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Abstract We consider a market in which traders arrive at random times, with random
private values for the single-traded asset. A trader’s optimal trading decision is for-
mulated in terms of exercising the option to trade one unit of the asset at the optimal
stopping time. We solve the optimal stopping problem under the assumption that the
market price follows a mean-reverting diffusion process. The model is calibrated to
experimental data taken from Alton and Plott (Principles of continuous price determi-
nation in an experimental environment with flows of random arrivals and departures.
Working paper, Caltech, 2010), resulting in a very good fit. In particular, the esti-
mated long-term mean of the traded prices is close to the theoretical long-term mean
at which the expected number of buys is equal to the expected number of sells. We call
that value long-term competitive equilibrium, extending the concept of flow compet-
itive equilibrium of Alton and Plott (Principles of continuous price determination in
an experimental environment with flows of random arrivals and departures. Working
paper, Caltech, 2010).
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2 J. Cvitanić et al.

1 Introduction

This paper models optimal trading of individuals at a microstructure level, by formu-
lating the decision to trade as an optimal stopping problem. We adopt the setting of
Alton and Plott (2010) of a market with a single asset, in which buyers and sellers
arrive at random times, with random private values for one unit of the asset. While
this may not be an accurate depiction of real markets, it is a natural benchmark model,
in which we can solve for the optimal strategies of the traders and test whether those
strategies are in agreement with data obtained in a controlled experimental setting.

A trader has an option to exchange the private value of the asset for the market price
(or vice-versa), at time of her choosing, during a time interval of random length after
which the option expires. Thus, assuming the traders is risk neutral, the decision prob-
lem is the one of choosing the optimal stopping time at which the trade will take place,
during a time interval of random length (exponentially distributed for tractability).
This makes it equivalent to the problem of optimally exercising an American option
over a random horizon, with the market price as the underlying asset. The option is of
the put type for the traders who consider buying the asset and of the call type for the
traders who consider selling the asset.

If the underlying asset follows the geometric Brownian motion (GBM) process,
solving such problems is standard in the option pricing theory; see, for example, Carr
(1998) and Shreve (2004). Extensions of the GBM model and/or different optimization
objectives when looking for the optimal time to sell or buy a stock have been con-
sidered, among others, by Guo and Zhang (2005), Peskir and Toit (2009), Shiryaev
et al. (2008), and Zhang (2001). However, while exponential growth that the GBM
process exhibits on average may be appropriate for long-term horizons, it is not real-
istic for very short-term, tick-by-tick trading. Instead, a process which exhibits mean
reversion is much more appropriate, and we model the market log price as a mean-
reverting Ornstein–Uhlenbeck process. The same model is used by Zhang and Zhang
(2008) for the problem of optimal buying and selling in the presence of transaction
costs. Moreover, the paper Song et al. (2009) develops numerical methods for such
problems for general mean-reverting processes, and Zervos et al. (2013) solve such
problems analytically for general one-dimensional homogeneous diffusion processes.

Mean reversion makes the optimal stopping problem harder than in the GBM case,
but we are able to solve our problem semi-analytically, in terms of parabolic cylinder
functions and up to one-dimensional integration.1

Using the fact that we can compute the optimal trading strategies for the traders, and
in the second part of the paper, we calibrate this model to the price data generated in
trading experiments by Alton and Plott (2010). More precisely, we do the following:
we estimate all the parameters of the mean-reverting process using (a part of) the
price data, except for the long-term mean parameter. Then, we compute the value of
the long-term mean for which the expected number of optimal buys is equal to the
expected number of optimal sells in the model. We call this value long-term competitive

1 It should be mentioned that we use the Ornstein–Uhlenbeck process for the purpose of illustrating our
approach, but one could also use other tractable mean-reverting processes. In practice, a statistical data
analysis should be used to decide which model to use.
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Markets with random lifetimes and private values 3

equilibrium, or LTCE. We find that this value is close to the estimated value of the long-
term mean, and that the price data is concentrated around it. Alton and Plott (2010)
also introduce a notion of a long-term equilibrium price value called flow competitive
equilibrium (FCE), at which there is a clearing of the market in the expected value
sense. Our LTCE value can be thought of as an analog of FCE in a model that accounts
for the mean-reversion feature of the price formation process, and assumes rational,
rather than random behavior of the traders. The mean squared error of FCE and LTCE
for our experimental data is similar, thus not favoring either of the equilibrium notions
over the other.

