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Abstract We consider a discrete-time model for the cash flow of an insurance port-
folio/business in which the net losses are random variables, while the return rates are
fuzzy numbers. We choose the shape of these fuzzy numbers trapezoidal, Gaussian
or lognormal, the last one having a more flexible shape than the previous ones. For
the resulting fuzzy model, we evaluate the fuzzy present value of its wealth; then, we
propose an approximation for the chance of ruin and a ranking criterion which could
be used to compare different risk management strategies.

Keywords Fuzzy numbers · Fuzzy random variables · Fuzzy discrete-time cash
flow model · Insurance · Risk management · Ruin · Ranking.
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1 Introduction

The development of the fuzzy mathematics of finance started with Buckley (1987),
who introduced fuzzy analogues of the future and present values of a fuzzy cash
amount. Further on, in insurance, Lemaire (1990) applied Buckley’s fuzzy concepts
to compute fuzzy premiums, while other applications in insurance were studied by
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40 D. Ungureanu, R. Vernic

Ostaszewski (1993), Terceno et al. (1996), Huang et al. (2009), Andrés-Sánchez and
González-Vila Puchades (2012) etc.; see also references therein and the survey of
Shapiro (2004).

Much of the uncertainty in risk analysis can be regarded as rooted in the fuzziness
of the information. By eluding probabilistic limitations, fuzzification could be an
alternative to the stochastic approach for complex problems. This explains the extent
to which fuzzy theory has lately been used to approach classical insurance problems,
which are traditionally studied in a stochastic context. Moreover, since sometimes
the uncertainty includes both randomness and fuzziness, if possible, they should be
considered simultaneously. This is why in this paper, we consider a fuzzy approach
of a discrete-time model for the cash flow of an insurance business/portfolio such that
within each period, the net loss is considered to be a random variable (r.v.), while
the return rate is assumed to be a fuzzy number; as a consequence, the corresponding
present value of the insurer’s wealth becomes a fuzzy random variable.

The idea behind our fuzzy model is based on the fact that the uncertainty in the return
rates can be quantified by fuzzy numbers as an alternative to random variables, making
the models more tractable. Such fuzzy cash flows were also studied by Kaufmann
and Gupta (1988), Ward (1989), or Chiu and Park (1994); the last one modeled the
periodic payments and the discount rates by triangular fuzzy numbers. In this paper,
we go further on and work with some fuzzy numbers having a more flexible shape,
while the net losses are random variables.

Therefore, in Sect. 2, we briefly summarize some basic fuzzy concepts and obtain
some formulas needed in our study. In Sect. 3, we present the discrete-time model and
its fuzzy form; then, we discuss its possible application to ruin theory, and we suggest
a ranking criterion for such fuzzy models, mainly based on simulation. In Sect. 4, we
numerically illustrate the results from previous section considering two particular loss
distributions and some specific fuzzy numbers for the return rate. We end with several
conclusions.

2 Some basic fuzzy concepts

We start by recalling the fuzzy concepts needed in next sections.

2.1 Fuzzy numbers

A fuzzy set A can be defined by the set of ordered pairs {(x;μA (x)) |x ∈ U } ,where U
is a set of elements andμA : U → [0, 1] is the membership function; then Supp(A) =
{x ∈ U |μA (x) > 0 } represents the support of A. The α-cut, 0 ≤ α ≤ 1, of a fuzzy
set A is defined as

Aα =
{ {x ∈ U |μA (x) ≥ α } if α > 0

Cl (Supp (A)) if α = 0
,

where Cl (Supp (A)) denotes the closure of the support of A.
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On a fuzzy cash flow model 41

A fuzzy set A is called convex if Aα is a convex subset of U for all α ∈ [0, 1] .
If there exists at least one point x ∈ U with μA (x) = 1, the fuzzy set A is called
normal, while x is a mode of A. If the mode exists and is unique, we will denote it by
m A.

A fuzzy number (f.n.) is a special normal, convex fuzzy set of the real line with at
least piecewise continuous membership function, whose highest membership values
are clustered around a given real number (the mode). Therefore, the α-cut of a f.n.
A is in fact an interval

[
AL
α , AR

α

]
, where AL

α = inf {x ∈ U |μA (x) ≥ α } and AR
α =

sup {x ∈ U |μA (x) ≥ α }. If Supp (A) ⊆ (0,∞) , the f.n. A is called positive. Some
specific fuzzy numbers will be introduced in Sect. 2.3.

