
Decisions Econ Finan (2014) 37:27–51
DOI 10.1007/s10203-013-0145-y

One-dimensional maps with two discontinuity points
and three linear branches: mathematical lessons
for understanding the dynamics of financial markets

Fabio Tramontana · Frank Westerhoff ·
Laura Gardini

Received: 11 November 2011 / Accepted: 14 February 2013 / Published online: 28 February 2013
© Springer-Verlag Italia 2013

Abstract We develop a simple financial market model with heterogeneous inter-
acting speculators. The dynamics of our model is driven by a one-dimensional dis-
continuous piecewise linear map, having two discontinuity points and three linear
branches. On the one hand, we study this map analytically and numerically to advance
our knowledge about such dynamical systems. In particular, not much is known about
discontinuous maps involving three branches. On the other hand, we seek to improve
our understanding of the functioning of financial markets. We find, for instance, that
such maps can generate complex bull and bear market dynamics.

Keywords Financial crises · Bull and bear dynamics · Discontinuous piecewise
linear maps · Border collision bifurcations · Adding scheme

1 Introduction

Day and Huang (1990) published their seminal bull and bear market model to explain
the complex dynamics of financial markets. In their model, there are three types of
market participants. Chartists buy (sell) assets when they perceive a bull (bear) market
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28 F. Tramontana et al.

and fundamentalists buy (sell) when the market is undervalued (overvalued). The
third player is the market maker who adjusts prices with respect to the chartists’
and fundamentalists’ excess demand. As it turns out, the (nonlinear) model of Day
and Huang is able to generate intricate price dynamics where complex bull market
dynamics erratically alternate with complex bear market dynamics. This contribution
was indeed seminal—it triggered hundreds of follow-up papers, of which some are
surveyed in Chiarella et al. (2009); Hommes and Wagener (2009); Lux (2009) and
Westerhoff (2009).

In 1993, Huang and Day (1993) developed a piecewise linear version of their
original model. Due to the piecewise linear shape of their model, certain new insights
into the properties and dynamics of their model were gained. Since then, only a few
piecewise linear models have been proposed. The few exceptions include, for instance,
Huang et al. (2010) and Tramontana et al. (2010). This is rather surprising—after
all, piecewise linear models may offer novel interesting results about how financial
markets function. One reason for this lack of development may have been that the
mathematical tools, which are obviously necessary to study such systems, were rather
limited. Therefore, the recent contributions in this area usually do not only aim at
improving our understanding of financial markets but also at advancing our knowledge
about how to deal with piecewise linear maps.

This is also true in our case. We develop a simple financial market model in the
tradition of Day and Huang (1990) and Huang and Day (1993). Within our model,
there are four types of speculators. Type 1 and type 2 chartists believe in the persistence
of bull and bear markets; type 1 and type 2 fundamentalists believe in mean reversion.
While type 1 chartists and type 1 fundamentalists are always active in the market, type
2 chartists and type 2 fundamentalists are only active when prices are at least a certain
distance away from the fundamental value. The speculators’ transactions are mediated
by a market maker who also adjusts prices with respect to the excess demand.

As it turns out, the dynamics of our model is driven by a piecewise linear map
with three separate branches. Formulated in terms of deviations from the fundamental
value, the map has the following appearance (see also Figs. 1 and 2). The inner branch
of the map, ranging from –z to +z on the x-axis, always has a slope higher than 1 and a
positive intercept parameter. The outer two branches have either a slope (i) between 0
and 1 or (ii) between –1 and 0 (and would intersect the origin). It will become apparent
below that the dynamics in the inner regime is solely due to the transactions of type
1 speculators, while the dynamics in the outer regimes is due to type 1 and type 2
speculators.

From a mathematical perspective, our results may be outlined as follows. In case
(i), only two of the three branches are involved in the asymptotic dynamics. Depending
on the intercept parameter, we may have either two coexisting disjoint attractors or
only one attractor. If the intercept parameter is relatively high, only one attractor
with periodic motion in the generic case (structurally stable) exists, always located
in the bull market (and, in exceptional cases, structurally unstable, the attractor is a
Cantor set). This regime is completely determined in the parameter space, and we
describe the so-called period-adding structure of periodicity regions. If the intercept
parameter declines, a second coexisting attractor emerges, always located in the bear
market and always chaotic (in k-chaotic intervals, with k ≥ 1). Case (ii) is much more
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One-dimensional maps with two discontinuity points and three linear branches 29

Fig. 1 Shape of the map for
P∗ > g(−1) at
M1 = 0.2, S1 = 0.75 and
S2 = −1.1

Fig. 2 In a shape of the map for −1 < P∗ < g(−1) at M1 = 0.5, S1 = 0.75 and S2 = −1.6. In b shape
of the map when P∗ does not exist at M1 = 0.9, S1 = 0.75 and S2 = −1.6

complicated since it may involve all three branches of the map. However, we found
that there exist both periodic and chaotic attractors. In a portion of the well-determined
parameter space (where the so-called period increment structure exists), the attractors
are cycles and there is evidence of bistability, i.e., two periodic cycles may coexist (and
be bounded by analytically determined bifurcation curves). What both cases have in
common is that the steady state of the model, if it exists, is never stable. Instead, there
are either endogenous regular/chaotic dynamics or the system explodes. Contrary to
case (i), where the dynamics remains either in the bull or in the bear market, we show
that in case (ii) the dynamics switches back and forth between bull and bear markets,
and this can occur with both a stable periodicity or in a chaotic way.
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It goes without saying that these insights are also relevant from an economic point
of view. In addition, we stress here that our model is also capable of generating quite
interesting bull and bear market dynamics. Since the model is asymmetric (due to
the inner regime’s positive intercept parameter), we have, on average, more positive
bubbles than negative bubbles, as also seems to be the case for real financial markets.
A typical bubble-and-crash path may evolve as follows. First, there is a slow buildup
of a bubble. Then the momentum of the bubble process increases—till it crashes.
The crash can be quite abrupt and severe. After the crash, the next bubble may start.
However, we may also see prices declining for some more time after a crash. Such
price reductions sometimes even lead to the aforementioned negative bubbles.

The remainder of our paper is organized as follows. In Sect. 2, we develop our
financial market model. In Sect. 3, we report some general properties of our model.
Sections 4 and 5 are devoted to an in-depth analysis of our model. In Sect. 6, we
conclude the paper.

2 A simple financial market model

The design of our model is highly influenced by those of Day and Huang (1990) and
Huang and Day (1993) and may even be regarded as an extension/generalization of
their models. The main ingredients of our model may be summarized as follows. We
consider a speculative market in which a market maker mediates the transactions of
speculators and adjusts prices with respect to the current excess demand: If buying
exceeds selling, they increase the price; if selling exceeds buying, they decrease the
price. The excess demand is made up of the transactions of four different groups of
speculators.

