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Abstract
We formulate an evolutionary oligopoly model where quantity setting players produce
following either the static expectation best response or a performance-proportional
imitation rule. The choice on how to behave is driven by an evolutionary selection
mechanism according to which the rule that brought the highest performance attracts
more followers. The model has a stationary state that represents a heterogeneous
population where rational and imitative rules coexist and where players produce at
the Cournot–Nash level. We find that the intensity of choice, a parameter representing
the evolutionary propensity to switch to the most profitable rule, the cost of the best
response implementation as well as the number of players have ambiguous roles
in determining the stability property of the Cournot–Nash equilibrium. This marks
important differences with most of the results from evolutionary models and oligopoly
competitions. Such differences should be referred to the particular imitative behavior
we consider in the present modeling setup. Moreover, the global analysis of the model
reveals that the above-mentioned parameters introduce further elements of complexity,
conditioning the convergence toward an inner attractor. In particular, even when the
Cournot–Nash equilibrium loses its stability, outputs of players little differ from the
Cournot–Nash level and most of the dynamics is due to wide variations of imitators’
relative fraction. This describes dynamic scenarios where shares of players produce
more or less at the same level alternating their decision mechanisms.
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1 Introduction

The most common decisional mechanism considered in the game theory is based
on best response functions and was proposed by Cournot in his seminal work
(Cournot 1838). Such a decisionalmechanismwas replaced in the literature concerning
oligopoly competition by heuristic behaviors that imply lower degrees of rationality
from players in terms of computational abilities and limited information set exploited
by the players. An example is the gradient rule, introduced by Bischi and Naimzada
(2000), Bischi et al. (1999, 2001), Agiza et al. (2002) and recently considered by
Askar (2014a, b) and Fanti et al. (2015), according to which players ignore the market
demand and adjust their outputs in the direction of increasing earnings based on local
estimations of the slope of their profit function at the actual market state. Another
example is the local monopolistic approximation (LMA) rule, introduced by Tuinstra
(2004), considered in the framework of repeated oligopolies by Bischi et al. (2007),
Naimzada and Sbragia (2006), Naimzada and Tramontana (2009) and in a monopolis-
tic framework in Naimzada and Ricchiuti (2011). According to the LMA rule, players
optimize their profits using a linear approximation of the true demand estimated by
means of the local knowledge at the actual market state. The simultaneous presence
of different decisional mechanisms is considered when the presence of heterogeneous
degrees of rationality and computational abilities among players is assumed. Various
pairings of heterogeneous behaviors, including the best response, the gradient rule and
the LMA rule, are considered in Leonard and Nishimura (1999), Den Haan (2001),
Agiza and Elsadany (2003, 2004), Angelini et al. (2009), Tramontana (2010), Cav-
alli and Naimzada (2014), Andaluz and Jarne (2015), Cavalli et al. (2015b), Cavalli
and Naimzada (2015), Pireddu (2015), Tramontana et al. (2015), Naimzada and Tra-
montana (2015) and Andaluz et al. (2017). The presence of heterogeneous decisional
mechanisms has also been considered in evolutionary frameworks that account for the
changing propensity of players to behave according to a certain rule over a finite set
of possible decision mechanisms. Along the line marked by Droste et al. (2002), the
decisional mechanism that brought the best relative performances will attract more
followers. Several contributions in this direction are provided in Bischi et al. (2009,
2015, 2018), Kopel et al. (2014), Cavalli et al. (2015a), Cerboni Baiardi et al. (2015),
Radi (2017), among others. Noteworthy, endogenous fluctuations and evolutionary
stable heterogeneities, where different behaviors coexist along complex dynamics,
are often observed.

Here, we consider that the presence of heterogeneous decisional mechanisms is
detected in experimental oligopolies, where both the imitative and the rational behav-
iors emerge (seeApesteguia et al. 2007; Oechssler et al. 2016; Huck et al. 2004; Bigoni
and Fort 2013 or Offerman et al. 2002, among others). Motivated by this, we formu-
late an evolutionary oligopoly model where players behave following, alternatively,
the static expectation best response or the performance-proportional imitation rule
introduced in Cerboni Baiardi et al. (2018). The changing attitude to adopt one rule
instead of the other one is driven by the differences in the past performances that each
decision mechanism has generated. In particular, we assume that the performances of
an output, which have been obtained by means of the static expectation best response
behavior, result from the profit which that particular choice has generated. However,
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that profit is to be reduced by a constant average per-period implementation cost, due
to the burden requirements that the best response behavior implies. Differently, we
consider that the performances of an output coming from the exploitation of the imi-
tation rule correspond to the profit it has generated. In other words, we assume that
the imitation rule is free of charge.