For two fuzzy numbers A and B, the arithmetic operation A(∗)B is defined by
the membership function μA(∗)B (z) = supz=x∗y min {μA (x) , μB (y)} , where ∗ ∈
{+,−,×, /}. The power of a f.n. A is recursively defined as An = A ⊗ An−1, n =
2, 3, . . . , while μA−1 (x) = μA

( 1
x

)
for any x 
= 0. We will also use the symbols

∑
and

∏
to denote the multiple fuzzy sum and, respectively, product, i.e.,

n∑
i=1

Ai = A1 ⊕ · · · ⊕ An,

n∏
i=1

Ai = A1 ⊗ · · · ⊗ An .

Therefore, the meaning of
∑

and
∏

will depend on the context, but this should not
be a problem since crisp numbers are particular cases of fuzzy numbers.

As, e.g., in Gao and Zhang (2009), the α-cuts can be used to easier express fuzzy
arithmetic operations. More precisely, for two fuzzy numbers A and B, we have

[A ⊕ B]α =
[

AL
α + BL

α , AR
α + B R

α

]
, (1)

[A � B]α =
[

AL
α − B R

α , AR
α − BL

α

]
, (2)

[A ⊗ B]α =
[
min

{
AL
α BL

α , AR
α BL

α , AL
α B R

α , AR
α B R

α

}
,

max
{

AL
α BL

α , AR
α BL

α , AL
α B R

α , AR
α B R

α

}]
. (3)

Based on α-cuts, Carlsson and Fuller (2001) defined the crisp expected value of a
fuzzy number A as E [A] = ∫ 1

0

(
AL
α + AR

α

)
αdα and also introduced the possibilistic

variance Var [A] = 1
2

∫ 1
0

(
AR
α − AL

α

)2
αdα.

Another important issue consists of extending the natural ordering of real numbers
to fuzzy numbers. In this sense, several ranking methods were developed, see e.g.,
Bortolan and Degani (1985) or Chen and Hwang (1992). Unfortunately, these methods
present some drawbacks like nonconsistency, producing different rankings for the same
numbers. Among them, we recall the rankings based on comparing the mode (i.e., the
most promising value), the expected value (given above), some dominance indices, etc.
In this paper, we shall use the area compensation method, see Fortemps and Roubens
(1996). This method is based on the defuzzification function F , defined for a f.n. A
by

123



42 D. Ungureanu, R. Vernic

F (A) = 1

2

1∫
0

(
AL
α + AR

α

)
dα.

Then, the crisp ordering between two fuzzy numbers A and B is defined as

(A > B ⇔ F (A) > F (B)) and (A = B ⇔ F (A) = F (B)) .

Note that F (A) represents the mean of the two areas defined by the vertical axis and
by the left and, respectively, the right slope of μA, which makes the above ordering
easy to understand in terms of areas.

2.2 Fuzzy random variables

Introduced by Kwakernaak in 1978, the concept of fuzzy random variable was further
developed in several papers from which we recall Puri and Ralescu (1986), Kruse and
Meyer (1987), Liu and Liu (2003), etc.; in this paper, we shall use the definition of Puri
and Ralescu (1986). In this sense, we assume that (Ω, F,Pr) is a probability space,
and we let B denote the collection of all Borel subsets of R, while S denotes the set
of all fuzzy numbers.

A fuzzy random variable (f.r.v.) is a function X : Ω → S such that ∀B ∈
B,∀α ∈ [0, 1] , {ω ∈ Ω |Xα (ω) ∩ B 
= ∅ } ∈ F , where X (ω) is a f.n. having the
α-cut Xα (ω) = [

X L
α (ω) , X R

α (ω)
]
. Note that, for fixed α, the extremes of this α-cut,

i.e., X L
α , X R

α : Ω → R, become themselves random variables that we call the infima
and, respectively, suprema r.v., as in Andrés-Sánchez and González-Vila Puchades
(2012). Based on these r.v.’s, Huang et al. (2009) defined of the mean chance Ch of
the fuzzy random event {X < 0} as

Ch {X < 0} = 1

2

1∫
0

(
Pr

(
X L
α < 0

)
+ Pr

(
X R
α < 0

))
dα. (4)

If X is a r.v. and Y a f.n., we define the product Z = XY by Z (ω) = X (ω) ⊗ Y ,
which makes Z a f.r.v. Assuming that the f.n. Y is positive, the infima and suprema of
Z are given from (3) by, respectively,

Z L
α (ω) =

{
X (ω) Y L

α , X (ω) ≥ 0
X (ω) Y R

α , X (ω) < 0
, Z R

α (ω) =
{

X (ω) Y R
α , X (ω) ≥ 0

X (ω) Y L
α , X (ω) < 0

.

