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Abstract
We study the exploitation of a common groundwater resource, first as a static and then
as a differential game, in order to take into account the strategic and dynamic interac-
tions among the users of the resource. We suppose that firms can form coalitions or
can decide not to cooperate. The non-cooperation regime is characterized by pumping
that lead to depletion of the aquifer; the cooperation preserves the resource. Open-loop
and feedback equilibria have been computed and compared in order to characterize
the existence of cooperators and defectors in water resources management.

Keywords Groundwater extraction · Competition and cooperation · Differential
game

JEL Classification D62 · D99 · Q15

1 Introduction

During the second half of the twentieth century, groundwater withdrawals have
increased up to the point that they now supply water to half of the worlds population. It
is said that groundwater is the world’s most extracted raw materials, see Jaroslav and
Annukka (2007). This extra use has caused water table drawdowns and depletion of
groundwater resources inmany parts of the world and this highlights the importance of
groundwatermanagement. Intensive use of groundwater leads to awide array of social,
economic and environmental consequences such as land subsidence, increases in the
vulnerability of agriculture and other uses of the water to climate change, increases
in pumping costs (Burke 2003). The open-access nature of natural resources, such
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as groundwater and the accompanying externalities, in combination with the failure
to treat natural resources as capital, has made this an attractive research area (Brown
2000), for the development of rules for efficient water allocation among competing
uses over time and space (Koundouri and Xepapadeas 2004). The problems created
by the growing pressure of water extractions are twofold: one is water scarcity in
local watersheds or whole basins created by excessive surface and groundwater with-
drawals and the other is water degradation from pollution loads leading to many tracts
of rivers and whole aquifers being spoiled, and losing their capacity to sustain ecosys-
tem functioning and human activities. Interest in water resources conflict resolution
has increased over the last decades and various quantitative and qualitative methods
have been proposed for conflict resolution in water resources management. Gisser and
Sanchez (1980) analyze aquifer management regime and find that welfare gains from
policy intervention are insignificant compared with competitive outcomes. They con-
clude that this dependence is negligible if the capacity of the aquifer is large. Gisser
and Sanchez’s theoretical prediction is that if the storage capacity of the aquifer is
relatively large, then the two behaviors would be very close. For an overview of these
results, it is possible to see Koundouri (2004). Several studies have used game the-
ory to provide frameworks for studying the strategic actions of individual players to
develop more broadly acceptable solutions. In particular, authors assume that farmers
behave myopically in the calculation of the private solution, that is, farmers take deci-
sions over a short period of time, without considering the impact of the other users on
the available stock. Other authors propose differential games in order to explore the
behavior of farmers in the long run. Negri (1989) characterizes analytical solutions of
the water table level at the steady state for two types of Nash equilibria, open-loop and
feedback solutions, and for the socially optimal case, also referred as Pareto optimal
case. He shows that the dependence between the socially optimal solution and the
open-loop solution is positive and captures the pumping cost externality. This depen-
dence between the two kinds of solutions is positive and represents the inefficiency of
private exploitation. Provencher and Burt (1993) prove, using a discrete time dynamic
programming, that if the objective function of the problem is concave, the feedback
solution is inefficient, in comparison with the socially optimal solution. Rubio and
Casino (2001, 2003) adapt the Gisser and Sanchez model as a differential game and
derive analytical solutions of the socially optimal, open-loop and feedback cases over
an infinite planning horizon. They also confirmNegri’s result, strategic behavior exac-
erbates the inefficiency of private solutions. Moreover, they confirm the Gisser and
Sanchez rule when the strategic externality is considered, for large aquifers, the depen-
dent solutions get closer at the steady state. Esteban and Albiac (2011) take ecosystem
damages into consideration in modeling aquifer management regimes and they show
that by including these environmental externalities into the analytical framework,
results can change substantially.

