers. In what follows, we study the setting in
which learning activities are realized by each firm at the same time and occur at peri-
odic intervals, i.e. we set tn = nσ , where σ > 0 and 1/σ represents the frequency of
learning activities. This means that at each time tn firms collect information about the
environment and use them to adapt the output levels for t ∈ [tn, tn+1), before the next
learning activity performed at time tn+1. Themotivation for a synchronous updating of
market information is the following one. The literature about market research (see, e.g.
Mooradian et al. 2014) suggests that it should be carried on both periodically, to learn
about themarket the agents are workingwith, andwhen significant changes occur (e.g.
when a new product is introduced in the market, or when the market structure and/or
its composition changes). Since the goal of the present paper is not to study what hap-
pens when the studied market changes, the main motivation for realization of market
research relies on the periodic collection of information about the market. Especially,
when the market is controlled by a few, large firms, institutional regulations require to
periodically provide a record of the activities in terms of a financial report, in which
the future development of the business and plans to achieve predetermined goals are
presented. This requires the collection of information about the market situations, and
since institutional constraints require to present financial reports at periodical inter-
vals and close to specific periods of the year (e.g. quarterly or yearly), it is natural to
consider a synchronous timing for learning activities (i.e. taking place near the end of
each year quarter or close to the end of the year).Moreover, firms oftenmake reference
to the same agency providing results to each of them on the basis of a unique market
research.

To describe the heuristic adopted by the firms, we assume that by means of market
experiments realized at tn , each oligopolist is able to know the exact value of their
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marginal profits corresponding to the current output level so that we can write

π ′
i (qi (tn),q−i (tn)) = ∂πi

∂qi
(qi (tn) ,q−i (tn))

= ∂πi

∂qi

(

qi

(⌊
t

σ

⌋

σ

)

,q−i

(⌊
t

σ

⌋

σ

))

, i = 1, . . . , N ,

(4)

for t ∈ [tn, tn+1), where �x� is the floor function, providing the greatest integer that
is less or equal to x . The size and the sign of (4) provide the profitability signal
proportionally to which the production level is adapted,2 so that the production on
t ∈ [tn, tn+1) increases (resp. decreases or does not change) if π ′

i (qi (tn),q−i (tn)) > 0
(resp. π ′

i (qi (tn),q−i (tn)) < 0 or π ′
i (qi (tn),q−i (tn)) = 0). Proportionality is reg-

ulated by the agents’ reactivity to the profitability signal, modelled by a function
vi : [0,+∞) → [0,+∞), q �→ vi (q) which is strictly increasing with vi (0) = 0.

We can now write the model in terms of the following differential system with
piecewise constant arguments (DEPCA)

dqi
dt

= vi (qi (t))
∂πi

∂qi

(

q1

(⌊
t

σ

⌋

σ

)

, q2

(⌊
t

σ

⌋

σ

)

, . . . , qn

(⌊
t

σ

⌋

σ

))

(5)

with qi (0) > 0, i = 1, . . . , N , namely each initial output level is strictly positive.3

Continuous System (5) can be recast as an equivalent system of difference equations.4

We stress that thanks to the regularity assumptions on involved functions, for each
choice of the initial conditions, the solution of (5) is unique (see, e.g.Wiener 1993).
Since qi (t) = 0 is solution to (5), this guarantees that if we consider strictly positive
initial output level, each production choice qi (t) is strictly positive for any t > 0.
Integrating each equation of (5) on t ∈ [nσ, (n + 1)σ ), we easily obtain

qi (t) = F−1
i

(

Fi (qi (nσ))

+ ∂πi

∂qi

(

q1

(⌊
t

σ

⌋

σ

)

, q2

(⌊
t

σ

⌋

σ

)

, . . . , qn

(⌊
t

σ

⌋

σ

))

(t − nσ)

)

,

(6)

where Fi is an antiderivative of 1/vi (q). We stress that thanks to the assumptions on
vi (q), Fi is strictly increasing and invertible.