First of all, there are so-called type 1 chartists and type 1 fundamentalists. Type
1 chartists believe in the persistence of bull and bear markets and thus buy if prices
are high and sell if they are low. Type 1 fundamentalists do exactly the opposite.
Fundamentalists expect prices to return towards their fundamental value and thus buy
if prices are low and sell if they are high. Type 1 chartists and type 1 fundamentalists
are always active in the market.

By contrast, type 2 chartists and type 2 fundamentalists are not always active. They
only become active if the price is at least a certain distance away from its fundamental
value. For instance, type 2 chartists may only recognize an exploitable bull/bear market
if the misalignment has crossed a certain threshold level. For type 2 fundamentalists,
it may only seem reasonable to enter the market as soon as there is some real chance
and actual potential for mean reversion. Apart from that, the trading philosophies of
type 1 chartists and type 1 fundamentalists are identical to those of type 2 chartists
and type 2 fundamentalists.

The dynamics of our model is due to a one-dimensional discontinuous piecewise
linear map. In Sect. 2.1, we present the key building blocks of our model. In Sect.
2.2, we derive the model’s law of motion. Since the underlying map is very flexible,
it cannot be dealt with in just one single paper. Alternatively, sub-classes of models
that seem interesting from either a mathematical or economic point of view, or from
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One-dimensional maps with two discontinuity points and three linear branches 31

both perspectives, should be singled out. A few sub-classes of models, including that
which we study in this paper, are introduced in Sect. 2.3.

2.1 The setup

We consider a speculative market in which a market maker mediates the transactions
of speculators and adjusts prices with respect to the excess demand. The market maker
uses a (standard) log-linear price adjustment rule and quotes the new log price P as

Pt+1 = Pt + a(DC,1
t + DF,1

t + DC,2
t + DF,2

t ) (1)

Parameter a is a price adjustment parameter. Without loss of generality, we set a = 1.
The four terms in the bracket on the right-hand side of (1) capture the transactions of
type 1 chartists, type 1 fundamentalists, type 2 chartists and type 2 fundamentalists,
respectively. Obviously, excess buying drives the price up and excess selling drives it
down.

Chartists believe in the persistence of bull and bear markets. We thus formalize the
orders placed by type 1 chartists as

DC,1
t =

{
c1,a + c1,b(Pt − F) if Pt − F ≥ 0
−c1,c + c1,d(Pt − F) if Pt − F < 0

(2)

The reaction parameters c1,a, c1,b, c1,c and c1,d are non-negative. Given their beliefs
about future price movements, type 1 chartists optimistically buy (pessimistically sell)
if prices are in the bull (bear) market, that is, if the log price P is above (below) its log
fundamental value F. As usual, the fundamental value is constant and known to all
market participants. The reaction parameters c1,a and c1,c capture some general kind
of optimism and pessimism, respectively, whereas the reaction parameters c1,b and
c1,d indicate how aggressively type 1 chartists trade on their perceived price signals.

Fundamentalists expect prices to return towards their fundamental values. We thus
write the orders placed by type 1 fundamentalists as

DF,1
t =

{− f 1,a + f 1,b(F − Pt ) if Pt − F ≥ 0
f 1,c + f 1,d(F − Pt ) if Pt − F < 0

(3)

Again, the reaction parameters f 1,a, f 1,b, f 1,c and f 1,d are nonzero. Hence type
1 fundamentalists always trade in the opposite direction as type 1 chartists. In an
overvalued market, they sell and in an undervalued market they buy. Similar to type
1 chartists, the trading intensity of type 1 fundamentalists may depend on market
circumstances: A certain mispricing in the bull market may trigger a higher or lower
transaction than the same mispricing in the bear market.

Type 2 chartists are only active if prices are at least a certain distance away from
their fundamental value. Let Z > 0 denote this distance. We can then express the
orders placed by type 2 chartists as
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DC,2
t =

⎧⎨
⎩

c2,a + c2,b(Pt − F) if Pt − F ≥ Z
0 if − Z < Pt − F < Z
−c2,c + c2,d(Pt − F) if Pt − F ≤ −Z

(4)

As usual, c2,b, c2,d > 0, i.e., the trading intensity of type 2 chartists increases with
the distance between prices and fundamentals. Moreover, c2,a ≥ −c2,b(Z − F) and
c2,c ≥ −c2,d(Z + F), i.e., the transactions of type 2 chartists are non-negative in the
bull market and non-positive in the bear market.

For simplicity, type 2 chartists and type 2 fundamentalists share the same market
entry level. We thus model the orders placed by type 2 fundamentalists as

DF,2
t =

⎧⎨
⎩

− f 2,a + f 2,b(F − Pt ) if Pt − F ≥ Z
0 if − Z < Pt − F < Z
f 2,c + f 2,d(F − Pt ) if Pt − F ≤ −Z

(5)

where the conditions f 2,b, f 2,d ≥ 0, f 2,a ≥ f 2,b(F − Z) and f 2,c ≥ f 2,d(F +
Z) hold. Again, fundamentalists buy if the market is undervalued and sell if it is
overvalued.

As we will see in the sequel, assuming common market entry levels for all type 2
agents along with otherwise linear trading rules results in a simple one-dimensional
map with two discontinuity points and three linear branches. Our setup allows us
to perform a detailed analytical treatment of our financial market model. Given the
financial market turmoil we currently face in Europe, we believe that it is important
to improve our understanding of financial markets and hope that our paper helps in
this respect. Note also that Tramontana and Westerhoff (2013) demonstrate that a
stochastic version of our model does quite well in replicating the main stylized facts
of financial markets, which may be regarded as empirical support for our approach.

2.2 The model’s law of motion

In total, trading rules (2)–(5) contain 16 reaction parameters. To simplify the notation,
we introduce the following eight aggregate parameters

⎧⎪⎪⎨
⎪⎪⎩

m1 = c1,a − f 1,a, s1 = c1,b − f 1,b,

m2 = f 1,c − c1,c, s2 = c1,d − f 1,d ,

m3 = c2,a − f 2,a, s3 = c2,b − f 2,b,

m4 = f 2,c − c2,c, s4 = c2,d − f 2,d .

