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Abstract
In this paper, we propose and analyze a two-stage oligopoly game in which firms first
simultaneously choose production technologies and in the second stage simultaneously
choose production quantities. After characterizing the Nash equilibrium of the game,
we cast our static model in a dynamic setting exploring the stability properties of the
market equilibrium in two different cases: (i) exogenously distributed technologies
and Cournot adjustments and (ii) endogenously distributed technologies in an infinite
population game with Cournot–Nash equilibrium outputs. The main aim of the paper
is that of extending the results about Cournot oligopoly stability in an evolutionary
setting of heterogeneous decreasing returns-to-scale technologies. We show how the
interplay between production decisions and R&D decisions can generate endogenous
market fluctuations leading to complex dynamic phenomena.

Keywords Oligopoly games · Evolutionary dynamics · Technology adoption

JEL Classification L13 · O14 · C61 · C73

1 Introduction

Corporate control is usually a complex, dynamic and multidimensional problem.
Companies typically adopt a segmentedmanagement structurewith specializeddepart-
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ments handling production, sales, marketing, HR, R&D, finance, etc. The fact that
these departments intensively communicate with each-other indicates that managers
clearly know that decisions taken on one dimension interfere with the actions per-
formed by their colleagues in another department. Abstracting away from all fronts
of decision-making other than production and R&D, this paper formally studies the
impact of these decisions on market dynamics and equilibria. We introduce a model
where firms may take boundedly rational decisions on either production or innovation
and show how these decisions and their interaction in a dynamic environment relate
to market equilibrium stability and emerging endogenous fluctuations of innovation
policy.

Our approach allows us to identify two potential sources of non-convergence to
an equilibrium outcome, leading to market instability. The first one is operational in
nature and is driven through adaptive quantity-setting by firms that are endowed with
imperfect expectations of what their competitors will do. Given its source, we will
call this phenomenon ‘production instability’ throughout the paper. The second type
of instability in our model stems from adaptive choices of firms over two alternative
production technologies. This choice, we show, can generate ‘technological insta-
bility’. Our analysis reveals that these two types of decisions can together generate
bounded endogenous market fluctuations.

Our first line of inquiry, relating to production instability, follows from the seminal
paper of Theocharis (1960). He showed the Cournot–Nash equilibrium in a quantity-
setting oligopoly to be dynamically unstable when more than three firms compete by
supplying, in each period, naive best-response quantities to the output produced by
competitors one period before. The importance of this result was reflected by the quick
emergence of works extending, qualifying and containing it, Fisher (1961), McManus
and Quandt (1961) and Hahn (1962). With the development of chaos and bifurcation
theory and the wide acknowledgment of their relevance for economic theory due
to Grandmont (1985) and Brock and Hommes (1997), Theocharis’ inquiries were
revisited in works celebrating endogenous cycle formation and chaotic dynamics in
oligopoly markets, see Agliari et al. (2000), Droste et al. (2002), Bischi and Lamantia
(2004, 2012), Hommes et al. (2018), Kopel et al. (2014) and Bischi et al. (2015).
A frequent feature in these models is the introduction of behavioral heterogeneity—
be it in terms of expectations, Droste et al. (2002), Hommes et al. (2018) or of the
objectives of the firm, Kopel et al. (2014), De Giovanni and Lamantia (2016), Kopel
and Lamantia (2018) and Radi (2017). Our model also focuses on firm heterogeneity,
but here it is of a technological nature.

As such, our analysis of technological instability also relates our inquiry to Nelson
andWinter (1982). In their seminal work, bounded rationality and firms’ technological
heterogeneity—both central to our analysis—are key features of industrial dynamics
and economic growth. Heterogeneity and dynamic adaptation, they argue from an
evolutionary perspective that is Schumpeterian in both scope andmethod, are essential
to understanding innovation and technological progress. Their approach inspired a rich
literature of Agent-Based simulation models. Some of its highlights are surveyed in
Dawid (2006).

Also inspired by Nelson and Winter (1982), Hommes and Zeppini (2014) and
Diks et al. (2013) analyzed models where firms choose between alternative R&D
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strategies: innovation and imitation. Much like their analysis the work presented here
employs a simpler formulation of the technological dimension, one that allows for a
more general analysis of the model combining the classical tools of game theory and
dynamic system analysis with bifurcation theory and numerical simulation. Despite
differences in the naming of the two competing technologies,1 ourmarket setup closely
resembles the one used in Hommes and Zeppini (2014) and Diks et al. (2013). The
model analyzed here is different, as we consider a setting where firms strategically
compete in an oligopoly market whereas Hommes and Zeppini (2014) assume an
infinite firm population with no individual market power. Moreover, differently from
Hommes and Zeppini (2014), we do not assume that, given technology choice, the
market is always in equilibrium. Our work is also related to Ding et al. (2014, 2015),
where firms learn how to invest based on realizations of profit margins while, as in
Hommes and Zeppini (2014), the market clears for Nash quantities every period. The
effect of consumers’ demands on firms’ technology selection is instead analyzed in
Lamantia and Radi (2015). They propose an oligopoly model of technology adoption
in the exploitation of natural resources,where the use of each technology has a different
impact on the natural growth of the resource and where consumers’ willingness to pay
depends on firms’ technology adoption. Finally, a related setup with forward-looking
firms is analyzed in Lamantia and Radi (2018), which assumes nonlinear demand and
constant return-to-scale technology, whereas our analysis is based on linear demand
and decreasing return-to-scale technology.

This paper is organized as follows. In Sect. 2we begin by deriving some preliminary
results for a market setup where firms choose production technology and are engaged
in static Cournot competition. We characterize the Nash equilibrium of the model
and show that, depending on model parameters—in particular, the cost of using the
innovative technology—we can either obtain an equilibrium with all firms employing
the same technology—innovative or standard—or amixed equilibriumwhere fractions
of the firm population use different technologies. This is summed up in Theorem 1.
Casting our static model in a suite of dynamic settings, we then move on to investigate
the stability properties of the market equilibrium when firms make boundedly rational
decisions. We consider two separate cases: (i) technology distribution is exogenous
and production is determined by Cournot adjustment (i.e. best-response dynamics
with naive expectations)—Sect. 3; (ii) output is at the Cournot–Nash equilibrium but
firms switch technologies based on average profitability—Sect. 4. Section 5 concludes
providing suggestions for further extensions to put in the research agenda.