From here, denoting by FX the cumulative distribution function (cdf) of X , we easily
obtain the cdf’s of Z L

α and Z R
α to be

FZ L
α
(x) =

{
FX

(
x/Y L

α

)
, x ≥ 0

FX
(
x/Y R

α

)
, x < 0

, FZ R
α
(x) =

{
FX

(
x/Y R

α

)
, x ≥ 0

FX
(
x/Y L

α

)
, x < 0

.
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On a fuzzy cash flow model 43

If X and Y are two f.r.v.’s, then an arithmetic operation on them is straightforward
defined by (X (∗)Y ) (ω) = X (ω) (∗)Y (ω), where ∗ ∈ {+,−,×, /} . Again, the
symbols

∑
and

∏
will also denote the multiple fuzzy form of the corresponding

operations on f.r.v.’s.
The following proposition will be useful in next section.

Proposition 1 Let X1, . . . , Xn be r.v.’s and let Y1, . . . ,Yn be positive f.n.’s, n ≥ 1.
Then the sum Sn = ∑n

j=1 X j Y j is a f.r.v. whose infima and suprema are given,
respectively, by

SL
n,α (w) =

n∑
j=1

X j (w) Y
L j
j,α, SR

n,α (w) =
n∑

j=1

X j (w) Y
R j
j,α, (5)

where L j =
{

L , X j (w) ≥ 0
R, X j (w) < 0

and R j =
{

R, X j (w) ≥ 0
L , X j (w) < 0

.

Proof Since X j is a r.v. and Y j a f.n., it follows that for all j, X j Y j is a f.r.v., and
hence their sum Sn is also a f.r.v. Moreover, from (1) it is clear that

SL
n,α (w) =

n∑
j=1

[
X j (w) Y j

]L
α
, SR

n,α (w) =
n∑

j=1

[
X j (w) Y j

]R
α
,

and the corresponding formulas (5) easily result using (3) as done above for Z .

2.3 Particular fuzzy numbers

In the following, we present some particular fuzzy numbers that will be used in next
sections. Apart the well-known trapezoidal, triangular, and Gaussian f.n.’s, we define
the lognormal-type f.n., whose membership function, based on the shape of the cor-
responding lognormal probability density function (pdf), is very flexible. We focus
mainly on the α-cuts that are involved in our formulas.

2.3.1 Trapezoidal and triangular fuzzy numbers

Let Q = (a,m1,m2, b) , a < m1 ≤ m2 < b, be a trapezoidal f.n. whose membership
function is defined by

μQ (x) =

⎧⎪⎪⎨
⎪⎪⎩

x−a
m1−a , a ≤ x ≤ m1

1, m1 ≤ x ≤ m2
b−x

b−m2
, m2 ≤ x ≤ b

0, otherwise

.

Its α-cut is given by

Qα = [(m1 − a) α + a, (m2 − b) α + b] . (6)
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44 D. Ungureanu, R. Vernic

Fig. 1 Left plot pdf shapes for X ; Right plot shapes for μQ

See right plot in Fig. 1 for an example of trapezoidal f.n. When m1 = m2 = m, the
trapezoidal f.n. becomes a triangular one having the unique mode m; we therefore
denote this triangular f.n. by (a,m, b).

2.3.2 Gaussian fuzzy number

The Gaussian f.n. is also well known in the literature, and it is usually defined on the
support (−∞,∞). For our purpose, its support must be (0,∞). Therefore, we define
the truncated Gaussian f.n. Q by the membership function

μQ (x) = exp

{
− (x − m Q)

2

2σ 2

}
, x > 0, (7)

where m Q > 0 is the mode and σ > 0 is the standard deviation, which controls the
shape (in Fig. 1, right plot, we present such a shape). This number could be seen as
left-truncated in x = 0. Its α-cut has the limits

QL
α =

{
m Q − σ

√−2 ln α, α > αGauss
0, α ≤ αGauss

, Q R
α = m Q + σ

√−2 ln α, (8)

where αGauss = μQ (0) = exp
{
− (

m Q/σ
)2 /

2
}

. For the usual practical values of

the parameters m Q and σ considered in our study, αGauss is small enough to be
approximated with 0.