From (6), we can obtain a difference equation linking production decisions at times
tn+1 = (n + 1)σ to those at times tn = nσ . Since solutions qi (t) to System (5) are

2 Formore details about the economic description and interpretation of the gradient adjustment mechanism,
we refer to Bischi et al. (2010) and Cavalli and Naimzada (2015).
3 We note that if qi (0) = 0, from (5) we have qi (t) = 0, so the i th firm actually does not take part in the
market.
4 We do not enter into mathematical details about conditions under which (5) is well defined and can be
solved for any t > 0. For a detailed mathematical description on the whole process of transformation of
a DEPCA into a discrete time difference equation, we refer to Wiener (1993) and Cavalli and Naimzada
(2016).
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continuous functions, we have

qi ((n + 1)σ ) = lim
t→(n+1)σ

qi (t) = F−1
i

(
Fi (qi (nσ)) + σπ ′

i (qi (nσ),q−i (nσ))
)

so, setting qi,n = qi (nσ) for each i and n ∈ N , we obtain a system of difference
equations G = (G1,G2, . . . ,GN ) : [0,+∞)N → [0,+∞)N , q �→ G(q) defined
by

qi,n+1 = Gi (qn) = F−1
i

(
Fi (qi,n) + σπ ′

i (qi,n,q−i,n)
)
, (7)

where qn ∈ R
N collects output choice of firms at time period n. As we remarked,

since assuming qi (0) > 0 for any i = 1, . . . , N we have qi (t) > 0 for any t > 0, we
also have qi,n > 0 for any n > 0. In the remaining part of this section, we focus on the
possible steady states of (7) and on their stability considering different assumptions
on the economic setting.

Proposition 1 Under assumption (2), if qi (0) > 0 for i = 1, . . . , N, System (7) has
exactly a unique steady-state coincident with equilibrium q∗.

Proof Setting qi,n+1 = qi,n = qi for i = 1, . . . , N , we obtain

qi = F−1
i

(
Fi (qi ) + σπ ′

i (qi ,q−i )
)
, 1, . . . , N .

The strict monotonicity of Fi immediately providesπ ′
i (qi ,q−i ) = 0 for i = 1, . . . , N ,

which is fulfilled at q∗, which is then a steady state for (7). Thanks to the concavity
of πi , it is also unique.

We note that assumption (2) is only sufficient to guarantee that the solution of (1) is
the unique steady state of (7), but if it does not hold true, model (7) may have multiple
steady states.

Concerning stability, we firstly consider a very general setting, in order to cast a
first glance at the role of σ .

Proposition 2 Under assumption (2), for each oligopoly there exists a suitably large
value σb such that q∗ is unstable for σ ∈ (σb,+∞).
Moreover, either under condition (3) or if Np′′(Q)qi + (N + 1)p′(Q) − c′′(qi ) < 0
when condition (3a) is violated, then there exists a suitably small value σa such that
q∗ is locally asymptotically stable for σ ∈ (0, σa).

Proof The Jacobian matrix of G is J = ( jik)i,k∈{1,...,N }, where

jii =
F ′
i (qi ) + σ

∂2πi
∂q2i

(qi ,q−i )

F ′
i

(
F−1
i

(
Fi (qi ) + σπ ′

i (qi , q−i )
))

and

jik = σ
∂2πi
∂qi qk

(qi ,q−i )

F ′
i

(
F−1
i

(
Fi (qi ) + σπ ′

i (qi ,q−i )
)) .
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From

∂πi

∂qi
(qi ,q−i ) = p′(Q)qi + p(Q) − c′

i (qi )

and

∂πi

∂qk
(qi ,q−i ) = p′(Q)qi ,

we can straightforwardly obtain the expressions of the second-order derivatives,
respectively, given by (2) and

∂2πi

∂qiqk
(qi ,q−i ) = p′′(Q)qi + p′(Q).

So, recalling that F ′
i (qi ) = 1/vi (qi ) and that p′(Q∗)q∗

i + p(Q∗) − c′
i (q

∗
i ) = 0, we

have that the Jacobian matrix evaluated at the equilibrium is J ∗ = (
j∗ik

)
i,k∈{1,...,N }

where

j∗i i = 1 + σvi (q
∗
i )

(
p′′(Q∗)q∗

i + 2p′(Q∗) − c′′
i (q

∗
i )

)

and

j∗ik = σvi (q
∗
i )

(
p′′(Q∗)q∗

i + p′(Q∗)
)
.

Matrix J ∗ has then the form

J ∗ =

⎛

⎜
⎜
⎜
⎝

a1 b1 · · · · · · b1
b2 a2 b2 · · · b2
...