2 Themodel

Consider a firm population producing homogeneous goods. Firms play a two-stage
sequential game. In the first stage, all firms simultaneously choose one of two available
production technologies. In the second stage, firms produce homogeneous goods and
compete à la Cournot. Before the second stage takes place, technology decisions

1 Where they speak of innovation versus imitationwe contrast between an innovative strategy and a standard
strategy.
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become public knowledge in an aggregate sense: firms know what the fractions of the
firm population using each technology are. After firms simultaneously decide on an
output level, q, they are matched with N − 1 other firms randomly drawn from the
population. Then, in groups of N , firms jointly serve a group level demand function
by supplying the output that they produced before the match was realized. Because
matching and market clearing are realized after production decisions are made, firms
do not know the exact technological composition of their oligopoly competitors at the
time they make production decisions. Instead, they base their output decisions on their
expectation about the technology choice of the firms composing their group. As we
consider only two technological alternatives, we only need to keep track of the share
of firms using one of the technologies. We denote by z the share of firms who produce
with the standard technology, s, while the remaining 1 − z firms use the innovative
technology denoted by i .2

The cost functions associated with the two technologies are given by

cs(q) = 1

2
dsq

2,

for standard firms and

ci (q) = K + 1

2
diq

2

for innovative firms. We assume ds > di ≥ 0, with ds − di representing the marginal
cost advantage of innovative firms and K > 0 the fixed investment required for using
the innovative production technology. The amount K is paid before production and
will be treated throughout our analysis as a sunk cost.

Market competition is set-up to translate the classical Cournot oligopoly game to
a large population of heterogeneous firms. Each firm is randomly matched to N − 1
other firms in the population and their joint second-stage output clears a linear (inverse)
demand:

P (QN ) = max{1 − QN , 0},

where QN is the sum of quantities produced by the N firms that are matched together.
The game is solved by backward induction. We begin by determining the competi-

tively optimal output decisions in stage two for any given population share. Then, by
comparing the realized profits of the two technological strategies, we can establish
the Nash equilibrium in terms of both output and technology. Because the analysis
will further dive into model dynamics, it is convenient to restrict our attention to the
quasi-symmetric equilibrium, where all firms of one type produce the same output
that we denote by q j , j ∈ {s, i}.
2 A terminological different (but mathematical equivalent) formulation of the current setup can be proposed
following Schaeffer (1989), by assuming that there are N firms and a large (infinite) number of managers
of different types (managers who adopt the innovative technology and managers who adopt the standard
one) who are randomly selected to run the N firms.
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Depending on the production technology used, the expected average profit of a
firm who knows the population shares of standard and innovating firms, z and 1 − z,
is computed as the probability weighted sum, over all possible market compositions,
of the profits realized in each particular scenario, with w standard competitors and
N − 1 − w innovating competitors:

πs (z; qs , qi ) =
N−1∑

w=0

(
N − 1

w

)
zw (1 − z)N−1−w [P((w + 1)qs+ (N − 1−w) qi )qs − cs(qs)]

πi (z; qs , qi ) =
N−1∑

w=0

(
N − 1

w

)
zw (1 − z)N−1−w [P(wqs + (N − w)qi )qi − ci (qi )] . (1)

The only term in the above expression that depends on the summation index, w,
accounts for the possible output of competitors in each possible market composition,
[wqs + (N − 1 − w) qi ]. Simplifying accordingly, we obtain:

πs (z; qs, qi ) = P(qs + Q̄N−1 (z))qs − cs(qs)

πi (z; qs, qi ) = P(qi + Q̄N−1 (z))qi − ci (qi ),
(2)

where Q̄N−1 (z) denotes the average competing output that a firm expects to face from
the firms with which it will be matched, given population shares z and 1 − z. Notice
that it is:

Q̄N−1 (z) =
N−1∑

w=0

(
N − 1

w

)
zw (1 − z)N−1−w [wqs + (N − 1 − w) qi ]

= (N − 1) [zqs + (1 − z) qi ]

(3)

Plugging (3) into (2) and maximizing with respect to own quantities, we obtain the
reaction functions:

q j (z) = R j
(
Q̄N−1 (z)

) = max

{
1 − (N − 1) [zqs + (1 − z) qi ]

2 + d j
, 0

}
; j ∈ {i, s} . (4)

Solving for quantities and introducing the quantity

Z(z) := Z = z

2 + ds
+ 1 − z

2 + di
(5)

we find manageable expressions for the quasi-symmetric Cournot–Nash quantities as
a function of Z :

qN
s (z) = 1

2 + ds

1

Z (N − 1) + 1
and qN

i (z) = 1

2 + di

1

Z (N − 1) + 1
. (6)

Notice that qN
i (z) = 2+ds

2+di
qN
s (z) > qN

s (z): innovators will always produce more than
standard firms.
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Plugging Nash quantities back into (2), we obtain the expected average Cournot–
Nash profits:

π̄N
s (z) = 1

2

(
1

Z(N−1)+1

)2
1

2+ds

π̄N
i (z) = 1

2

(
1

Z(N−1)+1

)2
1

2+di
− K .

(7)

The choice of production technology in the first stage of the game will depend on
the relation between the profit functions given in Eq. (7). Theorem 1, proven in the
Appendix, is based on a comparison of the two profit functions in (7) depending on z
and onmodel parameters. It allows identifying the quasi-symmetric Nash equilibria of
the game in terms of output qs and population-wide technology distribution, z. Because
there are only two available technologies and, according to Eq. (6), the quantities
produced by the two types of firms are linearly dependent, qN

i (z) = 2+ds
2+di

qN
s (z), the

Nash equilibrium of the two-stage game is fully characterized by a pair,
(
q∗
s , z∗

)
, of

standard firm output and population share. While the model has four parameters, ds ,
di , N and K , it is convenient to focus on the cost of innovation parameter, K .