While LTCE seems to be a good measure for the equilibrium price, it has the
disadvantage, relative to FCE, that its value depends on how exactly one estimates
the remaining parameters of the price process, and that the numerical procedure for
computing is much more involved than for computing FCE. In particular, FCE does not
involve using past data to compute it. Nevertheless, we find it worthwhile developing
a definition of an equilibrium price that arises from optimal behavior of the traders in a
plausible model. That is, while FCE assumes completely random behavior of traders,
LTCE is based on a model of rational traders. Moreover, even though LTCE depends
on parameter estimation using historical data, with our data set the computed value of
LTCE is very stable relative to the part of the data sample chosen to compute it. More
precisely, it does not make a big difference in the computed value of the LTCE whether
we use a quarter, a half, or the full sample of our data points for parameter estimation.
This is to be contrasted with the estimated value of the long-term mean, which is
very sensitive to the chosen sample. Overall, perhaps we pose more questions than we
answer, and in particular, whether or not it is possible to determine what drives the
traders behavior just from looking at the long-term price average. In the experimental
data we use, this is not possible.

Trading a single asset using market orders or limit orders has been modeled by a
number of papers in the literature. Most of those construct equilibrium strategies when
trading is performed by different types of traders, such as market makers, informed
traders, noise traders, patient and impatient traders. This approach is taken in Back and
Baruch (2007), Biais et al. (2000), Biais and Weill (2009), Foucault (1999), Foucault
et al. (2005), Goettler et al. (2005), Rosu (2009), Parlour (1998), Parlour and Seppi
(2003), and Biais et al. (2010) among others. Then, there are partial equilibrium models
like those of Avellaneda and Stoikov (2008), Kuhn and Stroh (2009), and Cont et al.
(2009), that, like this paper, take the price process as given and find the best strategy
for the single trader. Perhaps most similar in spirit to the theoretical part of our paper
is Pagnotta (2010), who, in a different and more complex model, also assumes that
there is a given price for the asset, and what the traders decide on is the frequency
of their trades. However, in that model, there is a “true asset value” about which the
traders have asymmetric information, and they also decide whether to submit market
or limit orders. In contrast, in our model the optimal strategy is to place a limit order
at an optimal level, with the additional option to exercise a market order at the end of
the trader value’s “lifetime.” Moreover, there is no single true asset value, instead, the
traders differ by their private values, not by the information they have. We abstract
from specifying how the private values are formed, as they may be influenced by
factors outside of the model, such as hedging trades in other markets, for example.
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4 J. Cvitanić et al.

Instead, we model them as randomly drawn from one distribution for buyers and one
distribution for sellers.

Our aim is different than that of the latter papers. We are not interested in providing
sophisticated algorithms for a trader to follow, or in finding how the limit order book
features depend on the level of information traders have. Rather, as mentioned above,
we examine whether a relatively simple model with mean reversion and optimal timing
of trade describes well, at least in aggregate, the price formation in an experimental
market designed to mimic the model.2

We present the theoretical model in Sect. 2, compute the value of the option to trade
and the probability of exercising that option in Sect. 3, calibrate the model in Sect. 4
and conclude in the last section.

2 Model

There is a single asset to be traded in single units, and buyers/sellers decide at what
time t to buy/sell, submitting orders at the market price Pt . Let vi

B denote the “private
value” for buyer i , who lives during a random interval I B

i = [s B
i , t B

i ], where s B
i and

t B
i − s B

i are independent and exponentially distributed. Similarly, for the sellers, it is

assumed that the private values vi
B, v

j
S are assigned randomly, in an iid manner to the

traders, independent of everything else.3

By private value, we mean that (risk-neutral) buyer i’s problem is

max
τi ∈I B

i

E

[
e−r i

Bτi
(
vi

B − Pτi

)+∣∣∣∣ vi
B

]
(2.1)

and (risk-neutral) seller j’s problem is

max
τ j ∈I S

j

E

[
e−r j

S τ j
(

Pτ j − v
j
S

)+∣∣∣∣ v j
S

]
(2.2)

where r i
B and r j

S are the traders’ discount rates, and τk, k = i, j is the trader-specific
time of trade.

The above optimization problems are equivalent to the problem of pricing American
options with random maturity. For each buyer (seller), vi

B (v
j
S) is a fixed value, but those

values randomly vary across buyers/sellers because they are chosen in an iid manner.
We assume that the price process P of the asset is mean reverting (as is consistent
with tick-by-tick trading data). More precisely, let Xt be the log price of this asset,

2 It should be noted that the reason why we opted for fitting the model to experimental data rather than
real-market data is that in the experiments the private values are known, in fact, chosen by the experimenter,
while it would be hard or impossible to estimate what they are in real markets. However, see the Sect. 5 for
a possible future research on reverse engineering the distributions of private values from real-market data.
3 The iid assumptions and exponential distribution are assumed for tractability. Our aim is not to have a
realistic model of real-life markets, but to test, in a simple model, whether the prices that are formed by
trading are consistent with risk-neutral traders maximizing their expected profit/loss.
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Markets with random lifetimes and private values 5