In our paper, we adapt the model proposed by Rubio and Casino (2001) and we
introduce the environmental damages due to over-exploitation of the groundwater
resource as in Esteban and Albiac (2011). Rubio and Casino compare socially optimal
and private extraction of a commonproperty aquifer, aswell as all papers quoted,where
only these two kinds of equilibria are considered. Our extension to existing literature
is that we consider heterogeneous farmers in terms of behavior of the exploitation of
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the water resource. In particular, we consider N identical firms that differ in terms
of their choice to cooperate or defect. In a water conflict, in fact, different groups or
individuals can be modeled as players. Each player can make choices unilaterally and
the combined choices of all players together determine the possible outcomes of the
conflict. Instead of unilaterally moving, counties also may decide to cooperate and
form coalitions leading to Pareto optimal outcomes. Game theory techniques provide
an effective and precise language for discussing specific water conflicts. A systematic
study of a strategic water dispute provides insights about how the conflict can be
better resolved and may suggest solutions of the problem of the exploitation of the
groundwater. We study the exploitation of a common groundwater resource first as a
static and then as a differential game in order to take into account the strategic and
dynamic interactions between the users of the resource by several farmers. In particular,
we analyze open-loop and feedback equilibria and we illustrate the implications of
the different strategies on extraction rates and groundwater table levels. Results show
that both equilibria depend on the number of cooperators and defectors and that the
difference between them is very small. So results establish that potential benefits
coming from the regulation of the resource will be relatively small.

The paper is organized in the following way. Section 2 presents the model, while
Sect. 3 describes the analytical resolution of the static game. Section 4 proposes the
differential game and computes open-loop Nash equilibria. Moreover, it studies also
the Pareto optimal solution and a comparative statics about the parameters of the
model. Section 5 computes feedback Nash equilibria and makes a numerical analysis
that allows us to compare the two different solutions. Section 6 concludes.

2 The basic model

We assume that the global demand for irrigation is a negatively sloped linear function,
defined as follows

W = g + kP (1)

where W is the amount of the groundwater pumped, P is the price of water, k < 0, is
the price coefficient and g > 0, is the intercept of the water demand function.

As inRubio andCasino (2001),we adapt themodel proposed byGisser and Sanchez
(1980) to study the strategic behavior effects in the exploitation of the groundwater
resource. In particular, we suppose that access to the aquifer is restricted by land
ownership and consequently we have that the number of farmers is fixed and finite
over time. We assume that N is the number of farmers and wh is the pumping rate of
the farmer h. The individual demand function is

wh = δh(g + kP) h = 1, . . . , N (2)

where 0 < δh < 1 and
∑N

h=1 δh = 1.

Let
p(wh) = wh

kδh
− g

k
h = 1, . . . , N (3)
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the revenue of the farmer h is

∫

p(wh)dwh = 1

2kδh
w2
h − g

k
wh h = 1, . . . , N (4)

The total cost of extraction depends directly with the pumping rate and inversely on
the level of the water table

C(H ,W ) = (c0 + c1H)W (5)

where H is the height of the aquifer, i.e., the water table elevation above some arbitrary
level that is considered as being the bottom of the aquifer. The fixed cost linked to
the hydrologic cone is c0 > 0 and the marginal pumping cost per acre foot of water
pumped per foot of lift is c1 < 0.

The individual farmer’s extraction cost is

Ch(H , wh) = (c0 + c1H)wh h = 1, . . . , N (6)

The differential equation which describes the dynamics of the water table is obtained
as the difference between natural recharge and net extractions

Ḣ = 1

AS
[R + (α − 1)W ] H(0) = H0 (7)

where R denotes the deterministic and natural recharge, AS is the area of the aquifer,
0 < α < 1 is the constant return flow coefficient of irrigation water.

Moreover, we introduce the cost of environmental damages

C̄(W ) = β[−(α − 1)W − R] (8)

This cost is defined as the volume depleted from the aquifer in each period [−(α −
1)W − R]multiplied by β. Aquifer depletion is the difference between net extractions
(1 − α)W and recharge R. Parameter β is the cost of damages to ecosystems from
each cubic meter of aquifer depletion.

The individual farmer’s damage cost is

C̄(wh) = β[−(α − 1)wh − Rδh] h = 1, . . . , N (9)

Finally, the farmer’s h net revenues are equal to thewillingness-to-pay for groundwater
minus the extraction costs of the resources and minus the damage costs

1

2kδh
w2
h − g

k
wh − (c0 + c1H)wh − β[−(α − 1)wh − Rδh] h = 1, . . . , N (10)
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2.1 Game rules and payoffs

First of all, we suppose that all farmers are identical, so using symmetry we can write
that δh = 1

N . The objective of each country is to maximize its profits choosing if it
is better to cooperate or not. Let us assume that a non-trivial coalition is composed
by m signatory countries (i = 1, . . . ,m) and consequently the remaining N − m are
considered nonsignatory countries ( j = m+1, . . . , N ). So we have a simple structure
in which only one coalition composed by m countries exists, while the other N − m
countries are defectors.

3 The static game

We suppose that all agents are myopic and do not make serious considerations about
the future effects that their water withdrawal produces. So they maximize their current
profit, solving the following static game.