2.3.3 Lognormal-type fuzzy number

We say that a f.n. Q is of lognormal-type if its membership function is given by

μQ (x) = exp
{
c − σ 2/2

}
x

exp

{
− 1

2σ 2 (ln x − c)2
}
, x > 0, (9)

with real c and positive σ . The constant exp
{
c − σ 2/2

}
insures that μQ (x) ≤ 1 for

all x > 0 (see Fig. 1, right plot, for an example of μQ). This f.n. has a unique mode
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On a fuzzy cash flow model 45

m Q = exp
{
c − σ 2

}
. As in Vernic and Ungureanu (2011), the α-cut limits of Q are

QL
α = exp

{
c − σ 2 − σ

√−2 ln α
}
, Q R

α = exp
{

c − σ 2 + σ
√−2 ln α

}
. (10)

3 A fuzzy cash flow model for insurance

In the following, we obtain the fuzzy form of a discrete-time cash flow model used
to evaluate the ruin probability of an insurance business/portfolio. The purpose of
this fuzzification is to study the effect of some parameters of the model and to be
able to compare different investment strategies and model modifications under fuzzy
information.

3.1 The probabilistic model and its fuzzy form

We consider the following discrete-time model for the cash flow of an insurance
business/portfolio: within period j, j = 1, 2, . . . , n, we denote by X j the net loss
(i.e., total outcome minus income during period j , evaluated at the end of the period;
this can also take negative values, which are in fact gains), and by R j the return
rate (assuming that the company invests its surplus in both a risk-free bond and a
risky stock). The initial capital put aside by the insurance company when starting this
business is denoted by u. In a stochastic setting, X j and R j are random variables,
while u is constant. The present value of the insurer’s wealth corresponding to this
cash flow considered over n time periods in the future is

PV stoch.
n = u −

n∑
j=1

X j

j∏
i=1

(1 + Ri )
−1 = u −

n∑
j=1

X j

j∏
i=1

Q−1
i , (11)

where Qi = 1 + Ri represents the accumulation factor during period i . For this
model, the usual probabilistic assumption is that the net losses are all independent,
identically distributed (i.i.d.) random variables, and independent of the return rates;
moreover, as it can be seen from real data, their distribution is usually asymmetric and
long-tailed. For the return rates, a handy-for-calculation assumption is also i.i.d., but
unfortunately, it is not very realistic. This assumption was surpassed in various ways,
using approximate calculation based on extra-assumptions.

The main utility of the above model is to illustrate the cash flow of an insurance
business or portfolio in order to evaluate its probability of ruin (see e.g., Tang and Tsitsi-
ashvili 2004; for more details on the ruin probability see e.g., Asmussen and Albrecher
2010). Assuming it did not occur before, the ruin occurs at time n if PV stoch.

n < 0.
The probability of ruin by time n, also called finite time ruin probability, is defined by

ψn = Pr
(

min1≤k≤n PV stoch.
k < 0

)
. Unfortunately, the finite time ruin probability is

very difficult to evaluate and, as noted before, needs some extra-assumptions that can
limit practical applications.
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In the following, we restate the above model in a fuzzy framework by replacing
the r.v.’s return rates with fuzzy numbers. Therefore, we keep the assumptions that
the X j s are i.i.d. r.v.’s and that u and the number of time periods n under study are
both deterministic (crisp) values, but we now assume fuzzy return rates such that the
accumulation factors Qi are positive fuzzy numbers. These fuzzy return rates are in
fact estimates of the average periodical return rates represented as fuzzy numbers.
For example, an actuary could estimate that during next year, the profitability will be
around 5 %, with a minimum around 1 % and a maximum around 10 %; this could be
modeled using a triangular f.n.

Buckley (1987) was the first to define the fuzzy present value of a fuzzy amount
X, with fuzzy return rate R per period, n periods in the future, as PV (X, R, n) =
X⊗(1 ⊕ R)−n . Special attention must be paid to the case when X has negative support.

Back to our model, we denote by Sn = ∑n
j=1 X j

∏ j
i=1 Q−1

i = ∑n
j=1 X j Y j the

fuzzy aggregate discounted losses by time n, where Y j = ∏ j
i=1 Q−1

i . According to
Proposition 1, Sn is a f.r.v. Then, the fuzzy equivalent of (11) is

PVn = u � Sn . (12)

Note that since each X j can take positive values (i.e., proper losses), then the f.r.v. PVn

might also be defined for negative values, in which case, for these negative values, the
business/portfolio is considered to be in ruin at time n.