Xt = log Pt , then Xt is an Ornstein–Uhlenbeck process, given as the solution to the
stochastic differential equation

dXt = κ(θ − Xt )dt + σdWt , (2.3)

where κ > 0 and Wt is a standard Brownian motion process. Process Xt is a well-
known Gaussian process used in finance to model economic variables which tend
to fluctuate around a long-term mean θ . Parameter κ measures the speed of mean
reversion, and σ is the variance parameter.

The above optimal stopping problem can be solved for such Pt = eXt , and we will
compute below the optimal time to trade for each buyer/seller. Moreover, to calibrate
the model to the experimental data of Alton and Plott (2010), in addition to optimal
exercise levels, we will also compute the probabilities that the buyer/seller will make
a transaction during her lifetime interval I k

i given the initial price P0.

Remark 2.1 Strictly speaking, the mean-reverting process Pt is not the true price
process, but the traders’ estimate of the price process. It might be more satisfying not
to impose the price process exogenously, but to derive it endogenously from market
clearing between our buyers and sellers. However, that is a hard problem, outside of
the scope of the paper. Our interpretation (assumption) is that the buyers and the sellers
use a mean-reverting process for modeling the trading prices, whose parameters are
common knowledge. Thus, the mean-reverting price process is not the actual price
process resulting from trading, but a common belief (or estimate) by the traders about
the price process. Put differently, any given trader does not have enough information
to predict the price process in equilibrium; instead, she uses the Ornstein–Uhlenbeck
model as the best guess for the price process, estimates its parameters, and solves her
individual optimization problem, without solving the equilibrium problem.

3 Random maturity American options with mean-reverting underlying

Before starting computations needed to solve the model, let us present a brief outline
of the model’s timeline and of what we want to do in the rest of the paper:

• A trader with a private value arrives.
• She computes the optimal level at which to trade, assuming an OU price process.
• Based on these levels, we compute the expected numbers (averaged over varying

private values) of buy transactions and of sell transactions.
• We find the long-term mean θ that makes those two numbers equal.

The latter value of θ is called the LTCE.

3.1 Put and call values

We first solve the American put problem (2.1), and solving the problem (2.2) is anal-
ogous. For a fixed buyer with value v, which we re-denote to K using the standard

123
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option pricing notation for strike price, we can write the problem (2.1) as

max
0≤τ≤T

E
[
e−rτ (K − Pτ )

+]
(3.1)

where T is an exponential random variable with intensity λ, and independent of every-
thing else.

As noted in Carr (1998) (in which paper P was a geometric Brownian motion), the
function in (3.1) is a Laplace transform of the standard American put option price, and
as a function P(X) of the initial log price X0 = X , it satisfies the ordinary differential
equation (ODE)

σ 2

2
P ′′(X)+ κ(θ − X)P ′(X)− r P(X) = λ

[
P(X)−

(
K − eX

)+]
, X > X

(3.2)

with appropriate boundary conditions, listed in “Appendix.” Here, X is the optimal
level at which to exercise the option (that is, to buy the asset).

In order to present the solution, we need to introduce some notation first. Let D−ν (z)
denote the parabolic cylinder functions.4 Also introduce5

φ(x) = φ(x, ν) := ez2
x/4 D−ν(zx ) (3.3)

ψ(x) = ψ(x, ν) := ez2
x/4 D−ν(−zx ), (3.4)

where

zx :=
√

2κ(x − θ)

σ
(3.5)

Moreover, let the Wronskian of φ and ψ be denoted as

W (x) := φ(x)ψ ′(x)− φ′(x)ψ(x)

Let P(X) denote the value (3.1) of the American put option, where X is the initial
value of Xt = log Pt . We have

Proposition 3.1 The value P(X) of the random maturity American put with mean-
reverting underlying is given by

P(X) =
⎧⎨
⎩

Cφ(X), if X ≥ X0 ≡ log K
Aφ(X)+ Q(X), if X ∈ (X , X0)

K − eX , if X ≤ X
(3.6)

4 See, e.g., http://mathworld.wolfram.com/ParabolicCylinderFunction.html.
5 Functions φ and ψ are the general solutions of the ODE (3.2), for X > log K .
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Markets with random lifetimes and private values 7

where φ(X) and ψ(X) are defined in (3.3) and (3.4) with

ν = λ+ r

κ
(3.7)

and

Q(X) = φ(X)