We obtain a three-dimensional discrete-time dynamic system that approximates
the dynamics of a population of N agents. Our model has a stationary state at which
productions match the Cournot–Nash equilibrium and that represents a heterogeneous
population,where both rational and imitative rules coexist.Wefind that the equilibrium
production has lowered, whereas the number of players involved in the competition
has increased. Moreover, the share of imitators at the Cournot–Nash equilibrium gets
higher as the propensity of agents to switch to the most profitable rule increases. The
same occurrence is observed when the costs for the best response rule exploitation
grow.

TheCournot–Nash equilibriummay lose its stability either throughflip orNeimark–
Sacker bifurcations, which occur at certain variations of the intensity of choice, of the
implementation costs and the number of players. Remarkably, those parameters have
an unexpected ambiguous role in determining the local stability of the Cournot–Nash
equilibrium. In fact, most of the evolutionarymodels state the destabilizing role of both
the intensity of choice (see e.g., Hofbauer and Sigmund 2003) and the implementation
costs (see e.g., Hommes (2013), where several models assume per-period information
gathering costs to be associated with highly sophisticated decision mechanisms). In
addition, starting from Theocharis (1960), most of the literature concerning oligopoly
competition highlights the destabilizing role of the number of players.

The global analysis, performed through numerical simulations, highlights the
effects of parameters variations on both the dynamic complexities of attractors and
the shapes of their basins of attraction. Indeed, inner attractors should be the sta-
tionary state, periodic orbits, closed invariant curves as well as chaotic trajectories.
They describe the dynamics of heterogeneous populations where both rational and
imitative rules coexist. Remarkably, we find that increasing values in the intensity of
choice widen the basin of attraction of the inner attractor around the Cournot–Nash
equilibrium. In addition, even when the Cournot–Nash equilibrium is unstable, out-
puts of players that occur along periodic or chaotic trajectories little differ from the
Cournot–Nash level. Most of the dynamics consists in variations of the imitators’ rel-
ative fraction, thus describing scenarios where shares of players produce at the same
level alternating their decision mechanisms.

The paper is organized as follows. In Sect. 2, the model is formulated. In Sect. 3,
the stationary states of the model and their relative stability conditions are provided in
analytic forms when possible. In Sect. 4, the global dynamics that the model describes
is discussed. Section 5 concludes.

2 Themodel

We consider a linear oligopoly model where a population of N ≥ 2 quantity set-
ting players compete producing homogeneous goods and bearing the same constant
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marginal production cost c > 0. Let qk ≥ 0 be the output strategy adopted by agent
k, for all k = 1, ..., N , and let the aggregate supply by all agents be Q = ∑N

k=1 qk .
We assume that the market structure is summarized by the inverse demand function
P(Q) = max{a − bQ, 0}, where the parameter a > 0 represents the maximum price
and b > 0 is the slope of the price with respect to Q in the interval where it is positive.
Hence, the generic kth player’s profit results as

πk := π(qk) = (P(Q) − c)qk . (2.1)

Game-theoretic arguments show that at the Cournot–Nash equilibrium each player
produces at the level

q∗ = a − c

b(N + 1)
(2.2)

and earns the profit

π∗ = 1

b

(
a − c

N + 1

)2

. (2.3)

Since producing at the Cournot–Nash level is very demanding in terms of rationality
and information set ownedbyplayers,we assume that the players’ strategies come from
the adoption of certain decisional mechanisms that can be implemented with limited
information sets and, in one case, with limited rationality. Even so, we consider that the
exploitation of a behavioral rule may require efforts in terms of computational abilities
and the use of information set for its implementation. With this, the performance from
an outcome can be measured by means of the profits it has brought, diminished by the
costs needed for the implementation of the involved decisional mechanism. Hence, if
agent k choose qk , she gets the performance Uk = π(qk) − Ck , where Ck represents
the per-period implementation cost related to the rule adopted by k.

We consider here that players can choose, alternatively, between the static expec-
tation best response rule and a performance-proportional imitation rule involving
weighed averages of previous period outputs, similarly to the rule proposed in Cerboni
Baiardi et al. (2018). Since the static expectation best response requires relevant com-
putational abilities and the holding of an important information set, which includes
the knowledge of the market demand, we assume this to be implemented at a constant
average per-period cost C . Differently, imitation-like behaviors are simple heuristics
that imply limited implementation efforts that are negligible with respect to C and we
set it free of charges. This is to say Ck = C if k denotes a best responder player, while
Ck = 0 if k denotes an imitator player.

Remark 1 For the economic consistency of the model, we assume the implementation
cost C to be small enough not to determine negative or vanishing performances at the
Cournot–Nash level, namely

C < π∗, (2.4)
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where π∗ is the profit of each player at the Cournot–Nash equilibrium (see (2.3)).