...
...

bN bN · · · bN aN

⎞

⎟
⎟
⎟
⎠

(8)

where ai = j∗i i and bi = b∗
ik . Local asymptotic stability of q∗ for the discrete problem

(7) holds provided that ρ(J ∗) < 1, where ρ(J ∗) is the spectral radius of J ∗. A lower
bound for the spectral radius is indeed provided by | tr(J ∗)|/N , which in the present
case gives

ρ(J ∗) ≥
∣
∣
∣
∣
∣
1 +

∑N
i=1 σvi (q∗

i )
(
p′′(Q∗)q∗

i + 2p′(Q∗) − c′′
i (q

∗
i )

)

N

∣
∣
∣
∣
∣
. (9)

Since (2) holds at q∗, for any

σ > σb = − 2

mini vi (q∗
i )

(
p′′(Q∗)q∗

i + 2p′(Q∗) − c′′
i (q

∗
i )

)
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the term inside the absolute value in the right-hand side of (9) is less than − 1, so
ρ(J ∗) > 1 and q∗ is unstable.

For the upper bound of ρ(J ∗), we distinguish two cases. If (3) holds true, and hence
jik < 0 thanks to (3), we can obtain an estimation of the eigenvalues of J ∗ mimicking
the proof in Quandt (1967), where a matrix with a similar structure is analyzed for a
differential problem. For the reader’s sake, we report the steps of the proof.

To compute the characteristic polynomial, we subtract the first column of Jλ =
J ∗ − λI to each other column, obtaining

⎛

⎜
⎜
⎜
⎝

a1 − λ b1 − (a1 − λ) · · · · · · b1 − (a1 − λ)

b2 a2 − λ − b2 0 · · · 0
...

...
...

bN 0 0 · · · aN − λ − bN

⎞

⎟
⎟
⎟
⎠

.

The determinant, computed using the first column, is

p(λ) = (a1 − λ)

N∏

i=2

(ai − λ − bi ) +
N∑

j=2

b j

N∏

i=1,i �= j

(ai − λ − bi ). (10)

Without loss of generality, we can assume

ai − bi < ai+1 − bi+1 (11)

for i = 1, . . . , N − 1, so, recalling the second condition in (3), aN − bN = 1 +
σvN (q∗

N )(p′(Q∗) − c′′
N (q∗

N )) < 1.
Evaluating the characteristic polynomial at a1 − b1, all terms but the first addend

vanish, obtaining

p(a1 − b1) = b1

N∏

i=2

(ai − bi − (a1 − b1))

which is negative since b1 < 0 and each of the remaining factors is positive thanks to
(11). Evaluating the characteristic polynomial at a j −b j for j > 1, the first addendum
vanishes, as well as all the remaining terms but the i th one, namely

p(a j − b j ) = b j

N∏

i=1,i �= j

(
ai − bi − (a j − b j )

)

whose sign, recalling that b j < 0 and (11), is −(−1) j−1 = (−1) j . This means that
the characteristic polynomial has N alternating signs at ai − bi for i = 1, . . . , N ,
which allows identifying N − 1 solutions ai − bi < λi+1 < ai+1 − bi+1 < 1. The
leading order term in the characteristic polynomial is (−1)NλN , which means that
limλ→−∞ p(λ) = +∞, so since p(a1 − b1) < 0, we have λ1 < a1 − b1. This allows
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concluding that all the eigenvalues are real and less than 1, so a simple application
of Gerschgorin’s Theorem to J ∗ shows that there exists a suitably small σa such that
λ1 > − 1.

If (3) is not fulfilled, an upper bound of ρ(J ∗) is given by ||J ∗||∞, for which,
provided that σ is sufficiently small to have ai > 0, we have

||J ∗||∞ = 1 + σv j (q
∗
j )

(
p′′(Q∗)q∗

j + 2p′(Q∗) − c′′
j (q

∗
j )

