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Abstract
This work investigates the qualitative and quantitative dynamics of a Solow–Swan
growth model with differential savings as proposed by Böhm and Kaas (J Econ Dyn
Control 24:965–980, 2000) assuming the shifted Cobb–Douglas (SCD) production
function (see Capasso et al. in Nonlinear Anal. 11:3858–3876, 2010) which makes it
possible to consider the long-run dynamics of non-developed and developing coun-
tries as well as that of developed economies. The resulting model is described by a
nonlinear discontinuous map generating both a poverty trap and complex dynamics.
Furthermore, multistability phenomena may emerge: besides the “vicious circle of
poverty”, long-run behaviours may include boom and bust periods. Complex basins
can emerge, hence, economic policies trying to raise the capital per capita may fail
and economies may be captured by the poverty trap.

Keywords Solow model · Poverty trap · Growth dynamics · Multistability ·
Discontinuous map

JEL Classification C61 · C62 · E2 · O1 · O4

1 Introduction

Recall the neoclassical Solow–Swan growth model [see Solow (1956) and Swan
(1956)] describing the dynamics of the growth process and the long-run evolution
of the economic system. The related discrete time model is given by
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kt+1 = 1

1 + n
[(1 − δ)kt + s f (kt )]

where yt = f (kt ) is the production function in intensive form (mapping capital per
worker kt ≥ 0 into output per worker yt ≥ 0), n ≥ 0 is the labour force growth rate,
δ ∈ (0, 1] is the depreciation rate of capital, s ∈ (0, 1) is the saving rate and t ∈ N.
When the Cobb–Douglas (CD) production function is considered, i.e. f (kt ) = Akα

t ,
almost all trajectories converge to the positive steady state. In recent works, different
technologies have been taken into account, proving that fluctuations or more complex
features can be produced. For instance, with constant elasticity of substitution (CES)
or variable elasticity of substitution (VES) [for CES see Brianzoni et al. (2007, 2009),
Masanjala and Papageorgiou (2004) and Papageorgiou and Saam (2008), while for
VES see Brianzoni et al. (2012b), Cheban et al. (2013) and Karagiannis et al. (2005)]
it has been found that non-simple dynamics may arise if the elasticity of substitution
is sufficiently low. Evidently, the elasticity of substitution between production factors
plays a crucial role in the theory of economic growth.Moreover, it represents one of the
determinants of the long-run equilibrium level [for the correlation between elasticity
of substitution and capital per capita levels see Klump and de La Grandville (2000)
and Miyagiwa and Papageorgiou (2003)].

As Azariadis and Stachurski (2005) showed the above-mentioned production func-
tions do not take into account the differences in production technology between rich
and poor countries. Whereas, non-concave growth models may be able to generate
poverty trap, thus describingwhat occurs in non-developed economies. (The condition
for which a country needs a critical level of physical capital before a growth dynamic
could be observed.), Brianzoni et al. (2012a) considered a non-concave production
function and showed that also for non-developed or developing countries complicated
dynamics emerge if the elasticity of substitution is sufficiently low, confirming that the
elasticity of substitution is responsible for the creation and propagation of complexity
and that the origin too can be an attractor.

Starting from the works by Kaldor (1957, 1956) and Pasinetti (1962), attention
has been given to the influence of different saving propensities of workers and share-
holders over the dynamics of economic growth: if the aggregate saving propensity is
dependent on income distribution, then multiple equilibria may exist. Böhm and Kaas
(2000) showed that complexity can be generated in neoclassical growth models with
differential savings.

In this paper, we study the discrete time one-sector Solow–Swan growthmodel with
differential savings as givenbyBöhmandKaas (2000)while assuming that the technol-
ogy is described by the shifted Cobb–Douglas (SCD) production function as proposed
byCapasso et al. (2010). As in Brianzoni et al. (2012a, 2015), the use of a non-concave
production function states the existence of a poverty trap. Notice that, although CES
and VES production functions properly describe developed economies, they are not
able to explain dynamics related to non-developed countries. On the other hand, the
SCD production function implies a minimum level of physical capital essential for
production, a requirement of capital needed in order to observe increasing returns. This
kind of production functions is often considered in the literature to describe the growth
dynamics of developing countries. Indeed, as Azariadis and Stachurski (2005) thor-
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Poverty trap, boom and bust periods and growth 147

oughly explain, poor economies are often characterised by market failure, inefficient
practices, “institution failure” and also social norms and conventions which cause the
well-know “vicious circle of poverty”. These considerations make the model econom-
ically significant for the analysis of the growth dynamics of developing countries: can
a poor economy escape the poverty trap? Which is the required initial investment? If
a developing country is out of the poverty trap, could its economy fall back into it? A
first step towards an answer to these questions will be given.