Theorem 1 For all N ≥ 2, ds > di ≥ 0, one the following three cases applies:

(a)
(
q∗
s , z∗

) =
(

1
(1+ds+N )

, 1
)
iff K > K 1;

(b)
(
q∗
s , z∗

) =
(√

2(2+di )K
(ds−di )(2+ds )

, 2+ds
ds−di

− (2+di )
(N−1)(ds−di )

[√
(ds−di )(2+ds )
2(2+di )K

− (2 + ds)
])

iff K 0 ≤ K ≤ K 1;

(c)
(
q∗
s , z∗

) =
(

1
(1+di+N )

, 0
)

iff K < K 0;

with K 0 = (2+di )(ds−di )
2(2+ds )(N+1+di )2

and K 1 = (2+ds )(ds−di )
2(2+di )(N+1+ds )2

> K 0.

Rewriting (7) in function of z, we can compute Nash equilibrium profits for any given
population shares, z.

π̄N
s (z) = (2+di )2(2+ds )

2((2+ds )(1+di+N )−(ds−di )(N−1)z)2

π̄N
i (z) = (2+di )(2+ds )2

2[(2+ds )(1+di+N )−(ds−di )(N−1)z]2
− K

(8)

The results of Theorem 1 can be intuitively grasped by inspecting Fig. 1a. Notice
that average profits, for both types of firms will be strictly increasing and convex

in z.3 In addition, it is ∂π̄N
s (z)
∂z = 2+di

2+ds

∂π̄N
i (z)
∂z which means that the profit function

of the innovative firms slopes steeper in z than the profit function of standard firms.
This implies that if the profit functions cross for some z > 0 they will only do
so once, assuring the uniqueness of z∗. Changing K results only in a vertical shift
of the innovative firms’ profit curve. For high innovation costs, K > K 1, standard

3 The share of standard firms appears only in the denominator in (8), (2+ds )(1+di +N )− (ds −di )(N −
1)z = ds + (1 + di + N ) + ((1 − z) ds + zdi ) (N − 1), which is strictly positive ∀ 0 ≤ z ≤ 1, N ≥ 2
and ds < di and also decreasing in z as it linearly depends on the population weighted average of marginal
costs.
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Fig. 1 a Second-stage Nash profits as a function of z for ds = 1.5, di = 0.5, N = 4 and different levels of
K . The (first-stage) equilibrium share of standard firms is found at the intersection betweenπs (z) andπi (z).
b The effects of increasing N on the equilibrium share of standard firms. K = 0.012, ds = 1.5, di = 0.5

firms always make higher profits and the Nash equilibrium has all firms using the
standard strategy.When innovation costs fall below K 1, but are still in the intermediate
range between the two bounds, K 0 and K 1, there will be a unique interior point of
intersection, z∗, where the two strategies generate equal profits. Here, any population
shares with a smaller fraction of standard firms than z∗ cannot be a Nash equilibrium
since innovative firms will have an incentive to switch to the standard technology
(leading to an increase in z). Likewise, we cannot have a Nash equilibrium with more
than z∗ standard firms since in such a population a standard firm would want to switch
and become an innovator (resulting in a decrease in z). For K < K 0 innovative firms
make strictly higher profits than standard firms, for any z, therefore all firms will
innovate in the Nash equilibrium.

From the expressions of z∗ and q∗
s in Theorem 1, we can also immediately derive

the comparative statics of the equilibriumwith respect to innovation costs: equilibrium
quantities (for both types of firms) are increasing in K and so is the equilibrium share
of standard firms, z∗. Also, the interior equilibrium fraction of standard firms, z∗, is a
strictly concave function of K .

At first glance, itmay seem surprising that equilibriumoutput for both technological
strategies increases in K , particularly given that quantities are strategic substitutes
in Cournot oligopoly games. Inspecting the best-response functions for quantities,
Eq. (4), we notice that they are identical except for the denominator which tells us
that standard firms will react less aggressively to whatever the expected output by
competitors is. While own output is strategically decreasing in the expected output
of the competitors, it is not clear how competitors’ output would react to changes
in innovation costs, K . Intuitively, raising K would lead to a drop in the share of
innovators, who always produce more than standard firms. This, in turn, would leave
a gap in the supply. This gap leaves room for extra production to both the (now fewer)
innovators and the standard firms, therefore, firm output increases for both types when
fixed innovation costs, K , increase.

The effect of innovation costs on equilibrium firm output is best explained when we
inspect the effect of K on total output at equilibrium, Q̄∗

N which, regarding K , behaves
exactly like the output by a firm’s competitors at equilibrium, since Q̄∗

N = N
N−1 Q̄

∗
N−1.

As both z∗ andq∗
s are increasing in K , the effect of fixed innovation costs on the average
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industry quantity produced in equilibrium is a priori ambiguous: higher K indirectly
entails higher production by the standard firms but also less innovative firms who, at
any given parameter combination, produce more than the standard ones. According to
Corollary 1, it is the latter effect that is stronger overall. Therefore, even if both types
of firms would produce more when the share of innovators drops as a consequence
of the innovative strategy being more expensive, overall, the population mix effect
is stronger, leading to lower average total industry output when innovation costs are
higher.

Corollary 1 In a mixed population equilibrium, average total industry output is given
by:

Q̄∗
N = N

N − 1

[
1 − (2 + ds) q

∗
s (z∗)

]

and decreases in K . Average total industry profits are:

T I P = N
2 + di
ds − di

K .