X∫
X

2ψ(s)

σ 2W (s)
λ(K − es)ds + ψ(X)

X0∫
X

2φ(s)

σ 2W (s)
λ(K − es)ds, (3.8)

A = (K − eX )ψ ′(X)+ eXψ(X)

W (X)
(3.9)

C = A +
X0∫

X

2ψ(s)

σ 2W (s)
λ(K − es)ds (3.10)

and the critical value X satisfies

(K − eX )φ′(X)+ eXφ(X)

W (X)
= −

X0∫
X

2φ(s)

σ 2W (s)
λ(K − es)ds (3.11)

Similarly, the random maturity American call value C(X) in (2.2), with mean-reverting
underlying, is given by

C(X) =

⎧⎪⎪⎨
⎪⎪⎩

Eψ(X), if X ≤ X0 ≡ log K

Bψ(X)+ S(X), if X ∈ (X0, X)

eX − K , if X ≥ X

(3.12)

where

S(X) = φ(X)

X∫

X0

2ψ(s)

σ 2W (s)
λ(es − K )ds + ψ(X)

X∫
X

2φ(s)

σ 2W (s)
λ(es − K )ds (3.13)

B = eXφ(X)− (eX − K )φ′(X)
W (X)

(3.14)

E = B +
X∫

X0

2φ(s)

σ 2W (s)
λ(es − K )ds (3.15)
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8 J. Cvitanić et al.

and the critical value X satisfies

(eX − K )ψ ′(X)− eXψ(X)

W (X)
=

X∫

X0

2ψ(s)

σ 2W (s)
λ(es − K )ds (3.16)

3.2 Probability of exercising options to trade

In order to be able to compute the expected number of trades in a given interval, we
need to compute the probability that a trader will submit an order during her lifetime.
In this regard, consider the process Xt with X0 = x . Introduce the minimum and
maximum values of X up-to-date,

m(x, t) := inf
0≤s≤t

{X (s) | X (0) = x} (3.17)

M(x, t) := sup
0≤s≤t

{X (s) | X (0) = x} (3.18)

Also introduce the densities

p(x | y, t) = ∂

∂y
Pr{Xt ≤ y | X0 = x} (3.19)

and

fy(x | t) = ∂

∂t
Pr{M(x, t) ≥ y | X0 = x} (3.20)

Denote by f̂ the Laplace transform of f . We have the following “Laplace transform
variation” of a classical result by Darling and Siegert (1953).

Proposition 3.2 The probabilities that m(x, t) (M(x, t)) is less than X (greater than
X) during the exponentially distributed period with mean length 1/λ are given by,
respectively,

Pmin(x | X , λ) = f̂ X (x | λ) = φ(x)

φ(X)
, x ≥ X (3.21)

Pmax (x | X , λ) = f̂ X (x | λ) = ψ(x)

ψ(X)
, x ≤ X , (3.22)

where φ(x) and ψ(x) are defined in (3.3) and (3.4) with ν equal to λ/κ .

3.3 Probability of exercising options to trade with random starting time

The above result is still not sufficient for computing the probability that a trader will
submit an order during her lifetime that is assumed to be random. We now extend the
result to random lifetimes.
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Markets with random lifetimes and private values 9

Recall that p(x | y, t) denotes the transition density of X . Assuming the buy-
ers/sellers live during a random interval [τ, τ +�τ ] with

Pr{τ ∈ dt} = λBe−λB t dt, Pr{�τ ∈ dt} = ρBe−ρB t dt (3.23)

Pr{τ ∈ dt} = λSe−λS t dt, Pr{�τ ∈ dt} = ρSe−ρS t dt (3.24)

we have

Proposition 3.3 The probability that the minimum of X (t) is less than X during a
buyer’s lifetime is given by, in the notation of the previous sections, and given that
X0 = x,

Pmin(x | X , λB, ρB) =
∞∫

X

λB Pmin(y | X , ρB) p̂(x | y, λB) dy

+
X∫

−∞
λB p̂(x | y, λB) dy, (3.25)

where

Pmin(y | X , ρB) = φ(y, ρB)

φ(X , ρB)
, (3.26)

with

φ(x, λ) = ez2
x/4 D−λ/κ(zx ), zx ≡

√
2κ(x − θ)

σ
(3.27)

Similarly, the probability that the maximum of X (t) is higher than X during a seller’s
lifetime is given by

Pmax (x | X , λS, ρS) =
X∫

−∞
λS Pmax (y | X , λS) p̂(x | y, λS) dy

+
∞∫

X

λS p̂(x | y, λS) dy, (3.28)

where

Pmax (y | X , λ) = ψ(y, λ)

ψ(X , λ)
(3.29)

with

ψ(x, λ) = ez2
x/4 D−λ/κ(−zx ), zx ≡

√
2κ(x − θ)

σ
(3.30)
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10 J. Cvitanić et al.