(6)

Given the assumptions about the individual reaction parameters, it is clear that each
of the eight aggregate parameters can take any value. Furthermore, it is convenient
to express the model in terms of deviations from the fundamental value. Defining
P̃t = Pt − F and combining (1)–(5), we obtain
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One-dimensional maps with two discontinuity points and three linear branches 33

P̃t+1 =

⎧⎪⎪⎨
⎪⎪⎩

m1 + m3 + (1 + s1 + s3)P̃t if P̃t ≥ Z
m1 + (1 + s1)P̃t if 0 ≤ P̃t < Z
m2 + (1 + s2)P̃t if − Z < P̃t < 0
m2 + m4 + (1 + s2 + s4)P̃t if P̃t ≤ −Z

, (7)

which is a one-dimensional discontinuous piecewise linear map. Since there are no
restrictions on the eight aggregate parameters, each of the four branches of (7) can
be positioned anywhere in the (P̃t+1, P̃t ) space. To develop an understanding of the
model, it is therefore necessary to study sub-classes of (7).

2.3 Sub-classes of our model

Let us point out a few sub-classes of our model. First, assume that m1 = m2 = m3 =
m4 = 0, s1 = s2 and s3 = s4. The assumptions concerning the intercept parameters
imply the absence of any general kind of optimism or pessimism. The assumptions
about the slope parameters imply that the trading intensity of the speculators does not
depend on whether the market is in a bull or a bear state. We then have the map

P̃t+1 =
⎧⎨
⎩

(1 + s1 + s3)P̃t if P̃t ≥ Z
(1 + s1)P̃t if − Z < P̃t < Z
(1 + s1 + s3)P̃t if P̃t ≤ −Z

(8)

This map has been studied in detail in Tramontana et al. (2011). While this model
cannot produce chaotic dynamics, we found, for instance, that it can produce high-
periodicity cycles and quasiperiodic dynamics which have the appearance of being
chaotic.

Second, assume again that the speculators react symmetrically to bull and bear
market price signals (s1 = s2 and s3 = s4). However, the intercept parameters may be
nonzero. In the current paper, we consider the case m1 = m2 and m1 = −m3 = −m4.
Note that this implies that the general kind of optimism/pessimism of type 1 speculators
(exactly) offsets the general kind of optimism/pessimism of type 2 speculators. As a
result, we obtain the map

P̃t+1 =
⎧⎨
⎩

(1 + s1 + s3)P̃t if P̃t ≥ Z
m1 + (1 + s1)P̃t if − Z < P̃t < Z
(1 + s1 + s3)P̃t if P̃t ≤ −Z

(9)

Clearly, the difference between map (8) and map (9) is that the inner branch of map (9)
has a nonzero intercept. However, this very simple mathematical difference implies a
completely different dynamic behavior. The intrinsic stability with structural instability
of the dynamics of map (8) can no longer occur in map (9) with m1 �= 0: The dense
periodic or quasiperiodic trajectories are completely destroyed and substituted by more
interesting/realistic dynamic behaviors. Indeed, as we show in Sects. 4 and 5, this new
scenario can generate quite interesting dynamic phenomena.
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Third, assume that m1 = m2 = 0, m3 = −m4, s1 = s2 and s3 = s4. We then
obtain the map

P̃t+1 =
⎧⎨
⎩

m3 + (1 + s1 + s3)P̃t if P̃t ≥ Z
(1 + s1)P̃t if − Z < P̃t < Z
−m3 + (1 + s1 + s3)P̃t if P̃t ≤ −Z

(10)

This map has been studied in Tramontana et al. (2012b). Interestingly, this map embeds
the famous model of Huang and Day (1993) as a special case. This is seen when the
outer two branches are shifted, via parameter m3, such that they connect with the inner
branch.

Finally, assume that m1 = m2 and s1 = s2. The map then turns into

P̃t+1 =
⎧⎨
⎩

m1 + m3 + (1 + s1 + s3)P̃t if P̃t ≥ Z
m1 + (1 + s1)P̃t if − Z < P̃t < Z
m1 + m4 + (1 + s1 + s4)P̃t if P̃t ≤ −Z

(11)

In Tramontana and Westerhoff (2013), we studied a stochastic version of this model and
found that it can match the stylized facts of financial markets quite well. To be precise,
stochastic variations of the model parameters introduce random switches between
stability and instability, which can make the dynamics quite unpredictable. This also
shows the importance of establishing analytical results about the deterministic skeleton
of such maps—they are the key to understanding the dynamics of their stochastic
counterparts.

3 Some properties of our model

Let us start our analysis by pointing out some important properties of our model. For
ease of exposition, let us now express (9) as

F : X ′ =
{

(1 + S1)X + m1 if |X | < Z
(1 + S1 + S2)X if |X | > Z

(12)

where S1 = s1 and S2 = s3. Recall again that parameters S1, S2 and m1 can take
positive or negative values, while Z > 0.

A first property is that parameter Z is a scale variable. In fact, by using the change
of variable x = X/Z and defining the aggregate parameter M1 = m1/Z , our model
in (12) becomes

F : x ′ =
{

f (x) = (1 + S1)x + M1 if |x | < 1
g(x) = (1 + S1 + S2)x if |x | > 1

. (13)

to which we shall refer henceforth. Parameter M1 can be positive, negative or zero.
The case M1 = 0 leads to a non-chaotic map with peculiar properties, which has been
completely investigated in the paper cited above. The two cases with a positive and
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One-dimensional maps with two discontinuity points and three linear branches 35

negative sign of M1 are topologically conjugated to each other, as it can easily be seen
using the change of variable y = −x . So we can state the following:

Property A Map F in (13) with M1 < 0 is topologically conjugated with the same
map with M1 > 0.

Thus, in the following, we shall consider only the positive sign, M1 > 0. So the
model of interest, which we rewrite as follows:

F : x ′ =
⎧⎨
⎩

g(x) = (1 + S1 + S2)x if x < −1
f (x) = (1 + S1)x + M1 if − 1 < x < 1
g(x) = (1 + S1 + S2)x if x > 1

(14)

is represented by a one-dimensional piecewise linear discontinuous map, with two
discontinuity points. The study of the dynamics of piecewise linear discontinuous
maps with two discontinuity points is a new field of research that is not yet com-
pletely understood. An immediate property for our class of maps, associated with the
piecewise linear structure, is that the appearance of cycles cannot occur via fold (or
tangent) bifurcation, as is usually the case in smooth maps. Instead, here a cycle can
only appear/disappear via a border collision bifurcation. This term was used for the
first time in the papers by Nusse and Yorke (1992, 1995) and is now extensively used
in the literature of piecewise smooth systems. A cycle undergoes a border collision
bifurcation when one of its periodic points merges with a discontinuity point.