From a mathematical point of view, when the SCD production function is con-
sidered, the resulting model is described by a nonlinear discontinuous map, a type of
framework recently considered in several economicmodels [see, among all, Böhm and
Kaas (2000) and Tramontana et al. (2011, 2014, 2015)] since recent mathematical
tools make it possible to investigate economic phenomena defined by discontinu-
ous systems. Our main goals are to describe the qualitative and quantitative long-run
dynamics of the growth model and evaluate the relation between elasticity of substi-
tution and capital per capita equilibrium levels in not-yet-developed countries. The
results of our analysis show that complex dynamics, multistability phenomena and
non-connected basins of attraction may emerge. In such cases, the initial condition
becomes crucial, since the long-run behaviours of the economy may be predictable
or unpredictable depending on the structure of the basins of attraction, determining
the possibility to forecast if a country might go towards a poverty trap or towards a
developed economy. Moreover, as in Klump and de La Grandville (2000), a positive
correlation between elasticity of substitution and long-term dynamics is exhibited.

The rest of the paper is organised as follows. In Sect. 2, we present themodel andwe
discuss its properties. In Sect. 3, we analyse the existence and the stability of the steady
states while in Sect. 4 we demonstrate the possible occurrence of multiple equilibria,
complex dynamics as well as complex basins. Section 5 concludes our paper.

2 Themodel

Consider the discrete time neoclassical one-sector growthmodel as proposed byBöhm
and Kaas (2000): following Kaldor (1956, 1957) and Pasinetti (1962), we assume
that workers and shareholders have different but constant saving rates, respectively,
sw ∈ (0, 1) and sr ∈ (0, 1)). Moreover, shareholders receive the marginal product of
capital f ′(k), while the total capital income per worker is k f ′(k). We assume that the
wage rate equals the marginal product of labour, that is

w(k) = f (k) − k f ′(k). (1)

Following Böhm and Kaas (2000), the map describing capital accumulation over time
t ∈ N is given by

kt+1 = φ(kt ) = 1

1 + n

[
(1 − δ) kt + sww(kt ) + srkt f

′(kt )
]
, kt ≥ 0 . (2)

Following Capasso et al. (2010), we consider a shifted Cobb–Douglas (SCD) pro-
duction function that is a continuous non-strictly concave and non-differentiable
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148 F. Grassetti et al.

Fig. 1 Common parameter values: n = 0.3, δ = 0.4, sw = 0.6 and sr = 0.7. a SCD production function.
Parameter values: α = 0.3, A = 1.2 and kc = 0.4. b The final map for capital accumulation. Parameter
values: α = 0.5, A = 2.122 and kc = 0.4. c The elasticity of substitution. Parameter values: α = 0.3,
A = 1.2 and kc = 0.2

production function stating the existence of a minimum level of capital needed before
making returns. This production function is able to describe non-developed countries,
since it takes into account the realistic need to establish a basic structure for produc-
tion (such as machineries and infrastructures) to obtain output. For instance when a
country with almost no physical capital is considered, an initial investment is required
before production. The SCD production function in its intensive form is given by

f (kt ) =
{
0 0 ≤ kt ≤ kc
A(kt − kc)α kt > kc

(3)

where A > 0 is the total productivity factor, 0 < α < 1 is the output elasticity of
capital and kc ≥ 0 is the critical level of capital per capita delimiting the poverty trap,
that is, the minimum capital per capita initial level bringing increasing returns (see
Fig. 1a).

Notice that if kc → 0+, then f (kt ) approaches the CD production function; there-
fore, f (kt ) can be considered as a generalisation of the well-known CD production
function. Moreover,

f ′(kt ) =
{
0 0 < kt < kc
αA(kt − kc)α−1 kt > kc

.

To assure a nonnegative wage and an economicallymeaningful framework, we assume
that if f (k) − k f ′(k) < 0, then the resulting wage is equal to zero, hence

w(kt ) =
{
0 0 ≤ kt ≤ kw
A(kt − kc)α−1[(1 − α)kt − kc] kt > kw

(4)

where kw = kc
1−α

> kc. Notice that zero wages are not desirable but possible in the
economy [see among all Schefold (2005)]. If we take into account Eqs. (2), (3) and
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Poverty trap, boom and bust periods and growth 149

(4), the final one-dimensional map describing capital per capita evolution is given by:

kt+1 = φ(kt ) =

⎧
⎪⎪⎨

⎪⎪⎩

1−δ
1+n kt 0 ≤ kt ≤ kc
1

1+n [(1 − δ)kt + Aαsrkt (kt − kc)α−1] kc < kt ≤ kw
1

1+n

{
(1 − δ) kt + A sw(kt−kc)+α(sr−sw)kt

(kt−kc)1−α

}
kt > kw

. (5)

In order to simplify the exposition, we define function

G(k) =
{
srα(k − kc)α−1 kc < k ≤ kw
sw(k−kc)+α(sr−sw)k

k(k−kc)1−α k > kw
(6)

and

H(k) = G(k) + kG ′(k) =
{
srα(αk − kc)(k − kc)α−2 kc < k < kw
α{[sw+(sr−sw)α]k−srkc}

(k−kc)2−α k > kw
. (7)

Then, as long as k > kc, function φ may be written in terms of function G as defined
in (6), as follows

φ(k) = 1

1 + n
{(1 − δ)k + AkG(k)} (8)

while

φ′(k) = 1

1 + n
{1 − δ + AH(k)} ∀k > kc, k �= kw (9)

where H is defined in (7).

