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Abstract
We analyze a market in which advertising is the dominant marketing tool to create
market share.We assume that an incumbent firm dominates themarket during an initial
stage, and that a new competitor is going to enter the market. In particular, we analyze
the different advertising policies that the incumbent firm can adopt, before and after
the entry of the rival. We explore three possible behaviours. In the first scenario the
firm knows that the competitor will arrive at a given instant. In the second one we
assume the original firm to be surprised, in the sense that it does not anticipate the
entry of the opponent either because it does not expect the competitor to arrive, or it
is not prepared to react before the entry takes place. Finally, in the third scenario, the
original firm knows that the competitor will enter at a constant rate. We characterize a
differential game model and compare the firms’ behaviours in a strategic perspective.

Keywords Differential games · Nash equilibria · Marketing · Market entry

JEL Classification C72 · C73 · L13 · D21

1 Introduction

We consider amarket in a givenmature product category characterized by the presence
of an incumbent firm which faces some other minor firms (see Morgan et al. 2009,
Ch. 13). The competition for market share is performed by using advertising as the
dominant marketing tool. We formalize such an issue as a monopoly, assuming the
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market share of small competitors to be negligible. In Beatty and Samuelson (2016,
Ch. 8 p. 1004) it is argued that a monopoly does not only depend strictly on how
much market share a firm controls. They rely upon the fact that the real key to identify
it, is the capacity that an incumbent has to exclude competitors from the market or
to control the prices. Hence, differently from the traditional behaviour of the courts,
that considered monopoly a share of the market between 70 and 90%, according to
Beatty and Samuelson, modern antitrust law does not care much on market share,
especially if a competitor could easily enter the market any time it wants. We account
for this interpretation in a way that the incumbent is able to control the market share
by its advertising efforts alone. The economical context, in which the transition takes
place, is a mature market where the price is fixed while firms compete on market share
through advertising.

After that, we assume that a new strong competitor will enter the market selling
a similar product. By strong we mean that the presence of the new competitor is
not negligible, since it affects the market share, and transforms the monopoly into
a duopoly. As a matter of fact, the most common situation of competition is given
by an oligopoly, where many firms want to sell similar products against many rival
companies. However, we limit to study the duopoly, not only because the classical
literature on competition follows such an approach, but also because duopoly is a
situation that often appears in some specificmarkets, between twowell-known brands.
Some of themost famous examples are the eternal rivalry betweenCocaCola and Pepsi
Cola, the contention between Polaroid and Kodak about their instant colour cameras
or the most recent battle between Apple and Samsung for the supremacy on the world
of smart phones and tablets.

Kotler and Armstrong (2018, p. 519) affirm that companies must avoid “competitor
myopia”, because the probability to lose market share against a latent competitor is
higher than the probability to lose it because of a well-known competitor. We prove
this statement in a theoretical model by defining the following three different scenarios
for the incumbent, according to its behaviour with respect to the competitor’s market
entry.

Non-surprised: The incumbent is aware of the competitor’s entry and about the timing.
Consequently, it already adapts to the entry in the monopoly stage.

Surprised: The incumbent is not aware that a competitor is about to enter the market.
It uses the optimal advertising policy according to a monopolistic market. After
having recognized the competitors market entry (either immediately or with some
time lag), the incumbent adapts its advertising policy according to the duopoly.

Stochastic: The incumbent is aware of a competitor that intends to enter the market,
but is not sure about the timing. It expects the entry at a certain rate over time and
includes this information in deriving the optimal policy.

Note that the three scenarios are basically different in the information about the com-
petitor’s entry. In the non-surprised case the incumbent has complete information. In
the surprised case the incumbent is not aware of the entry and recognizes this event
with a time lag. In the stochastic case probably the most realistic one in our model, the
incumbent is aware about a possible competitor, but can expect the arrival to occur at
some rate.
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The objective of this paper is to investigate the behaviour of a first entrant being in
an incumbent position for some time and facing a potential competitor for a subsequent
stage. In particular themain purpose is to showhowdifferent strategies and information
can lead to significant differences in economic terms. This analysis demonstrates the
importance of the knowledge about potential competitors and their corresponding
market entries. We want to focus on the transition between the monopoly and the
duopoly and to study how to consider strategically such transition. The entry of the
competitor will verify in any case, and the incumbents perception of such an entry is
crucial and makes him farsighted or not.

One of the earliest examples of advertising dealing with market share models is the
Vidale–Wolfemodel (1957), which described the dynamics of the sales rate, expressed
as a fraction of the total market. The optimal advertising path for the Vidale–Wolfe
dynamics is provided by Sethi (1973) where the author focuses on the monopolist
problem but allows for a stochastic component in the evolution of the market share.
Nevertheless no interaction between the advertising policies of the two firms is con-
sidered there. Bagwell and Ramey (1988) analyzed the situation of the entry of a
competitor in an existing duopoly, considering prices as decision variables and their
work lies in the stream of static optimization. Subsequent research in the dynamic
optimization context extended the basic frameworks to incorporate competitive adver-
tising, based on the Lanchester model of combat (see in Jørgensen and Zaccour 2004,
p. 286). This was followed by Sethi (1983) and Prasad and Sethi (2004) who exam-
ine the problem where the market share is determined by stochastic disturbances in
addition to advertising expenditures. The former formulates and solves a stochastic
optimal control problem in infinite time horizon, and the latter presents a stochastic
differential game in infinite time horizon. Sorger (1989) uses a special case of the
Lanchester model to obtain a duopoly version of the Sethi model.

In the previous models of the related literature either a monopoly or a duopoly
situation was considered. To the best of our knowledge no other paper considers
the transition between the stages. In our paper we want to focus on the transition
between the two stages and to study how the incumbent may consider strategically
such (inevitable) transition.We consider a two-stage (monopoly/duopoly) continuous-
time model with the advertising effort as the only control variable. Price and cost are
equal between the players, which differs from Bagwell and Ramsey stream of works.
We do not consider stochastic disturbances in the dynamics, as in Sethi (1983) and
Prasad and Sethi (2004), due to our different research question (here the step from
monopoly to duopoly is discussed) and for mathematical tractability.

A similar framework has been analyzed in other contexts, as for example by Eliash-
berg and Jeuland (1986) in an optimal pricingmodel and byKort andWrzaczek (2015)
in a capital accumulation model. Gromova and López-Barrientos (2016) analyze the
entry of a competitive firm in a resource extraction model.