Even if, as we shall see, we can have cycles with periodic points in two or three
partitions of the map, only two functions are involved, so that the eigenvalue of a
cycle depends only on the number of periodic points in which the functions f (x) and
g(x) are applied. Moreover, the flip bifurcations are not the usual ones (we recall that
for smooth maps they are associated with the appearance of a stable cycle of double
period). In piecewise linear maps, only degenerate flip bifurcations can occur, so that
at the bifurcation value there exists a whole segment of cycles of double period that
are stable but not asymptotically stable. The dynamic effects after the bifurcation are
not uniquely defined, and it is possible to have several kinds of dynamics. However,
this bifurcation often leads to chaotic sets, i.e., to chaotic intervals (see Sushko and
Gardini 2010). Thus, the following property holds (whose proof, as already remarked,
is an immediate consequence of the piecewise linear nature of the map):

Property B A cycle of map F in (13) can appear/disappear only via a degenerate
flip bifurcations or a border collision bifurcation. The eigenvalue of a cycle having
p periodic points in the middle region (|x | < 1) and q outside (|x | > 1) is given by
λ = (1 + S1)p(1 + S1 + S2)q .

Moreover, another property is also immediate and excludes cases which are unfea-
sible in the applied context, since they lead to divergent trajectories. From Property
B, we have that when both slopes of the functions f (x) and g(x) are in modulus
higher than 1, then all the possible cycles are unstable, as |λ| > 1. In these cases,
a piecewise linear map can only have chaotic dynamics (when bounded trajectories
exist) or divergent trajectories. However, due to the particular structure of our map,
we have the following property (stating that when all the slopes are in modulus higher
than one, then only divergent trajectories can exist):
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Property C Let map F be with |1 + S1| > 1 and |1 + S1 + S2| > 1, then any initial
condition different from the unstable fixed point (if existent) has a divergent trajectory.

Depending on the values of the parameters as, for example, positive or negative
slopes of functions f and g, we can have different dynamic properties. Thus, it turns
out to be suitable to distinguish three cases, depending on the slope of f, as follows:
H1 : (1 + S1) > 1, H2 : (1 + S1) < −1, and H3 : −1 < (1 + S1) < 1. In this
work, we shall consider the dynamics of the first case, leaving the investigation of the
dynamic behaviors in the other cases for further studies. So, let us fix

H1 : (1 + S1) > 1 (15)

and the map as in (14). From Property C, we are led to bounded dynamics for |1 +
S1+S2| < 1 and can further distinguish between two qualitatively different situations,
namely

(i) : (1 + S1) > 1, 0 < (1 + S1 + S2) < 1 (16)

(i i) : (1 + S1) > 1, −1 < (1 + S1 + S2) < 0 (17)

in which the function g(x) defined in the outer branches either increases or decreases.
Before we continue, let us briefly discuss what cases (i) and (i i) imply economi-

cally. What both cases have in common is that type 1 chartists trade more aggressively
on a given price signal than type 1 fundamentalists (and therefore s1 > 0). Another
aspect both cases have in common is that type 1 fundamentalists and type 2 fundamen-
talists jointly dominate type 1 chartists and type 2 chartists, again with respect to their
price-dependent trading intensity. The difference between the two cases is that this
dominance is “weak” in case (i) and “strong” in case (i i). Finally, M1 > 0 implies that
there is some extra price-independent buying pressure in the inner regime (resulting
from fundamentalists in the bear market and chartists in the bull market).

4 Case M1 > 0 and (i)

In this section, we consider assumption (i) on the parameters: (1 + S1) > 1, 0 <

(1 + S1 + S2) < 1. As already remarked, we can also fix the sign of parameter M1,

assuming M1 > 0. So the function defined in the middle branch increases with a
positive value in x = 0, and an unstable fixed point P∗, if existent, belongs to the
negative side (as shown in Fig. 1), given by

P∗ = −M1/S1 < 0. (18)

Clearly it exists as long as M1 < S1, as it merges with the discontinuity in x = −1
for

M1 = S1, (19)

which thus represents the border collision bifurcation of the fixed point P∗.
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One-dimensional maps with two discontinuity points and three linear branches 37

In case (i) investigated here, the two discontinuity points of the map may lead to
two disjoint absorbing intervals, bounded by the offsets of the functions at the two
discontinuity points, inside which the dynamics are different, as shown in Fig. 1.

It is clear (due to (1+ S1) > 1) that the dynamics of the points in the middle branch
take only a few iterations to go outside the interval −1 < x < 1 where the function
g(x) applies, which is contractive by assumption (as 0 < (1 + S1 + S2) < 1). Thus,
the orbits are pushed back in the same absorbing interval and cannot diverge. Let us
define

I R = [g(1), f (1)] = [(1 + S1 + S2), (1 + S1) + M1], (20)

the absorbing interval on the right-hand side of the origin (which always exists, for
M1 > 0), and

I L = [ f (−1), g(−1)] = [−(1 + S1) + M1,−(1 + S1 + S2)], (21)

which may be the absorbing interval on the left-hand side of the origin. In fact, this is
an absorbing interval as long as P∗ > g(−1), i.e., as long as M1 < S1(1 + S1 + S2).

It follows that for

0 < M1 < S1(1 + S1 + S2) (22)

we have two coexisting attracting sets in the two disjoint absorbing intervals. Moreover,
noticing that the fixed point P∗ must exist, as M1 < S1(1 + S1 + S2) < S1, we have
that the basins of attraction are given by B(I R) =]P∗,+∞[ (any initial condition in
B(I R) is mapped in I R in a finite number of steps, and the trajectory cannot escape
from I R), and by B(I L) =] − ∞, P∗[ (any initial condition in B(I L) is mapped in
I L in a finite number of steps, and the trajectory cannot escape from I L ). Inside the
two absorbing intervals, we have different dynamic behaviors, as shown, for example,
in Fig. 1: The attracting set is a cycle of period 13 in I R , while the trajectories are
chaotic in the whole interval in I L .

The restriction of map F to the absorbing I R is given by

F R : x ′ =
{

f (x) = (1 + S1)x + M1 if x < 1
g(x) = (1 + S1 + S2)x if x > 1

, (23)

while the restriction of F to the absorbing I L is given by

F L : x ′ =
{

g(x) = (1 + S1 + S2)x if x < −1
f (x) = (1 + S1)x + M1 if x > −1

. (24)

It is clear that a contact bifurcation occurs at M1 = S1(1 + S1 + S2), leading to
the disappearance of the absorbing interval I L . That is, for M1 = S1(1 + S1 + S2)

any initial condition in x < 0, except the fixed point (if existent), is mapped in a finite
number of iterations inside the absorbing interval I R (from which it cannot escape).
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Now let us investigate in more detail which kind of dynamics exist inside the
absorbing intervals. As immediately verifiable for M1 > 0, we have g ◦ f (1) <

f ◦ g(1), which implies that the map is uniquely invertible in the absorbing interval
I R . In fact, from g ◦ f (1) = (1 + S1 + S2)[(1 + S1) + M1] and f ◦ g(1) = (1 +
S1)(1 + S1 + S2)+ M1, we have that the inequality g ◦ f (1) < f ◦ g(1) holds. Thus,
no periodic point can belong to the interval J = (g ◦ f (1), f ◦ g(1)) ⊂ I R (see Fig.
2a,b), as the points belonging to that interval have preimages only external to I R .