Remarkably, once first-stage decisions on technology are internalized, the equilibrium
quantity produced by an individual firm—no matter its technology—will not depend
on the number of oligopoly firms, N , nor will its average equilibrium profit. The
equilibrium share of standard firms, z∗, is however increasing in N .4 This means that
an increase in the intensity of competition will lead, in our model, to less innovation, a
result which has a Schumpeter mark II flavor, with more intensive competition having
a stifling effect on innovation.5 Indeed, given z, second-stage profits are decreasing in
N , see Eq. (7). As N increases, the part of the profit function that does not depend on
fixed innovation costs decreases for both types of firms, but this decrease will be 2+ds

2+di
times stronger for innovative firms. In other words, moving from N to N +1 firms will
lead to a flattening of the second-stage profit curves given in (8), but the flattening will
be more pronounced for π̄N

i (z) than for π̄N
s (z). This means that the profit functions

will cross—if at all—for a higher z as shown in Fig. 1b. So, in the first stage,more firms
will choose the standard technology when the number of oligopoly firms increases.

The comparative statics of the equilibrium share of standard firms with regard to
marginal production costs are not always monotonic. We can show that the share of

4 It is clear from Theorem (1)(b) that z∗ depends on N only through the denominator of the fraction
multiplying the expression in square brackets, E = (2 + ds ) − 1

q∗
s
. Even though this expression does not

depend itself on N , we cannot immediately determine its sign. However, we notice that, through q∗
s , it

is monotonic in K . More precisely, as long as there is a z∗ ∈]0, 1[ we have 2 + ds − 1
q∗
s
(
K 0

) < E <

2 + ds − 1
q∗
s
(
K 1

) which simplifies to 2+ds
2+di

(1 − N ) < E < 1 − N , meaning that E is always negative.

Therefore z∗ is increasing in N . Notice also that E = (2 + ds ) − 1
q∗
s

= − 1−(2+ds )q∗
s

q∗
s

= − Q̄∗
N−1
q∗
s

.

5 Schumpeter’s first conjecture, Schumpeter (1934), is that higher intensity of market competition between
firms spurs innovation. This conjecture has been labeled mark I. He later stated, in Schumpeter (1942), in
what is also called Schumpter’s mark II conjecture, that less acute competition gives firms the slack they
need in order to divert resources to innovation.
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standard firms is always decreasing in ds , as expected, but its relation to di depends on
the relation between parameters ds, di and N . Specifically z∗ will be always increas-
ing in di when the standard technology is not excessively more inefficient than the
innovative technology, or, if the efficiency gap between the two technologies is high,
when the number of oligopoly firms, N , is not too large.

Theorem 1 gives a characterization of the full range of equilibria that our model can
have in a static setting, with cases (a) and (c) corresponding to Nash equilibria with
only one type of firm, standard or innovative, respectively. Case (b) corresponds to
parameter combinations where both types of firms are present in equilibrium. In accor-
dance with the expressions for K 0 and K 1, provided by Theorem 1, when N increases
we observe only a downward shift of the subset of the (ds, di , K ) parameter space
where the mixed equilibrium exists, while its shape remains qualitatively the same.

Having characterized the Nash equilibrium of the static game, we turn our attention
to the dynamic features of the model, analyzing what happens when firms repeatedly
take decisions on which technology to use or on what quantity to produce. In the next
section, we first consider a version of the model where technology is exogenous (i.e. z
is fixed) thus quantities produced are the only source of economic dynamics—forming
naive expectations of the quantity supplied by competitors, each firm maximizes its
profits with respect to the quantity they produce. Next, in Sect. 4, we endogenize
technological choice and constrain the production behavior of the firms to supplying
the Nash equilibrium quantities corresponding to the current shares of standard and
innovative firms.

3 Non-evolutionary best-response quantity dynamics

In this section, we assume that the population shares are fixed and known to the firms
before they make their production decisions. Quantity decisions follow a Cournot
adjustment process where, before producing for period t, firms make a naive forecast,
Q̄N−1,t , of how much their competitors will produce. The forecast will be based
on known population shares, z and 1 − z, and past production behavior qs,t−1 and
qi,t−1, Given these expectations, each firm will produce a profit maximizing quantity,
q j,t , j ∈ {s, i} that is derived as the best-response functions in (4), adapted here for
a dynamic setting:

q j,t = R j
(
Q̄N−1,t (z)

) = max

{
1 − (N − 1)

[
zqs,t−1 + [1 − z] qi,t−1

]

2 + d j
, 0

}
;

j ∈ {i, s}

Notice that again qi,t = qs,t
2+ds
2+di

—the relation we found in our static analysis
betweenNash quantities holds in this dynamic set-up aswell. Thus, the dynamicmodel
can be entirely characterized by a one-dimensional map. Specifically, the quantity
dynamics expressed in qs become:
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qs,t = Rs
(
Q̄N−1,t (z)

)

= max

⎧
⎨

⎩
1 − (N − 1)

[
z + (1 − z) 2+ds

2+di

]
qs,t−1

2 + ds
, 0

⎫
⎬

⎭ (9)

= max

{
1

2 + ds
− (N − 1)

[
z

2 + ds
+ 1 − z

2 + di

]
qs,t−1, 0

}

So, for any fixed level of z ∈ [0, 1], solving for the steady state quantity q∗
s gives:

q̄∗
s = 1

2 + ds

1(
z

2+ds
+ 1−z

2+di

)
(N − 1) + 1

and q̄∗
i = 1

2 + di

1(
z

2+ds
+ 1−z

2+di

)
(N − 1) + 1

, (10)

which are equivalent to the Cournot–Nash quantities in (6). Theorem 2 describes the
stability properties of this equilibrium.

Theorem 2 The steady state of the dynamic system in (10) is the Cournot–Nash equi-
librium of the static game and it is globally stable if and only if:

N < N̂ (z) = 1 + (2 + di )(2 + ds)

2 + (1 − z)ds + zdi
(11)

otherwise the dynamics converge to a two cycle in which one of the periodic points is
zero.

Given that the map in (10) is (piecewise-)linear, the price and quantity time-series
generated by this model will either converge to the Nash equilibrium or diverge and hit
the non-negativity constraint onproduction settling into a twocycle oscillatingbetween

0 and 1
2+ds

. In a subspace of the parameter space defined by (N − 1)
[

z
2+ds

+ 1−z
2+di

]
=

1, there will be a bounded two-cycle with quantities oscillating between any initial
value q0 and 1

2+ds
− q0.