We formalize the problem of the monopoly stage in terms of an optimal control
model using the advertising effort as the incumbent’s control variable. In the duopoly
stage twodecisionmakers are interacting implying a differential game formulation.We
solve the problem backward starting from the second stage. We derive the Markovian
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Nash equilibrium1 of the game, with the aim of comparing the marketing effect of
the three different behaviours for the incumbent. In this attempt we assume that both
market shares and effort choices are observable by the players. After that we solve
the optimal control problem of the monopoly stage linked to the duopoly problem
throughout its salvage function.

The paper is organized as follows: In Sect. 2 we formulate the model in the context
of dynamic optimization and differential games. In Sect. 3 we present and solve the
problem of the non-surprised firm, and in Sect. 4 we present and solve the problem of
the surprised firm together with two different reactions the incumbent may have, also
after the competitor’s entry and after being surprised. Finally in Sect. 5 the stochastic
formulation is studied. For all models we find the optimal advertising strategies, which
are compared in Sect. 6 where also an economic interpretation of the results is given.
Section 7 compares the optimal profits for a specific parameter choice, and Sect. 8
concludes. The proofs of the theorems are provided in “Appendix”.

2 Themodel

In this section we introduce the model step by step. The time horizon is subdivided
by the entry of the competitor into two stages. The time of the entry will be referred
to as T e. We denote the stage before and after T e by monopoly and duopoly stage,
respectively.

2.1 Monopoly stage

Let us denote by Firm 1 the incumbent firm and let x(t) be its market share at time
t . Following the model structure as proposed by Sethi (1983), the dynamics of the
market share is

ẋ(t) = ρu1(t)
√
1 − x(t) − δx(t), x(0) = x0. (1)

Firm 1’s control variable u1(t) ≥ 0 represents its advertising effort. Parameter ρ > 0,
originally introduced by Vidale and Wolfe (1957), denotes the advertising efficiency
in terms of market share of the two firms, and δ > 0, called churn as in Prasad
et al. (2012), captures phenomena as product obsolescence, forgetting, lack of market
differentiation, lack of information, variety seeking and brand switching (see Tsai and
Chen 2010 for details). The nonlinear effect of advertising is a variant of the Vidale
and Wolfe model introduced by Sethi in (1983). It can be explained as an additional
process of word-of-mouth communication between the individuals comprising the
sold portion and those comprising the unsold portion. For a detailed explanation we
refer to Dockner et al. (2000, p. 287). Let us assume the following constraint for the
initial market share, x0 ∈ [0, 1].
1 Note that the Markovian Nash equilibrium in differential games is equivalently called feedback Nash
equilibrium in some texts.
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The objective function of the incumbent equals

max
u1≥0

∫ T

0
e−r t (mx(t) − cu21(t))dt + e−rT S(x(T )), (2)

where m > 0 is the unit profit margin, c > 0 the cost parameter and r > 0 the
discounting rate. Note that the cost parameter can have any positive value in general,
it is fixed to c = 1 and therefore suppressed for the rest of the paper, since only the
ratio between m and c matters in the solution.

T denotes the time horizon for Firm 1. The value of T depends on the scenario
(non-surprised, surprised, stochastic) we are looking at.

In the non-surprised case, Firm 1 exactly knows the entry time of the competitor
(referred to as Firm 2 from now on), so that T = T e. In this case the monopoly model
differs from the one in Sethi (1983) because it has a finite time horizon and the salvage
function. The salvage function S(x(T e)) represents the value of the state at the end of
the time horizon T e. The link between this salvage function and the initial state of the
duopoly stage is justified by the Bellman’s optimality principle and will be explained
later on.

In the surprised case Firm 1 is not aware of any competitor and believes that the
monopoly will hold on forever, i.e. T = +∞. In this case the monopoly model
coincides with the deterministic issue of the one in Sethi (1983).

In the stochastic case Firm 1 expects a competitor at a certain rate (for details we
refer to Sect. 5), i.e. T is a random variable exponentially distributed with parameter
γ . In this case the monopoly model is substantially different with respect to the one
in Sethi (1983) because it does not have stochastic dynamics, the stochasticity in the
objective function.

2.2 Duopoly stage

At T e Firm 2 enters the market with an advertising effort u2(t) ≥ 0, and the duopoly
stage begins. A new state variable y(t) represents themarket share of Firm 2, so that the
initial condition for y equals the remaining market share, i.e. y(T e) = 1−x(T e). That
means that the new Firm 2 has overtaken the market potential of all remaining firms
of the monopoly stage, either by overtaking all firms or by a merger. This assumption
implies x(t) + y(t) = 1 for t ∈ [T e,+∞). We also assume that both firms are
symmetric with respect to all parameters. This does not alter the qualitative nature of
the results, and it permits to avoid difficult equations. We are interested in comparing
the different behaviours that the same incumbent (Firm 1) can have in case it is either
surprised or not. A comparison between Firm 1 and Firm 2 is not the focus of our study.

The model structure (after using x(t) + y(t) = 1) is the one proposed by Prasad
and Sethi (2004) with the dynamics

ẋ(t) = ρu1(t)
√
1 − x(t) − ρu2(t)

√
x(t) − δ(2x(t) − 1), x(T e) = lim

t→T e− x(t).

(3)
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The objective functions of the two firms are analogous. But in contrast to the
monopoly stage the time horizon is infinite, i.e.

Firm 1: max
u1≥0

∫ +∞

T e
e−r t(mx(t) − u21(t)

)
dt

Firm 2: max
u2≥0

∫ +∞

T e
e−r t(m(1 − x(t)) − u22(t)

)
dt (4)

Having presented the dynamics and the objective functions of the monopoly and
duopoly stage, the next step is to distinguish accurately the three scenarios already
briefly described in the introduction: non-surprised, surprised, stochastic. Here the
differences arise due to the assumed information corresponding to entry time T e and
the type of strategic interaction of the opponent.

In the following sections we determine the optimal advertising strategy for the
three cases and we compare them in order to analyze the marketing effect of the three
different types of behaviour. The superscripts M and D denote the monopoly and
duopoly stages. The subscript iNS (i = 1, 2) denotes that the given advertising policy
corresponds to the Markov perfect Nash equilibrium solution for Firm i , and the “ ∗”
denotes that the policy is the optimal one.

3 Non-surprised behaviour

In this scenario we assume that Firm 1 has complete information about the entry of
Firm 2, in particular about its entry time, which is assumed to be exogenous. Firm 2 has
complete information that Firm 1 perfectly anticipates the entry. Thus we introduce
the following assumption.

(A1) T e > 0 is exogenous. Both firms have complete information about T e and
about the opponents optimal policy.