The situation is different in the absorbing interval I L , where map F L has the
functions f (x) and g(x) with exchanged roles. We have g ◦ f (−1) = (1 + S1 +
S2)[−(1 + S1) + M1] and f ◦ g(−1) = −(1 + S1)(1 + S1 + S2) + M1, leading to
g ◦ f (−1) < f ◦ g(−1), which implies here that the map is not uniquely invertible
in the absorbing interval I L as, in fact, all the points belonging to the interval (g ◦
f (−1), f ◦g(−1)) ⊂ I L have two distinct rank-one preimages in I L : one on the right
and one on the left of the discontinuity point x = −1 (see Fig. 1).

Summarizing, we have proved that the restrictions of map F to the absorbing
intervals is a one-dimensional piecewise linear map with only one discontinuity point
and two increasing branches, which is the kind of map already studied in several papers,
such as Keener (1980) and Gardini et al. (2010), where it was proved that, as long as the
map is uniquely invertible (resp. non-uniquely invertible) in the absorbing interval, then
only regular dynamics (resp. chaotic dynamics) can exist. That is, regular dynamics
in the absorbing interval I R means that either an attracting cycle (of any period)
exists, which is structurally stable (i.e., the attracting cycles exists for parameter values
varying in an interval) or attracting sets with a Cantor structure exist in the interval (but
these are not structurally stable situations: A small variation of any parameter leads
to qualitatively different dynamics, generally a stable cycle). Moreover, bistability
cannot occur inside I R : At each set of values of the parameters, only a unique stable
cycle can exist, globally attracting in I R . Below we shall demonstrate under which
conditions suitable cycles exist, showing that all periods can occur, determining a few
related periodicity regions.

The occurrence is different in the absorbing interval I L (as long as this absorbing
interval exists) where the map is non-invertible, and the dynamics in I L can only be
chaotic, in a finite number of intervals, with robust chaos (following Banerjee et al.
1998) as persistent under parameter variation (see Keener 1980 and Gardini et al.
2010), an example is shown in Fig. 1. Thus, we have proved the following

Theorem 1 Let map F be as in case H1(i) with M1 > 0. Then

(t1) I R = [(1 + S1 + S2), (1 + S1) + M1] is an invariant absorbing interval, inside
which a unique stable cycle exists, globally attracting in I R and structurally
stable, or an attractor with Cantor structure exists and is structurally unstable;

(t2) for 0 < M1 < S1(1 + S1 + S2) the invariant absorbing interval I R coexists
with an invariant absorbing interval I L = [−(1 + S1) + M1,−(1 + S1 + S2)],
and a robust chaotic attractor exists in I L , globally attracting in I L , made up of
k−chaotic intervals, k ≥ 1.

We notice that when the value of M1 is so high that the unstable fixed point dis-
appears (i.e., M1 > S1), then only the absorbing interval I R exists (i.e., part (t1) of
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Fig. 3 In a the two-dimensional bifurcation diagram illustrates the asymptotic dynamics of an initial
condition close to x = 1. In strip (i) it shows the periodicity regions of attracting cycles belonging to
the interval I R . Different colors correspond to different periods of the cycles. In b the one-dimensional
bifurcation diagram shows the state variable x as a function of S2 with S1fixed at 0.75 [(along the vertical
path shown in (a)], and with initial condition close to x = 1

Fig. 4 In a the two-dimensional bifurcation diagram illustrates the asymptotic dynamics of an initial
condition close to x = −1. In strip (i) the curve separating the chaotic regime in I L from the periodic
regime in I R has equation M1 = S1(1 + S1 + S2). In b the one-dimensional bifurcation diagram shows
the state variable x as a function of S2 with S1fixed at 0.75 [(along the vertical path shown in (a)], and with
initial condition close to x = −1

theorem 1). An example is shown in Fig. 2b, where the attracting set is a stable 2-cycle,
globally attracting.

The properties described in the theorem given above are illustrated via the two-
dimensional bifurcation diagrams in Figs. 3 and 4. In these figures, we have also
evidenced the strips in which the different cases occur, i.e., regions (i) and (i i) are
bounded by straight lines.

The lines of equations (1 + S1 + S2) = 1 and (1 + S1 + S2) = 0, that is S2 =
−S1 and S2 = −1− S1, bound the region in which case (i) occurs. On the other hand,
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(1+ S1 + S2) = 0 and (1+ S1 + S2) = −1, that is S2 = −1− S1 and S2 = −2− S1,

bound the region in which case (i i) occurs. This yields the regions:

(i) : S1 > 0, −1 − S1 < S2 < −S1 (25)

(i i) : S1 > 0, −2 − S1 < S2 < −1 − S1.

Now let us complete the analysis of the attracting periodic orbits that can exist in
case (i) inside the absorbing interval I R . As already remarked, the map is topologically
conjugated with the piecewise linear map considered in Gardini et al. (2010), so that
all the periodicity regions described there associated with the so-called period-adding
structure can exist. In our case, the discontinuity point is not in the origin, so that either
we perform a change of variable or we determine the conditions using our discontinuity
point x = 1, enabling us to keep the map as given in (23).

We recall that the periodic points may be on the right or left side of x = 1, which we
denote as the R or L side (where the function f (x) or g(x) is applied, respectively).
The cycles are uniquely characterized by a symbolic sequence (cyclically invariant)
denoting the sequence of letters of the periodic points of the orbit (and denoting the
side to which they belong). To obtain the periodicity regions for the so-called maximal
cycles, with the symbolic sequence L Rn (having one periodic point on the L side
and all the others on the R side), we consider the equation gn ◦ f (x∗) = x∗ which
gives the periodic point (x∗) of the cycle on the L side. The related cycle exists as
long as g(1) ≤ x∗ ≤ 1. The equations x∗ = 1 and g(1) = x∗ give the border
collision bifurcation curves, leading to the appearance/disappearance of the cycle.
We also remark that from the symbolic sequence of the periodic points of a cycle
colliding with the discontinuity point x = 1, we always immediately have the implicit
equation of the border collision bifurcation curves (see Tramontana et al. 2012a). For
the cycles with symbolic sequence L Rn , we have gn ◦ f (1) = 1, as already remarked
(corresponding to the merging x∗ = 1), and gn−1 ◦ f ◦ g(1) = 1 (corresponding to
the merging with x = 1 of the periodic point close to it from the right).