Theorem 2 also provides insight into the effects of model parameters on the stability
of the system. It implies that increases in marginal costs, ds and di , will have a stabiliz-
ing effect on market dynamics, consistent with the findings in Fisher (1961), whereas
an increase in the share of firms that use the innovative technology will (weakly)
reduce the stability of the system: higher marginal costs reduce over-reaction typical
of best reply dynamics leading to more stability, whereas the adoption of the most
efficient technology entails lower marginal costs favouring players’ over-reaction and
leading to instability. The theorem also generalizes the Theocaris result with quadratic
costs a la Fisher to an evolutionary setting (see Fisher 1961).6

Clearly,whends anddi are sufficiently high, the equilibrium is stable regardless of z.
Likewise, for sufficiently high N and low enough ds and di the equilibriumwill always

6 An analogous generalization to an evolutionary setting with Cournotian and Walrasian firms has been
proposed in Radi (2017).
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be unstable for all z. In between these two extremes, there exists an interesting section
of the parameter space where the equilibrium is stable for large z (few innovators) and
unstable for low z (many innovators).

One such parameter region can be obtained by setting ds and di such that the
equilibrium is stable for z = 1 and unstable for z = 0. This requires N̂ (1) = 3+ds >

N > 3 + di = N̂ (0). Obviously, if N̂ (0) < N < N̂ (1) there exists a ẑ ∈]0, 1[ such
that the fixed point q̄∗

s is unstable for z ∈ [0, ẑ[ and stable for z ∈]̂z, 1]. In fact,

ẑ = (2 + ds) (N − 3 − di )

(ds − di ) (N − 1)
∈]0, 1[. (12)

4 Evolutionary dynamics with Nash players

In this section, we assume that agents play the Nash equilibrium strategy in terms
of the quantity they supply, but switch production technologies based on their past
performance. The adjustment of the share of firms employing a given technology will
be governed by a replicator equation and provides the source of dynamic behavior for
the model analyzed in this section. We first describe the model set-up in general terms
and then analyze a sluggish replicator specification where only a fraction of firms can
change strategy in each period.

4.1 General set-up

To be more precise on the structure of the problem faced by firms and the timing of
decision-making, in time period t , the following steps happen in order:

1. Firms pay any fixed costs associated with their newly chosen production technol-
ogy (i.e. innovators pay K ).

2. Firms find out the current population shares, they know zt .
3. Firms produce the Nash equilibrium quantities corresponding to the current pop-

ulation shares, qN
s (zt ) and qN

i (zt ). Firms are randomly matched in groups of N .
The market clears and average profits π̄N

s (zt ) and π̄N
i (zt ) are realized.

4. (A fraction of the) firms update technological strategy: each firm randomly samples
another firm from the firm population, if the selected firm obtained a higher profit,
the updating firm imitates its R&D strategy with a probability that increases with
the profit difference. This determines the population shares in the next period,
zt+1.

A strategy revision protocol like the one described in the fourth step of the setup
above can be approximated by an aggregate replicator equation describing how, for
every current population state, zt , average realized profits π̄N

s (zt ) and π̄N
i (zt ) will

determine the population state in next period, zt+1, see Schlag (1998), Lahkar and
Sandholm (2008) and Hofbauer and Sandholm (2009). At this stage, we generically

123



346 F. Lamantia et al.

refer to the replicator equation by G ((zt )), so that, formally, the dynamic system is a
one-dimensional map and is fully described by the equation:7

zt+1 = G (zt ) (13)

Each firm knows the current fraction of standard firms, zt , and sets the Nash equilib-
rium quantities corresponding to the current population shares and its own technology,
expecting all competitors to do likewise. In this sense, firms have rational expectations
because their expectation of competitors’ quantities is based on the actual population
shares and the realized Nash quantities. An alternative interpretation would be that the
quantity and technology adjustment processes take place on different time scales with
technology being updated less often while quantities have sufficient time to converge
to the Nash equilibrium between subsequent technology decisions.

In the following subsection, we explore the dynamic properties of the one-
dimensional model described at the beginning of this section when the evolution of
population shares is driven by an extension of the above replicator equation.

4.2 Dynamics with sluggish replicator dynamics

We now consider a particular form of the dynamic system in (13) with a Sluggish
Replicator equation, meaning that only a share 1−δ, δ ∈ [0, 1], of the firm population
updates their production technology (asynchronous updating):

zt+1 = Gδ(zt )

= δzt + (1 − δ)
zt exp

(
θπ̄N

s (zt )
)

zt exp
(
θπ̄N

s (zt )
) + (1 − zt ) exp

(
θπ̄N

i (zt )
) .

(14)

where

π̄N
s (zt ) = 1

2

(
1

Z(zt ) (N − 1) + 1

)2 1

2 + ds

π̄N
i (zt ) = 1

2

(
1

Z(zt ) (N − 1) + 1

)2 1

2 + di
− K

Z(zt ) = zt
2 + ds

+ 1 − zt
2 + di

.

(15)

Dynamic system (13) with Gδ(zt ) in (14) and δ = 0 is referred to as the Adjusted
(Exponential) Replicator dynamics, see also Dindo and Tuinstra (2011). Parameter
θ > 0 models firms’ propensity in revising their decisions and is referred to as the
intensity of choice.

7 See De Giovanni and Lamantia (2016) for the general properties that function G should have.

123



Technology choice in an evolutionary oligopoly game 347

In the analysis that follows, it will be handy to denote the difference between the
average profits realized by the two types of firms setting Nash quantities by:

ψ(z) = π̄N
s (z) − π̄N

i (z)

= K − (2 + di )(ds − di )(2 + ds)

2 [(2 + ds)(1 + di + N ) − (ds − di )(N − 1)z] 2
. (16)

Theorem 3,whose proof can be deduced directly fromLemma 1 inDeGiovanni and
Lamantia (2016), describes the dynamic properties of the evolutionary model where
firms set Nash equilibrium quantities and update their production technology based on
past performance. In conjunction with Theorem 1, it allows us to identify the steady
state and make a global analysis of its stability.