This scenario can be seen as a benchmark case, i.e. complete information for every-
body. Even if it is not the most realistic case to happen in reality, it is important to
learn what would have been the best behaviour in case of complete information and
how much has been lost in terms of the objective function.

Using assumption A1 the model reads

– Monopoly stage:

Firm 1: maxu1≥0

∫ T e

0
e−r t (mx(t) − u21(t))dt + e−rT e

S(x(T e)) (5)

ẋ(t) = ρu1(t)
√
1 − x(t) − δx(t), x(0) = x0 > 0. (6)

– Duopoly stage:

Firm 1: maxu1≥0

∫ +∞

T e
e−r t (mx(t) − u21(t))dt (7)

Firm 2: maxu2≥0

∫ +∞

T e
e−r t (m(1 − x(t)) − u22(t))dt (8)
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ẋ(t) = ρu1(t)
√
1 − x(t) − ρu2(t)

√
x(t) − δ(2x(t) − 1),

(9)

x(T e) = lim
t→T e− x(t). (10)

At T e Firm 2 enters as second decision maker, implying the treatment as a differ-
ential game. The initial condition of the duopoly stage is exactly the market share of
Firm 1 at T e, and the rest of the market has been taken up by Firm 2. Considering
Firm 1 as an incumbent during the first stage, we are assuming that the effect of the
other firms in the market can be negligible in terms of market share both before and
after the entry of Firm 2.

Since we are interested in a realistic solution without commitment, we derive the
Markov perfect Nash equilibrium (see Dockner et al. 2000, chapter 4), where the
optimal policies of both players are functions of the state.2

The salvage value function of Firm 1 equals the value function of the second stage,
i.e. S(x(T e)) = V1(x(T e)) := ∫ +∞

T e e−r t (mx(t) − (u∗
1(t))

2)dt . The standard method
of deriving aMarkov perfectNash equilibrium is theHamilton–Jacobi–Bellman (HJB)
approach, in which a guess of the value functions (depending on parameters, which
have to be derived) of both players is used. Thus by this method we obtain directly
the value function for Firm 1, which can be used for the salvage value function of the
monopoly stage.

Since the salvage value function is crucial for the solution of the monopoly stage,
themodel has to be solved backward, i.e. first solving the duopoly stage (and obtaining
the salvage value function of themonopoly stage), second solving themonopoly stage.

Theorem 1 (Non-surprised—duopoly stage) The duopoly stage has a Markov perfect
Nash equilibrium in which the optimal advertising efforts are

u∗D
1NS(x(t)) =

√
(r + 2δ)2 + 3mρ2 − (r + 2δ)

3ρ

√
1 − x(t), (11)

u∗D
2NS(x(t)) =

√
(r + 2δ)2 + 3mρ2 − (r + 2δ)

3ρ

√
x(t). (12)

The market shares converge to (1/2, 1/2) as t → +∞.

The value functions of the two firms are equal to

V1(x) = α + βx, (13)

V2(x) = α + β(1 − x), (14)

where α and β are real parameters whose values are specified in “Appendix”.

Proof The derivation of this result is standard, and it is presented in “Appendix”, as
well as all the proofs of the other theorems.

2 To identify a Markov perfect Nash equilibrium of the infinite horizon game, note that the model is
autonomous. Then it is plausible to look for a stationary Markov perfect equilibrium in which advertising
strategies and value functions depend only on the state variable (see Dockner et al. 2000, p. 294).
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Note that this solution is not necessarily the unique Markov perfect Nash equilib-
rium since the standardmethod used in the proof assumes the choice of value functions.
In principle also other value functions could satisfy the HJB equations.

Note that if the market share x of Firm 1 increases, then its optimal advertising
effort is reduced; on the other hand, the optimal advertising effort of Firm 2 increases,
in order to catch up. So u∗D

1NS(x(t)) is monotonically decreasing while u∗D
2NS(x(t)) is

monotonically increasing in x , in fact

∂u∗D
1NS

∂x
< 0 and

∂u∗D
2NS

∂x
> 0. (15)

The advertising efforts u∗D
iNS , i = 1, 2, are decreasing in ρ and m, whereas decreasing

in c, δ and r . When the effectiveness ρ of the advertising increases, then the amount
of advertising increases.

However, this reasoning can not be applied whenm, i.e. the sales volumemultiplied
by the per-unit profit margin, increases or the discount rate r decreases. In these cases,
the wasteful advertising is increased, but the size of the pie is increased too. Finally
the churn parameter δ reduces competitive intensity.

Considering next the monopolistic stage, we recall that the incumbent problem is
a finite time horizon optimal control problem, which will be solved with Pontryagin’s
Maximum Principle. The salvage value function S(x(T )) represents the value of the
objective function in the final state of the monopoly stage. This can be considered as
the connection point between both stage. In the derivation of the Markov perfect Nash
equilibrium (see “Appendix”) we use a linear guess for the value function. Therefore,

S(x(T e)) = V1(x(T
e)) :=

∫ +∞

T e
e−r t (mx(t) − u21(t))dt = α + βx(T e), (16)

where α and β > 0 are given in (36) and (37). ��
Theorem 2 (Non-surprised—Monopoly stage) Let (A1) hold. Then the optimal adver-
tising effort of the non-surprised incumbent in the monopoly stage is

u∗M
1NS(t) = N (t)

ρ

√
1 − x(t), (17)

where

N (t) = R −U − 1 + eR(Te−t)(−2(R +U ) − βρ2)

2(R −U ) − βρ2 > 0

and

U = δ + r , R =
√
U 2 + mρ2.

Finally, summing up the behaviour in the non-surprised case, Firm 1 behaves
according to Theorem 2 in the monopoly stage. Since the entry time T e of Firm 2
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is known, Firm 1 derives an optimal control model with a finite time horizon and the
corresponding transversality condition derived from (16) (see also “Appendix”). In
the duopoly stage both firms behave symmetrically according to Theorem 1.

With this result it is possible to completely derive the optimal advertising policy of
Firm 1 over the whole time horizon, i.e. from 0 up to infinity.

4 Surprised behaviour

In the surprised behaviour we assume that Firm 1 either is not aware that a second
firm is about to enter the market, or it is not able to take it into account, due to
internal constraints/limits. Thus it continues to behave as it still were an incumbent,
i.e. solving its own infinite time horizon optimal control model without anticipating
(neither explicitly nor stochastically) any change of the market structure. For this case
we assume

(A2) During the monopoly stage Firm 1 has no information about the entry of Firm 2.
Right after T e Firm2 behaves according to theMarkov perfectNash equilibrium.