Moreover, the Laplace transform p̂ in these expressions is given by

p̂(x | y, λ) = (λ/k)

√
1

πκσ 2 e
z2
x −z2

y
4

× [
�(x − y)D−λ/k(zx )D−λ/k(−zy)+�(y − x)D−λ/k(−zx )D−λ/k(zy)

]

where �(x) is Heaviside theta function.

We now have all the equations needed to compute the expected number of buys and
sells during a given interval of time. We use those equations on experimental data in
the following section.

4 Long-term competitive equilibrium and calibration to experimental data

In this section, we first define the long-term competitive equilibrium (LTCE), and then,
we calibrate our model to experimental data of Alton and Plott (2010).

Definition 4.1 Given a fixed interval of time, the LTCE price is the value of the long-
term mean for which the expected number of buys is equal to the expected number of
sells during that interval when the traders submit their orders optimally according to
the model of the previous sections.

The LTCE price can be interpreted as an analog of the FCE price that Alton and
Plott (2010) introduced as the value at which the expected number of buys is equal
to the expected number of sells in the market in which the traders do not behave
strategically, but immediately submit their private values as buy and sell orders. That
is, given the distributions of incoming buyers’ and sellers’ private values GS and Gb,
the intensities of their lifetimes λb and λs , and the number of buyers and sellers nb

and ns , implicitly assuming that the private values are immediately submitted as trade
orders, FCE is defined by the equation

nsλs GS(FCE) = nbλb(1 − Gb(FCE))

Alton and Plott (2010) also define temporal equilibrium (TE) price, which is the price
at which the market clears at the present time. TE changes from one moment to
another, while FCE and LTCE are constant across time, serving as predictors of the
long-term average price. Our LTCE price is based on a more sophisticated behavior
of traders, in the sense that it takes into account the traders’ optimization and the
mean-reverting nature of the price, rather than assuming a completely random traders’
behavior, independent of the price model. As with FCE, the aim is to define a single,
typical value for the long-term price behavior. To reiterate, the difference is that FCE
presupposes totally random trading by buyers and sellers, while LTCE is a model of
rational traders who maximize their expected profit/loss.

To see whether our simple model with rational behavior might be consistent with
trading of individuals, we now calibrate the model to the experimental data from the
experiment in Alton and Plott (2010). In that paper, the authors report on experiments
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Markets with random lifetimes and private values 11

in which participants (college students) receive random private values at random times
that last for a certain lifetime, after which the values are no longer available. During
those lifetime intervals, if a buyer buys a unit of the asset, she can sell it later to
the experimenter at the guaranteed private value, and analogously for the seller. The
participants trade in a standard limit order market, using a continuous double auction
mechanism. That part is not directly modeled in our optimization framework, that can
be thought of as a stylized way to depict the actual experimental market. However,
let us mention that, effectively, our traders behave as submitting limit orders, because
they trade only when the price reaches a certain level. The only difference is that they
also have an option to submit a market order at the end of their trading lifetime.

Even though it is unlikely that the participants will individually estimate the price
process as a mean-reverting process and then try to find the optimal exercise time as
in our model, our hope is that on an average the result of their trading would not be
far away from the aggregate theoretical predictions.6

The aim of our exercise is to compute the LTCE price, denoted θ̃ . The following
are the steps we use for this computation.

– We set the discount rate to zero, because our time interval is short: two hours.
– We observe transacted prices. We use these observations to estimate the parameters
κ, σ and θ of the Ornstein–Uhlenbeck process, to get estimates κ̂, σ̂ , and θ̂ , using
the maximum likelihood procedure.7

– We pick an initial value θ̃0 for the LTCE.
– We discretize the range of the private values (whose distribution is uniform in those

experiments), and use the discrete values as the strike prices.
– For each private value as the strike price, we compute critical exercise values X

and X .
– Assuming the initial asset price is equal to the initially chosen θ̃0, we compute the

probabilities of buys and sells for different private values, using the formulas from
the previous section.

– We estimate the expected number of buys by the number of buyers multiplied by
the average of buy probabilities. If the expected number of buys is not sufficiently
close to that of the sells, we change the value of θ̃0 in the appropriate direction and
repeat the procedure, until those numbers become close to each other. The final
value θ̃ so obtained is our LTCE price.