Each cooperator determines wi by solving the optimization problem

max
wi

m∑

i=1

πi = max
wi

{
N

2k

m∑

i=1

w2
i − g

k

m∑

i=1

wi − (c0 + c1H)

m∑

i=1

wi

−β

[

−(α − 1)
m∑

i=1

wi − R

N

]}

that gives us the total profit of the cooperative venture.
Each defector determines w j by solving the optimization problem

max
w j

π j = max
w j

{
N

2k
w2

j − g

k
w j − (c0 + c1H)w j − β

[

−(α − 1)w j − R

N

]}

Assuming interior optimum, the first-order conditions give a systemof linear equations
in the unknowns wi

max
wi

m∑

i=1

πi = 0 ⇐⇒ N

k
wi − g

k
− c0 − c1H + β(α − 1) = 0 (11)

Assuming again interior optimum, the first-order conditions give a system of linear
equations in the unknowns w j

max
w j

π j = 0 ⇐⇒ N

k
w j − g

k
− c0 − c1H + β(α − 1) = 0 (12)

Equations (11) and (12) give a linear system of N equations with N unknowns.
However, it is straightforward to see that any cooperator faces the same optimiza-
tion problem, and analogously for defectors. So, adding the first m equations and the
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remaining N − m equations we get a system of two equations in two unknowns wi

and w j . In this manner, we obtain two reaction functions, that are

wi = k

N

[
c0 + c1H + g

k
− β(α − 1)

]
(13)

w j = k

N

[
c0 + c1H + g

k
− β(α − 1)

]
(14)

These reaction functions allow us to compute the optimal groundwater stock. In fact,
from differential equation (17) we have:

Ḣ = 0 ⇐⇒ R + m(α − 1)wi + (N − m)(α − 1)w j = 0

and substituting (13) and (14) we obtain the following:

Proposition 1 There exists a uniquemyopic stationary equilibriumwhere the elevation
of the water table is given by:

H∗
MY = − R

c1k(α − 1)
− g

c1k
− c0

c1
+ β(α − 1)

c1
(15)

and the individual demand functions, respectively, of a cooperator and of a defector,
are:

w∗
i(MY ) = w∗

j(MY ) = − R

N (α − 1)
+ β(1 − k)(α − 1)

N
(16)

We observe that the myopic equilibrium H∗
MY does not depend on the number of

cooperators and defectors. It is also independent of the number N of countries that
exploit the resource.

The individual demand functions of cooperators and defectors are identical and
do not depend on the number of countries which join the agreement but only on the
number of countries N which exploit the resource.

4 The differential game

In the optimal control problem, the objective of each country is to maximize its dis-
counted profit choosing if it is better to cooperate or defect. We propose a differential
game, in which we calculate open-loop Nash equilibria in order to determine both the
optimal paths of the extraction levels and the dynamic of the water table. Time t is
continuous, with t ∈ [0,+∞[ and countries discount future costs using the constant
rate r > 0. We use a non-cooperative game framework solved in a backward order. As
a result of the first stage, m cooperators and N −m defectors exist and, in the second
stage, cooperators and defectors choose their abatement levels.
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Fixed the extraction levels of defectors, cooperators bind to a level of extraction
that maximizes the discounted value of the aggregate payoff of m countries:

πi = max
wi

m∑

i=1

∫ +∞

0
e−r t

{
N

2k
wi

2 − g

k
wi − (c0 + c1H)wi

−β

[

−(α − 1)wi − R

N

]}

dt

Given the extraction levels of cooperators, defectors bind to a level of extraction that
maximizes the discounted value of their payoff:

π j = max
w j

∫ +∞

0
e−rt

{
N

2k
w j

2 − g

k
w j − (c0 + c1H)w j − β

[

−(α − 1)w j − R

N

]}

dt

In both cases, the dynamic of water table is the same:

Ḣ = 1

AS
[R + (α − 1)W ] H(0) = H0 (17)

The results obtained are proposed in the following:

Proposition 2 The unique stationary open-loop Nash equilibrium for the water table
and the rate of extraction for cooperators and defectors is

H∗ = − R

rc1k(α − 1)[mμ + (N − m)ξ ] − 1

c1

[g

k
+ c0 − β(α − 1)

]

where

μ =
[

AS

rASN − (α − 1)c1mk

]

and ξ =
[

AS

rASN − (α − 1)c1k

]

and

w∗
i = − μR

(α − 1)[mμ + (N − m)ξ ]
w∗

j = − ξ R

(α − 1)[mμ + (N − m)ξ ]