)
+ (N − 1)b j (12)

for some j . Recalling (2), the existence of σa is then only guaranteed under the
supplementary assumption provided in the theorem. We stress that if b > 0, it is
possible that ρ(J ∗) actually coincides with the right-hand side of (12). If we consider
the homogeneous case of identical cost functions ci ≡ c, for which the equilibrium
consists of identical components q∗

i ≡ q̂∗, and identical reaction functions vi ≡ v,
matrix J ∗ becomes

Ĵ ∗ = (a − b)I + bE, (13)

where I is the identitymatrix and E is thematrixwith all entries equal to one,whilea =
1+ σv(q̂∗)(p′′(Q∗)q̂∗ + 2p′(Q∗) − c′′(q̂∗)) and b = σv(q̂∗)(p′′(Q∗)q̂∗ + p′(Q∗)).
Matrix (13), in which diagonal elements are equal to a and off-diagonal ones are equal
to b, is circulant and has N − 1 eigenvalues equal to a − b and an eigenvalue equal to
a + (N − 1)b (see, for example, Cavalli et al. 2015), which then coincides with the
right-hand side in (12).

In agreement with what found in Cavalli and Naimzada (2016), if the time interval
between two learning activities is sufficiently large, instabilities can occur in the eco-
nomic system due to the superimposition of the two distinct time scales. The economic
rationale is evident: as an example, let us assume that at time ta the observed prof-
itability signal suggests to increase the production level, and this will be done until
t = tb, at which a new learning activity is performed. If such signal is very strong or
if the production decisions are updated using it for an excessively long time period,
at time tb output levels can have been increased by a too large extent so that the new
profitability signal at time tb would result opposite with respect to that at ta . This
leads to a sequence of periods in which production levels alternatively increase and
decrease. If such endogenous fluctuations reduce, production trajectories converge to
the optimal output choice, otherwise non-convergent dynamics occur. On the other
hand, if, with respect to size N of the market, the inverse demand function is not “too
convex”, we then have that if the profitability signal is observed frequently, a milder
adaption of production decisions occurs and allows the convergence to the equilibrium
output level.5

To provide more details about stability and to understand the kind of unstable
dynamics arisingwhen it is lost,we need to considermore particular situations.Assum-
ing (3) allows studying stability of q∗ for a quite general family of economic settings,
as shown in the next proposition.

5 As evident from the previous considerations and from the mathematical structure of (7), the role of σ and
vi is very similar, so Proposition 2 and the subsequent comments can be rephrased in terms of the agents’
reactivity, too.
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Proposition 3 Under assumption (3), equilibrium q∗ is locally asymptotically stable
on σ ∈ [0, σa), where σa is the smallest value at which

1 +
N∑

i=1

σvi (q∗
i )

(
p′′(Q∗)q∗

i + p′(Q∗)
)

(
2 + σvi (q∗

i )
(
p′(Q∗) − c′′

i (q
∗
i )

)) > 0 (14)

is violated. At σ = σa, a flip bifurcation occurs. When firms are identical with respect
to technology c(q) = ci (q) and reaction functions v(q) = vi (q), i = 1, . . . , N,
condition (14) simplifies as

2 + σv(q∗)
(
(N + 1)p′(Q∗) − c′′(q∗)

)
> 0, (15)

where q∗ are the identical components of the equilibrium.

Proof We conclude the analysis of eigenvalues started in the proof of Proposition
(2). Local asymptotic stability of q∗ for the discrete problem (7) holds provided that
|λi | < 1, i = 1, . . . , N , where λi are the eigenvalues of J ∗. We already showed that
λi < 1, so a sufficient condition for local stability is p(−1) > 0, where p is defined
in (10) and provides

(a1 + 1)
N∏

i=2

(ai + 1 − bi ) +
N∑

j=2

b j

N∏

i=1,i �= j

(ai + 1 − bi )

=
N∏

i=2

(ai + 1 − bi )

⎛

⎝a1 + 1 + (a1 + 1 − b1)
N∑

j=2

b j

a j + 1 − b j

⎞

⎠

=
N∏

i=2

(ai + 1 − bi )

⎛

⎝a1 + 1 − b1 + (a1 + 1 − b1)
N∑

j=1

b j

a j + 1 − b j

⎞

⎠

=
N∏

i=1

(ai + 1 − bi )

⎛

⎝1 +
N∑

j=1

b j

a j + 1 − b j

⎞

⎠ > 0

Recalling (11), from−1 < λ1 < a1−b1 < ai−bi we have that the previous inequality
is satisfied if and only if

1 +
N∑

j=1

b j

a j + 1 − b j
> 0.