The model is developed in a discrete-time framework where each player, at the
beginning of each period, chooses which decisional mechanism to exploit and deter-
mines her production level accordingly. Following Droste et al. (2002) (see also Bischi
et al. 2015; Cerboni Baiardi et al. 2015 or Lamantia and Radi 2018, among others)
we assume that, if agent i produces according to the best response rule, she adapts her
production optimally to the average output of the rest of the industry that has been
observed in the previous period. Then, player i sets her output, at the generic time
period t + 1, to the level

qi (t + 1) = argmax
qi≥0

πi (qi , (N − 1)q̄(t))

= argmax
qi≥0

(
1

2b
(a − c − b(N − 1)q̄(t))

)

, (2.5)

where the “max” operator prevents best responders from adopting negative outputs
and where (N − 1)q̄(t) is the average production of the rest of the industry at time
period t . Under static expectations, the value (N − 1)q̄(t) is taken as a proxy for the
aggregate quantity Q(e)

−i (t +1) that player i expects to be produced by her competitors
at the time period t + 1.

Alternatively, if agent i determines her output by exploiting the performance-
proportional imitation rule, she sets at time period t + 1 the weighted average of
the previous period outputs in the market, where weights are given by the associated
relative performances.More precisely, letS(t) be the set of the quantities in themarket
at time t given by

S(t) := {q ∈ R+ : ∃ j ∈ N s.t. q = q j (t)}.

In terms of S, the set of best responders and imitators’ indexes choosing, respec-
tively, different outputs can be expressed as

B(t) = {i ∈ N : qi ∈ S(t) and i is a best responder}
I(t) = { j ∈ N : q j ∈ S(t) and j is an imitator}.

LettingA(t) := I (t)∪B(t), the performance-proportional imitation rule we consider
is

qi (t + 1) =
∑

k∈A(t) Ukqk
∑

k∈A(t) Uk
. (2.6)

The rule (2.6) considers that imitators are aware of the presence of strategic interactions
and that an action that brought high performance (or the highest performance) in
the previous period may not produce so good a result in the present time. Because
of the indeterminacy about the performances that an action produces, imitators will
tackle the problem of whom to imitate by considering, prudently, all the previous
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period outputs with weighted importance. This allows to mitigate the uncertainty
on which outcome should arise from imitating a single previous period output. In
addition, weights measure the relative importance of each output in proportion to the
performances it has generated. Therefore, the higher the performance from a certain
output is, the more the imitators’ production approaches that output.

Remark 2 The imitation rule (2.6) is defined at time t + 1 whenever performances at
time t are nonnegative, namely Uk ≥ 0 for all k ∈ A(t), with at least one of them
that is strictly positive. This restriction ensures that each weight Uk/

∑
k′ Uk′ , with

k ∈ A(t) is included in the interval [0, 1] and, in turn, implies that production levels
of imitator players at time t +1 are nonnegative, provided that positive outputs at time
t are given.

The recurrences (2.5) and (2.6) can be aggregated into two unidimensional dis-
crete maps by assuming the same initial conditions for players adopting the same rule.
Indeed, this implies that best responders produce at the same output also in subse-
quent periods and their actions can be summarized by a single dynamic variable q1
interpreted as the choice of the representative best responder earning profits π1 with
U1 = π1 − C performance. The same implication holds for imitators’ outputs that
can be summarized by a single dynamic variable q2 interpreted as the choice of the
representative imitator earning profits π2 withU2 = π2 performance. The splitting of
the population between best responders and imitators can be described by the variable
ω(t) ∈ (0, 1) representing the fraction of imitators at time t . Clearly, the complemen-
tary fraction (1 − ω(t)) represents the fraction of best responders. Then, the average
level of production can be expressed, at the generic period t , in terms of the share ω(t)
of imitators as

q̄(t) = (1 − ω(t))q1(t) + ω(t)q2(t)

and recurrence (2.5) reduces to

q1(t + 1) = max

{

0,
a − c

2b
− 1

2
(N − 1) ((1 − ω(t))q1(t) + ω(t)q2(t))

}

. (2.7)

At the same time, the assumption of identical initial conditions of players can be
expressed as

q2(t + 1) = U1(t)

U1(t) +U2(t)
q1(t) + U2(t)

U1(t) +U2(t)
q2(t), (2.8)

where performances explicitly read as

U1(t) : = π1(t) − C = (a − c − bN ((1 − ω(t))q1(t) + ω(t)q2))q1(t) − C

U2(t) : = π2(t) = (a − c − bN ((1 − ω(t))q1(t) + ω(t)q2(t)))q2(t).

The changing propensity of each player to adopt a certain decisional mechanism
is driven by differences in performances from past choices. As a consequence, the
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rule with better performance will attract more followers. Along the line marked by
McFadden (1973) the propensity to follow the imitative rule changes in time according
to the logit model

ω(t + 1) = eβU2(t)

eβU2(t) + eβU1(t)
, (2.9)

where the parameter β is the intensity of choice andmeasures the propensity of players
to adopt the decision mechanism that brought the best performances in the past period.
If β = 0, players do not value differences in performances and the fraction of imitators
is fixed over time at 1/2.Otherwise, ifβ = ∞, players perfectly distinguish differences
in performances and, in each period, all agents choose the previous-time best decision
rule.