So, considering that gn(x) = (1 + S1 + S2)n x, the border collision bifurca-
tion curves giving the boundaries of the periodicity regions for cycles with sym-
bolic sequence L Rn of the map F, whose implicit equation is gn ◦ f (1) = 1 and
gn−1 ◦ f ◦ g(1) = 1, are given, respectively, as follows:

(1 + S1 + S2)n(1 + S1 + M1) = 1 (26)

(1 + S1 + S2)n−1[(1 + S1)(1 + S1 + S2) + M1] = 1. (27)

Similarly, to obtain the periodicity regions for the maximal cycles, having the symbolic
sequence RLn , we consider the equation f n ◦ g(x∗) = x∗, which gives the periodic
point on the R side of the cycle. The cycle exists as long as 1 ≤ x∗ ≤ f (1). The
equations x∗ = 1 and f (1) = x∗ are the border collision bifurcation curves leading to
the appearance/disappearance of the cycle. In this case, the collisions of the periodic
points of the cycle with the discontinuity x = 1 are given by f n ◦ g(1) = 1 and
f n−1 ◦ g ◦ f (1) = 1. Considering that
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Fig. 5 In b we see BCB curves for n = 1, . . . , 10 whose equations are given in (26) and (29), in the
parameter plane (S1, S2) at a fixed value M1 = 0.2. In a the curves are drawn above the periodicity regions
filled with different colors, identifying stable cycles

f n(x) = (1 + S1)n x + (1 + S1)n − 1

S1 M1, (28)

we have that the equations of the border collision bifurcation curves giving the bound-
aries of the periodicity regions for cycles with symbolic sequence RLn of map F,

whose implicit equation is f n ◦ g(1) = 1 and f n−1 ◦ g ◦ f (1) = 1, are given,
respectively, by:

(1 + S1)n(1 + S1 + S2) + (1 + S1)n − 1

S1 M1 = 1 (29)

(1 + S1)n−1(1 + S1 + S2)(1 + S1 + M1) + (1 + S1)n−1 − 1

S1 M1 = 1. (30)

In Fig. 5, we have drawn for n = 1, . . . , 10 the border collision bifurcation curves
whose equations are given in (26)–(27), bounding the family L Rn, and (29)–(30),
bounding the family RLn, in the two-dimensional parameter plane (S1, S2) at a fixed
value of M1 (M1 = 0.2). The four different families of curves are shown in color in
Fig. 5b and in black in Fig. 5a above the colors identifying regions of stable cycles (the
region (i i) will be commented on in the next section). We have also plotted the same
curves of families L Rn and RLn in the parameter plane (S2, M1) at a fixed value of
S1 (S1 = 0.75), for n = 1, . . . , 7, as shown in Figs. 6 and 7.

Comparing Figs. 6a and 7a numerically obtained with two different initial condi-
tions, one close to x = 1 and the other close to x = −1, we can see the regions
of two coexisting different attracting sets (due to the overlapping of the periodicity
regions). In Figs. 6b and 7b, we only show the two families of curves of the first level
of complexity (as Leonov 1960a,b called it, see also in Gardini et al. 2010), whose
analytical equations have been given above. However, with the adding scheme, infi-
nitely many other periodicity regions can be detected, with the rule that between any
two consecutive periodicity regions there are other infinitely many regions associated
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Fig. 6 Parameter plane (S2, M1) at S1 = 0.75. In a we have periodicity regions with initial condition
close to x = 1. In b, part (i) shows the border collision bifurcation curves of the families L Rn and RLn for
n = 1, . . . , 7; in part (ii) we see the border collision bifurcation curves given in (36) and (37) for k = 1, 2, 3

Fig. 7 Parameter plane (S2, M1) at S1 = 0.75. In a we have periodicity regions with initial condition
close to x = −1, evidencing the coexistence of different attractors. b Reflects the same as in Fig. 6b

with cycles of different periods (following the adding mechanism, and whose rotation
numbers follows the Farey summation rule).

We can also analytically obtain the families of border collision bifurcation curves
of levels higher than 1, in a method similar to that used for the first level of complexity
(the details can be found in Gardini et al. 2010).

Before analyzing of the second case (i i) in the next section, let us close the present
one by describing what occurs at the exact bifurcation value between cases (i) and
(i i), for (1+ S1 + S2) = 0, when the external branches are horizontal on the axis. Due
to the fact that any trajectory has an iterated point external to the interval (−1, 1) and
that outside of this interval the map is set to the value x = 0, we have that all the points
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Fig. 8 a Attracting 4-cycle at M1 = 0.5, S1 = 0.75 and S2 = −1.936. b For S2 = −1.937, soon after
the degenerate flip bifurcation, the attracting set is made up of chaotic intervals

have the same asymptotic behavior, which is convergence to a superstable cycle with
a periodic point in x = 0. The period of the superstable cycle (unique and globally
attracting) depends on the parameters’ values and can be any integer n ≥ 1. In Figs.
3, 4 and 5, we can see that the line (1 + S1 + S2) = 0 crosses several periodicity
regions; indeed, all the periods are crossed, as can be seen better in Figs. 6 and 7 (see
the vertical line S2 = −1.75), where all the periodicity regions of the family RLn for
n ≥ 1 (given in (29)) are shown and crossed.

5 Case M1 > 0 and (i i)

Let us now turn to case (ii) for which −1 < (1 + S1 + S2) < 0. If g(x) has a negative
slope, the external branches of our map F are now decreasing, as shown in Fig. 8.
Thus, an invariant absorbing interval in the region x < 0 cannot exist, as any point
x < −1 is mapped in the positive side. It follows that in case (i i) there exists a unique
invariant absorbing interval I , bounded by the images of the offsets in the discontinuity
points, which attracts all the trajectories except, at most, the fixed point.

Consider g◦ f (1) = (1+S1+S2)[(1+S1)+M1] (which is negative by assumption).
Then, we can distinguish the following different ranges for the dynamics:

• (a) for −1 < P∗ < g ◦ f (1), that is:

|1 + S1 + S2|(1 + S1 + M1) <
M1

S1 < 1, (31)

the invariant absorbing interval is given by I = [g ◦ f (1), f (1)] = [(1 + S1 +
S2)((1 + S1) + M1), (1 + S1) + M1], and the asymptotic dynamics are given by
the map F R : I → I , as defined in (23);
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• (b) for −1 < g ◦ f (1) < P∗, that is:

M1

S1 < |1 + S1 + S2|(1 + S1 + M1) < 1, (32)

the invariant absorbing interval is given by I = [ f (−1), f (1)] = [−(1 + S1) +
M1, (1 + S1) + M1], and the asymptotic dynamics are given by the map defined
by three branches, F : I → I, where F is defined in (14);

• (c) for g ◦ f (1) < −1, that is:

1 < |1 + S1 + S2|(1 + S1 + M1), (33)

the invariant absorbing interval is given by I = [g ◦ f (1), f (1)], as in case (a)
above, but map F is defined by three branches (as given in (14)), as in case (b)
above.