As a result, the optimization problem of Firm 1 in the monopoly stage is an infinite
horizon optimal control problem. It does not take into account that a rival company
can begin to produce and sell a similar product. Taking T = +∞ in (2) we get

Firm 1: max
u1≥0

∫ +∞

0
e−r t (mx(t) − u21(t))dt (18)

ẋ(t) = ρu1(t)
√
1 − x(t) − δx(t), x(0) = x0 > 0. (19)

The following theorem derives the optimal advertising strategy for the surprised
incumbent.

Theorem 3 (Surprised—monopoly stage) Let (A2) hold. The incumbent optimal
advertising effort is

u∗M
1S (t) = R −U

ρ

√
1 − x(t), (20)

where R and U are the same as in Theorem 2

Inserting (20) in (1) we obtain an analytic expression for the incumbent’s market
share xeS := x(T e) at the competitor’s entry T e, i.e.

xeS = 1 − e−(R−r)T e
(1 − x0) − 1 − e−(R−r)T e

R − r
δ. (21)

This is the market share of Firm 1 at the entry of the competitor (beginning of the
duopoly stage) for each of the following two subcases, which are dealt with in the
following.

After the entry of Firm 2 the market structure changes to a duopoly. At that instant
Firm 1 might either suddenly realize that such an event has taken place and so that
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it reacts, or it might need some time to adapt to the new situation, and it changes
its advertising policy with a certain time lag. In the latter case Firm 2 in turn might
react either before the incumbent reaction or after it. To account for these additional
possibilities we assume two more subcases:

Surprised immediate reaction: After Firm 2’s market entry Firm 1 immediately reacts
and behaves according to the Markov perfect Nash equilibrium.

Surprised time lag: After Firm 2’s market entry Firm 1 does not react immediately,
but with some time lag, more specifically at T R > T e Firm 1 reacts according to
the Markov perfect Nash equilibrium.

Summing up, T e denotes Firm 2’s market entry and at time T R ≥ T e Firm 1 reacts
(according to the Markov perfect Nash equilibrium).

4.1 Surprised immediate reaction

At time T e Firm 1 realizes that the competitor has entered themarket. Thus its advertis-
ing effort for the duopoly stage is set according to theMarkovperfectNash equilibrium,
i.e. u∗D

1NS(x(t)) given in (11). The competitor advertises à la Markov perfect Nash too,
i.e. u∗D

2NS(x(t)) as in (12). The incumbent’s market share at t , for t ∈ (T e,+∞), can
be obtained by integrating (3) (from T e to t) with initial condition x(T e) = xeS in
(21).

4.2 Surprised time lag

After T e Firm 1 continues to advertise with surprised monopoly intensity u∗M
1S (t)

given in (20). This is not realized by Firm 2, that already behaves à la Markov perfect
Nash given by u∗D

2NS(x, t) as in (12). At T R > T e Firm 1 reacts to the new market
situation and changes its strategy also to the Markov perfect Nash equilibrium given
by u∗D

1NS(x, t) given in (11). The incumbent’s market share can be obtained as before
by using the corresponding advertising policies for both firms.

During the inertia stage the players do not have a rational behaviour, neither the
incumbent (that is surprised) nor by the competitor, which continues to use its Nash
strategy even though the incumbent is not playing à la Nash. Possibly the competitor
will react and adopt a best response to the surprised behaviour of the incumbent in
order to force him go to a lower market share. This will obviously penalize Firm 1; so
that we omit such an analysis because it will definitely not bring Firm 1 to the greater
profit.

5 Stochastic behaviour

The probably most realistic way to consider the entry of a potential competitor is a
stochastic approach, in which the incumbent assumes a certain entry rate. For this case
we make the following assumption
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(A3) Let T e be a random variable, which follows an exponential distribution with
parameter γ .

Consequently, γ can be understood as the conditional probability density for the
entry of Firm 2 at t, given that Firm 2 has not already entered the market.

Having this definition in mind, Firm 1 considers the following stochastic optimal
control problem with random time horizon

max
u1≥0

E

[∫ T e

0
e−r t (mx(t) − u21(t))dt + e−rT e

S(x(T e))

]

(22)

ẋ(t) = ρu1(t)
√
1 − x(t) − δx(t), x(0) = x0 > 0. (23)

In contrast to the non-surprised case (see Sect. 3) Firm 1 does not know T e, but
it can expect it at the rate γ . This fact is taken into account by using a random time
horizon. It means that Firm 1 behaves according to that optimal control model as long
as Firm 2 has not entered. If Firm 2 enters the market (at T e), it adapts its strategy
immediately and follows the Markov perfect Nash equilibrium solution. Therefore
again the value function of the duopoly stage [i.e. the value function of the Markov
perfect Nash equilibrium presented in (16)] is used for the salvage value function.

This stochastic optimal control problem can be reformulated equivalently as a deter-
ministic infinite time horizon optimal control problem. Firstly used in the seminalwork
byKamien andSchwartz (1970), this trick has been formalized byBoukas et al. (1990),
as follows (we are already making use of S(x) = V1(x))

J (u(·)) =
∫ +∞

0

{∫ t

0
e−rs(mx(s) − u21(s))ds + e−r t V1(x(t))

}
e−γ tγ dt, (24)

where e−γ tγ is the probability that the switch has still not occurred times the proba-
bility at which it does occur exactly at t . Integrating by parts we obtain the following
optimal control problem for Firm 1

max
u1≥0

∫ +∞

0
e−(r+γ )t (mx(t) − u21(t) + γ V1(x(t)))dt (25)

ẋ(t) = ρu1(t)
√
1 − x(t) − δx(t), x(0) = x0 > 0. (26)

The following theorem presents the optimal behaviour of Firm 1 as long as Firm 2
has not entered the market (i.e. optimal behaviour for t < T e).

Theorem 4 (Stochastic—monopoly stage) Let (A3) hold. Firm 1’s optimal advertising
effort is given by

u∗M
1St (t) = K

ρ

√
1 − x(t), (27)

where

K =
√

(U + γ )2 + ρ2(m + γβ) − (U + γ ) (28)
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and

β =
√

(r + 2δ)2 + 3mρ2 − (r + 2δ)

3ρ2/2
. (29)

The steady state is

x̂St = 1 − δ
√

(U + γ )2 + ρ2(m + γβ) − (r + γ )
.

The stochastic case can be considered as an intermediate case between being sur-
prised and being non-surprised. It depends on the value of γ .