Theorem 3 The Nash equilibria given in Theorem 1 are steady states of the dynamic
system defined by map (14). The stability of each steady state is governed by the
intensity of choice parameter, θ , and the cost of innovation, K in the following way:

(a) z1 = 1 is always a steady state for map (14). z1 is almost globally stable for
K ≥ K 1 and unstable for K < K 1;

(b) For K 0 < K < K 1, z∗ ∈]0, 1[ is a steady state. Steady state z∗ is almost globally
stable for θ < θ̂ and unstable for θ > θ̂ , where:

θ̂ = − 2

(1 − z∗)z∗ψ ′(z∗)(1 − δ)
.

(c) z0 = 0 is always a steady state for map (14). z0 is almost globally stable for
K ≤ K 0 and unstable for K > K 0;

Notice that the instability threshold, θ̂ , for the interior equilibrium, z∗, as defined
in Theorem 3, depends on z∗ and therefore also depends on the value of K whenever
K 0 < K < K 1. While z0 = 0 and z1 = 1 are always steady states of the system, they
are (almost globally) stable if and only if they are also Nash equilibria of the static
game, see Theorem 1.8

Interestingly, the stability properties of the Nash equilibrium change smoothly as
we increase K , while its nature qualitatively shifts from a homogeneous to amixed and
then again to a homogenous population equilibrium. When K ∈]K 0, K 1[ approaches
either of the interval boundaries, θ̂ tends to infinity. This feature is a direct result of
the updating mechanism described by the replicator equation in (14).9 When only
few firms of either type are present in the equilibrium population, the probability
that, following a perturbation, a firm of the predominant type will encounter a more
profitable firm of the scarce type to imitate its strategy is smaller compared to a

8 Here a fixed point is almost globally stable when its basin of attraction is [0, 1]\L where L is a zero-
measure subset of [0, 1].
9 If, for instance, we would have used the standard logit updating equation which is based on best-response
behavior rather than imitation of better performing strategies and, as a consequence, the exponentiated
payoffs are not weighted by population shares, then we would not have had the same result of increased
stability of the mixed equilibrium close to the boundaries.
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situationwhen strategies are evenly distributed at equilibrium. Thismeans that, around
an equilibrium that is closer to the boundary, therewill be comparatively less switching
of strategies and therefore smoother re-adjustment toward the equilibrium following
a shock. The bifurcation diagrams in Fig. 4 confirm that the interior steady state, z∗,
tends to be more stable when K is close to K 0 or K 1 and unstable for values of K
located toward the center of the interval.

Notice also that the instability threshold, θ̂ , is increasing in δ. Quite intuitively,
the smaller the share of firms, 1 − δ, that update their strategy, the less likely will
be the emergence of overshooting behavior. Therefore, we find the standard Adjusted
exponential replicator dynamics to be more unstable than its sluggish extension.

Numerical analysis confirms the analytical results above showing the market can
be destabilized by overshooting in technology adjustment, for high θ .10 Although all
market variables—quantity, profits and strategy shares—alternate above and below
the steady state, they never manage to converge to it. The economic mechanism of this
result is fairly simple. When zt is below its steady state value both types of firms will
underproduce compared to the mixed equilibrium output. This happens because quan-
tities are strategic substitutes inCournot games and expected average competing output
is decreasing in z. Therefore, firmswill expect competitors to producemore than Q̄∗

N−1
when zt < z∗ and react accordingly by producing too little. This means that second-
stage Nash profits in (13) will be below the steady state value for both types of firms,
but more so for innovators who will not be able to compensate their fixed innovation
costs by selling a sufficiently large output: as shown in Sect. 2, we will have π̄N

s (zt ) >

π̄N
i (zt ). This determines a switch toward the standard strategy, but because the inten-

sity of choice is too high, the steady state z∗ is overshot and now the opposite is true,
with π̄N

s (zt ) < π̄N
i (zt ) determining another overzealous switch toward innovation.

Interestingly, when starting close to the steady state, at first, successive fluctuations
increase in amplitude. This is to be expected, since the further away we are from the
steady state, the higher the profit difference, see also Fig. 1a. However, once zt moves
sufficiently far below the steady state, fluctuations will be dampened and population
shares will return close to the steady state although still slightly overshooting z∗. From
there the scenario repeats.

The economic interpretation of this observation requires close inspection of the
dynamic map in Fig. 2 and relies on the micro-level behavioral foundations of the
strategy share updating equation described in Dindo and Tuinstra (2011). The details
of the overshooting behavior and the return close to equilibrium are also related
to the asymmetric tent-like shape of the map with a flat-sloping increasing linear
component given by δzt and the sharply locally decreasing nonlinear component,

(1 − δ)
zt exp

(
θπ̄N

s (zt )
)

zt exp(θπ̄N
s (zt ))+(1−zt ) exp

(
θπ̄N

i (zt )
) .

For very small but positive z, the map abruptly grows from 0 to 0.75.11 For low
enough values of θ , the generic trajectory converges to an equilibrium, see Fig. 2a.

