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Abstract We consider the problem of maximization of expected utility from termi-
nal wealth in a market model that is driven by a possibly not fully observable factor
process and that takes explicitly into account the possibility of default for the indivi-
dual assets as well as contagion (direct and information induced) among them. It is a
multinomial model in discrete time that allows for an explicit solution. We discuss the
solution within our defaultable and partial information setup, in particular we study
its robustness. Numerical results are derived in the case of a log-utility function, and
they can be analogously obtained for a power utility function.

Keywords Portfolio optimization · Partial information · Credit risk · Dynamic
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1 Introduction

Our study concerns the classical portfolio optimization problem of maximization of
expected utility from terminal wealth when the assets, in which one invests, may
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92 G. Callegaro et al.

default. We put ourselves in a context where the dynamics of the asset prices are
affected by exogenous factor processes, some of which may have an economic inter-
pretation, some may not, but most importantly, NOT all of them may be directly
observable. In credit risk models, factors are often used to describe contagion: “phys-
ical” and “information induced”. Information-induced contagion arises due to the fact
that the successive updating of the distributions of the latent (not observable) factors
in reaction to incoming default observations leads to jumps in the default intensity
of the surviving firms (this is sometimes referred to as “frailty approach”, see e.g.
Schönbucher 2003). As shown in Duffie et al. (2009), unobservable factor processes
are needed on top of observable covariates in order to explain clustering of defaults
in historical credit risk data. In general, the formulation of a model under incomplete
information on the factors allows for greater model flexibility, avoids a possibly inad-
equate specification of the model itself, and the successive updating of the distribution
of the unobserved factors (for constant factors one considers them from the Bayes-
ian point of view as random variables) allows the model to “track the market” thus
avoiding classical model calibration.

To keep the presentation at a possibly simple level, we shall consider only a
single-factor process that is supposed to be nondirectly observable and the observation
history is given, in addition to the defaults, by the observed asset prices. Furthermore,
we shall consider discrete time dynamics. With respect to continuous time models,
this can be justified since trading takes place in discrete time anyway. Moreover, a
solution is easier to compute in discrete time and, while it is more difficult to obtain
qualitative results than in continuous time, once an explicit numerical solution is
obtained, one can evaluate its performance also with respect to alternative criteria via
simulation.

The outline of the paper is as follows. In Sect. 2, we describe our model and objec-
tive. The filter process, which allows for the transition from the partial information
problem to a corresponding one under complete information, is studied in Sect. 3. Sec-
tion 4 contains the main result on using Dynamic Programming to obtain the optimal
investment strategy; we consider explicitly the log-utility case, but analogous results
can be obtained for other utility functions, in particular power utility. The last section
discusses numerical results from simulations that were performed in order to investi-
gate the effect of shorting as well as the robustness of the optimal strategy obtained
for the partial information problem.

2 The model

Here, we describe the model dynamics and the objective for our portfolio optimization
problem. With a slight abuse of notation, in what follows we shall use the subscript n to
indicate the instant tn . All vectors will be row vectors, and ′ will indicate transposition.

2.1 Model dynamics

Given a discrete time set t0 = 0 < t1 < · · · < tN = T , let us introduce a filtered
probability space (�,G, G, P) (G stands for “global filtration”), where G = (Gn)n
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Portfolio optimization in a defaultable market under incomplete information 93

and, in addition to a nonrisky asset with price S0
n , S0

0 = 1 (S0
n is the price at time tn),

consider a set of M risky assets with prices Sm
n , m = 1, . . . , M that are subject to

default, except for the first one S1. Both for the applications (generally one invests in
a pool of assets containing at least one non-defaultable asset), as well as for formal
reasons (see Remark 5), it is convenient to consider investment in at least one default-
free risky asset. Let τm be the default time of the mth asset and consider the default
indicator process

Hn := (H1
n , . . . , H M

n ) , n = 0, . . . , N , (1)

where

Hm
n := 1{tn≥τm }

is the default indicator for the mth firm. The possible values of Hn are the M−tuples
h p = (h p,1, . . . , h p,M ) for p = 1, . . . , 2M−1 with h p,m ∈ {0, 1}. Since S1 is assumed
to be default free, we have

H1 ≡ 0.