Using the definition of ai and bi allows obtaining (14). Noting that in the homogeneous
setting we indeed have q∗

i = q∗
j , 1 ≤ i, j ≤ N , from (14) we easily find (15).

Looking at (14), we can see that the role of parameter σ on stability is the same as in
Proposition2. In this case, we can bemore precise, since as σ → 0, the right-hand side
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of (14) approaches 1, and hence, the equilibrium is stable for suitably small values
of σ . Since both p′′(Q∗)q∗

i + p′(Q∗) and p′(Q∗) − c′′
i (q

∗
i ) are negative, for small

values of σ the fraction in the summation is negative and increases in absolute value
as σ increases. In particular, there exists a threshold value of σ for which (14) holds
with the equality, and q∗ becomes unstable by means of a flip bifurcation crossing the
unique stability threshold. From (14), we have information also about the role of the
inverse demand function on the stability. As it becomes steeper (i.e. ceteris paribus,
the price elasticity of demand decreases) or more concave at the equilibrium, more
likely instabilities can arise in the output choices, as (14) is violated for smaller values
of σ and for smaller agents’ reactivity.

If we remove assumption (3a), stability condition is nomore true and when stability
is lost, different kinds of unstable dynamics may arise. If we restrict to case of homo-
geneous firms (i.e. identical cost functions ci ≡ c and reaction functions vi ≡ v), we
again have a period-doubling bifurcation when stability is lost, as shown in the next
proposition.

Proposition 4 In anoligopoly of N identical firms, if (3a) is violatedand Np′′(Q∗)q̂∗+
(N + 1)p′((Q∗)) − c′′(q̂∗) < 0, then the equilibrium is locally asymptotically stable
provided that

σ < − 2

v(q̂∗)(p′(Q∗) − c′′(q̂∗))
, (16)

where we set q∗
i = q̂∗, i = 1, . . . , N. If (16) is violated, a flip bifurcation occurs.

Proof As shown at the end of the proof of Proposition 2, the eigenvalues of the Jacobian
matrix Ĵ ∗ in the homogeneous case are real and correspond to a − b with multiplicity
N − 1 and a + (N − 1)b. Thanks to the assumption, we have b > 0 so we need
−1 < a − b < a + (N − 1)b < 1. The rightmost inequality is guaranteed by the
assumption in the theorem, and the leftmost follows from (16).

The previous two propositions rule out the possibility to have a Neimark–Sacker
bifurcation under assumption (3a) or in an homogeneous setting. To look for a possible
Neimark–Sacker bifurcation, we need to focus on a suitably convex demand function
and consider a non-homogeneous setting. In this case, general conditions are hard to
obtain and are not very readable even in the case of a duopoly. We will study this
scenario through an example in the next section.

Before presenting numerical simulations, we draw the attention on the role of
the frequency of learning activities on firms’ welfare. In order to provide production
decisions that converge towards the Nash equilibrium strategy, frequently carrying out
learning activity allows to suitably correct production decisions towards q∗. On the
other hand, each learning process requires a fixed cost, which can significantly affect
profits when its frequency is elevated. From these points of view, the intuition is that
the “best” values for σ should be those smaller than the stability threshold and close to
it, in order to guarantee at the same time optimal production choices and to minimize
market researches’ costs. We will numerically address this aspect in the next section.
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3 Numerical simulations

In this section, we focus on some examples to investigate through simulations the
possible complex dynamics arising when stability is lost. In what follows, we assume
that firms can be heterogeneous only with respect to their technology, and we consider
identical linear reactivity functions vi (q) = αq for all the agents i = 1, . . . , N ,
where α > 0 represents the reaction speed. From such expression of vi , we obtain
Fi (qi ) = ln(qi )/α, so model (7) becomes

qi,n+1 = qi,ne
σαπ ′

i (qi,n ,q−i,n). (17)

Once more, we underline that economic feasibility of output level trajectories is guar-
anteed, as the right-hand side of System (17) maps set (0,+∞)N into itself. Finally,
without loss of generality, we can set α = 1.