10 All numerical simulation results presented in this paper were powered by E&F Chaos, the user-friendly
software for nonlinear dynamic analysis developed at CeNDEF, University of Amsterdam. For a didactic
presentation of its capabilities, see Diks et al. (2008).
11 Although the graph of Gδ(z) in Fig. 2 passes through the origin, this is not visible in the figure given
the steep slope of the function there.
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Fig. 2 The 1-dimensional dynamicmap of the systemwith technology switching andNash quantity-setting.
Model parameters: K = 0.016 with N = 4, ds = 3

2 , di = 1
2 , δ = 0.25 and a θ = 1000 b θ = 10,000

The situation depicted in Fig. 2b is different: because θ is very high and standard
profits are smaller than innovator profits, practically all firms would switch to the
standard strategy except for the δ proportion of firms who, by assumption, cannot
update strategy. By the same logic, as z increases, the map also increases almost
linearly with a slope of δ. When we get close to the fixed point, the profit difference
becomes small enough to compensate for the high θ and strategy switching will no
longer occur for all firms that are free to update. This is where we finally notice that
the map begins to curve downwards and cross the diagonal at z∗. At the micro-level
of our updating mechanism, this means that innovating firms are decreasingly likely
to copy the technology of a standard firm, whenever they compare profits with such a
firm, because standard profits are not much higher than their own. At the point where
the map crosses the diagonal, firms will literally find no other firm with higher profit
so they all keep their current technology. After this crossing happens, the map will
abruptly head downwards because the profit differential increases faster as we move
rightward from the mixed steady state than it does when we move leftward from the
mixed steady state, see also Fig. 1a. Eventually, as we approach z = 1 innovators will
become increasingly harder to find and imitate, because there are simply less of them
in the population, so, when z is very high, most standard firms will simply compare
profits with another standard firm and conclude that they are doing well enough.

The shape of the map in particular the softly increasing linear part followed by an
abruptly decreasing nonlinear segment also explains why large downward fluctuations
are followed by returns of the population shares close to equilibrium. The entire flat
part of the map slopes around the steady state equilibrium and, whenever overshoot-
ing brings population shares sufficiently far below the equilibrium, it ‘catches’ the
dynamics and directs population shares back close to equilibrium. It is important to
mention that the return close to equilibrium is not so precise for all parameter combi-
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Fig. 3 Evolutionary strategy switching by sluggish replicator dynamics and Nash quantity-setting: bifur-
cation diagram in (K , θ) space for N = 4, ds = 3

2 , di = 1
2 , z0 = 0.5 and a δ = 0; b δ = 0.01; c δ = 0.1;

d δ = 0.5

nations associated with instability, but it does appear to be a common feature of those
parameter combinations that support chaotic fluctuations.

Comparing results for different choices of the sluggishness parameter, δ, also out-
lines a remarkable difference between themodel dynamicswith theAdjusted replicator
(δ = 0) compared to its sluggish counterpart (δ > 0). Figures 3 and 4 show how only
a small amount of sluggishness is enough to tame the system into a less complicated
pattern. The small pocket of unruly dynamics generated by the Adjusted replicator
equation disappears for δ > 0. As we further increase δ, we can have, for sufficiently
high θ , qualitatively different types of dynamics. This is illustrated by Figs. 3 and
4. For low levels of δ, an over-shooting two-cycle exists for a considerable range of
values of K ∈]K 0, K 1[ provided the intensity of choice, θ , is sufficiently high. As δ

increases, cycles of higher order as well as chaotic dynamics become possible while,
at the same time, the range of the fluctuations becomes smaller.12 As δ approaches

12 Inspection of Fig. 3 shows a fairly large parameter range where the system converges to a stable three-
cycle, for sufficiently high θ . According to Li and Yorke (1975) this is sufficient grounds to infer that our
one-dimensional system exhibits chaotic fluctuations.
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Fig. 4 Evolutionary strategy switching by sluggish replicator dynamics with Nash quantity-setting: bifur-
cation diagrams for the share of standard firms, zt , over parameter K , for N = 4, ds = 3

2 , di = 1
2 ,

θ = 10,000, for various levels of sluggishness a δ = 0; b δ = 0.01; c δ = 0.1; d δ = 0.5; e δ = 0.75; f
δ = 0.9

1, stability is eventually restored. This parallels the result of Diks et al. (2013) where
introducing memory in the fitness function used for strategy updating in an evolution-
ary model of innovation and imitation quantitatively reduced system instability (lower
amplitude of fluctuations) while also increasing it in a qualitative sense (creating a
bifurcation route to chaos). Although our model differs in the exact specification of
fitness and of the evolutionary dynamics, increasing δ in our model has very similar
effects on the shape of the dynamic map as increasing the weight of past profits has
on the one-dimensional map analyzed by Diks et al. (2013, p. 812): it simply shifts
weight toward the linear increasing component of a map that, as in their paper, is “a
convex combination of a linear increasing and a nonlinear decreasing map”.

In examining Fig. 3a, one may be surprised to notice the upper right portion of
the parameter space where the system seems to converge to a stable steady state
according to our numerical results. This may appear even more surprising if we
take into account that this apparent convergence tends to happen for higher inten-
sity of choice, when θ is above 10,000. However, on closer inspection, we find that
the system does not actually converge to the mixed Nash equilibrium steady state
there, but instead it becomes “stuck” in the steady state with standard firms only,
z = 1. As argued above, this state cannot be a stable steady state of the system
as long as it is not the Nash equilibrium. What we actually observe in Fig. 3a is
a numerical error that the standard replicator dynamics are susceptible to. When,
as far as machine precision can distinguish, zt becomes equal to 1 the replicator
equation (14) with δ = 0 becomes a trivial equality and the system can no longer
change its state. It is useful to note that while the sluggish extension to the repli-
cator equation in (14) also becomes a trivial equality for zt = 1, the fact that
a portion of the firms, δ, does not update their strategy, is enough to keep the
system far enough from the border so that it does not become stuck in the same
way.
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5 Conclusions

Our model analyzed the role of both production decisions and R&D decisions in gen-
erating endogenous market fluctuations. For specific parameter combinations, namely
when intensity of choice is high and there is a relatively large number of firms com-
peting in oligopoly, the decision-making process may generate complex dynamic
phenomena.

While Hommes et al. (2018) show that explosive best-response dynamics can
become bounded when nested in an evolutionary heuristic switching model, we show
that the same result can be obtained by a model with evolutionary switching between
production technologies. To the extent that technological heterogeneity is a more
widely accepted feature of economic reality than behavioral heuristic heterogeneity,
our analysis has the potential to broadcast to a broader—or at least different—audience
the relevance of Theocharis’ result on oligopoly instability.