Proof See “Appendix”. ��
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Now, we consider the system composed by the adjoint equations and the dynamic
of the water table

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇i = rλi + c1mwi

λ̇ j = rλ j + c1w j

Ḣ = 1

AS

⎡

⎣R + (α − 1)
m∑

i=1

w1 + (α − 1)
N∑

j=m+1

w j

⎤

⎦

Substituting (28) and (29), we obtain the following system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ̇i = qλi + lH + L

λ̇ j = pλ j + t H + Q

Ḣ = −sλi − vλ j + Hz + M

where

q = r − c1mk(α − 1)

NAS
> 0, p = r − c1k(α − 1)

NAS
> 0, l = c12mk

N
< 0

L = c1mk

N

[g

k
+ c0 − β(α − 1)

]
, s = mk(α − 1)2

N {AS}2 < 0, t = c12k

N
< 0

Q = c1k

N

[g

k
+ c0 − β(α − 1)

]
, v = (N − m)k(α − 1)2

N {AS}2 < 0,

z = c1k(α − 1)

AS
< 0

M = 1

AS

[
R + k(α − 1)

(g

k
+ c0 − β(α − 1)

)]

The equilibrium point of the system is

H̄ = −Mpq + sLp + vQq

sl + vt + zpq

λ̄i = l(Mpq + sLp + vQq)

q(sl + vt + zpq)
− L

q
, λ̄ j = t(Mpq + sLp + vQq)

p(sl + vt + zpq)
− Q

p

which is the same obtained in Proposition 2.
The stability properties of the stationary state (H̄ , λ̄, λ̄) can be analyzed evaluating

the following associated Jacobian matrix:

J (H , λi , λ j ) =
⎡

⎣
q 0 l
0 p t

−s −v z

⎤

⎦
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We have that:

Det J (H̄ , λ̄i , λ̄ j ) = c1k(α − 1)[c1km(m − N − 1) + N 2r AS)] < 0

instead

Tr J (H̄ , λ̄i , λ̄ j ) = 2NrAS + c1k(α − 1)(n − m − 1) < 0

⇐⇒ m >
2NrAS + c1k(α − 1)(N − 1)

c1k(α − 1)

These results imply that the steady state of the system is a saddle point and that there
exists an optimal path which leads to it.

Now, we want to compare the stationary equilibrium of the open-loop case with the
value obtained in the myopic case. We value the difference of the aquifer heights

H∗ = − R

rc1k(α − 1)[mμ + (N − m)ξ ] − 1

c1

[g

k
+ c0 − β(α − 1)

]

and

H∗
MY = − R

c1k(α − 1)
− g

c1k
− c0

c1
+ β(α − 1)

c1

So, we have

H∗ − H∗
MY = −R[c1mk(α − 1) − r AS(m2 − m + N )]

(rASN − (α − 1)c1mk)(rASN − (α − 1)c1k)

We observe that this difference depends on the number of agents that exploit the
resource and on the number of cooperators. This means that the open-loop Nash
equilibrium is more efficient with respect to the equilibrium obtained in the myopic
case.

4.1 The Pareto optimum

The goal of this section is to estimate the inefficiency of equilibria when cooperators
and defectors coexist, compared with the efficient solution of the problem represented
by the Pareto optimum.We analyze the difference between the Pareto optimal solution
and any other solution computed, which is defined inefficiency, in terms of stock. For
the Pareto optimal solution, we consider that only the grand coalition exists and so
m = N . This problem captures the socially optimal exploitation of groundwater and
in this case the level of the stock at the steady state is

H∗
PO = − R

rc1k(α − 1)Nμ
− 1

c1

[g

k
+ c0 − β(α − 1)

]
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For the private exploitation of groundwater, we suppose that there are no coalitions,
so m = 0. In this case, the level of the stock at the steady state is

H∗
NC = − R

rc1k(α − 1)Nξ
− 1

c1

[g

k
+ c0 − β(α − 1)

]

This result coincides with that proposed by Rubio and Casino (2001). If we consider
how the level of stock varies with m, we have the following:

Proposition 3 When the number of cooperators m increases (respectively, decreases)
the level of the height of the aquifer, at the steady state, increases (decreases) both in
the open-loop case and in the Pareto optimum one.