As already stated for our fuzzy model, the X j s are i.i.d. as the generic variable X ;
we also assume that its mean is finite. Since X represents a net loss, it is defined for
both positive and negative values (i.e., proper losses and, respectively, proper gains).
Moreover, it is natural to assume that E [X ] < 0, i.e., in average, we expect to gain.

Another usual assumption in the stochastic context is that the R j s are identically
distributed. In our fuzzy model, we take the same average fuzzy return rate throughout
the evaluation horizon, i.e., R j = R for all j; from here, Q j = Q for all j , which yields
Y j = Q− j , and hence Sn = ∑n

j=1 X j Q− j . We shall now have a closer look at the
fuzzy number Q = 1⊕ R. Since R is a return rate, it is usually positive, but due to, e.g.,
the way crisis situations affect risky stocks, it can also become negative. Therefore, we
assume that the support of Q is (0,∞) , and from (3), it is easy to see that for a positive

integer j ,
[
Q j

]
α

=
[(

QL
α

) j
,
(
Q R
α

) j
]
, so that

[
Q− j

]
α

=
[(

Q R
α

)− j
,
(
QL
α

)− j
]
. From

Proposition 1, we obtain the infima and suprema r.v.’s of Sn as

SL
n,α (ω) =

n∑
j=1

X j (ω)
(

Q
R j
α

)− j
, SR

n,α (ω) =
n∑

j=1

X j (ω)
(

Q
L j
α

)− j
, (13)

where R j =
{

R, X j (ω) ≥ 0
L , X j (ω) < 0

and L j =
{

L , X j (ω) ≥ 0
R, X j (ω) < 0

. Moreover, using (2) into

(12) yields

PV L
n,α = u − SR

n,α, PV R
n,α = u − SL

n,α. (14)
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Remark 1 For fixed α, consider the aggregate discounted losses r.v. given by

Sn,α (ω; q1, . . . , qn) =
n∑

j=1

X j (ω)

j∏
i=1

q−1
i ,

where qi ∈ [
QL
α , Q R

α

]
, i = 1, . . . , n. Then the r.v.’s infima and suprema given in

(13) represent lower and, respectively, upper approximations of the extreme values of
Sn,α (ω; q1, . . . , qn) with constraints on the qi s, i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SL
n,α (ω) ≤ min

qi ∈
[
QL
α ,Q

R
α

]
i=1,...,n

Sn,α (ω; q1, . . . , qn)

SR
n,α (ω) ≥ max

qi ∈
[
QL
α ,Q

R
α

]
i=1,...,n

Sn,α (ω; q1, . . . , qn)
.

Note that though more uncertain, SL
n,α and SR

n,α are easier to calculate than the solutions
of the above optimization problems.

3.2 Approximating the chance of ruin and comparing risk management strategies

3.2.1 Mean chance of ruin

Starting from the f.r.v. present value (12), we construct the f.r.v. PV mn related to the

risk of ruin at time n and defined by the α-cut PV mn,α (ω) =
[
min1≤k≤n PV L

k,α (ω) ,

min1≤k≤n PV R
k,α (ω)

]
. Note that, since min1≤ j≤n PV L

j,α (ω) ≤ PV L
k,α (ω) ≤

PV R
k,α (ω) for any k, 1 ≤ k ≤ n, it follows that

min
1≤k≤n

PV L
k,α (ω) ≤ min

1≤k≤n
PV R

k,α (ω) , (15)

hence the corresponding α-cut is well defined. We then evaluate the following ruin
probabilities corresponding to the infima and suprema of PV mn

P L
n,α = Pr

({
ω

∣∣∣∣ min
1≤k≤n

PV R
k,α (ω) < 0

})
, P R

n,α = Pr

({
ω

∣∣∣∣ min
1≤k≤n

PV L
k,α (ω) < 0

})
.