Finally, some limitations to the model interpretation and possible extension should
be addressed. To begin with, innovation enters our model in a particular way that
is mostly consistent with licensing of an external technology: firms have to pay a
fixed cost each period in order to use the innovative technology. This is only one
of many ways in which firms might access new technology and also only one of
several alternative schemes for paying for it.13 Examining the empirical evidence,
Vishwasrao (2007) shows that in the presence of sales fluctuations fixed-fee licensing
is the preferred method for licensing innovation. Therefore, our way of modeling the
cost for using the new technology is adequatewhen the cost advantage of the innovative
technology is not extremely high andwhen quantity dynamics are unstable. The second
of these circumstances, as we have shown, is consistent with our model results.

Furthermore, the model used here cannot address long-term technological change.
To have such power, we would have to consider a scenario where the conditions by
which innovation is brought to the market change over time as a result of market
outcomes. Such a scenario is investigated by Hommes and Zeppini (2014) where
repeated use of the innovative technology over time can drive the associated pro-
duction cost down. They find that depending on the price-elasticity of demand and
model parameters either, market breakdown (exclusion of the innovative technology)
or technological progress (exclusion of the standard technology) or balanced techno-
logical change (change in the equilibrium share of innovators) can occur. It would be
interesting to investigate the extent to which that result would apply in our setting.

Future extensions of the current setupwill address the case inwhich both production
and technology choice is dynamic: agents play the best response to the quantity they
expect their competitors will supply and switch production technologies based on
their past performance. In addition, we will study and compare the welfare effects of
innovation policy with quantity setting competing firms in the cases of Nash players
and best-response players.

13 Kamien and Tauman (1986) examined a static model where a patent holder licenses a cost-reducing
innovation to a an oligopolistic market. They find that the a fixed-fee licensing scheme is preferred by
the licensor compared to a royalty scheme. On the other hand, when auctioning of the innovation is also
possible, Kamien et al. (1992), find that an auction may be preferred by the licensor, in particular, when the
innovation is more substantive.
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6 Appendix

Proof of Theorem 1 Profits are equal when π̄N
s (z) = π̄N

i (z). Solving for K and recall-
ing (5) we obtain

K ∗ = 1

2

(
1

Z (N − 1) + 1

)2 1

2 + di
− 1

2

(
1

Z (N − 1) + 1

)2 1

2 + ds

= 1

2

(
1

Z (N − 1) + 1

)2 [
1

2 + di
− 1

2 + ds

]

= 1

2

(
1

Z (N − 1) + 1

)2 [
ds − di

(2 + di ) (2 + ds)

]
,

which is positive ∀ds > di .
Expressing Z∗ as a function of K gives:

Z∗ = 1

N − 1

(√
ds − di

2 (2 + di ) (2 + ds) K
− 1

)

We have thus:

z∗

2 + ds
+ 1 − z∗

2 + di
= 1

N − 1

(√
ds − di

2 (2 + di ) (2 + ds) K
− 1

)
.

Multiplying both sides by (2 + ds) (2 + di ) we obtain

z∗ = 2 + ds
ds − di

− 1

N − 1

(√
(2 + di ) (2 + ds)

2 (ds − di ) K
− (2 + di ) (2 + ds)

ds − di

)
(17)

By using (17), we can compute the equilibrium quantity for a standard firm when
technologies are equally profitable as function of the model parameters (10):

q∗
s =

√
2(2 + di )K

(ds − di )(2 + ds)
(18)

We can also rewrite z∗ as a function of q∗
s :

z∗ = 2 + ds
ds − di

+ (2 + di )

(N − 1) (ds − di )

[
2 + ds − (

q∗
s

)−1
]
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Note that z∗ is increasing in K , as expected; the more expensive it is to use the
innovative technology, the smaller will be the equilibrium share of firms using it.

The interior point defined in part (b) of the theorem exists when the two profit
function cross for some z ∈]0, 1[. This is equivalent to imposing π̄N

s (1) − π̄N
i (1) <

0 < π̄N
s (0) − π̄N

i (0), meaning that condition z∗ ∈]0, 1[ is equivalent to:

K 0 = (2 + di ) (ds − di )

2(2 + ds) (N + 1 + di )2
< K <

(2 + ds) (ds − di )

2(2 + di ) (N + 1 + ds)2
= K 1 (19)

which correspond to the two threshold levels for the fixed cost of investing in the new
technology that are defined by the theorem.

Thus, when K 0 < K < K 1, for z ∈]0, z∗[, we have π̄N
s (z) > π̄N

i (z) and for
z ∈]z∗, 1[ , it is π̄N

s (z) < π̄N
i (z).

Moreover condition π̄N
s (1) − π̄N

i (1) > 0 is equivalent to K > K 1, standard firms
are always better off than innovators because of the high cost to innovate.

The opposite holds if π̄N
s (0)− π̄N

i (0) < 0, i.e. for 0 < K < K 0, where innovating
dominates using the standard technology.

Proof of Corollary 1 By expressing equilibrium profits as a function of q∗
s as:

π̂N
s (q∗

s ) = 1

2
(2 + ds)

(
q∗
s

)2 (20)

π̂N
i (q∗

s ) = 1

2

(2 + ds)

(2 + di )
(2 + ds)

(
q∗
s

)2 − K (21)

and substituting for q∗
s =

√
2(2+di )K

(ds−di )(2+ds )
we find equilibrium profits are linearly

increasing in K for both types of firms:

πN∗
s = (2 + di )

(ds − di )
K (22)

πN∗
i = (2 + ds)

(ds − di )
K − K = π̂N

i (q∗
s ) (23)

This means that average total industry profits are given by:

T I P = N
(
z∗πN∗

s + (
1 − z∗

)
πN∗
i

)
= N

(2 + di )

(ds − di )
K

Average industry output is given by

Q̄∗
N = N

[
z∗q∗

s + (
1 − z∗

)
q∗
i

]

= Nq∗
s

[
2 + ds
2 + di

− z∗ ds − di
2 + di

]

= N

N − 1

[
1 − (2 + ds) q

∗
s

]
,
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