The dynamics of best responders and imitators’ productions, described by means
of recurrences (2.7) and (2.8), respectively, together with recurrence (2.9), is given by
the three-dimensional discrete-time nonlinear map T that explicitly reads as

T :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q ′
1 = max

{

0,
a − c

2b
− 1

2
(N − 1) ((1 − ω)q1 + ωq2)

}

q ′
2 = (a − c − bN ((1 − ω)q1 + ωq2))(q21 + q22 ) − Cq1

(a − c − bN ((1 − ω)q1 + ωq2))(q1 + q2) − C

ω′ = 1

1 + eβ{(a−c−bN ((1−ω)q1+ωq2))(q1−q2)−C}

(2.10)

where unlabeled variables are intended at the generic time t and accents denote one-
step time advancements.

3 Local analysis

Stationary states of the model are provided in the following proposition.

Proposition 1 Map T has the stationary state E∗ = (q∗, q∗, ω∗) where

q1 = q2 = q∗ = a − c

b(N + 1)
, ω∗ = 1

1 + e−βC
.

In addition, if condition (2.4) is met, then map T has the further stationary state
E0 = (q01 , q

0
2 , ω

0) where

q01 = 1

4bN

(
a − c +

√
(a − c)2 + 8bN (N − 1)C

)

q02 = 1

4bN (N − 1)ω0

(

(a − c)(3N − 1 + ω0(N − 1))

− (N + 1 − ω0(N − 1))
√

(a − c)2 + 8bN (N − 1)C

)
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and ω0 ∈ (0, 1) is the unique root in the interval [0, 1] of the equation G(ω) = 0,
where

G(ω) = − C

q01
q02 − 1

β
ln

(
1

ω
− 1

)

. (3.1)

Proof See Appendix 6 	

At the stationary state E∗ best responders and imitators produce the same outputq∗, E∗
matches the Cournot–Nash equilibrium. Moreover, we mention that, at the stationary
state E∗, the equilibrium share of imitatorsω∗ increases with increasing values of both
β and C . This follows from the fact that the performances of the representative best
responder player are lower than those of the representative imitator player because of
the implementation costsC required by the best response behavior. Hence, the increase
in β, which corresponds to the increasing capacity of players to distinguish differences
in performances, makes the imitation heuristic more appealing. At the same time, the
increase in C discourages the adoption of the best response behavior because of its
increasing burden.

We further mention that, in the special occurrence where C → 0, the stationary
state E0 can be interpreted as theWalrasian equilibriumof the oligopoly,where players
produce at themarket clearing price and earn null profits. Indeed, in this case, it results

lim
C→0

P(Q) = lim
C→0

max
{
0, a − bN ((1 − ω0)q01 + ω0q02 )

}
= c.

The following proposition claims sufficient conditions for the asymptotic stability
of the Cournot–Nash equilibrium.

Proposition 2 The stationary state E∗ is locally asymptotically stable provided that
ω f < ω∗ < ωns , where

ω f := 1

2
· 3π

∗ − C

2π∗ − C
· N − 3

N − 1
, ω∗ = 1

1 + e−βC
and ωns = 2

N − 1
+ π∗

2π∗ − C

At ω∗ = ω f , E∗ undergoes a flip bifurcation, while at ω∗ = ωns , E∗ undergoes a
Neimark–Sacker bifurcation.

Proof See Appendix 6 	

Analytic stability conditions cannot be obtained for the fixed point E0 since the

equilibrium fraction ω0 cannot be obtained in an analytical form. However, in several
numerical simulations performed at a wide range of parameters’ values, the stationary
state E0 is never found to be stable. The instability of the stationary state E0 is an
important outcomeof ourmodelwhenever it is interpreted as theWalrasian equilibrium
in the case in which implementation costs tend to zero. This is a consequence of our
modeling setup where imitator players are coupled with profit maximizers, whose
actions tend to move the oligopoly competition away from the market clearing price
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production and, hence, from E0. Indeed, best responders have incentive to deviate
from having vanishing performances that correspond to negative profits.

We remark that the instability occurrence of theWalrasian equilibriumdeviates from
various theoretical and experimental results concerning Cournot competitions, where
imitation heuristics are considered (see e.g., Vega-Redondo 1997; Apesteguia et al.
2007). In detail, as shown inVega-Redondo (1997), theWalrasian equilibrium emerges
as players imitate the best or, alternatively, set random outputs with a nonvanishing
mutation probability. Then, the emergence of the Walrasian equilibrium in that model
should be explainedbymeans of the players’ lackof awareness of strategic interactions.
A similar argument can be used to explain the emergence of thementioned equilibrium
in the model proposed in Apesteguia et al. (2007) and tested through experiments. In
fact, according to that model, players follow imitation-like rules. We also mention that
the emergence of the Walrasian equilibrium in an evolutionary setting has been found
by Radi (2017), where the author considers firms competing in a Cournot oligopoly
by choosing to behave as profit maximizers or as price takers.