From (15), we have
{
ω

∣∣∣min1≤k≤n PV R
k,α (ω) < 0

}
⊆

{
ω

∣∣∣min1≤k≤n PV L
k,α (ω) < 0

}
,

so clearly P L
n,α ≤ P R

n,α . Therefore, these probabilities generate the f.n. Pn defined by
the α-cut Pn,α = [

P L
n,α, P R

n,α

]
; we call Pn chance of ruin by time n. This f.n. gives us

information on the risk of ruin of the business/portfolio under study; to synthesize the
ruin risk into one crisp value, the defuzzification function F could be used, leading to
the mean chance of ruin after n time periods, F (Pn). Note that
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48 D. Ungureanu, R. Vernic

F (Pn) = 1

2

1∫
0

(
P L

n,α + P R
n,α

)
dα

= 1

2

1∫
0

(
Pr

(
min

1≤k≤n
PV L

k,α < 0

)
+ Pr

(
min

1≤k≤n
PV R

k,α < 0

))
dα

= Ch {PV mn < 0} , (16)

where Ch is the mean chance defined by (4). Unfortunately, in general, it is not possible
to find analytic expressions for P L

n,α and P R
n,α . Therefore, we suggest using simulation

to obtain an approximate shape of the membership function of Pn that could give us
information on the ruin risk and help us choose some parameters values as, e.g., a
proper initial capital u that generates an approximate mean chance of ruin smaller
than a certain value (e.g., smaller than 0.05). The simulation algorithm consists of the
following steps:

Step 1. We set several values for α, i.e., 0 ≤ α1 < · · · < α j ≤ 1. We repeat m times
the following step:

Step 1.l. At iteration l, we simulate n independent realizations of the r.v. X ,
i.e., x (l)1 , . . . , x (l)n ; using these, we obtain the simulated values SL(l)

k,αi
, SR(l)

k,αi
from

(13); then (14) yields the simulated values PV L(l)
k,αi

, PV R(l)
k,αi

, i = 1, . . . , j, k =
1, . . . , n.

Step 2. We approximate P L
n,αi

with P̃ L
n,αi

= 1
m #

{
l
∣∣∣min1≤k≤n PV R(l)

k,αi
< 0

}
and P R

n,αi

with P̃ R
n,αi

= 1
m #

{
l
∣∣∣min1≤k≤n PV L(l)

k,αi
< 0

}
, where # denotes the cardinality of

a set. Then, by joining the α-cuts
[

P̃ L
n,αi

, P̃ R
n,αi

]
, i = 1, . . . , j, we obtain the f.n.

approximate chance of ruin by time n, denoted P̃n .

For our study, we took m = 106, j = 11 and αi+1 = 0.1 · i, i = 0, . . . , 10.

Remark 2 Note that, based on the values P̃ L
n,αi

, P̃ R
n,αi

, i = 1, . . . , j, the integral (16)
can be numerically approximated (for example, using Simpson’s method) and then
used to asses the ruin risk.

Remark 3 To obtain the value of the initial capital u that yields a certain mean chance
of ruin (and therefore, a certain solvency level), we can modify the above algorithm
as follows:

– We consider the values
(
uq

)
q=0,...,m , where uq = u0 + qh, q = 1, . . . ,m, with

step h > 0;
– At Step 1.l we evaluate PV L(l)

k,αi
, PV R(l)

k,αi
for each uq , q = 0, . . . ,m;

– Similarly, at Step 2 we evaluate P̃ L
n,αi

and P̃ R
n,αi

for each uq . Then we plot F
(

P̃n

)
as a function of u and obtain the required u by interpolation.
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3.2.2 Ranking criterion

We shall now assume that the insurer can choose between several net losses and fuzzy
investment strategies. More precisely, the insurer could vary the net loss X by varying,
e.g., the premium, or he can choose between several types of fuzzy returns rates R,
or both. For example, the company could invest its surplus only in a risk-free bond
(having a crisp return rate), or only in a risky stock, or in a combination of both.
The last two cases can be modeled by different fuzzy numbers, depending on the risk
level associated with each case. For such different choices, we would like to rank the
resulting f.r.v.’s and choose the most promising one.

We suggest the following ranking method based on the mean chance of ruin:

– Using simulation, we obtain the f.n. approximate chance of ruin P̃n , as described
in the algorithm above.

– Based on the shape of their membership functions, we can compare these f.n.’s
for different models; for example, taking α j = 1 in the simulation algorithm, we
obtain the modal values of P̃n and based on them, we choose the model having the
smallest such mode. Moreover, if j is large enough (say, j ≥ 10), we can use the
approximate value F(

P̃n
)

to rank the models; more precisely, the smallest F(
P̃n

)
is the best choice since it represents the smallest chance of ruin.

4 Numerical study

We shall now illustrate the simulation algorithm and selecting method on some par-
ticular choices of Q and X.