2.1 Preliminary properties

Map φ is not negative, defined in R+ and it is discontinuous in kt = kc since
limkt→k−

c
φ(kt ) = 1−δ

1+n kc and limkt→k+
c

φ(kt ) = +∞, while it is continuous in

kw being limkt→k−
w

φ(kt ) = limkt→k+
w

φ(kt ) = 1
1+n

[
1−δ
1−α

kc + Asr
(

α
1−α

kc
)α]

. Fur-

thermore, limkt→+∞ φ(kt ) = +∞ (see Fig. 1b). Observe that, for well-developed
countries, those characterised by levels of capital per capita high enough, i.e. kt > kc,
the higher the difference between workers and shareholders saving rates, the higher
the capital per capita at time t + 1.

Recall that the elasticity of substitution betweenproduction factors (whichmeasures
the ease with which capital and labour can be substituted in production) for nonlinear
and twice differentiable functions is defined as follows [see Sato andHoffman (1968)]:

σ(kt ) = − f ′(kt )[ f (kt ) − f ′(kt )kt ]
f (kt ) f ′′(kt )kt

(10)

while it is assumed to be σ = +∞ for linear production functions. Being

f ′′(kt ) = Aα(α − 1)(kt − kc)
α−2, kt > kc
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the elasticity of substitution between production factors for the SCD can be easily
calculated and it is given by

σ(kt ) =
{

+∞ 0 < kt < kc
1 − kc

(1−α)kt
kt > kc

.

Observe that f (kt ) belongs to the class of variable elasticity of substitution (VES)
production functions, as σ(kt ) depends on the level of capital per capita kt . More-
over, σ(kt ) is discontinuous in kt = kc being limkt→k+

c
σ(kt ) = −α

1−α
�= +∞ while

limkt→+∞ σ(kt ) = 1. Notice that if kt > kw > kc, then σ(kt ) > 0, whereas if
kc < kt < kw, then σ(kt ) < 0 (see Fig. 1c). Notice also that σ is always smaller
than 1 for kt > kc. As far as the sign of σ is concerned, we observe that even if a
negative elasticity of substitution between production factors is not conventional, sev-
eral production functions in the literature show negative elasticity of substitution [see
Prywas (1986), Andrikopoulos et al. (1989), Thompson and Taylor (1995), Nguyen
and Streitwieser (1997), Stern (2004), Hamilton et al. (2005) and Jurgen (2014)].
For instance, as suggested by Paterson (2012), a negative elasticity of substitution
can occur if complementary inputs are considered. Therefore, a negative elasticity
of substitution between production factors for kc < kt < kw suggests that, in the
early stages of production, immediately outside the poverty trap, capital and labour
are complementary and not replaceable.

For kt ≤ kc, map φ is a linear function passing through the origin with slope
m = 1−δ

1+n . Note that m is positive and smaller than 1; moreover, it increases as δ or n
decreases. Firstly, we compute the derivative for map φ that is given by

φ′(kt ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−δ
1+n kt < kc
1

1+n

{
1 − δ + αA

[
sr(αkt−kc)
(kt−kc)2−α

]}
kc < kt < kw

1
1+n

{
1 − δ + αA

[
sr(αkt−kc)+(1−α)swkt

(kt−kc)2−α

]}
kt > kw

. (11)

Notice that φ is non-differentiable in kw and, hence, if φ admits an attractor A and
kw ∈ A, its stability must be discussed separately. With regard to the behaviour of map
φ, for sufficiently high levels of capital per capita we observe that ∀k > kc function φ

presents a turning point, i.e. a minimum point, as stated in the following proposition.

Proposition 1 Function φ given by (5) is unimodal for kt > kc with minimum point
kmin.

Proof Recall function φ and φ′ may be written, respectively, as in (8) and (9). Let
k > kc, k �= kw, then φ′(k) = 0 iff H(k) = δ−1

A . Hence, the turning points of φ

different from kw are solutions of

H(k) = δ − 1

A
. (12)
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Function H(k) is such that limk→k+
c
H(k) = −∞; moreover,

H ′(k) =
{

srα(α−1)(αk−2kc)
(k−kc)3−α kc < k < kw

α(1−α){(2sr−sw)kc−[(1−α)sw+αsr]k}
(k−kc)3−α k > kw

.

Assume kp = srkc
αsr+(1−α)sw

and z = sr(2α − 1)
(

α
1−α

kc
)α−1

.

We first consider the solutions of Eq. (12) for k ∈ (kc, kw):

(i) for α > 1
2 , function H(k) < 0 iff kc < k < kc

α
, therefore H(k) can intersect

the constant and negative function v = δ−1
A only in the interval I1 =

(
kc,

kc
α

)
.

Moreover, H ′(k) > 0∀k ∈ I1 and lim
k→ kc

α

− H(k) = 0. So that H(k) = v has

always one solution;
(ii) for α ≤ 1

2 , function H(k) < 0∀k ∈ (kc, kw) = I2, H ′(k) > 0∀k ∈ I2 and
limk→kw H(k) = z, so that H(k) = v has one solution in the interval I2 if v ≤ z.