In the remainder of the section, we outline the role of the relevant parameters of the
model, that is, the intensity of choice β, the implementation costsC and the number of
players N , in their influencing the stability property of the Cournot–Nash equilibrium.
As for this subject, we first mention that the stability conditions for the Cournot–Nash
equilibrium provided in Proposition 2 can be rewritten in terms of the parameter β.

Corollary 1 The stationary state E∗ is locally asymptotically stable provided that
β f < β < βns where

β f = − 1

C
log

(
1

ω f
− 1

)

, βns = − 1

C
log

(
1

ωns
− 1

)

.

The Corollary shows that a double stability threshold exists at increasing values of
β. This occurrence is due to the presence of the imitative heuristic, and it is quite
unexpected since, in most models endowed with logit-like evolutionary mechanisms,
the intensity of choice has just a destabilizing effect (see e.g., Brock and Hommes
1997; Hommes 2013 or Hofbauer and Sigmund 2003). Bifurcation diagrams, which
show the long-run dynamics of the three dynamic variables q1, q2 andω varying β, are
reported in Fig. 1. In the simulation, the stationary state E∗ is unstable, provided values
of β below the threshold β f are given. If parameter β increases, a stable period-2 cycle
appears and merges with the stationary state E∗ as β matches the threshold value β f .
This causes a flip bifurcation, after which the Cournot–Nash equilibrium E∗ becomes
locally asymptotically stable. The stability of E∗ ismaintained asβ is further increased
until it reaches the second threshold value βns at which E∗ undergoes Neimark–Sacker
bifurcation. From this point onwards, further increases in β beyond βns determine the
loss of stability of E∗ and the appearance of stable invariant curves, periodic cycles
and chaotic trajectories. The amplitudes of fluctuations of those trajectories widen
as β grows, until a contact of the stable attractor with the boundary of its basin of
attraction occurs, thus causing a global bifurcation (contact bifurcation) after which
only unfeasible trajectories take place.
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Fig. 1 Bifurcation diagram of q1 (left), q2 (center) and ω (right). Parameters are a = 100, b = c = 1,
C = 3 and N = 15

In order to underline the role of β at a wider spectrum of parameters variations, we
provide numerical simulations in Fig. 2, giving examples of stability regions in the
C−β and N −β parameters spaces (panels a) and b), respectively). In detail, stability
regions, which denote parameters combinations for which E∗ is stable, are highlighted
by the gray points, while the white points denote parameters configurations for which
E∗ is unstable. Flip and Neimark–Sacker bifurcation thresholds are also shown by
the orange and blue lines, respectively. The simulations confirm the double stability
threshold for β, as stated in Corollary 1.

Simulations in panels a) highlight also the ambiguous role of implementation costs
C in influencing the stability properties of E∗. Indeed, several bifurcation values exist
along different bifurcation paths where C increases and to which various stability
losses and stability retrievals of E∗ may correspond. In detail, the left panel a) where
N = 7 shows that, given a fixed value of β, E∗ is stable provided that implementation
costs C are at sufficiently low values. Then, the increase in C determines, at first, the
loss of stability of theCournot–Nash equilibrium throughNeimark–Sacker bifurcation
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An evolutionary model with best response and imitative… 323

Fig. 2 Parameter spaces where stability regions are highlighted by the gray points. Common parameters
are a = 100, b = c = 1, while Cmax and Nmax denote maximum values of C and N such that condition
(2.4) is satisfied. a C − β planes. N = 7 (left), N = 15 (right). b N − β planes. C = 1 (left), C = 10
(right)

and then its stability retrieval through Neimark–Sacker bifurcation. Differently, in the
right panel a) where N = 15, E∗ is unstable provided that C is at sufficiently low
values. Then, the increase in C may determine the stability retrieval of E∗ through
flip bifurcation, its loss of stability through Neimark–Sacker bifurcation and, again,
its stability retrieval through Neimark–Sacker bifurcation.

We remark that the variety of results that emergeswith increasingC is an unexpected
occurrence since, usually, implementation costs in evolutionary settings have just a
destabilizing effect (see Brock and Hommes 1997; Hommes 2013 or Hofbauer and
Sigmund 2003). By contrast, in the present modeling setup, the ambiguous role of C
should be referred to its presence both within the evolutionary selection mechanism
andwithin the imitative rule. In particular, we note that the first stability retrieval of E∗
throughflip bifurcation,which takes placewhen the number N of players is sufficiently
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324 L. Cerboni Baiardi, A. K. Naimzada

high, can be explained by noting that, asC increases, the equilibrium share of imitators
ω∗ increases as well. Then, the share of imitators with a stabilizing role reaches
a sufficient size so that the destabilizing action of best responders is compensated.
Differently, the successive loss of stability of E∗ throughNeimark–Sacker bifurcation,
which may occur in both the scenarios where N = 7 and N = 15, should be referred
to the overcrowding imitators and the scarcity of best response players to drive the
dynamics toward convergence.Moreover, both the above-mentioned simulations show
that E∗ is stable whenever implementation costs C are sufficiently high, provided that
sufficiently high values of β are given. This circumstance can be proved by analytical
computations. To this purpose, let us define the valueCmax to be the least upper bound
of values of C such that condition (2.4) is satisfied. Clearly, it results Cmax = π∗.
Then, the stability conditions of E∗ given in Proposition 2, namely ω f < ω∗ < ωns ,
can be rewritten1 in the limit C → Cmax as

1 − 2

N − 1
<

1

1 + e−βπ∗ < 1 + 2

N − 1
.