The results of this procedure are illustrated in Fig. 1. The figure shows the data
generated by an experiment from Alton and Plott (2010) in which the distribution of
the orders changed in the middle, which made the typical price values move up in the
second part of the experiment. Also shown are the FCE and the LTCE for the two parts
of the experiment. We see that those values, which make the expected number of buys

6 The phenomenon that individually participants in experiments do not behave optimally and nevertheless
in aggregate the price formation is not far away to what it would be if they did, has been found before in
experimental asset pricing, for the CAPM model; see, e.g., Bossaerts et al. (2007).
7 In doing this, we discard initial data points which are far away from “equilibrium price,” as this is a
period in which the participants are basically learning. Moreover, we smooth out the price values grouped
in narrow time intervals, because our diffusion process would not be a good fit for the big jumps in price
that often occur during those intervals.
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12 J. Cvitanić et al.

Fig. 1 Transaction prices from an Alton and Plott (2010) experiment and the corresponding FCE and
LTCE. Duration of the experiment is 2 h, with first part lasting 71 min and the second 49 min. Buyer and
seller arrival rates are 4/min. Lifetime of private values is 6 min, and their distribution is U (52, 451) for the
first part and U (273, 672) for the second part

and sells equal in the corresponding models, are not very different for this data set.
That is, assuming no strategical behavior on the part of the participants (resulting in
the FCE value) results in a competitive equilibrium value similar to that value when
assuming that they optimally time the exercise of the option to trade using the OU
model (resulting in the LTCE value). This is also confirmed by computing the root
mean squared errors (rms) for LTCE and FCE: In the first period, rms is 30.65 for
FCE and 30.16 for FTCE, and in the second period, rms is 62.34 for FCE and 64.86
for LTCE.

When computing the LTCE computed in Fig. 1, we used all the data points from
the experiment (except for thirty initial trades for each part). We then computed the
LTCE using only the first quarter of the data points, as well as using a half and three
quarters of the data points. Remarkably, the LTCE value does not change much with
the length of the sample, even though the statistical estimates of the parameters of the
OU process change more significantly. See Tables 1 and 2 for more information. Here,
p = 1/4 means we only use the first quarter of data points (excluding the first thirty
data points from the sample), and so on.

To reiterate, even though statistical estimation of the OU process parameters is
somewhat unstable, the resulting LTCE value, which depends on that estimation, is
quite robust. Combining with the fact that FCE is not that different from LTCE, one is
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Table 1 Statistical estimates of
the parameters of the OU
process and the LTCE for the
first part of the experiment

κ̂ σ̂ θ̂ LTCE

p = 1/4 2.1838 0.1635 284.41 290.7

p = 1/2 0.2144 0.0437 295.22 292.5

p = 3/4 0.1685 0.0384 299.07 292.0

p = 1 0.0880 0.0319 292.10 293.0

Table 2 Statistical estimates of
the parameters of the OU
process and the LTCE for the
second part of the experiment

κ̂ σ̂ θ̂ LTCE

p = 1/4 0.0287 0.0226 494.42 520.0

p = 1/2 0.0314 0.0197 505.84 517.7

p = 3/4 0.0357 0.0183 503.72 517.0

p = 1 0.0338 0.0169 509.94 516.1

tempted to infer that the notion of equilibrium based on the expected number of buys
being equal to the expected number of sells is not very sensitive to the choice of the
model. Whenever this is true for the trading venue at hand, then the question of how
to decide whether to use FCE or LTCE (or LTCE based on some other model for the
price process) becomes less important for estimation of the long-term price level. If
this is generally correct, it is a good news for applications, but bad news in terms of
deciding what exactly drives the traders’ behavior, at least when considering only the
long-term price average.

5 Conclusions

We propose a model for trading an asset in a market with private reservation values, in
which the traders decide optimally on the trade execution time. Assuming the market
price follows a mean-reverting diffusion process, we find the equation for the optimal
buy and sell levels, and expressions for the corresponding execution probabilities
during a random interval of time. We then define long-term competitive equilibrium,
LTCE, to be the value of the long-term stationary mean that makes the expected
number of buys equal to the expected number of sells. The model is then fitted to the
experimental data of Alton and Plott (2010). The data calibration results in a good fit of
the model, with the prices in the experiment fluctuating around LTCE. Moreover, and
somewhat surprisingly, unlike statistically estimated parameters of the price process,
LTCE value is not very sensitive to the fraction of the sample we use to compute it.

While it would also be desirable to test the approach on real-market data, we cannot
do such a calibration, because of the dependence on unknown private values. Let us
mention that Lo et al. (2002), while performing a statistical analysis of the timing of
limit orders, show that modeling trade execution times as passage times of a GBM
process at a fixed level does not fit the market data well. In contrast, our price process
is not a GBM process, but a mean-reverting process, and the trades are executed at
varying passage times that are optimally decided by individual traders depending on
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14 J. Cvitanić et al.

their private values. Thus, it is a significantly richer model and might not be necessarily
rejected by the actual market data.