If γ → 0, Firm 1 assumes that Firm 2 never enters the market. Thus the optimal
solution equals that of the surprised case if Firm 2would never enter themarket. This is
reasonable, since in the surprised case it is assumed that Firm 2 never enters the model
and that the monopoly maintains forever. If γ → 1, the behaviour of the stochastic
case is not similar to the behaviour of the non-surprised case: in fact, even if the firm
knows that the competitor will enter certainly in the market, it does not know the exact
instant at which this will happen.

After Firm 2’s entry, (t ≥ T e), both firms are in duopoly and follow the Markov
perfect Nash equilibrium strategy. The optimal behaviour is presented in Theorem 1.

6 Solutions’ comparison

In this sectionwe analyze and emphasize how the different awareness about the entry of
a competitor can lead to significantly different advertising strategies. More precisely,
the incumbents firms perceptions of the arrival of the opponent are different in the three
scenarios, i.e. deterministic (surprised or non-surprised) or stochastic. The comparison
is performed among the advertising efforts, the state trajectories and the steady states
of Firm 1.

Comparison of advertising efforts

Let us first consider themonopolistic stage, the advertising efforts in the three scenarios
are

u∗M
1S (x(t)) = R −U

ρ

√
1 − xM (t),

u∗M
1NS(x(t)) = N (t)

ρ

√
1 − xN (t),

u∗M
1St (x(t)) = −(U + γ ) + √

(U + γ )2 + ρ2(m + γβ)

ρ

√
1 − xS(t).

Note that the controls, considered in their Markov perfect form as function of the
market share, are decreasing and concave since ( j ∈ {S,NS, St})

∂u∗M
1 j

∂x
< 0 and

∂2u∗M
1 j

∂x2
< 0.
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It means that during the monopoly stage the optimal advertising efforts are decreasing
in the market share. When the market share tends to 1, i.e. the whole market, no adver-
tising is necessary. The smaller the market share, the higher the optimal advertising
expenditures.

Furthermore the following Proposition holds.

Proposition 1 Given a fixed level of the market share x, during the monopoly stage,
the surprised advertising expenditures are higher than the ones in the non-surprised
case and higher than the ones of the stochastic case, i.e.

u∗M
1NS(x) ≤ u∗M

1S (x), and u∗M
1St (x) ≤ u∗M

1S (x). (30)

Comparison of state trajectories

The non-surprised firm is farsighted, and it perfectly predicts the exact moment at
which the second firm enters in the market. During the monopoly, its market share is
smaller than themarket share perceived by the surprisedfirm.However, it is completely
prepared for the duopoly.

During the monopoly stage the following Proposition holds.

Proposition 2 Given the same initial market share x(0) = x0 for all three cases, the
following relation holds during the monopoly stage.

xNS(t) ≤ xS(t), and xSt(t) ≤ xS(t), ∀ t ∈ [0, T e].

Furthermore, the greater γ, in xSt(t) the smaller market share of the stochastic case
with respect to the market share perceived by the surprised firm.3

The surprised firm spoils its energy during the monopoly stage and increases its
market share, which turns out to be higher both with respect to the one of the non-
surprised firm and to the one of the stochastic case.

That means that the incumbent holds the highest market share during the monopoly
stage if it is completely uninformed. The more information it has the lower the market
share is. The reason for that is that the competing firm can advertise more efficiently
if the market share of the incumbent is high, while the incumbents’ own advertising
efforts are less efficient.

Comparison of steady states

Even though the objective of the players is the profit maximization and though the
steady states will not be reached in finite time, it turns out interesting to compare the
steady states during the both stages.

The non-surprised, surprised and the stochastic steady states during the monopoly
stage are, respectively,

x̂S = x̂NS = 1 − δ

R − r
, x̂St = 1 − δ

RSt − (r + γ )
< x̂S,

3 Note that in fact, the more γ increases the more the firm becomes less surprised.
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Fig. 1 Optimal advertising efforts of Firm 1 in the monopoly stage depending on the state value (left panel)
and over time (right panel)

where

R =
√
U 2 + mρ2, RSt =

√
(U + γ )2 + ρ2(m + γβ).

The steady state of the duopoly is obviously equal to 1/2 because of the symmetry of
the two firms.

The surprised and the stochastic cases differ in the presence of rate of arrival term
γ, and they coincide when γ tends to 0. In fact in this case the probability that a switch
will happen turns out to be negligible, and this is exactly the situation of the surprised
monopoly. Let γ be different from 0, then the following theorem holds. The steady
states of the surprised and the non-surprised monopoly coincide, as the corresponding
optimal control problems only differ in the time horizon.

Numerical example

Having derived the relations of optimal advertising efforts and optimal trajectories
analytically, we now plot an example for the following parameter set:

δ = 0.1, m = 2.5, ρ = 0.5, r = 0.03, T e = 20.

In Fig. 1 we plot the optimal advertising efforts and in Figs. 2 and 3 the optimal state
trajectories of all different cases. We assume the initial market share of the incumbent
as x0 = 0.8.

In the left panel of Fig. 1 the advertising efforts are plotted for all three cases
depending on the market share. Considering the non-surprised case in the left panel
one also has to look on different t , since the advertising efforts depends on N (t) (and
thus on t). It is obvious that the strategy is nearly equal to the surprised case, but
deviates when it approaches T e. The stochastic case is always below the surprised
case, but higher than the non-surprised when it approaches T e. On the right panel
the advertising efforts are plotted over time (t ∈ [0, T e]), and we see a similar thing.
The stochastic case is below the surprised one. And the non-surprised is equal (i.e.
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Fig. 2 Optimal trajectories of
Firm 1 before Firm 2’s market
entry over time (t ∈ [0, T e])
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Fig. 3 Optimal trajectories of
the surprised case of Firm 1 after
Firm 2’s market entry over time
(t ∈ [T e, T R ])

20 22 24 26 28 30
t

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
optimal trajectories for t ≥ T e

surprised immediate
surprised time lag (TR = Te + 5)

nearly equal) to the non-surprised one for a long time and deviates at the end. Both
relationships have been analytically derived in Proposition 1.

In Fig. 2 we plot the stage before Firm 2’s market entry, i.e. t ∈ [0, T e]. In the
monopoly case we can prove that ẋ = N − (N + δ)x and therefore there exist a
unique peak in the optimal trajectory at x = N

N+δ
, as shown in Fig. 2.