Proof See “Appendix”. ��

Now, we compare analytically the efficiency of the different level of stock solu-
tions, at the steady state. In order to define the inefficiency in terms of stock, we
compute the difference between steady-state stock levels obtained from open-loop
Nash equilibrium and the Pareto optimal solution. The difference is

H∗
PO − H∗ = R

rc1k(α − 1)

{
(N − m)(μ − ξ)

Nμ[mμ + (N − m)ξ ]
}

(18)

where

R

rc1k(α − 1)
< 0, Nμ =

[
AS

rASN − (α − 1)c1mk

]

> 0,

[mμ + (N − m)ξ ] = (NAS)2r − (α − 1)c1km(N − m − 1)

[rASN − (α − 1)c1mk][rASN − (α − 1)c1k] > 0

and

μ − ξ = AS(α − 1)c1k(m − 1)

[rASN − (α − 1)c1mk][rASN − (α − 1)c1k] < 0

and so the difference (18) is positive. This means that non-cooperative solution is
inefficient, for all values of m.

4.2 Comparative statics

In this section, we propose an analysis of the steady state (H , wi , w j ) = (H∗, w∗
i , w

∗
j )

when the parameters of the model change. First of all, we are interested in the variation
of the equilibrium, in relation to the number of players and in particular to those who
cooperate and those that do not participate in the coalition. It is possible to see that,
if the number of countries N that exploit the groundwater resource increases, then
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always the steady state of water table and the rate of extraction, both for cooperators
and for defectors, decreases. In fact, we have

∂H∗

∂N

= −R[c1kmr AS(1 − α)(m2 + 2N − 1) + c21k
2m2(1 − α)2 + Nr2(AS)2(2m2 − 2m + N )]

r AS[N 2r AS + c1km(N − m + 1)(1 − α)]2
< 0

∂w∗
i

∂N

= R[c21k2m(1 − α)2 + r ASkc1m(1 − α)(m − 1) + 2r ASNc1k(1 − α) + r2(AS)2N 2]
(α − 1)[rASN2 + c1mk(1 − α) + c1mkN (1 − α) − c1m2k(1 − α)]2

< 0

∂w∗
j

∂N

= R[c21k2m2(1 − α)2 + r ASkc1m2(1 − α) + r ASNc1mk(1 − α) + r2(AS)2N 2]
(α − 1)[rASN2 + c1mk(1 − α) + c1mkN (1 − α) − c1m2k(1 − α)]2

< 0

It is also possible to prove that the steady state of the water table and the rate of
extraction of defectors decreases with the number of signatories

∂H∗

∂m
= R[c1k(α − 1) − NrAS][m2c1k(α − 1) − NrAS(2m − 1)]

r AS[c1km(m − N − 1)(α − 1) + N 2r AS]2 > 0

∂w∗
j

∂m
= −Rkc1(2m − 1 − N )[rASN(1 − 2m) + c1m2k(α − 1)]

[rASN2 + c1mk(1 − α) + c1mkN (1 − α) − c1m2k(1 − α)]2 > 0

However, the steady state of the rate of extraction of cooperators can increase or
decrease with respect to the number of countries belonging to the agreement. The
partial derivative of steady state of extraction of cooperators is

∂w∗
i

∂m
= −Rkc1(2m − 1 − N )[−rASN + c1k(α − 1)]

[rASN2 + c1mk(1 − α) + c1mkN (1 − α) − c1m2k(1 − α)]2

which can be positive or negative.
Table 1 shows the effects on the equilibrium (H , wi , w j ) = (H∗, w∗

i , w
∗
j )of chang-

ing the parameters of the model. These effects have been estimated from the partial
derivatives of the equilibrium coordinates H∗,w∗

i andw∗
j . About the natural recharge,

the equilibrium coordinates increase, instead with respect to the area of aquifer AS, the
share of H∗ decreases while the fitness ofw∗

i decreases andw∗
j increases. The equilib-

rium share of the demand function of cooperators and defectors does not depend on the
cost of damages to ecosystems from aquifer depletion β and on the fixed cost linked
with the hydrologic cone c0, instead with respect to these parameters the equilibrium
share of H∗ goes down or up.
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Table 1 The effects on the
equilibrium (H∗, w∗

i , w∗
j ) of the

parameters model

H∗ w∗
i w∗

j

↗ R ↗ ↗ ↗
↗ α ↘↗ ↘↗ ↘↗
↗ k ↘↗ ↗ ↗
↗ c1 ↘↗ ↗ ↘
↗ c0 ↘↗ ←→ ←→
↗ AS ↘ ↗ ↘
↗ β ↗ ←→ ←→
↗ r ↘ ↗ ↘

5 Feedback Nash equilibrium

In this section, we focus on Nash equilibria in feedback strategies. In the feedback
information structure, farmers observe the level of the resource during the planning
period, i.e., they consider informations about the state of the water table over time.
It is more credible for the farmers to make decisions about their behavior assuming
that strategies of the other farmers depend not only on time but on the state of the
groundwater resource.