We now consider the solutions of Eq. (12) for k > kw:

(iii) for α < sr−sw
2sr−sw

and sr > sw, function H(k) < 0 for k ∈ (kw, kp) = I3, moreover,

limk→k+
w
H(k) = z + (1 − α)sw

(
α

1−α
kc

)α−1
, limk→k−

p
H(k) = 0 and H ′(k) >

0∀k ∈ I3 so that H(k) = v has one solution in the interval I3 if v ≥ z + (1 −
α)sw

(
α

1−α
kc

)α−1
.

Since z < z+(1−α)sw
(

α
1−α

kc
)α−1

, cases (i i) and (i i i) cannot occur simultaneously,

and hence for α < sr−sw
2sr−sw

there may exist, at most, one turning point. If condition (i)

holds, then kmin < kc
α
, if condition (i i) holds, then kmin < kw, while if condition (i i i)

holds, then kmin ∈ (kw, kp).
Consider now k = kw and notice that, when conditions (i), (i i) or (i i i) do not hold,

Eq. (12) has no solution. Nevertheless, for these parameter values limk→k−
w
H ′(k) < 0

and limk→k+
w
H ′(k) > 0 and hence φ(k) is unimodal with minimum point kmin = kw.


�
Information about the position of the minimum point of map φ deriving from

Proposition 1 is summarised in the following table (where v = δ−1
A , z = sr(2α −

1)
(

α
1−α

kc
)α−1

, p = (1 − α)sw
(

α
1−α

kc
)α−1

and kp = srkc
αsr+(1−α)sw

).

Parameter values Minimum point

α > 1
2 kmin ∈

(
kc,

kc
α

)

α ≤ 1
2 and v ≤ z kmin ∈ (kc, kw)

α <
sr−sw
2sr−sw

, sr > sw and v ≥ z + p kmin ∈ (kw, kp)
All others kmin = kw

Notice that when kmin = kw the turning point is not differentiable.
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3 Equilibria and local dynamics

In this section, we consider the question of the existence of steady states of system (5)
and then we discuss about their local stability.

3.1 Existence of steady states

The problem of finding the number of steady states is not trivial, considering the
high number of parameters. As a general result, map φ always admits one fixed point
characterised by zero capital per capita, i.e. k = 0 is a fixed point for any choice of
parameter values as stated in the following Proposition.

Proposition 2 Map φ as given by (5) always has the fixed point k = 0 that is locally
stable.

Proof kt = 0 is a solution of equation kt = φ(kt ) for all parameter values. Moreover,
φ′(0) ∈ (0, 1). 
�
Steady states which are economically interesting are those characterised by positive
capital per worker. As previously underlined, φ is a discontinuous map. Moreover, no
positive fixed point exists for 0 < kt ≤ kc, being 0 < 1−δ

1+n < 1. In order to determine
the positive fixed points of φ with kt > kc, we consider function G as given by (6)
and consider that the positive steady states of map φ are the solutions of equation

G(kt ) = n + δ

A
. (13)

For what in concerns the number of positive steady states of the Solow growth
model with SCD and differential savings the following proposition holds.

Proposition 3 Consider φ as given by (5). Define g = n+δ
A and kM =

kc
(2−α)sw+√

αsw[(4sr−3sw)α−4(sr−sw)]
2(1−α)[sw+(sr−sw)α] .

(i) Assume sr ≥ sw. Then φ has one positive fixed point given by k∗ > kc. Moreover,

(a) if g ≥ G(kw), k∗ ≤ kw;
(b) if g < G(kw), k∗ > kw.

(ii) Assume sr < sw. Then

(a) if g > G(kM ), there exists one positive fixed point given by kc < k∗ < kw;
(b) if g = G(kM ), there exist two positive fixed points given by kc < k1 < kw and

k2 = kM > kw;
(c) if G(kw) < g < G(kM ), there exist three positive fixed points given by k1 ∈

(kc, kw), k2 ∈ (kw, kM ) and k3 ∈ (kM ,+∞);
(d) if g = G(kw), there exist two fixed points given by k1 = kw and k2 > kM;
(e) if g < G(kw), there exists one positive fixed point given by k∗ > kM.

Proof Being 1−δ
1+n < 1, for all 0 < kt ≤ kc map φ does not intercept the main

diagonal. Function G is such that G(kt ) > 0∀kt > kc, furthermore, limkt→k+
c
G(k) =
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+∞ while limkt→∞ G(kt ) = 0. G(kt ) is continuous in kw, being limkt→k−
w
G(kt ) =

limkt→k+
w
G(kt ) = G(kw) = ααsr

(
kc

1−α

)α−1
. We distinguish between the following

cases.

(i) If sr ≥ sw, G(kt ) is strictly decreasing, since G ′(kt ) ≤ 0 and G ′(kt ) = 0 in one
point at most. Hence, G(kt ) intersects the positive and constant function g = n+δ

A
in a unique value k∗ > kc.