Those relations are always satisfied for whichever β if N ≤ 3, while, if N > 3, the
same relations are satisfied provided that

β >
1

π∗ log

(
N − 3

2

)

.

The consequence of such a circumstance is that as players support increasingly burden
efforts to implement the best response behavior, the emergence of the Cournot–Nash
equilibrium is favored, provided that players have sufficient capability to distinguish
differences in performances.

In order to highlight the role of the number of players in determining the stability of
the stationary state E∗, we provide the bifurcation diagram in Fig. 3where the long-run
dynamics of the state variables are shown as N increases. The diagram reveals three
stability threshold values of N to which the same number of changes in the stability of
the stationary state E∗ corresponds. In detail, provided sufficiently low values of N ,
the Cournot–Nash equilibrium is stable. We remark that this circumstance is always
true. Indeed, the two relations that ensure the local asymptotic stability of E∗ given in
Proposition 2 are both matched2 at the extreme value N = 2. Then, as N increases,
the first loss of stability of E∗ takes place through a Neimark–Sacker bifurcation, thus
giving rise to a stable closed invariant curve. The curve widens as N increases and,

1 Indeed, there hold

lim
C→Cmax

ω f = 1 − 2

N − 1
, lim

C→Cmax
ω∗ = 1

1 + e−βπ∗ , lim
C→Cmax

ωns = 1 + 2

N − 1
.

2 Indeed, there hold

lim
N→2+ ω f < 0, lim

N→2+ ωns > 1.
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Fig. 3 Bifurcation diagram of q1 (left), q2 (center) andω (right) as N varies. Other parameters are a = 100,
b = c = 1, C = 10 and β = 0.2

then, disappears due to a global bifurcation that should be explained by the contact of
the attractor with its basin of attraction. Just after that global bifurcation no feasible
trajectory occurs. However, as N is sufficiently increased, a stable attractor (which is
again a closed invariant curve) acquires stability and merges with the stationary state
E∗ that becomes stable through a second Neimark–Sacker bifurcation. Moreover, at
higher values of N , the stationary state E∗ loses again its stability through the flip
bifurcation and a stable period-2 cycle arises. The stability property of the cycle C2
evolves with N as well and, after the usual period doubling cascade, it originates
periodic and chaotic trajectories. Finally, a new global bifurcation determines the
disappearance of any stable attractor and bound trajectories can no more exist.

The ambiguous role of N is also highlighted in the simulations provided in Fig. 2
panels b), where stability regions in the N −β parameters space are shown for C = 1
and C = 10 (left and right panels b), respectively). The simulations highlight the
occurrence of possible stability changes in the stationary state E∗ thatmay be observed
at increasing values of N . Again, the ambiguous role of the number of players should be
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Fig. 4 Sections of the phase space at fixed q1 = q∗ at N = 8 (left) and N = 11 (right). The blue points
represent the basin of attraction of inner attractors, while the white points represent the basin of unfeasible
trajectories. Common parameters are a = 100, b = c = 1, C = 10 and β = 0.04

referred to the presence of imitative behavior. It represents an unexpected circumstance
since, according to the Theocharis’ result provided in Theocharis (1960), most of the
literature concerning oligopoly competition highlights the destabilizing role of the
number of players.

4 Global analysis

The global analysis, performed through numerical simulations, reveals further inter-
esting dynamic phenomena that cannot be deduced through the local analysis provided
in the previous section. Before proceeding with simulations, we observe that the seg-
ment L := {(q∗, q∗, ω) : ω ∈ (0, 1)} is invariant under the action of map T , i.e.,
T (L) ⊂ L. In particular, initial conditions lying on L are mapped toward E∗ ∈ L in
one step. This implies that the setL is included in the basin of attraction of E∗. The role
of the segment L in shaping basins of attraction of feasible trajectories is highlighted
in simulations. Indeed, Figs. 4 and 5 show vertical sections of the phase space where
the variable standing for the output of best responders is kept fixed at the equilibrium
level q∗ and the invariant segment L is highlighted by the dashed red lines. In all the
scenarios, where the share of imitators lies between the extreme values 0 and 1, an
inner attractor is present and represents heterogeneous populations where rational and
imitative rules coexist in the long run. Basins of attraction of inner attractors are repre-
sented by the blue points, while the white points denote initial conditions from which
unfeasible trajectories originate. The shapes of the basins highlight that the possibility
for non-diverging dynamics to occur is conditioned upon initial conditions. Indeed,
feasible trajectories are likely to be observed as initial productions are closer to the
Cournot–Nash level. Also, whenever the initial productions sufficiently approach the
Cournot–Nash level, the convergence toward E∗ occurs regardless the share of imita-
tors. At the same time, if the share of best responders increases, the initial deviation
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Fig. 5 Sections of the phase space at fixed q1 = q∗ at β = 0.1 and β = 0.15. The blue points represent
the basin of attraction of the stable Cournot–Nash equilibrium, while the white points represent the basin
of unfeasible trajectories. Common parameters are N = 10, a = 100, b = c = 1 and C = 10