The Hamilton–Jacobi–Bellman equation for cooperators is:

rVi = max
wi

⎡

⎣
m∑

i=1

{
N

2k
wi

2 − g

k
wi − (c0 + c1H)wi − β

[

−(α − 1)wi − R

N

]}

+ V ′
i
1

AS

⎛

⎝R + (α − 1)
m∑

i=1

wi + (α − 1)
N∑

j=m+1

w j

⎞

⎠

⎤

⎦ (19)

The Hamilton–Jacobi–Bellman equation for defectors is:

rVj = max
w j

⎡

⎣
{
N

2k
w j

2 − g

k
w j − (c0 + c1H)w j − β

[

−(α − 1)w j − R

N

]}

+ V ′
j
1

AS

⎛

⎝R + (α − 1)
m∑

i=1

wi + (α − 1)
N∑

j=m+1

w j

⎞

⎠

⎤

⎦ (20)

Vi (H) and Vj (H) denote the optimal control value functions associated with the
optimization problem assigned, V ′

i and V ′
j are the first derivatives with respect to the

state variable H . The optimal value of the control variables must satisfy the first-order
conditions that are:
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N

k
wi − g

k
− c0 − c1H + β(α − 1) + V ′

i
(α − 1)

AS
= 0

N

k
w j − g

k
− c0 − c1H + β(α − 1) + V ′

j
(α − 1)

AS
= 0 (21)

They define the optimal strategies of pumping as functions of the height of aquifer.
From (21) we have that:

wi = k

N

[

−V ′
i
(α − 1)

AS
+ g

k
+ c0 + c1H − β(α − 1)

]

w j = k

N

[

−V ′
j
(α − 1)

AS
+ g

k
+ c0 + c1H − β(α − 1)

]

(22)

Substituting these pumping levels in Eqs. (19) and (20), and setting D = g

k
+ c0 −

β(α − 1), we obtain the following nonlinear differential equations:

rVi = (V ′
i )

2
[−mk(α − 1)2

2N (AS)2

]

+ V ′
i

[
R

AS
− V ′

j
k(N − m)(α − 1)2

N (AS)2

+ k(α − 1)(D + c1H)

AS

]

− mk(D + c1H)2

2N
+ βR

N
(23)

rVj = (V ′
j )
2
[
(1 − 2N − 2m)k(α − 1)2

2N (AS)2

]

+ V ′
j

[
R

AS
− V ′

i
km(α − 1)2

N (AS)2

+ k(α − 1)(D + c1H)

AS

]

− k(D + c1H)2

2N
+ βR

N
(24)

In order to compute the solutions of the above equations, given the linear quadratic
structure of the model, we guess that the optimal value functions are quadratic and
consequently the equilibrium strategies are linear with respect to the state variable.
Precisely, we postulate quadratic functions of the form

Vi = 1

2
Ai H

2 + Bi H + Ci (25)

Vj = 1

2
A j H

2 + Bj H + C j (26)

where A, B and C are constant parameters of the unknown value functions which are
to be determined. Substituting Eqs. (25) and (26) and their derivatives in Eqs. (23) and
(24), we obtain a system of six algebraic Riccati equations for the coefficients of the
value functions.

r Ai = −mk(α − 1)2

N (AS)2
A2
i + 2k(α − 1)c1

AS
Ai − 2k(N − m)(α − 1)2

N (AS)2
Ai A j − kmc21

N

r Bi = −mk(α − 1)2

N (AS)2
Ai Bi + k(α − 1)c1

AS
Bi +

[
R

AS
+ k(α − 1)D

AS

]

Ai
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− k(N − m)(α − 1)2

N (AS)2
(Ai B j + A j Bi ) − kmDc1

N

rCi = −mk(α − 1)2

2N (AS)2
B2
i +

[
R

AS
+ k(α − 1)D

AS

]

Bi − k(N − m)(α − 1)2

N (AS)2
Bi B j

− kmD2

2N
+ βR

N

r A j = (1 − 2N − 2m)k(α − 1)2

N (AS)2
A2
i + 2k(α − 1)c1

AS
A j − 2km(α − 1)2

N (AS)2
Ai A j − kc21

N

r B j = (1 − 2N − 2m)k(α − 1)2

N (AS)2
A j B j + k(α − 1)c1

AS
Bj +

[
R

AS
+ k(α − 1)D

AS

]