In the first family of simulations, we consider an inverse linear demand function
p(Q) = a − bQ, with positive parameters b and a, and we assume homogeneous
quadratic cost functions ci (qi ) = diq2i + C, i = 1, . . . , N , where di > 0, so that
marginal profits are π ′

i (qi ,q−i ) = a − bQ − bqi − 2diqi , i = 1, . . . , N . Term C in
cost function accounts for the cost of each learning activity, and in what follows, it is
set equal to C = 0.1. We stress that such setting satisfies assumptions (3), so stability
is regulated by Proposition3. Firstly, we consider a duopoly (N = 2) of heterogeneous
firms, for which a simple computation provides the unique positive Nash equilibrium

q∗
i = a(b + 2d−i )

4bdi + 4bd−i + 4did−i + 3b2
, i = 1, 2. (18)

Using (18) in (14), we obtain

(2 − aσ)
(
4bd1 + 4bd2 + 4d1d2 + 3b2

)

8bd1 + 8bd2 + 8d1d2 + 6b2 − aσ(b + 2d1)(b + 2d2)
> 0,

from which the stability condition is σ < 2/a. In fact, if it holds true, the numerator
is indeed positive as well as the denominator, which is linearly decreasing in σ and, at
σ = 2/a, equals 4b(b+ d1 + d2) > 0. The first simulation we present is obtained set-
ting a = 0.05, b = 1, d1 = 0.1 and d2 = 0.2, so we have (q∗

1 , q∗
2 ) ≈ (3.051, 1.6949)

and stability threshold is σ = 2. In the top left plot of Fig. 1, we report a couple of
bifurcation diagrams for q1 on increasing σ , obtained setting the initial datum, respec-
tively, equal to (q1(0), q2(0)) = (2, 1) (red diagram) and (q1(0), q2(0)) = (1, 1)
(black diagram), from which it is evident the coexistence between different attractors.
This means that depending on the current productions choices, when dynamics do
not converge towards the equilibrium, future output trajectories can become signifi-
cantly different. In the top right plot of Fig. 1, we report the basins of attraction of the
period-4 (black) and the period-8 (red) cycles towards which we have convergence
when σ = 2.66. As σ increases, an attractor consisting of four closed invariant curves
arises from a Neimark–Sacker bifurcation of the period-4 cycle, firstly coexisting with
a period-16 cycle and then with a complex attractor (bottom left plot of Fig. 1) whose
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Fig. 1 Duopoly of heterogeneous firms with linear demand function. Top left plot: bifurcation diagrams
on increasing σ , showing coexistence. Top right and bottom plots: basins of attractions and coexisting
attractors (color figure online)

points are “synchronized” on a line of equation q2 = (b + 2d1)/(b + 2d2)q1. If σ is
further increased, such attractor grows (bottom right plot of Fig. 1) and finally collides
with the boundary of its basin and disappears. The articulated structure of the basins
of attraction makes quite difficult to predict production trajectories (e.g. some points
that are close to the red (resp. black) attractor lie in blue (resp. yellow) regions, which
means that they converge towards the black (resp. red) attractor).Moreover, even in the
case of a linear demand function, the flip bifurcation analytically found in the previous
section can then evolve in both, periodic, chaotic and quasi-periodic trajectories.

A similar level of complexity persists even if we consider oligopolies consisting
of more than 2 firms or in the case of homogeneous players. In the next example,
we assume identical cost functions (i.e. di = d, i = 1, . . . , N ), so the unique Nash
equilibrium q∗ has identical components q∗

i = a/((N + 1)b+ 2d). Moreover, thanks
to the homogeneity, the equilibrium is stable under condition (15), which in the present
case reduces to 2 − aσ > 0.

If consider N = 4 firms and we set a = 0.05, b = 1 and d = 0.2, we obtain
q∗
i ≈ 1.5385 which put into (16) immediately gives σ < 2. In Fig. 2, we report a
couple of bifurcation diagrams for q1 on increasing σ , obtained setting the initial
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Fig. 2 Oligopoly of N = 4
homogeneous firms with linear
demand function. Bifurcation
diagrams on increasing σ ,
showing coexistence (color
figure online)

datum, respectively, equal to (q1(0), q2(0), q3(0), q4(0)) = (0.1, 0.2, 0.3, 0.4) (red
diagram) and qi (0) = 0.5, i = 1, . . . , 4, (black diagram), which confirm coexistence
of qualitatively different attractors, even in a homogeneous setting. Again, unstable
dynamics possibly consist of either periodic, quasi-periodic or complex trajectories.