from the Cournot–Nash production, which still leads to non-divergent paths, grows
larger.

Moreover, the simulations in Fig. 4 show two different dynamic scenarios obtained
at different values in the number of players. In particular, in the left panel where
N = 8, the stationary state E∗ is locally asymptotically stable. Differently, in the
right panel where N = 11, E∗ has lost its stability through the flip bifurcation and
a stable inner period-2 cycle C2 is present. Noteworthy, the increase in N not only
determines the stability loss of the stationary state E∗, but it also influences the shapes
of basins of feasible trajectories by shrinking them around the invariant segment L.
This circumstance limits the feasible trajectories to the ones starting from productions
that are closer and closer to the Cournot–Nash level as N increases.

Other interesting dynamic scenarios obtained at different values of the intensity
of choice β are represented in Fig. 5. In detail, in the left panel where β = 0.1, the
stationary state E∗ is stable, while, in the right panel, E∗ has lost its stability through
a Neimark–Sacker bifurcation. This is due to the increase in β up to β = 0.15, beyond
the threshold βns , and an inner chaotic attractor is present. Noteworthy, when chaotic
dynamics arise, outputs of best responder and imitator players little differ from the
Cournot–Nash production level and feasible trajectories take place in the neighborhood
of the invariant segment L. In addition, most of the dynamics of the system is due to
the wide variations of imitators’ relative fraction. This means that the loss of stability
of E∗ represents a transition from a scenario where each player produces according to
a given rule in time toward a new scenario where shares of players produce at the same
level alternating their decision mechanisms. Moreover, the comparison of scenarios
provided in Fig. 5 highlights that the intensity of choice influences the shapes of the
basins of inner attractors. Indeed, increasing values of β widen the set of convergent
initial conditions around the invariant segmentL, at the expense of the extension of the
basin of unfeasible trajectories. Then, convergence toward the inner attractor is more
likely to be achieved when players increase their ability to distinguish differences in
performances.
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5 Conclusion

The oligopoly competition among static expectation best responders and imitators is
considered. Players select which decisional mechanism to exploit according to an evo-
lutionary selection mechanism such that the rule that brought the highest performance
in the past attracts more followers. The model we consider describes the dynamics
of N players by means of a discrete-time three-dimensional map and has a stationary
state with an important economic interpretation, representing a heterogeneous pop-
ulation where rational and imitative rules coexist and where players produce at the
Cournot–Nash level. We found that the intensity of choice, a parameter represent-
ing the evolutionary propensity to switch to the most profitable rule, and the cost of
the best response implementation have ambiguous roles in determining the stability
property of the mentioned stationary state. This is due to the presence of the imitative
rule and marks an important difference with most of the results from evolutionary
models (see e.g., Brock and Hommes 1997; Hommes 2013 or Hofbauer and Sigmund
2003). A similar occurrence has been found as the number of players involved in
the competition increases. This, again, should be referred to the presence of imitative
behavior and represents an unexpected circumstance because most of the literature
concerning oligopoly competition, starting from the Theocharis rule (see Theocharis
1960), highlights the destabilizing role of the number of players. The global analysis
of the model, performed by means of numerical simulations, reveals that variations
of both the number of players and the intensity of choice lead to the loss of stability
of the Cournot–Nash equilibrium and to the emergence of inner and stable periodic
cycles or chaotic attractors. We found that the increase in the number of players or
the increase in the intensity of choice influences the shape of the basin of the inner
attractor by, respectively, shrinking or widening that basin around the Cournot–Nash
production level.

Acknowledgements This work has been developed in the framework of the research project on “Dynamic
Models for behavioural economics” financed by DESP, University of Urbino. The authors thank two anony-
mous referees for their useful comments.

6 Appendix

Proof of Proposition 1

Stationary states of map T are the solutions of the following algebraic system of
equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q1 = max

{

0,
a − c

2b
− 1

2
(N − 1) ((1 − ω)q1 + ωq2)

}

q2 = (a − c − bN ((1 − ω)q1 + ωq2))(q21 + q22 ) − Cq1
(a − c − bN ((1 − ω)q1 + ωq2))(q1 + q2) − C

ω = 1

1 + eβ{(a−c−bN ((1−ω)q1+ωq2))(q1−q2)−C}

. (6.1)
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We observe that the second equation in (6.1) can be re-expressed as

q2 = π1 − C

π1 + π2 − C
q1 + π2

π1 + π2 − C
q2

which is equivalent to

(q2 − q1)(π1 − C) = 0.