A j

− km(α − 1)2

N (AS)2
(Ai B j + A j Bi ) − kDc1

N

rC j = (1 − 2N − 2m)k(α − 1)2

2N (AS)2
B2
j +

[
R

AS
+ k(α − 1)D

AS

]

Bj − km(α − 1)2

N (AS)2
Bi B j

− kD2

2N
+ βR

N
(27)

This system does not have an analytical solution. Equation (27) have four pairs of
solutions, but only one satisfies the stability condition dḢ

dH < 0.Toobtain this condition,
we substitute the linear strategies in the dynamic constraint of the water table which
yields the following differential equation

Ḣ = R

AS
+ km(α − 1)

NAS

[

−V ′
i
(α − 1)

AS
+ D + c1H

]

+ k(N − m)(α − 1)

NAS

[

−V ′
j
(α − 1)

AS
+ D + c1H

]

and the stability condition

(α − 1)k

NAS

{−m(α − 1)

AS
Ai − (N − m)(α − 1)

AS
A j + Nc1

}

< 0

Using this inequality, it is possible, in the following numerical application, to be able
to select the value functions and to analyze the stability of coalitions for the feedback
Nash equilibrium.

5.1 Numerical analysis

We consider numerical simulations in order to compare myopic, open-loop and feed-
back extraction strategies and to show, in particular, how cooperation and defection
among farmers influence these results. Simulations are carried out in Maple 17 and
the parameter values are the same presented by Gisser and Sanchez (1980). We have
that the number of countries is N = 500, while the number of cooperators is not fixed,
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0 ≤ m ≤ 500. The initial water table elevation is H0 = 3400 ft above sea level, the
natural recharge is R = 173,000 ac ft/yr, the aquifer area is AS = 135,000 ac/yr, the
return flow coefficient is α = 0.27, the intercept pumping cost function is c0 = 125
dollars/ac ft, while the slope pumping cost function is c1 = − 0.035 dollars/ac ft/ft of
lift, the intercept water demand function is equal to g = 470,375 ac ft/yr, the slope
water demand function is k = − 3259 ac ft/yr, the cost of damages is β = 0, 05
dollars/ac ft and the constant rate is r = 0.05.

We obtain the following results

m H∗
MY H∗

OL H∗
FB

0 1526.362 1526.420 1526.419
50 1526.362 1526.670 1526.667
100 1526.362 1527.432 1527.422
150 1526.362 1528.705 1527.685
200 1526.362 1530.488 1530.457
250 1526.362 1532.782 1531.911
300 1526.362 1535.588 1534.543
350 1526.362 1538.910 1537.863
400 1526.362 1542.749 1542.709
450 1526.362 1547.110 1546.085
500 1526.362 1551.998 1551.998

The numerical simulation shows that both the stationary open-loop Nash equilib-
rium and the stationary feedback Nash equilibrium are influenced by the numbers of
cooperators and they increase if m increases. Instead, the myopic Nash equilibrium is
independent both of the number of countries that join a coalition and also of N . We
observe that the stationary open-loop Nash equilibrium is higher than the stationary
feedback Nash equilibrium also if the difference is very small. Moreover, the value
of the myopic Nash equilibrium corresponds to the case in which all countries are
defectors, so we have the following relationship among the stationary values of the
water table

H∗
MY < H∗

FB < H∗

This inequality confirms the effect of strategic externality, but also the inefficiency of
the private solution which is represented by the myopic equilibrium, if compared with
the socially optimal exploitation that corresponds to the open-loop and feedback Nash
equilibria when N = m.

6 Concluding remarks

In this paper,we have extended the literature quoted, examining the formation of agree-
ments in a static and dynamic context of a common groundwater resource exploitation.
We have developed the model proposed by Rubio and Casino (2001) taking also
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ecosystem damages in consideration and we have supposed that countries can coop-
erate or defect. In the literature, only the socially optimal exploitation or the private
exploitation of the aquifer are proposed. These strategies correspond to cases of full
cooperation or total defection. The contribution we have added is to analyze the possi-
bility that countries decide to form coalitions to preserve water resources or to defect,
causing greater exploitation of aquifer. So, our aim is to consider N countries that
differ in terms of choice of their behavior. We have shown as in the static context, the
myopic stationary equilibrium does not affect by the number of cooperators and defec-
tors. Instead, in the dynamic game, the number of cooperators and non-cooperators
affect the steady states of the water table and the rate of extraction for cooperators and
defectors. In particular, we have illustrated the implications of the different strategies,
open-loop and feedback solutions, on extraction rates and groundwater table levels
showing that in the stationary open-loop Nash equilibrium the level of the water is
higher than in the stationary feedback Nash equilibrium, also if this difference is very
small.