(ii) If sr < sw, ∃kM > kw such that G ′(kt ) < 0 for kc < kt < kw ∨ kt > kM
and G ′(kt ) > 0 for kw < kt < kM . The local minimum and maximum points

of function G are given by kw and kM = kc
(2−α)sw+√

αsw[(4sr−3sw)α−4(sr−sw)]
2(1−α)[sw+(sr−sw)α] ,

respectively. Hence, if n+δ
A > G(kM ) or n+δ

A < G(kw), then equation G(kt )
intersects the positive and constant function g = n+δ

A in a unique positive value
kt = k∗ > kc. Whereas, if G(kw) < n+δ

A < G(kM ), then equation G(kt ) = g
admits three positive solutions, k1, k2, k3, where k1 ∈ (kc, kw), k2 ∈ (kw, kM ),
k3 > kM . For g = G(kw) a border collision bifurcation occurs with the merging
of the fixed point with the kink point of φ, while for g = G(kM ) a fold bifurcation
occurs since the constant function g is tangent to G in the maximum point and it
intersects function G in a second point k∗ < kw.


�
Notice that the case denoted (i i .b) corresponds to a smooth fold bifurcation of the
map, while the case denoted (i i .d) corresponds to a border collision fold bifurcation
of the map in the kink point kw. In both cases, two fixed points are generated.

Taking into account Proposition 3, the Solowgrowthmodelwith differential savings
and shifted Cobb–Douglas production function always admits the equilibrium k = 0.
Moreover, multiple equilibria can exist: up to three positive fixed points are exhibited,
depending on the parameter values (see Fig. 2). Note that the necessary condition for
the existence of more than one positive equilibrium is sr < sw. Moreover, more than
one positive fixed point can emerge for sufficiently high values of the output elasticity
of capital α. Note that these results agree with those obtained by Brianzoni et al.
(2012b) considering the Revankar (Revankar (1971)) VES production function: up to
three positive fixed points may emerge if the elasticity of substitution is smaller than
one and workers save more than shareholders. Differently, when a CES production
function is considered, at most two positive fixed point may emerge [see Brianzoni
et al. (2007)].

We want to highlight how the output elasticity of capital α and the difference
between saving rates influence the number of steady states. To this purpose, we define
Δs = sr − sw, Δs ∈ (−sw, 1 − sw). Taking into account the conditions related to the
existence and number of fixed points stated in Proposition 3, it is possible to describe
how the number of fixed points varies as the output elasticity of capital α or the
difference between saving rates Δs changes. To this scope, we fix all the parameter
values but α and Δs and we consider several parameters combinations (Δs, α) taken
on the set Ω = [−sw, 1 − sw] × [0, 1]. Define

C1 = {(α,Δs) ∈ Ω : sr − sw = 0} (14)

123



154 F. Grassetti et al.

Fig. 2 Map φ and its positive fixed points for kt > kc in the case of sr < sw for the following parameter
values: δ = 0.65, sw = 0.45, sr = 0.25, n = 0.45, A = 100, kc = 44. a One positive fixed point for
α = 0.15, b two positive fixed points for α = 0.275, c three positive fixed points for α = 0.4

Fig. 3 Parameter values: δ = 0.05, sw = 0.4, n = 0.05, A = 3, kc = 20. Number of fixed points according
to Proposition 3. In the blue region, there is 1 positive fixed point (cases (i .b) and (i i .e)), in the green region
there is 1 positive fixed point (cases (i .a) and (i i .a)), in the red region there are 3 positive fixed points (case
(i i .c)). Curves C1, C2 and C3 are defined in Eqs. (14), (15) and (16), respectively

C2 =
{
(α,Δs) ∈ Ω : n + δ

A
− G (kw) = 0

}
(15)

C3 =
{
(α,Δs) ∈ Ω : G (kM ) − n + δ

A
= 0, sr < sw

}
(16)

then curves C1, C2 and C3 separate the plane Ω into three regions, each of which
contains parameter values corresponding to a case stated in Proposition 3.

The three regions are depicted in Fig. 3: the points on the right of curve C1 verify
the condition of the case (i), while the left region contains the parameter values
related to case (i i). Curve C2 verifies condition (i i .d), while the curve C3 verifies
condition (i i .b). Notice that the existence of positive fixed points is due to high values
of parameter α combined with low values of parameter Δs. The border collision
bifurcation occurs in C2 while the smooth fold bifurcation is caused in C3. In the red
region, three fixed points exist, two of them generated via bifurcation.
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3.2 Stability of steady states

We now discuss about the local stability of the steady states of map φ. As far as the
local stability of the steady state k = 0 is concerned, the following proposition holds.

Proposition 4 Let φ be as given by (5). Then the equilibrium k = 0 is always locally
stable.