Furthermore, we arrange the values h p according to a listing

h1, h2, . . . , h2M−1
,

whereby, typically, h1 = (0, 0, . . . , 0) and h2M−1 = (0, 1, . . . , 1).
We let now the dynamics of the asset prices be given by

⎧
⎨

⎩

S0
n+1 = S0

n (1 + rn) (typically rn ≡ r)

Sm
n+1 = Sm

n γ m(ξn+1) (1 − Hm
n+1), Sm

0 = sm
0 , m = 1, . . . , M,

(2)

where ξn is a sequence of multinomial random variables with values in {ξ1, . . . , ξ L}
and γ m are positive measurable functions. Typically, γ m(ξn+1) ∈ (0, 1) when there
is a downward movement in the dynamics of asset Sm during the period n, while
γ m(ξn+1) > 1 if the movement is upward. We want to point out that, while in our
model the amplitude of the up- and downward movements may vary from asset to
asset, in accordance with a common practice in trinomial and multinomial price evo-
lution models, it is intended that, if γ m(ξn+1) > 1 for one asset m, the same holds for
all the other assets (analogously when γ m(ξn+1) < 1). In vector form, we may then
write

Sn+1 = diag (Snγ (ξn+1)) (1 − Hn+1)
′ =: I (Sn, ξn+1, Hn+1), (3)

where diag (Snγ (ξn+1)) is the M × M diagonal matrix, with elements Sm
n γ m(ξn+1),

m = 1, . . . , M . The price evolution is thus driven by (ξn, Hn), defined on (�,G, G, P)
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94 G. Callegaro et al.

as follows. Given a G−adapted finite state Markov chain (Zn)n with values Zn ∈
{z1, . . . , z J }, with initial law μ and transition probability matrix

Pi j := P(Zn = z j |Zn−1 = zi ) , ∀ i, j ∈ {1, . . . , J }, ∀n (time homogeneous),

(4)

conditionally on this process Z , the distribution of the driving processes (ξ, H) is
supposed to be given, for every z ∈ {z1, . . . , z J }, by

ρ�;p,q(z) := P(ξn = ξ�, Hn = hq |Hn−1 = h p, Zn−1 = z)

∀ � ∈ {1, . . . , L},∀ p, q ∈ {1, . . . , 2M−1} (5)

where n = 1, . . . , N . Notice that the dependence of ρ�;p,q on Zn−1, in particular for
what concerns Hn , allows to model contagion: only “physical” if Zn−1 is observed,
and “information-induced” if Zn−1 is unobservable and its distribution is updated on
the basis of the observed default state and of the defaultable asset prices. Furthermore,
in the case when q < p, we assume that

∑L
�=1 ρ�;p,q(z) = 0 for any z ∈ {z1, . . . , z J }.

2.2 Portfolios

To perform portfolio optimization, we evidently need to invest in the market, and
for this purpose, we consider an investment strategy that may be defined either
by specifying the number of units invested in the individual assets, namely an =
(a0

n , a1
n, . . . , aM

n ) (am
n is the number of units of asset m held in the portfolio in period

tn), or, restricting the attention to positive portfolio values, by equivalently specifying
the ratios invested in the individual assets. More precisely, we shall consider the fol-
lowing relationships that slightly differ from the standard ones for reasons that we
shall explain below (see Remark 1), i.e.,

φ0
n = a0

n+1S0
n

V φ
n

, φm
n (1 − Hm

n ) = am
n+1Sm

n

V φ
n

, m = 1, . . . , M, (6)

where

V φ
n = V a

n :=
M∑

m=0

am
n Sm

n =
M∑

m=0

am
n+1Sm

n

is the (self-financing) portfolio value in period tn . Notice that

φ0
n = 1 −

M∑

m=1

φm
n (1 − Hm

n )

so that, to define a self-financing investment strategy φ̄n := (φ0
n , φ1

n , . . . , φM
n ), it

suffices to define φn := (φ1
n , . . . , φM

n ).
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Portfolio optimization in a defaultable market under incomplete information 95

It will be convenient to write the portfolio value at time tn+1 in terms of its value
at time tn and of the gain during the period n, namely

V φ
n+1 = V a

n+1 = V a
n + a0

n+1(S0
n+1 − S0

n ) +
M∑

m=1

am
n+1(Sm

n+1 − Sm
n )

= V a
n + a0

n+1S0
nrn +

M∑

m=1

am
n+1Sm

n

[
γ m(ξn+1)(1 − Hm

n+1) − 1
]

= V φ
n + φ0

n V φ
n rn +

M∑

m=1

φm
n V φ

n (1 − Hm
n )
[
γ m(ξn+1)(1 − Hm

n+1) − 1
]

= V φ
n

{

(1 + rn) +
M∑

m=1

φm
n (1 − Hm

n )
[
γ m(ξn+1)(1 − Hm

n+1) − (1 + rn)
]
}

.