For X , we first consider the normal distribution N
(
μ, σ 2

)
, having pdf fX (x) =

1
σ
√

2π
e− (x−μ)2

2σ2 , x ∈ R, σ > 0; we also assume that its expected valueμ < 0,meaning
that in average, we expect a gain rather than a proper loss. However, since the net losses
are known to have asymmetric and heavy-tailed distributions, we shall also consider
for X the shifted lognormal distribution LogN

(
μ, σ 2; d

)
, μ ∈ R, σ > 0, d > 0,

having pdf

fX (x) = 1

(x + d) σ
√

2π
e− (ln(x+d)−μ)2

2σ2 , x > −d.

For the same reason as in the normal case, we assume that the parameters satisfy
the condition that the expected value of this lognormal distribution is negative, i.e.,
E [X ] = eμ+σ 2/2 − d < 0 yielding μ < ln d − σ 2/2. We also recall Var [X ] =
e2μ+σ 2

(
eσ

2 − 1
)

. See left plot in Fig. 1 for possible shapes of the normal and shifted

lognormal pdf’s.
To model Q, we chose trapezoidal, Gaussian, and lognormal f.n.’s. In the litera-

ture, triangular and trapezoidal f.n.’s were already used to model return rates, but the
Gaussian shape could also be a good model for Q. Moreover, in, e.g., crisis situations,
a lognormal f.n. seems more realistic due to its more flexible asymmetric shape that
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Table 1 Ranking values for u = 300 when the f.n.’s Q have equal modes

Loss distribution Criterion Triangular Q Gaussian Q Lognormal Q

N
( − 100, 1002)

m P̃5
II 1.57×10−4 I 1.47×10−4 III 1.77×10−4

F(
P̃5

)
II 0.0013 I 0.0012 III 0.0018

LogN
(
5.5, 0.52; 300

)
m P̃5

III 0.1149 I 0.1142 II 0.1147

F(
P̃5

)
II 0.2736 I 0.2627 III 0.2750

allows us to model the natural situation in which we trust more lower return values
than higher ones, see for example left plot in Fig. 4. Note that the lognormal f.n. cannot
be properly approximated by a triangular or trapezoidal f.n. (especially for small or
large α), since due to its (0,∞) support, it gives us the possibility to trust—at small
levels—a wider area of small and large values. While to the estimation of its parame-
ters, it can be done by choosing its mode m Q and a value for σ that controls the shape,
then we immediately obtain cQ = ln m Q + σ 2.

In the following, we set the number of time periods n = 5, expressed in, e.g., years.

Example 1 We start with three different investment strategies based on f.n.’s having
the same mode m Q = 1.1 (i.e., the most trusted return rate per year is 10 %). The
three f.n.’s are as follows: triangular Q = (0.9, 1.1, 1.3), Gaussian Q with parameters
m Q = 1.1, σQ;Ga = 0.07 and Lognormal Q with σQ;Ln = 0.08, cQ;Ln = ln (1.1)+
0.082 = 0.10171. For these f.n.’s, we also evaluated the crisp expected value and
possibilistic variance defined in Sect. 2.1, yielding

E [Q] =
⎧⎨
⎩

1.100, triangular Q
1.100, Gaussian Q
1.103, Lognormal Q

, Var [Q] =
⎧⎨
⎩

0.0066, triangular Q
0.0049, Gaussian Q
0.0077, Lognormal Q

.

For X , we took both distributions: the normal N
(−100, 1002

)
having E [X ] =

−100,Var[X ] = 10, 000, and shifted lognormal LogN
(
5.5, 0.52; 300

)
having

E [X ] = −90.4421,Var[X ] = 27, 767.9; moreover, the probability of losses is

Pr (X > 0) =
{

0.15865, normal case
0.34180, lognormal case

. In Table 1, we present the rankings based

on the modal value m P̃n
and on the approximate mean chance of ruin obtained by

simulation for u = 300, while in Fig. 2 we have the shapes of Q and P̃n .

First of all, note that since the shifted lognormal distribution is heavy-tailed and
in our case has a larger variance than the normal one, the corresponding fuzzy model
requires a larger initial value u; this is clearly indicated by the large values of F(

P̃5
)

in last line of Table 1. To obtain a proper value of u corresponding to a smaller mean
chance of ruin, we used the algorithm described in Remark 3. Figure 3 shows the plot
of F(

P̃5
)

as a function of u for lognormal X (with two different scales for u); from
here, we obtained by interpolation the values u � 875 for a mean chance of ruin of
0.02 and u � 1, 000 for a mean chance of ruin equal to 0.01.
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Fig. 2 Shapes of Q (left plot) and of P̃5 for the parameters in Example 1

Fig. 3 F
(

P̃5

)
as a function of u for the parameters in Example 1

Regarding the rankings, they vary with the ranking criterion, which is not unex-
pected as already noted at the end of Sect. 2.1. Regarding the shapes of the resulting
f.n.’s, clearly the modal value is not a reliable criterion, and the approximate mean
chance of ruin should be calculated. Also, note that the triangular choice for Q could
underestimate the chance of ruin.