Proof Note that limkt→0+ φ′(kt ) = 1−δ
1+n ∈ [0, 1) and consequently the origin is a

locally stable fixed point for map φ. 
�
Notice that for all the initial conditions k0 ≤ kc, map φ behaves as a contraction map
and the iterates monotonically converge to k = 0. Therefore, we define the poverty
trap as a situation in which, at the initial time, the capital per capita level is not high
enough, i.e. k0 ≤ kc, and such that the economy will not survive in the long term.
The interval B0 = [0, kc) is the immediate basin of the origin and, when it coincide
with the global basin of k = 0, the long-run behaviour for any initial condition
k0 < kc is predictable. This result diverges from those obtained by using a CES or
VES production function [see Brianzoni et al. (2007, 2009, 2012b) and Grassetti et al.
(2015)], since a poverty trap exists [see also Capasso et al. (2010) and Brianzoni et al.
(2012a, 2015)]. Notice that CES and VES production functions properly describe
developed economies but are not able to capture the vicious circle of poverty that
typically characterises non-developed countries, whereas the SCDproduction function
makes it possible to consider this phenomenon. Thus, the presence of a poverty trap
threatens the possibility of economic growth: economies starting from a low level of
physical capital may be captured by the poverty trap and, consequently, the dynamic
of physical capital may converge to zero. Note that for a small displacement from the
stable equilibrium k = 0, the time trend of the relative displacement is Tr = ( 1−δ

1+n )t .
Therefore, if an economy lies in the poverty trap, a higher depreciation rate of capital or
a higher labour force growth rate causes a faster return to the steady state characterised
by zero capital per capita.

As the long-term dynamics produced by the model are known for all the initial
capital perworker less than the threshold value kc, we now focus on the growth patterns
concerning sufficiently high initial states (i.e. k0 > kc). Due to the complexity of the
map, a complete definition about the local stability of the positive hyperbolic steady
states is not possible. The following Remark summarises results about the existence
of stable fixed points and conditions on parameters under which φ′ is negative and,
hence, complex dynamics may arise.

Remark 1 Consider φ as given by (5) and recall Proposition 3.

(i) Assume sr ≥ sw. If k∗ > kmin, the equilibrium k∗ is locally stable. Otherwise
φ′(k∗) < 0.

(ii) Assume sr < sw.

(a) Consider g > G(kM ). Then, if k∗ > kmin the equilibrium k∗ is locally stable.
Otherwise φ′(k∗) < 0.

(b) Consider G(kw) < g < G(kM ) then the fixed point k3 > kM > kmin is
always locally stable while the fixed point kw > k2 > kM is always unstable.
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Furthermore if k1 > kmin, the equilibrium k1 is always locally stable, whereas,
if k1 < kmin, then φ′(k1) < 0.

(c) Assume g < G(kw). Then the equilibrium k∗ is locally stable.

Proof Observe that for any fixed point k f it follows φ′(k f ) = 1 + A
1+n k f G ′(k f ).

Being G ′(k∗) < 0 for cases (i), (i i .a) and (i i .c) of Proposition 3, then φ′(k∗) =
1 + A

1+n k
∗G ′(k∗) < 1. Moreover, φ is unimodal with minimum point kmin, so that if

k∗ > kmin then φ′(k∗) ∈ (0, 1), whereas, if k∗ < kmin, φ′(k∗) < 0. In case (i i .c) k1
is stable if k1 > kmin, while φ′(k1) < 0 for k1 < kmin. Moreover, being φ(k) strictly
increasing ∀k > kmin and G ′(k2) > 0 then φ′(k2) > 1, it follows that the fixed point
k2 is unstable, while the fixed point k3, k3 > k2 > kmin is locally stable. 
�
Notice that multiple equilibria coexist and hence multistability phenomenamay occur.
Therefore, the global analysis of basins is mathematically significant (complex basins
may exist) and particularly economically relevant, since it makes it possible to answer
one of the fundamental questions concerning developing countries and poverty trap: is
it possible for an economy with a sufficiently high capital per capita level, i.e. k0 > kc,
to avoid the poverty trap?

Further considerations on the nature of the fixed points, their basins and their
behaviour are debated in the following section.

4 Global dynamics and numerical experiments

In this section, we analyse the qualitative asymptotic properties of map φ by using
both numerical simulations and analytical tools. Note that the map may show complex
dynamics if a fixed point is located on the decreasing branch of φ (see Remark 1).
In order to consider the possibility of complex attractors to emerge, we analyse the
case in which kmin > φ(kmin). Since the analytic form of function φ is complicated,
we cannot analytically describe this condition and the dynamic behaviour needs to be
analysed by numerical simulations.

4.1 Complex attractors andmultistability

Recall from Remark 1 that, if a fixed point is placed in the interval (kc, kmin), it may
be locally stable or unstable and hence a more complex attractor Amay appear around
it. The following proposition states the existence of a trapping interval for map φ.

Proposition 5 Consider φ as given in (5). Assume kmin > φ(kmin) > kc and, if three
positive fixedpoints exist, assumek2 > φ2(kmin). Then the set J = [φ(kmin), φ

2(kmin)]
is trapping.

Being φ unimodal, it admits a trapping set J under the conditions of Proposition 5.
Since J is trapping set, then if a complex attractor A exists, it must belong to it.

Furthermore, A must attract the trajectory starting from the turning point kmin. As
Sushko et al. (2005) demonstrated, when kw ∈ J , a second attractor B (related to
images of kw) could exist in J . However, several numerical experiment did not show
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Fig. 4 Staircase diagram of φ being n = 0.3, δ = 0.6, sw = 0.25, sr = 0.5, A = 5, kc = 5 and i.c.
k0 = kmin for different values of α. a α = 0.5, stable fixed point. b α = 0.4, stable 2-period cycle. c
α = 0.35 complex attractor

the existence of a second attractor; therefore, in the following we will focus on the
case in which only one attractor exists in J . Recall that if kmin > φ(kmin), then the
eigenvalue of the fixed point placed on the decreasing branch of map φ (if map φ

is differentiable in that point) is negative and hence it may lose stability only via
period-doubling bifurcation. Notice that subsequent bifurcations may be of the border
collision type.