In future research, it would be of interest to do “reverse engineering”—taking the
observed orders as given, and finding the implied distribution of private values. The
procedure would give a measure of the overall market sentiment during a chosen period
of time, and this measure could be tested to see how well it depicts the actual mood
changes over a sequence of time periods (assuming that the chosen model is a good
fit to the market data).

6 Appendix

Proof of Proposition 3.1 As in Carr (1998), P(X) is the Laplace transform of the stan-
dard American put price, and thus satisfies the ordinary differential equation (ODE)

σ 2

2
P ′′(X)+ κ(θ − X)P ′(X)− r P(X) = λ

[
P(X)−

(
K − eX

)+]
, X > X

(6.1)

subject to the boundary conditions

lim
X→∞ P(X) = 0, lim

X→X
P(X) = K − eX , lim

X→X
P ′(X) = −eX (6.2)

In the region X > log K ≡ X0, the ODE is reduced to homogenous ODE

σ 2

2
P ′′(X)+ κ(θ − X)P ′(X)− (r + λ)P(X) = 0, X > X0 (6.3)

Introducing the change in variables

z =
√

2κ

σ
(X − θ)

and letting P(X) = ez2/4ω(z), Eq. (6.3) becomes

ω′′(z)+
(

1

2
− ν − z2

4

)
ω(z) = 0 (6.4)

with

ν = (r + λ)/κ.
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The general solution of (6.4) can be represented as the linear combination of the
so-called parabolic cylinder functions:8

ω(z) = C D−ν(z)+ E D−ν(−z). (6.5)

From limX→∞ P(X) = 0, we get E = 0. Therefore,

P(X) = Cez2/4 D−ν(z), X > X0 ≡ log K (6.6)

In the region X < X < X0, the solution can be written as the general solution plus a
particular solution,

P(X) = Aφ(X)+ Bψ(X)+ Q(X), (6.7)

where Q(X) is a particular solution that can be taken as in (3.8) (see, e.g., Johnson
(2006)). From the boundary conditions Eq. (6.2) at X = X and using the continuity
of P(X) and P ′(X) at X = X0, it is not difficult to obtain B = 0, and A, C , and X
as in the statement of the proposition.

Proof of Proposition 3.2 Because the maturity date is exponential and independent of
process X , we have

Pmin(x | X , λ) = λ

∞∫
0

e−λt FX (x | t) dt (6.8)

= −
⎡
⎣FX (x | t)e−λt |∞0 −

∞∫
0

e−λt fX (x | t) dt

⎤
⎦ (6.9)

=
∞∫

0

e−λt fX (x | t) dt (6.10)

= f̂ X (x | λ) (6.11)

Similarly,
Pmax(x | X , λ) = f̂ X (x | λ). (6.12)

For our Ornstein–Uhlenbeck process X , function p(x | y, t) satisfies the PDE

∂p

∂t
= κ(θ − x)

∂p

∂x
+ σ 2

2

∂2 p

∂x2 (6.13)

with initial and boundary conditions p(∞ | y, t) = p(−∞ | y, t) = 0, p(x | y, 0) =
δ(x − y). Taking the Laplace transform of Eq. (6.13), we get

λ p̂ − δ(x − y) = κ(θ − x)
d p̂

dx
+ σ 2

2

d2 p̂

dx2 (6.14)

8 See, e.g., http://mathworld.wolfram.com/ParabolicCylinderFunction.html.
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Therefore, we have

p̂(x | y, λ) =
{
ψ(x)φ(y), y ≥ x
φ(x)ψ(y), y ≤ x

(6.15)

up to a constant factor. The result follows now from Theorem 3.1 in Darling and
Siegert (1953).

Proof of Proposition 3.3 Note that we can write our Ornstein–Uhlenbeck process X
in the form

X (t) = xe−κt + θ(1 − e−κt )+ σ

t∫
0

e−κ(t−u) dW (u) (6.16)

and that there is a Brownian motion B(t) such that

t∫
0

eκudW (u) = 1√
2κ

B(e2κt − 1). (6.17)

Therefore, we have

X (t) = xe−κt + θ(1 − e−κt )+ σ√
2κ

e−κt B(e2κt − 1), X (0) = x (6.18)

It is then not difficult to show that the transition density is given by

p(x | y, t) =
√

κ

πσ 2

1

(1 − e−2κt)
exp

{
− κ

σ 2

[
y − xe−κt − θ(1 − e−κt )