Moreover, we have confirmed how private solutions are inefficient compared to the
Pareto optimum, in terms of stock andwe have proposed a comparative statics analysis
with respect to all parameters which characterize the model.

Appendix

Proof of Proposition 2 In order to solve the problem proposed, we use the maximum
principle. Let us define the current value of the Hamiltonian H in the standard way.

Hi =
m∑

i=1

{
N

2k
wi

2 − g

k
wi − (c0 + c1H)wi − β

[

−(α − 1)wi − R

N

]}

+ λi

AS

⎡

⎣R + (α − 1)
m∑

i=1

wi + (α − 1)
N∑

j=m+1

w j

⎤

⎦ i = 1, . . . ,m

H j = N

2k
w j

2 − g

k
w j − (c0 + c1H)w j − β

[

−(α − 1)w j − R

N

]

+ λ j

AS

⎡

⎣R + (α − 1)
m∑

i=1

wi + (α − 1)
N∑

j=m+1

w j

⎤

⎦ j = m + 1, . . . , N

where λi and λ j are the adjoint variables. We obtain the following set of necessary
conditions for an interior open-loop equilibrium:

∂Hi

∂wi
= 0 ⇐⇒ N

k
wi − g

k
− c0 − c1H + β(α − 1) + λi

AS
(α − 1) = 0 i = 1, . . . ,m

∂H j

∂w j
= 0 ⇐⇒ N

k
w j − g

k
− c0 − c1H + β(α − 1) + λ j

AS
(α − 1) = 0

j = m + 1, . . . , N
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which give us:

wi = k

N

[
g

k
+ c0 + c1H − β(α − 1) − λi

AS
(α − 1)

]

i = 1, . . . ,m (28)

w j = k

N

[
g

k
+ c0 + c1H − β(α − 1) − λ j

AS
(α − 1)

]

j = m + 1, . . . , N

(29)

The adjoint equations are:

λ̇i = rλi + c1mwi i = 1, . . . ,m

λ̇ j = rλ j + c1w j j = m + 1, . . . , N

and the transversality conditions being:

lim
t−→+∞ e−r tλi (t) ≥ 0 lim

t−→+∞ e−r tλi (t)H(t) = 0 i = 1, . . . ,m

lim
t−→+∞ e−r tλ j (t) ≥ 0 lim

t−→+∞ e−r tλ j (t)H(t) = 0 j = m + 1, . . . , N

Taking into account that, at the steady state, Ḣ = λ̇ = 0, the first-order conditions
and the adjoint equations are used to determine the stationary equilibrium

λ̇i = 0 ⇐⇒ λi = −c1m[g + k(c0 + c1H − β(α − 1))]
[

AS

rASN − (α − 1)c1mk

]

i = 1, . . . ,m

λ̇ j = 0 ⇐⇒ λ j = −c1[g + k(c0 + c1H − β(α − 1))]
[

AS

rASN − (α − 1)c1k

]

j = m + 1, . . . , N

and moreover

λ̇i = 0 ⇐⇒ wi = − rλi
mc1

and λ̇ j = 0 ⇐⇒ w j = −rλ j

c1

From differential equation, we have

Ḣ = 0 ⇐⇒ R + m(α − 1)wi + (N − m)(α − 1)w j = 0

By substitution of λi and λ j , we obtain the steady-state value of water table

H∗ = − R

rc1k(α − 1)[mμ + (N − m)ξ ] − 1

c1

[g

k
+ c0 − β(α − 1)

]
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where

μ =
[

AS

rASN − (α − 1)c1mk

]

and ξ =
[

AS

rASN − (α − 1)c1k

]

and so

λ∗
i = μc1mR

r(α − 1)[mμ + (N − m)ξ ]
λ∗
j = ξc1R

r(α − 1)[mμ + (N − m)ξ ]
and

w∗
i = − μR

(α − 1)[mμ + (N − m)ξ ]
w∗

j = − ξ R

(α − 1)[mμ + (N − m)ξ ]
��

Proof of Proposition 3 We have

∂H∗

∂m
= R[c1k(α − 1) − NrAS][m2c1k(α − 1) − NrAS(2m − 1)]

r AS[c1km(m − N − 1)(α − 1) + N 2r AS]2 > 0

∂H∗
PO

∂m
= R

rNAS
> 0

��
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