In Fig. 4, we show three different staircase diagrams of map φ with the initial
condition k0 = kmin and satisfying the hypothesis given in Proposition 5. Therefore,
the attractor belongs to the trapping set J . In panel (a), a stable fixed point is presented
for α = 0.5. In panel (b), a stable cycle C2 of period 2 is reached for α = 0.4.
Complexity emerges as the parameter α decreases and a complex attractor is visible
in panel (c) for α = 0.35. In order to discuss the bifurcations leading to chaos within
the trapping interval J defined in Proposition 5, we take into account the role of
the difference between saving propensities and elasticity of substitution. Figure 5a
contains the sequence of bifurcations of map φ as parameter Δs is moved while
Fig. 5b shows the asymptotic dynamics versus the bifurcation parameter α.

In both the diagrams, complex dynamics arise. Note that, since σ(kt ) = 1− kc
(1−α)kt

,
thenσ(kt ) < 1 for all parameter valueswhen kt > kc, confirming that complex dynam-
ics may arise if the elasticity of substitution is smaller than one, as demonstrated by
extended literature [see, among all, Brianzoni et al. (2007, 2009, 2012a, b, 2015)].
Notice that two contact bifurcations may occur: φ(kmin) = kc and k2 = φ2(kmin).
When φ(kmin) < kc, trajectories from k > kc may reach k = 0 which is otherwise
impossible. While, when k2 < φ2(kmin), more trajectories from k < k2 reach the
highest fixed point k3. In Fig. 5, Δ∗

s and α = α∗ are the values at which the contact
bifurcation kc = φ(kmin) occurs. The poverty trap attracts trajectories if Δs is suf-
ficiently low; therefore, an economic policy that increases the saving propensity of
shareholders could avoid the vicious circle of poverty for the economy.

Two questions arise: whether different initial conditions give rise to trajectories
converging to different attractors and why, in both bifurcation diagrams, a value Δ∗

s
or α∗ is observed that closes the bifurcation cascade from above and before the con-
vergence of the trajectories to the poverty trap. To answer to these questions, notice
that if α > α∗ and α is sufficiently close to α∗, then complex dynamics emerge if the
difference between workers and shareholders is big enough. This result is in line with
those obtained by Brianzoni et al. (2007, 2009, 2012b). Note also that the elasticity
of substitution increases as parameter α decreases and hence fluctuations arise when
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Fig. 5 Parameter values n = sw = 0.3, δ = 0.2, A = kc = 1 and k0 = kmin. a Bifurcation diagram of φ

w.r.t. Δs being α = 0.2. b Bifurcation diagram of φ w.r.t. α being sr = 0.47

the elasticity of substitution between production factors is sufficiently high (but still
smaller than one).

With regard to the first issue, notice that if sr < sw and G(kw) < n+δ
A < G(kM ),

then from 2 to 3 attractors may coexist: the fixed point characterised by zero capital
per capita, the positive fixed point k3 and the attractor A previously described. As
long as conditions in Proposition 5 hold, A may be a cycle or a more complex set.
Note that these results differ from those obtained with a VES production function
where, if amultistability phenomenon appears, attractors are only positive fixed points.
Differently from previous literature, if the SCD production function is considered, the
Solow–Swan growth model with differential savings properly describes the long-run
dynamics of non-developed, developing and developed countries. In particular, it is
able to describe three different long-run behaviours: convergence to the poverty trap,
convergence to cycle or amore complex set in which the economy alternates boom and
bust periods, and, finally, convergence to a positive capital per capita value. Figure 6
shows amultistability phenomenon for map φ [with regard tomultistability, see Bischi
et al. (2000), Brianzoni et al. (2012a, 2015) and Sushko et al. (2005)]: given the same
parameter values and two different initial conditions, in panel (a) a stable 2-period
cycle is presented, while panel (b) depicts the coexisting attracting fixed point. This
is, hence, the case in which three different attractors coexist. The two basins B(J )

and B(k3) are separated by the pre-images of k2. As long as φ2(kmin) < k2 the basin
B(k3) consists only of two intervals. A bifurcation in the basins’ structure occurs
when k2 = φ2(kmin) and, for k2 ≤ φ2(kmin), almost every trajectory converges to k3.
A second bifurcation occurs when kc = φ(kmin), after which the two basins B(k3) and
B(0) may have a fractal structure or a simple structure depending on the dynamics
existing in J , as long as it is invariant. Given the considerations done until now, the
second question is clearly worth answering. This will be done in the next section.