Aswe have shown inTheorem2 themarket share of the surprised case is the highest,
whereas a relation beyond the non-surprised and the stochastic cannot be shown. It
turns out that the optimal market share of the non-surprised case follows the surprised
one (which converges to the steady state in the long run) until t ≈ 15 and anticipates
then the market entry of Firm 2 (decreases). The optimal trajectory of the stochastic
case converges to the steady state of the stochastic case, which is smaller than the ones
of the surprised and of the non-surprised cases. However, between t = 15 and t = T e

the anticipation of the non-surprised case is so strong that the optimal trajectory of
the non-surprised case gets below the one of the stochastic case. This confirms the
result of Theorem 2, i.e. the two trajectories of the non-surprised and the stochastic
case cannot be ranked pointwise.
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In Fig. 3 we plot the optimal trajectories of the surprised case after Firm 2’s
entry. The non-surprised case and the stochastic case are both straightforward since
in both cases the firm behaves according to the Markov perfect Nash equilibrium and
approaches the steady state x̂ DNS = 0.5. In the surprised case we see that the optimal
market share of Firm 1 is much greater in case of a time lag than without time lag (in
the figure we have used T R = T e + 5 = 25). The reason is due to the asymmetry
in the information. Firm 2 has full information and behaves immediately according
to the Markov perfect Nash equilibrium, whereas Firm 1 has a lack of the informa-
tion on the market structure (or is unable to react immediately) and does not include
strategic interaction. Thus Firm 1 has too high advertising efforts. Note, that the time
lag scenario is not sustainable for a long time-stage since it is not a game theoretic
equilibrium, meaning that it relies on the assumption that firm 1 cannot react immedi-
ately on Firm 2’s market entry. After this short period until T R either Firm 1 will react
(by behaving according to the Markov perfect Nash equilibrium) or Firm 2 will react
on Firm 1’s behaviour (possibly playing its best response). We implemented the first
idea rather than the second one, because it is more realistic that Firm 1 realizes the
new market situation and adapts the behaviour than that Firm 2 realizes Firm 1’s time
lag and switches to another strategy which is also not a game theoretic equilibrium.
In principle a couple of different reactions are possible and interesting, but may be
analyzed in an extension.

7 The optimal profits

Profit is the objective of the players involved in the game. So that, in order to compare
the three different behaviours for the incumbent,wemust compute its optimal objective
function evaluated with its optimal strategy in the three studied scenarios. This can be
done by substituting the optimal strategies and the related state functions in (5), (7)
and in (18).

Due to the long analytical formulations of the optimal profit, we performed a numer-
ical simulation. Here we present some results which have been obtained by using the
same parameter values as in the previous section, i.e. δ = 0.1, m = 2.5, ρ = 0.5,
r = 0.03, x0 = 0.8, nevertheless several simulations with different scenarios confirm
that the solution is not sensitive to the value of the parameters.

Let us first consider the non-surprised case, i.e. the benchmark case. Figure 4 plots
the profit of Firm 1, i.e. objective function (5). Since the profits of the incumbent
are higher in the first stage compared to the competitive situation of the second stage
(higher market share in the first stage), the profit is increasing in T e.

Next we turn to the surprised case. Here Firm 1 behaves equally in both cases of
the first stage (surprised immediate reaction, surprised time lag), but differently in the
second one (compare also Fig. 3). The left panel of Fig. 5 shows the profit of Firm 1
in the first stage depending on T e. Naturally it turns out that it is strictly increasing
and has a concave shape.

The differentiation of the surprised immediate and the time lag subcases occurs at
Firm 2’s market entry at T e. The profit of the second stage adds additionally to the
already earned profit of the first stage (left panel of Fig. 5). Recalling that the surprised
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Fig. 4 Optimal profit of Firm 1
in the non-surprised case
depending on T e
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Fig. 5 Profit of Firm 1 in the surprised case depending on T e for the first period (left panel) and the second
and third period (right panel)

immediate case is a special case of the surprised time lag case with a zero time lag, we
can compare the three cases T R = T e, T R = T e +5 and T R = T e +10 plotted in the
right panel of Fig. 5 (a zoom is included for a better visualization of the differences
between the three cases). The numerical results imply that for Firm 1 it is better the
shorter the time lag is, i.e. the earlier it reacts correctly to the new market situation
the better it will be. A time lag means that Firm 1 behaves as a monopolist although
the market is already a duopoly (Firm 2 already adapted the Markov perfect Nash
equilibrium strategy). Therefore, advertising efforts are too high and too expensive,
which implies lower profits. This asymmetry of the information is not an equilibrium
in a game theoretic sense.

Finally, the profit of the stochastic case is derived. Figure 6 plots the profit of the
incumbent during the first stage depending on T e for γ = 0.1 (solid line) and γ = 0.5
(dashed line). The steady-statemarket share (of the stochastic case) depends negatively
on γ , i.e. the earlier firm 2 is expected to enter the smaller the steady-state market
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Fig. 6 Optimal profit of Firm 1
in the stochastic case depending
on T e for different γ
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Table 1 Relative profit loss on
the model parameters

T e δ m ρ T R

Surprised immediate ↘ ↗ ↘ ↘
Surprised time lag ↘ ? ? ? ↗
Stochastic (γ = 0.1) ↗ ↗ ↗ ↗

share is. The relation between the two cases is not monotonous, which can be seen by
comparing the two zooms in Fig. 6. For very low T e the profit derived with γ = 0.5 is
better, whereas for higher T e the profit with γ = 0.1 is better. This is implied by the
fact that an early (late) expected market entry of Firm 2, i.e. low (high) T e, is reflected
by a high (low) γ .

Deriving and comparing the resulting total profits (i.e. sum of the profits of the
first, time lag and second stage; T e = 20, T R = 5 and T R = 10, and γ = 0.1 and
γ = 0.2) allow for a couple of insights:

– The incumbent earns the highest profits in the non-surprised case, which is implied
by the model setup (complete information about the entry of Firm 2), followed by
the stochastic and the surprised case. The stochastic case has the advantage that
Firm 2’s entry is expected at a certain entry rate γ implying also a higher profit
compared to the surprised case.

– Considering the profit of the monopoly stage only reveals that the higher profit of
the non-surprised case is earned before Firm 2 enters the market. Briefly before T e

it is optimal for the incumbent to reduce the advertising efforts (see again Fig. 2)
and to skim the profit of the high market share. Mathematically this comes from
the transversality condition (43) of the non-surprised case that gives a lower value
for the adjoint variable λ (compared to the surprised and the stochastic case).