Example 2 We also considered the situation with different modal values, i.e., trian-
gular Q = (0.8, 1.08, 1.4), Gaussian Q with parameters m Q = 1.1, σQ;Ga = 0.11
and Lognormal Q with cQ;Ln = 0.07, σQ;Ln = 0.11 having the mode m Q;Ln = 1.06.
The crisp expected values and possibilistic variances of these f.n.’s are

E [Q] =
⎧⎨
⎩

1.086, triangular Q
1.100, Gaussian Q
1.066, Lognormal Q

, Var [Q] =
⎧⎨
⎩

0.0150, triangular Q
0.0121, Gaussian Q
0.0137, Lognormal Q

.

For X , we took the same distributions as in Example 1, and we ranked the models
using both criteria as in previous example. The results are presented in Table 2 for
u = 100, and in Fig. 4.

In this case, the ranking values are quite close, and the conclusions are similar
with the ones of Example 1 in what concerns the heavy-tailed shifted lognormal loss
distribution; however, this time the two ranking criteria gave similar results. Moreover,
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Table 2 Ranking values for u = 100 when the f.n.’s Q have different modes

Loss distribution Criterion Triangular Q Gaussian Q Lognormal Q

N
( − 100, 1002)

m P̃5
II 0.0320 I 0.0299 III 0.0340

F(
P̃5

)
II 0.0890 I 0.0822 III 0.0932

LogN
(
5.5, 0.52; 300

)
m P̃5

II 0.3518 I 0.3413 III 0.3621

F(
P̃5

)
II 0.7558 I 0.7366 III 0.7700

Fig. 4 Shapes of Q (left plot) and of P̃5 for the parameters in Example 2

looking at the shapes and expected values of the f.n.’s considered for Q and at the
rankings based on F(

P̃5
)
, it seems that the order of the Q’s is reversed in the order of

F(
P̃5

)
, which make sense since a larger return rate should generate a smaller chance

of ruin. The possibilistic variance (in association with the crisp expected value) also
seems to influence the rankings; e.g., in Example 1, where all three f.n.’s have the same
mode and about the same expected value, the Lognormal f.n. has the largest variance
and yields the worst investment strategy.

5 Conclusions

In this paper, we obtained the fuzzy form of a classical stochastic model used in
insurance risk analysis by replacing the r.v. return rate with a fuzzy number representing
an average return rate throughout the evaluation horizon. From the resulting present
value of the insurer’s wealth, we evaluated the fuzzy quantity mean chance of ruin
related to the ruin risk, and based on it, we proposed a ranking criterion for such
models.

Compared with the ranking based on the modal value of the f.n. approximate chance
of ruin, the method based on the approximate mean chance of ruin after n time periods
F(

P̃n
)

seems more reliable, having also the advantage that it gives more indications
on the ruin risk (e.g., when the modal values are almost equal), and also helps us to
choose a proper initial capital u such that the approximate mean chance of ruin is
smaller than a maximum accepted value.

On the other hand, due to its flexible shape, the lognormal f.n. seems to be a good
choice for the return rate in a risky financial environment, since the other choices for

123



On a fuzzy cash flow model 53

Q having similar shapes and modal values could underestimate the mean chance of
ruin.

As final conclusions, we consider that this fuzzy approach of the discrete-time
stochastic model could be of interest for the following reasons:

– The fuzzification of the model appears naturally from the uncertainty of the return
rate. Moreover, other quantities involved by the model can be considered to be
fuzzy, like, e.g., the parameters of the distribution of the r.v. net loss X , or the net
loss could be taken as a fuzzy r.v. Also, as in Buckley (1987), the number n of
time periods can be made fuzzy. These are possible subjects for future work.

– This fuzzy approach can be also adapted for complex stochastic models, like the
models used in evaluating ruin probabilities.

– It can avoid some restrictive assumptions usually imposed for such stochastic
models (like heavy-tailed losses or certain distributions for the return rates), and it
does not involve cumbersome mathematical proofs as it is the case with, e.g., the
asymptotic results obtained for ruin probabilities.
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