When the parameters satisfy condition (a), then the asymptotic dynamics reduce
to that of a discontinuous piecewise linear map with a unique discontinuity point,
and branches with slopes of the opposite sign, whose dynamics has been investigated
throughly in several papers (Avrutin and Schanz 2006; Avrutin et al. 2006; Gardini
and Tramontana 2010). Thus, we know that the dynamics associated with this kind of
map either involves stable cycles or chaos. The stable cycles have periodicity regions
following the increment structure with overlapping, leading to regions of bistability
and regions with a unique stable cycle. The chaotic regime occurs with chaos in a
unique interval or in k−chaotic intervals bounded by the images of the offsets in the
discontinuity point.

In our map, we can argue that, close to the bifurcation value (1 + S1 + S2) = 0,
we have the existence of stable cycles. In fact, we can see from Figs. 5, 6 and 7
that one family of periodicity regions exists. These regions are pairwise overlapping.
These cycles have the symbolic sequence RLn for n ≥ 1, and the boundaries of the
related periodicity regions are the border collision bifurcation curves given in (29). The
portion of overlapping regions (clearly visible in the figures) corresponds to regions
of bistability of the pair of cycles with symbolic sequence RLn and RLn+1. Inside the
existence region of each cycle (bounded by the bifurcation curves given in (29)), the
cycle is stable as long as it is on one side of its flip bifurcation curve; on the other side,
the cycle exists but is unstable. In fact, as described in Avrutin et al. (2006); Gardini
and Tramontana (2010), the stable cycles in this kind of map undergo a flip bifurcation
which is, as recalled in section 2, degenerate (see also Sushko and Gardini 2010) and
is followed by chaotic dynamics (in chaotic intervals). An example is shown in Fig. 8.
Figure 8a shows a unique attracting cycle of period 4, close to its flip bifurcation (the
eigenvalue of the cycle in Fig. 8a is given by (1 + S1)3(1 + S1 + S2) = −0.9968). In
Fig.8b, we show the chaotic attractor (in chaotic intervals) soon after the degenerate
flip bifurcation (occurring when (1 + S1)3(1 + S1 + S2) = −1, i.e., for S1 = 0.75 at
S2 = −(1 + S1) − 1/(1 + S1)3 = 1.9365889).
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Fig. 9 a Chaotic attractor at M1 = 0.2, S1 = 0.75 and S2 = −1.95. b Attracting 3-cycle for M1 =
0.5, S1 = 0.75 and S2 = −2.4

Property B yields that the flip bifurcation of the cycle with symbolic sequence RLn

occurs for

(1 + S1)n(1 + S1 + S2) = −1 (34)

while that of the cycles with symbolic sequence L Rn occurs for

(1 + S1 + S2)n(1 + S1) = −1. (35)

If the parameters satisfy condition (b), we have determined a chaotic regime (an
example is shown in Fig. 9a). At the bifurcation value, when g ◦ f (1) = P∗, the
asymptotic dynamics is chaotic in the whole invariant interval I , which is no longer
absorbing, having the repelling fixed point on the boundary. The chaotic regime per-
sists, even if we are unable to prove rigorously that stable cycles cannot exist in
this regime. Here the map changes its definition, and now three branches are always
touched by any trajectory, and the added branch has a slope with a stabilizing effect
which, in fact, plays an important role in the other regime (c).

When the parameters satisfy condition (c), although the dominant dynamics are
chaotic intervals (always bounded by the images of the endpoints of the absorbing
interval I ), we can also find regions associated with stable cycles, whose periodic
points belong to all three branches of map F . An example is shown in Fig. 9b, where
a stable cycle of period 3 (the least period which an orbit in this regime (c) can have)
is shown, which is globally attracting. The symbolic sequence of this cycle, in terms
of the functions whose composition gives the cycle, is g f g; the region associated with
this cycle in the parameter plane corresponding to case (i i) is clearly visible in Figs. 6
and 7. The existence of this kind of cycles is a new phenomenon, associated with the
existence of two discontinuity points. In fact, the bifurcations are different to all other
border collision bifurcations we have seen so far, in which a cycle appears/disappears
due to the collision with a same discontinuity point of two different periodic points
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of the cycle (which are the two periodic points closest to discontinuity on opposite
sides). Instead, we now have a cycle with periodic points in three different partitions
and two discontinuity points, and the appearance/disappearance of the cycle occurs via
collision of the periodic points with two different discontinuities. In fact, this 3-cycle
undergoes its border collision bifurcation when the smallest periodic point merges
with x = −1 and when the periodic point in the middle region closest to x = 1
merges with x = 1. The two border collision bifurcation curves associated with its
existence are thus given by the implicit equations

g ◦ f ◦ g(−1) = −1 and g2 ◦ f (1) = 1.

Moreover, this is not the only cycle of this kind which can exist and be stable. In fact,
other cycles of period (2k + 1) with the symbolic sequence g(2k−1) f g for any k ≥ 1
can also be stable. In order to detect the border collision bifurcation curves associated
with these cycles, we look for the implicit equations

g2k−1 ◦ f ◦ g(−1) = −1 and g2k ◦ f (1) = 1.

The first equation leads to the border collision bifurcation curves in an explicit form:

g2k−1 ◦ f ◦ g(−1) = −1 : M1 = − 1

(1 + S1 + S2)2k−1 + (1 + S1)(1 + S1 + S2)

(36)

The second equation (which also corresponds with that already computed above in
(26) using 2k in place of n) gives:

g2k ◦ f (1) = 1 : M1 = 1

(1 + S1 + S2)2k
− (1 + S1). (37)

The bifurcation curves given in (36) and (37) are plotted in the portion (i i) of the
parameter plane, for k = 1, 2, 3 in Figs. 6 and 7.

Another peculiarity of this new kind of cycle is that they cannot undergo a degenerate
flip bifurcation. In fact, by using Property B, we have that their eigenvalue is given by
λ = (1 + S1)(1 + S1 + S2)2k , which is always positive (as (1 + S1 + S2)2 > 0), thus
a flip bifurcation cannot occur. They can only appear/disappear via border collision
bifurcations. If they exist, they are either stable or unstable, depending on the inequality
0 < λ < 1 or λ > 1, where

λ < 1 occurs for (1 + S1)(1 + S1 + S2)2k < 1.