Finallywe derive the relative profit loss (i.e. lower profit compared to the non-surprised
case) of the surprised immediate, surprised time lag and stochastic case for varying
parameters. The results are summarized in Table 1.
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T e: The higher time horizon of the monopoly stage, the lower is the relative profit loss
for the surprised immediate and surprised time-lag case. This is due to the turnpike
property, i.e. a finite time solution (of an optimal control model) approaches the
steady state within the time horizon and gets away at the end. For the stochastic
case that does not apply since the incumbent approaches a different equilibrium
during the monopoly stage. Thus the relative profit loss increases with T e.

δ: The higher the δ, the higher the relative profit loss for the surprised immediate and
the stochastic case will be. A higher δ means that the market share is lost much
faster and that it is more difficult to adapt for a new unexpected market situation.
In the surprised time-lag scenario the dependence is ambiguous and depends also
on the T R .

m: If the unit profit margin increases, then the relative profit loss decreases in the non-
surprised immediate case since the current market share becomes more important
in contrast to anticipation. In the stochastic case the dependence is the other way
around. The profit margin pushes the stochastic equilibrium further away from
the non-surprised one and thus increases the relative profit loss. In the surprised
time-lag scenario the dependence is ambiguous.

ρ: The dependence on ρ is equal to the dependence of m. The reason is that if the
advertising efficiency is higher, then the incumbent can react better (i.e. cheaper
due to quadratic marketing costs) on the new unexpected market situation.

T R : The profit of the surprised time-lag scenario is relatively smaller with respect to
the one of the non-surprised scenario the longer the time lag is (i.e. the higher T R).
In this stage Firm 1 still behaves as it were a monopolist, whereas Firm 2 already
adapts theMarkov perfect Nash equilibrium strategy. This asymmetry implies that
Firm 1’s advertising efforts are too costly (i.e. as high expenditures as in the first
stage, but less effective), and therefore it loses profit. The longer the time lag takes,
the more profit is lost.

8 Conclusions

We have considered three different behaviours that an incumbent firm can adopt facing
the entry of a competitor in itsmarket. The firmmight not be aware, or perfectly predict
or assume at some rate γ such an event.

The topic of this paper is to study how these behaviours influence his total profits,
and the results confirm that the anticipation of Firm 2’s market entry increases the
profit of the incumbent. So that this confirms the importance of a farsighted attitude
and of the necessity for the incumbent to be constantly updated about the market he is
dealing in. Even if this means having a lower market share. Furthermore a comparison
between immediate and lagged setting has been performed and, in case the event of
the entry of the competitor takes the incumbent by surprise, it ends up convenient to
react as soon as possible. This is due to the high competition and the lower profit of the
second stage which carries over to the first stage. The stochastic case is an intermediate
case, but even if γ tends to 1, the firm has an incomplete information because it does
not know the exact instant at which the switch will happen, and in this way its market
share decreases.
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Of course the proposed model can be extended in many directions. First of all in
the surprised case a best response strategy of Firm 2 should be considered, as already
briefly discussed in Sect. 6. Secondly, the model should be extended to oligopoly
markets. We expect that the result will carry over for a small number of firms, but get
smaller the more firms are involved in the market.

In addition it is important to look at the case of asymmetric firms, which can
lead to strategically different results. Further on it is important to incorporate other
decision variables such as price. A realistic approach for the stochastic case would be
to consider a rate γ depending on the R&D investments of the competitor or T e as a
decision variable set by a third player, e.g. the governor.
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A Proof of Theorem 1

The non-surprised case in duopoly stage corresponds to the symmetric case presented
and solved in Prasad and Sethi (2004). The optimal Markovian advertising decisions
are then

u∗
1(x) = V ′

1(x)ρ
√
1 − x/2, (31)

u∗
2(x) = −V ′

2(x)ρ
√
x/2. (32)

where the value functions have the following forms:

V1 = α1 + β1x, V2 = α2 + β2(1 − x) (33)

and the optimal coefficients α = α1 = α2, β = β1 = β2 are determined by solving
the following equations

rα = β2ρ2/4 + βδ, (34)

rβ = m − 3β2ρ2/4 − 2βδ. (35)

There exist two solutions for β with opposite sign, the negative one has to be rejected
because it would make (31) negative, and this would not satisfy the non-negativity
constraint for the control. So that we obtain

α = (r − δ)(r + 2δ − √
(r + 2δ)2 + 3mρ2) + 6mρ2/4

18ρ2r/4
, (36)

β =
√

(r + 2δ)2 + 3mρ2 − (r + 2δ)

3ρ2/2
. (37)
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It is easy to check that β > 0 represents the weight of the final goodwill and, as
similarly to α, it depends on the parameters ρ, m, δ and r . The optimal Markovian
advertising decisions give (11) and (12).

In order to find the steady state we put

ẋ(t) = βρ2(1 − x(t))/2 − βρ2x(t)/2 − δ(2x(t) − 1)) = 0 (38)

that gives x̂ DNS = 0.5, and symmetrically for player 2. Equation (38) is linear in x
with a negative coefficient, and therefore the obtained steady state is stable. So that
the market share converges to the steady state for any initial value. Moreover, since
ẍ = −2(βρ2/2+ δ)ẋ, the market share is either increasing and concave (if x0 < xSS)
or decreasing and convex, (if x0 > xSS) and the trajectory cannot have multiple peaks.

FollowingDockner et al. (2000, p. 100) theMarkovianNash equilibrium is subgame
perfect, and therefore called Markov perfect.

B Proof of Theorem 2

The current value Hamiltonian function associated to the non-surprised incumbent
problem in the monopoly stage is

H(x, u1, λ, t) = mx − u21 + λ(ρu1
√
1 − x − δx). (39)

Maximizing the Hamiltonian function w.r.t. control we obtain

uM
1NS(t) = λ(t)ρ

√
1 − x(t)

2
. (40)

Since the Hamiltonian function is strictly concave w.r.t. control uM
1NS(t) turns out to be

a unique Maximum. Thus the advertising decision satisfying the Maximum Principle
conditions is

u∗M
1NS(t) = max

{
0,

λ(t)ρ
√
1 − x(t)

2

}
. (41)

The costate equation is

λ̇(t) = −∂H

∂x
(t) + rλ(t)

= −m + λ(t)ρu1(t)
1

2
√
1 − x(t)

+ λ(t)δ + rλ(t)

= −m + ρ2λ2(t)

4
+ (δ + r)λ(t)

= ρ2

2
λ2(t) +Uλ(t) − m, (42)

where (41) has been substituted and U = δ + r , R = √
U 2 + mρ2 has been used.