This equation is satisfied if either q1 = q2 or π1 − C = 0. In the former case, the
conditionq1 = q2, togetherwith thefirst equation in (6.1), implies eitherq1 = q2 = q∗
or q1 = q2 = 0. Moreover, since the condition q1 = q2 implies π1 = π2, the
stationary share of imitators satisfying the third equation in (6.1) is fixed at the level
ω∗ = 1/(1+e−βC ). However, only the point (q∗, q∗, ω∗) is a feasible stationary state
of map T . Indeed, provided that both the representative best responder and imitator
set null productions, namely q1 = q2 = 0, the imitation rule (2.6) is not defined (see
Remark 2).

Let us consider the latter occurrence inwhichπ1−C = 0. In this case, the condition
q1(t + 1) = q1(t) can be rewritten to express the stationary value q2 in terms of q1 as

q2 = 2

(N − 1)ω

(
a − c

2b
− q1

(

1 + 1

2
(N − 1)(1 − ω)

))

. (6.2)

Hence, the condition π1 − C = 0 turns to a second-order polynomial in the variable
q1:

π1 − C =
(

2b
N

N − 1
q1 − a − c

N − 1

)

q1 − C = 0 (6.3)

whose positive root is q01 . Then, by substituting the value q01 in Eq. (6.2), the value
q02 is obtained. We observe that, provided that condition (2.4) holds, q02 is positive.
Indeed,

q02 = 1

4bN (N − 1)ω

(

(a − c)(3N − 1 + ω(N − 1))

− (N + 1 − ω(N − 1))
√

(a − c)2 + 8bN (N − 1)C

)

>
1

4bN (N − 1)ω

(

(a − c)(3N − 1 + ω(N − 1))

− (N + 1 − ω(N − 1))

√

(a − c)2 + 8N (N − 1)

(
a − c

N + 1

)2)

= a − c

4bN (N − 1)ω

(

2N + (N + 1)

(

1 −
√

1 + 8N (N − 1)

(N + 1)2

)
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+ ω(N − 1)

(

1 +
√

1 + 8N (N − 1)

(N + 1)2

))

= a − c

4bN (N − 1)ω

(

2 + ω(N − 1)

(

1 + 3N − 1

N + 1

) )

> 0.

Finally, the condition ω(t + 1) = ω(t) computed at q1 = q01 and q2 = q02 leads to the
equation G(ω) = 0, where

G(ω) =
(
a − c − bN ((1 − ω)q01 + ωq02 )

)
(q01 − q02 ) − C − 1

β
ln

(
1

ω
− 1

)

.

By Eq. (6.3), G(ω) can be simplified as follows:

G(ω) = − C

q01
q02 − 1

β
ln

(
1

ω
− 1

)

.

EquationG(ω) = 0 has a unique rootω0 within the interval [0, 1] such thatω0 ∈ (0, 1)
provided that condition 2.4 holds. Indeed, in this case, there holds

lim
ω→0+ G(ω) = −∞, lim

ω→1− G(ω) = +∞

and G ′(ω) > 0 for all ω ∈ (0, 1).

Proof of Proposition 2

The Jacobian matrix of map T computed at E∗ is given by

J (E∗) =

⎛

⎜
⎜
⎜
⎝

−(N − 1)(1 − ω∗)/2 −(N − 1)ω∗/2 0
π∗ − C

2π∗ − C

π∗

2π∗ − C
0

−βN · a − c

N + 1
· e−βC

(1 + e−βC )2
βN · a − c

N + 1
· e−βC

(1 + e−βC )2
0

⎞

⎟
⎟
⎟
⎠

.

The Jacobian matrix J (E∗) has a vanishing column, and its characteristic polynomial
can be factorized as P(λ) = −λP̂(λ), where

P̂(λ) = λ2 − λ

(

−N − 1

2
(1 − ω∗) + π∗

2π∗ − C

)

− N − 1

2
· π∗

2π∗ − C
(1 − ω∗) + N − 1

2
· π∗ − C

2π∗ − C
ω∗

is the characteristic polynomial of the 2×2 matrix Ĵ representing the Jacobian matrix
related to the first two recurrences of map T computed at q1 = q2 = q∗. Hence, the
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stability conditions for E∗ are the Jury’s conditions for the stability of equilibria in
two-dimensional discrete-time maps and read as

P̂(1) > 0 �⇒ N + 1 > 0 (always satisfied)

P̂(−1) > 0 �⇒ ω∗ > ω f := 1

2
· 3π

∗ − C

2π∗ − C
· N − 3

N − 1

det Ĵ < 1 �⇒ ω∗ < ωns := 2

N − 1
+ π∗

2π∗ − C

and the thesis follows.
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