]2

1 − e−2κt

}

(6.19)

Buyer i lives during random interval [τ B
i , τ

B
i +�τ B

i ] with

Pr{τ B
i ∈ dt} = λBe−λB t dt, Pr{�τ B

i ∈ dt} = ρBe−ρB t dt (6.20)

Then, the probability that the minimum of X (t) is less than X during a buyer’s lifetime
is
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Pmin(x | X , λB, ρB) =
∞∫

0

λBe−λBτ dτ

×
⎡
⎢⎣

∞∫
X

Pmin(y | X , ρB)p(x | y, τ ) dy +
X∫

−∞
p(x | y, τ ) dy

⎤
⎥⎦

=
∞∫

X

λB Pmin(y | X , ρB) p̂(x | y, λB) dy

+
X∫

−∞
λB p̂(x | y, λB) dy, (6.21)

where we use the fact that if X (τ B
i ) ≤ X , the buyer will make a transaction immediately

after she enters the market, and if X (τ B
i ) ≥ X , there is probability Pmin(y | X , ρB)

that X (t) will hit X during the random period. The expression for Pmin(y | X , ρB)

follows from the previous section. The corresponding expression for the seller follows
using the same method.

Next, we calculate the Laplace Transform of p(x | y, t),

p̂(x | y, λ) =
∞∫

0

e−λt p(x | y, t) dt (6.22)

We know that p(x | y, t) satisfies Kolmogorov equation

∂ f

∂t
= κ(θ − x)

∂ f

∂x
+ σ 2

2

∂2 f

∂x2 (6.23)

subject to f (∞ | y, t) = f (−∞ | y, t) = 0 and f (x | y, 0) = δ(x − y). Taking
Laplace transform on both sides of Eq. (6.23), we get

λ p̂ − δ(x − y) = κ(θ − x)
d p̂

dx
+ σ 2

2

d2 p̂

dx2 (6.24)

Letting z ≡
√

2κ(x − θ)

σ
and zy ≡

√
2κ(y − θ)

σ
, Eq. (6.24) becomes

d2 p̂

dz2 − z
d p̂

dz
− λ

k
p̂ = −

√
2

κσ 2 δ(z − zy) (6.25)
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Imposing the boundary conditions, we get

p̂ =
{

Aez2/4 D−ν(z), z ≥ zy

Bez2/4 D−ν(−z), z ≤ zy
(6.26)

From Eq. (6.25), we know that
d p̂

dz
cannot be continuous. Integrating both sides of

Eq. (6.25) from z−
y to z+

y , and because p̂ is continuous, it is straightforward to get

d p̂

dz
(z+

y )− d p̂

dz
(z−

y ) = −
√

2

κσ 2 (6.27)

With Eq. (6.27) and p̂ continuous, we get

p̂(x | y, λ) =

⎧⎪⎨
⎪⎩

√
2
κσ 2 e−z2

y/4 D−ν (−zy)

D1−ν (zy)D−ν (−zy)+D1−ν (−zy)D−ν (zy)
ez2/4 D−ν(z), z ≥ zy√

2
κσ 2 e−z2

y/4 D−ν (zy)

D1−ν (zy)D−ν (−zy)+D1−ν (−zy)D−ν (zy)
ez2/4 D−ν(−z), z ≤ zy

(6.28)

with ν = λ/κ . We can further simplify the answer by calculating T (ν, z) ≡
D1−ν(z)D−ν(−z)+ D1−ν(−z)D−ν(z). First, we prove T (ν, z) is independent of z:

dT (ν, z)

dz
= D′

1−ν(z)D−ν(−z)− D1−ν(z)D′−ν(−z)

−D′
1−ν(−z)D−ν(z)+ D1−ν(−z)D′−ν(z)

= D1−ν(z)
[−zD−ν(−z)+ νD−ν−1(−z)

]
−D1−ν(−z)

[
zD−ν(z)+ νD−ν−1(z)

]
= D1−ν(z)D1−ν(−z)− D1−ν(−z)D1−ν(z) = 0 (6.29)

Here, we use the recursion relation for parabolic cylinder functions,

Dν+1(z)− zDν(z)+ νDν−1(z) = 0 (6.30)

D′
ν(z)+ 1

2
zDν(z)− νDν−1(z) = 0 (6.31)

From these, it is also not difficult to get

T (ν) = νT (ν + 1) (6.32)

(Note we dropped dependence on z here.) Then, we have

T (ν) = T (1)

(ν)
, ν > 0, (6.33)
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where T (1) = √
2π . Plugging this result into Eq. (6.28), we get the stated expression

for p̂.
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