Recalling the salvage value function we obtain the following transversality condition
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λ(T ) = ∂S(x(T ))

∂x
= β > 0 (43)

which can be used to solve the above costate equation, i.e.

λ(t) = 2
(
βρ2

(
(R +U )eR(t−Te) + R −U

) + 2(R −U )(R +U )
(
1 − eR(t−Te)

))

ρ2
(
βρ2 + eR(t−Te)

(
2(R −U ) − βρ2

) + 2(R +U )
) .

(44)
Observe that because of the transversality condition the costate function is positive

at the final time and whenever it is null its derivative is negative, in fact

λ̇(t)|λ(t)=0 = −m < 0,

so that it follows that λ(t) is positive for all t ∈ [0, T ]. Therefore the optimal control
u∗M
1NS(t) in (41) is strictly positive for all t and it becomes (17).
Observe that the maximized Hamiltonian H∗

H∗(x, λ, t) = mx(t) − λ2(t)ρ2(1 − x(t))

4
+ λ2(t)ρ2(1 − x(t))

2
− λ(t)δx(t), (45)

turns out to be linearwith respect to x, aswell as the salvage function, so the sufficiency
Arrow Theorem holds and the Maximum Principle conditions are also sufficient for
optimality. Moreover, note that (41) and (44) imply that the solution of the optimal
control problem is unique.

C Proof of Theorem 3

The current value Hamiltonian function associated to the surprised incumbent is

H(x, u1, λ, t) = mx − u21 + λ(ρu1
√
1 − x − δx). (46)

Analogously to the proof before we are able to derive the optimal control value,
which is

u∗M
1S (t) = max

{
0,

λ(t)ρ
√
1 − x(t)

2

}
. (47)

Strict concavity of the Hamiltonian implies that u∗M
1S (t) is a unique Maximum.

For the costate equation we obtain [substituting (47) in (48) and U = δ + r ]

λ̇(t) = −∂H

∂x
(t) + rλ(t) = −m + λ(t)ρu1(t)

1

2
√
1 − x(t)

+ λ(t)δ + rλ(t)

= ρ2λ(t)2/4 +Uλ(t) − m. (48)

Since the model has infinite time horizon the limiting transversality condition reads

lim
t→∞ e−r tλ(t) = 0. (49)
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The steady state of the canonical system (ẋ, λ̇) can uniquely be derived, i.e.

x̂S = 1 − δ

R −U + δ

λ̂S = −U + √
U 2 + mρ2

ρ2/2
= (R −U )2

ρ2 , (50)

where R = √
U 2 + mρ2 and x̂S ∈ [0, 1]. Its corresponding Jacobianmatrix (evaluated

in the steady state) is

J (x, λ) =
(

λρ2/2 + δ + r 0
ρ2(1 − x)/2 −ρ2λ/2 − δ.

)
(51)

In the steady state det(J (x̂S, λ̂S)) < 0 holds, therefore (x̂S, λ̂S) is a saddle point.
According to standard optimal control theory the optimal solution follows the stable
trajectory of the (unique) saddle point equilibrium (see Grass et al. 2008, section 3).

Analogously to the proof before the maximized Hamiltonian is linear in x , thus the
Arrow sufficiency Theorem holds and implies that the conditions of the Maximum
Principle are sufficient. Furthermore the solution of the optimal control problem is
unique.

D Proof of Theorem 4

Recalling that V1(x(t)) = α+βx(t), the Pontryagin’sMaximumPrinciple for the infi-
nite time horizon stochastic problem (25) and (26) gives the current value Hamiltonian
function

H(x, u1, λ, t) = mx − u21 + γ (α + βx) + λ(ρu1
√
1 − x − δx). (52)

Analogously to the proof of Theorem 2 before we are able to derive the optimal
control value, which is

u∗M
1St (t) = λ(t)ρ

√
1 − x(t)

2
. (53)

Strict concavity of the Hamiltonian implies that u∗M
1St (t) is a unique Maximum.

The costate equation we obtain

λ̇(t) = −∂H

∂x
(t) + (r + γ )λ(t)

= −m − γβ + λ(t)ρu1(t)
1

2
√
1 − x(t)

+ λ(t)(δ + r + γ ). (54)

with the limiting transversality condition limt→∞ e−r tλ(t).
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Analogously to the proof before the unique steady-state solution can be derived,
which equals

x̂St = 1 − δ

−Q + √
Q2 + ρ2(m + γβ) + δ

λ̂St = −Q + √
Q2 + ρ2(m + γβ)

ρ2/2
(55)

where Q = r + δ + γ . The associated Jacobian matrix (evaluated in the steady state)
is

J (x, λ) =
(

ρ2λ/2 + Q 0
ρ2(1 − x)/2 −ρ2λ/2 − δ

)

and its determinant is negative, hence (x̂St, λ̂St) is a saddle point (see Grass et al. 2008,
section 2). The solution can exactly be found as in the case of the surprised monopoly
(“Appendix C”).

Analogously to the proof before the maximized Hamiltonian is linear in x , thus the
Arrow sufficiency Theorem holds and implies that the conditions of the Maximum
Principle are sufficient. Furthermore the solution of the optimal control problem is
unique.

E Proof of Proposition 1

Let be xSt(t) = xS(t) = xNS(t) = x, It can be easily proved that N (t) < R − U , for
all t, so that the first inequality in (30) trivially holds.

The second condition is equivalent to

− (U + γ ) +
√

(U + γ )2 + (m + γβ)ρ2 < −U +
√
U 2 + mρ2, (56)

and it is verified if and only if

m > β(βρ2/4 + δ + r). (57)

Recalling the value of β

β =
√

(r + 2δ)2 + 3mρ2 − (r + 2δ)

3ρ2/2

(57) becomes

3mρ2 − (2r + δ)
(√

3mρ2 + (r + 2δ)2 − (r + 2δ)
)

> 0, (58)

which is always verified.
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F Proof of Proposition 2

From the initial conditions we have that

xNS(0) = xS(0) = x0

and

ẋNS(0) = N (0)(1 − x0) − δx0 < (R −U )(1 − x0) − δx0 = ẋS(0).

So that xNS(t) < xS(t) for any t ∈ [0, ε[ with ε ≥ 0. We can prove that as soon as
the two functions coincide at a given instant t̃ > 0 than at that point their derivatives
satisfy the inequality

ẋNS(t̃) = N (t̃)(1 − x0) − δx0 < (R −U )(1 − x0) − δx0 = ẋS(t̃),

are therefore we can conclude that xNS(t) < xS(t) for any t ∈ [0, T e].
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