4.2 Complex basins

We now describe the structure of the basins of attraction for the given attractors in
order to show that, when more than one attractor exits, the initial condition becomes
crucial for the long-run behaviour of the economy, determining the possibility for a
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Fig. 6 Staircase diagrams. The same map φ is depicted in two different intervals in order to show both
attractors. Parameter values δ = 0.1, sw = 0.9, sr = 0.05, α = 0.75, A = 14, kc = 90. a Stable 2-period
cycle. b Stable fixed point

country to reach a positive level of capital per capita or to fall into the “vicious circle
of poverty”.

Function φ is unimodal for k > kc. Moreover, several numerical experiments
show that φ(kmin) > φ(kc), therefore φ(kmin) and φ(kc) separate the set R+ in three
subsets: Z1 = (0, φ(kc)), Z0 = (φ(kc), φ(kmin)) and Z2 = (φ(kmin),+∞) whose
points have, respectively, one zero and two rank-1 pre-images (see Fig. 1b), so that φ
is a Z1 − Z0 − Z2 map [with regard to pre-images, see Makrooni et al. (2015)]. As
previously shown,mapφ may have three attractors: the fixed point k = 0 characterised
by zero capital per capita, the attractor A ∈ J and a positive fixed point k3. Notice
that if k3 is an attractor (i.e. 4 equilibria exist), then k2 is the unstable fixed point. In
this case, complex basins may emerge depending on parameter values, as it will be
described. Regarding the global basin of the origin notice that, as long as φ(kmin) >

kc, it corresponds to the immediate basin. Differently, when φ(kmin) < kc then the
immediate basins have other pre-images, leading to a wider global basin. In cases for
which kc < φ(kmin) an initial condition k0 > kc can never decrease too much and
the transition to a poverty trap cannot occur, thus the poverty trap can be avoided.
Although, there can be up to two positive equilibria, in which case the economy can
switch from the lower lever to the higher one.

We start by assuming φ(kmin) > kmin , i.e. the turning point of map φ is above the
main diagonal and two attractors coexist: the fixed point k = 0 and the positive fixed
point k3. In this case, the basins of attraction are simple: the boundary that separates
the basin of attraction B(0) of the attractor k = 0 from the basin of attraction B(k3)
is point kc (see Fig. 7a). Thus, as long as a parameter is moved (for instance sr), the
non-differentiable point kw crosses the value φ(kw), a border collision bifurcation
occurs, two fixed points are created and the attractor A ∈ J , given for instance by
a fixed point, may appear. After this bifurcation, if some parameter still varies (for
instance sr decreases), a period-doubling bifurcation takes place and the attractor A
becomes a 2-period cycle (see Fig. 7b). Notice that, after the bifurcation, three basins of
attraction exist:B(0),B(k3) and the basinB(A)of the emerged attractor A. In particular
B(0) = [0, kc], while the basin of attraction of k3 is nowmade of unconnected portions:
the immediate basin (k2,+∞) and the unconnected portion (kc, (k2)−1), where (k2)−1
is the pre-image of k2, therefore B(k3) = (kc, (k2)−1) ∪ (k2,+∞). The basin of
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Fig. 7 Parameter values: δ = 0.2, n = 1.25 sw = 0.85, α = 0.55, A = 15, kc = 2. a sr = 0.3; b sr = 0.1;
c sr = 0.085

attraction of A is given by B(A) = ((k2)−1, k2). Notice that, immediately after the
critical level of capital kc, the initial conditions generate trajectories converging to
the upper equilibrium k3, as shown in Fig. 7b. A further decrease in parameter sr
moves the minimum point φ(kmin) downward, the attractor A loses stability and its
basin of attraction B(A) disappears. Moreover, two contact bifurcations occur: first
φ2(kmin) = k2 and then kc = φ(kmin). After the global bifurcations, non-connected
portions of B(0) and B(k3) appear (see panel (c)). In this case, economic policy trying
to raise capital per capita in order to reach the positive equilibrium level k3 may fail
and economies may be captured by the poverty trap, as shown in Fig. 7c: different
and close initial conditions generate trajectories converging either to the fixed point
characterised by zero capital per capita (i.c. kb0) or to the positive fixed point (i.c. k

a
0 ).

5 Conclusions

In this paper we investigated a Solow–Swan growth model with differential saving
rates between workers and shareholders [see Böhm and Kaas (2000), Kaldor (1956,
1957) and Pasinetti (1962)] using the shifted Cobb–Douglas production function [see
Capasso et al. (2010)], a VES technology that properly describes non-developed,
developing anddeveloped economies. The results of our analysis show that fluctuations
or even chaotic patterns can be exhibited by the model, confirming the results obtained
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by Brianzoni et al. (2007, 2009, 2012a, b, 2015): cycles and more complex dynamics
may arise if the elasticity of substitution between production factors is smaller than
one. As in Brianzoni et al. (2012a), the system may converge to the poverty trap since
the origin is always a locally stable fixed point. Furthermore up to three positive fixed
points may exist. The model presents multistability phenomena since, if shareholders
save more than workers, three positive attractors may exist: a fixed point characterised
by zero capital per capita (so-called vicious circle of poverty), amore complex attractor
(cycle or chaotic set) and a positive fixed point. Themodelmay present complex basins
so that economic policies may fail and economies may be captured by the poverty trap
even when a country with sufficiently high level of capital per capita is considered.
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