In the last simulation, we consider a nonlinear isoelastic inverse demand function
p(Q) = 1/Q and we assume heterogeneous linear cost functions ci (qi ) = diqi +
C/σ, di �= d j . We stress that the analytical results of the previous section do not apply
to this case, since (3) is violated by p(Q) = 1/Q andwedealwith heterogeneousfirms.
The equilibrium in the duopolistic case is q∗

i = d−i/(d2i + 2did−i + d2−i ), i = 1, 2,
while the Jacobian matrix of the two-dimensional system evaluated at q∗ is given by

J ∗ =
⎛

⎜
⎝

d1 + d2 − 2d1d2σ

d1 + d2
−d2σ (d1 − d2)

d1 + d2
d1σ (d1 − d2)

d1 + d2

d1 + d2 − 2d1d2σ

d1 + d2

⎞

⎟
⎠ ,

so stability is guaranteed by the usual conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + tr(J ∗) + det(J ∗) = d12d2σ 2 + d1d22σ 2 − 8d1d2σ + 4d1 + 4d2
d1 + d2

> 0,

1 − tr(J ∗) + det(J ∗) = d1d2σ 2 > 0,

1 − det(J ∗) = −d1d2σ (d1σ + d2σ − 4)

d1 + d2
> 0.

Solving the previous conditionswith respect toσ ,wefind that thefirst one is always sat-
isfied as the numerator is a seconddegree convexpolynomialwith negative determinant
− d1d2. Since the second condition always holds true, stability is indeed guaranteed
under the last condition, namely if σ < 4/(d1+d2), andwhen it is violated aNeimark–
Sacker bifurcation occurs. In Fig. 3, we show the bifurcation diagram for variable q1
when d1 = 1 and d2 = 2, for which the stability threshold is σ < 4/3. In this case,
when the equilibrium becomes unstable, output levels follow quasi-periodic trajecto-
ries.
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Fig. 3 Duopoly of
heterogeneous firms with
isoelastic demand function.
Bifurcation diagram on
increasing σ , showing the
emergence of quasi-periodic
dynamics

0 0.5 1
0

0.1

0.2

0.3

0.4

Fig. 4 Profits corresponding to parameter settings of the simulations reported in Figs. 1, 2 and 3

If, at the same timeT ,we compare average realizedprofits for eachparameter setting
of the simulations reported in Figs. 1, 2 and 3, we, respectively, obtain the diagrams
reported in Fig. 4. As we can see, if σ is very small, fixed costs of the frequent learning
activities cause negative profits. Profits increases with the lag between two consecutive
market research untilσ reaches the stability threshold value. If the profitability signal is
too infrequently updated so that firms are not able to approach the optimal production
strategies, erratic output levels make profits decrease. This confirms that the best
learning frequencies that firms can choose are those smaller than and close to the
stability threshold σ̄ . It is worth noticing that increasing the learning frequency from
that optimal (i.e. decreasing σ from σ̄ ) has (at least for suitably moderate changes) a
milder effect on profits that decreasing it.

4 Conclusions

We proposed and studied an approach based on differential equations with piecewise
constant arguments to take into account that production and learning activities can
be carried on by firms at different time scales (respectively, continuous and discrete).
A central role for the stability of the equilibrium is played by the frequency of the
learning activities. If the lag between two subsequent market researches is too large,
output choices can follow complex trajectories even if the reactivity of the agents to

123



312 F. Cavalli et al.

profitability signal is moderate. Such result is in agreement with what was found in
Cavalli andNaimzada (2016) about amonopoly, but in the present setting dynamics can
result in both periodic, quasi-periodic and chaotic trajectories and different attractors
can coexist. The occurrence of such phenomena is then linked to the presence of
strategic interaction, indeed lacking in the monopolistic setting, and is possible even
if identical players are considered, i.e. in a homogeneous framework.

A central assumption on which we have built and studied the model is that the
learning activities are carried on by all the firms at the same, exogenously determined
time. In future research, we want to take into account the possibility for the each firm
to choose the (possibly different) times at which information are collected, on the
basis of some measure of the performance achieved with the last information set at
disposal. This is challenging from the mathematical point of view and interesting from
the economical one, as it would allow investigating the effect of introducing such a
kind of heterogeneity among the firms.

Preliminary numerical investigations seem to suggest that stability, when each firm
updates information with a different frequency, is more affected by the less frequent
updating than by the more frequent one.
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