Figure 10a shows the chaotic attractor that exists when the boundary of the border
collision bifurcation curve of the stable 3−cycle in region (i i) is crossed (increasing
M1). Moreover, we remark that the attracting set here is unique, as two coexisting
disjoint attracting sets can occur only in regime (a) described above.
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Fig. 10 a Chaotic attractor at M1 = 0.8, S1 = 0.75 and S2 = −2.4. b Attracting 12-cycle for M1 =
0.9, S1 = 0.75 and S2 = −2.4

Fig. 11 Versus time trajectory of 100 iterations. a At M1 = 0.2, S1 = 0.5 and S2 = −1.9. b At
M1 = 0.2, S1 = 0.75 and S2 = −1.9

Clearly, the dynamics in this regime (c) are very complicated, and we are far from
a complete description of the stable cycles which can exist (due to the interplay of two
discontinuity points and thus three branches in the iterated map F). For example, we
illustrate in Fig. 10b a stable cycle of period 12, with many periodic points in all three
branches, which is not a cycle belonging to the family g(2k−1) f g considered above.
And it is possible that several other regions may exist in the parameter space.

Finally, let us explore a few chaotic trajectories belonging to case (i i). Of course,
the dynamics depicted in Figs. 11 and 12 are only examples. From an economic point
of view, however, they are highly interesting. Let us start with the right-hand panel
of Fig. 12, where we can see typical bubble-and-crash dynamics. At the beginning,
the bubbles slowly buildup. Then the bubble paths accelerate until the movements
abruptly crash. Note also that in this panel, there are only positive bubbles, i.e., the
temporary price explosion is always upward. In the left-hand panel of Fig. 11, we see
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Fig. 12 Versus time trajectory of 100 iterations. a At M1 = 0.4, S1 = 0.5 and S2 = −2. b At M1 =
0.4, S1 = 0.75 and S2 = −2

a similar picture, with the only exception that now prices decline for longer after a
crash. The two other panels (i.e., the right-hand panel of Fig. 11 and the left-hand
panel of Fig. 12) reveal that such a further price decline may occasionally even turn
into a negative bubble. It goes without saying that all these dynamics mark excess
volatility. The fundamental value is constant, and—in an ideal world—prices should
thus also be constant and equal to the fundamental value.

In a nutshell, the reasons for the depicted price dynamics are as follows. Since
type 1 chartists dominate type 1 fundamentalists, the price dynamics within the inner
regime is always unstable. Since there is some additional non-price-dependent buying
pressure, prices tend to move upwards and a bubble process is initiated. Once prices
enter the region where type 1 chartists and type 2 fundamentalists are active, we have a
stronger price correction, i.e., a crash. This pattern repeats itself in a complex manner.

Only now and then do we observe a negative bubble. This may happen when the
price-independent buying pressure is overcompensated by the selling orders placed by
bearish chartists. Since type 1 chartists become increasingly bearish the lower the price
falls, the speed of such a price drop increases. Eventually, however, type 2 speculators
become active and then the joint trading behavior of type 1 and type 2 fundamentalists
is stronger than the joint trading behavior of type 1 and type 2 chartists. As a result, the
negative bubble ends and prices increase, typically quite dramatically, and a positive
bubble may start.

6 Conclusions

Financial markets are highly volatile and regularly display significant bubbles and
crashes. In this paper, we develop a simple financial market model in the tradition of
Day and Huang (1990) and Huang and Day (1993) to improve our understanding of
such price movements. Within our model, we consider heterogeneous market partic-
ipants: a market marker, chartists and fundamentalists. The market maker mediates
transactions out of equilibrium and adjusts prices with respect to the excess demand.
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Chartist speculators buy assets if prices are high and sell them if they are low—hoping
that bull and bear markets persist for longer. Fundamentalist speculators do the oppo-
site: They buy assets if prices are low and sell them if they are high, thus betting on
mean reversion. Since some chartists and some fundamentalists only become active
if prices are at least a certain distance away from the fundamental value, our model is
represented by a discontinuous map.

To be precise, the trading strategies of the speculators imply that the dynamics of
the model is driven by a one-dimensional discontinuous piecewise linear map with
three branches and two discontinuity points. The inner branch of the map always has
a slope higher than one and a positive intercept parameter. The outer two branches
have either a slope between zero and one or between minus one and zero. The slopes
of the outer two branches are the same, and their intercept parameters are zero. The
contribution of this paper is twofold. First, we offer an in-depth mathematical analysis
of these kinds of map. Second, we seek to draw lessons from this exercise which
may help us improving our understanding of how financial markets function. We find,
amongst other things, that the dynamics may involve only two branches of the map or
all three of them. In particular, if it involves all three branches, we may see intricate
bull and bear market dynamics.

Since our financial market model is rather simple, we can indeed pin down the
causalities leading to such price phenomena. The emergence of endogenous bubbles
and crashes is obviously a consequence of the trading behavior of the market partic-
ipants who rely on linear and nonlinear trading strategies. In certain market circum-
stances, destabilizing chartists dominate the market and their orders tend to drive the
price away from the fundamental value. In other market circumstances, however, sta-
bilizing fundamentalists rule the market and prices are pushed toward the fundamental
value. As it turns out, these two regimes alternate for a broad range of parameter values
in an intricate way, thus generating boom-bust-cycles.

Our model has some straightforward policy implications. A central authority is
able change the shape of the map by applying simple linear feedback strategies. For
instance, by buying and selling assets proportional to the current mispricing, the central
authority renders the slope of the map. Moreover, by buying or selling fixed amounts
of assets, it can also alter the position of the map. Therefore, a cleverly designed
intervention strategy can guarantee, at least in theory, that the price converges toward
its fundamental value (or to any other desired value). Such intervention rules are
indeed used by central banks in actual foreign exchange markets. For a financial
market application see Westerhoff (2008).

There are several avenues in which our model may be extended. For instance,
type 2 chartists and type 2 fundamentalists so far share the same market entry level.
Relaxing this simplifying assumption leads to a discontinuous piecewise linear map
with five branches and possibly to even more complicated dynamics. One may even
consider the case where all agents rely on their own subjective market entry levels.
So far, we have only considered a one-dimensional map. By assuming that chartists
pay attention to the most recent observed price trend, the model would turn into a
two-dimensional map. Note that Sushko and Gardini (2006) present some tools and
results for studying higher-dimensional discontinuous maps. However, Tramontana et
al. (2009a), Tramontana et al. (2009b) show that certain bifurcation features observed
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within a 1D nonlinear (financial market) model carry over to an extended 2D or 3D
model version. Another possibility to extend our model is by enriching it with dynamic
noise. This could be done by adding additive noise, for instance by allowing for some
additional random orders placed by pure noise traders, or by including multiplicative
noise, for instance by randomizing the parameter values of the speculators trading
rules. It would also be interesting to calibrate or even estimate a stochastic version
of our model and to determine in how far it is able to mimic the behavior of actual
financial markets. Can it do better than existing models? However, we leave these
challenging tasks for the future.
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