(7)

Remark 1 With the given definitions (in particular, the presence of the factor (1−Hm
n )

in the definition of φm
n in (6)), one has that investment in an asset automatically ceases

as soon as it defaults. This implies the equivalence of the expressions for V a
n and V φ

n
(namely the next-to-last equality in (7) indeed holds true).

Assuming first that the factor process Z is observed by the investor, the defini-
tions above also imply that we consider (an)n≥0 to be a predictable process (a0 is
G0-measurable and an is Gn−1−measurable, n ≥ 1, meaning that investment deci-
sions an+1, taken at time tn , are made on the basis of the information available at
time tn and kept until time tn+1, when new quotations are available), while (φn)n≥0 is
adapted.

2.3 The partial information problem

In view of formulating our partial information problem, let the default history be given
by the filtration Hn := σ {Hν, ν ≤ n}. With this filtration, we can reexpress the global
filtration as

Gn = F ξ
n ∨ Hn ∨ F Z

n , n = 0, . . . , N ,

where (F Z
n )n and (F ξ

n )n denote, respectively, the natural filtration associated with Z
and ξ , while with (F S

n )n denoting the filtration given by the price observation history,
the observation filtration (representing the information of an investor) is given by

Fn = F S
n ∨ Hn ⊂ Gn, n = 0, . . . , N .
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Having specified a utility function u : R+ → R, of class C1, increasing and strictly
concave that satisfies the usual Inada’s conditions:

lim
x→0+ u′(x) = +∞ and lim

x→+∞ u′(x) = 0,

we can now give the following

Definition 2 A self-financing investment strategy φn =(φ1
n , . . . , φM

n ), n = 0, . . . , N ,

is called admissible in our partial information problem, and we write φ ∈ A, if, besides
implicit technical conditions, it is Fn−adapted and such that V φ

n belongs to the domain
R+ of u(·).

Notice that, in general, the set of admissible strategies is nonempty (e.g., in the log
and power utility cases, it contains the strategy of not investing in the risky assets),
and it is a convex set that may be unbounded; by possibly bounding it (e.g., imposing
that, at any time tn, φm

n ≥ −C, m = 1, . . . , M), it can be transformed into a set with
compact closure (for details in the log-utility case see Lemma 7 below). We come now
to define our
Problem: Given an initial wealth v0, determine an admissible φ∗ such that

E
[
u
(

V φ∗
N

)]
≥ E

[
u
(

V φ
N

)]
, ∀ φ ∈ A.

Our problem is a partial information problem in that the factor process Z cannot be
observed; on the other hand, the investment strategy can depend only on observable
quantities. The usual approach in this situation (see e.g., Bensoussan 1992; Bertsekas
1976, and see also Corsi et al. 2008 for a problem related to the one of the present
paper) consists in transforming the partial observation problem into one under full
information, by replacing the unobservable quantities Zn by their conditional distri-
butions, given the current observation history. These conditional distributions are the
so-called filter distributions or just filters, and they can be computed recursively, as
we are going to show in the next section.

We conclude this section by recalling a fundamental result on the absence of arbi-
trage opportunities (AOA, see e.g., Proposition 2.7.1 in Dana and Jeanblanc 1998).

Lemma 3 If the above Problem has a solution, then there are no arbitrage opportu-
nities. The converse also holds true, i.e., there is equivalence between the existence
of an optimal solution and the AOA, in the case when the utility function u is strictly
concave, strictly increasing and of class C1.

3 The filter

Since the investment strategy φ is by definition F−adapted, the information coming
from observing (S, V, H) (namely the asset prices, the portfolio value, and the default
state) is equivalent to that of observing just (S, H).
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Portfolio optimization in a defaultable market under incomplete information 97

Defining (Sn, Hn) := ((S1, H1), . . . , (Sn, Hn)), the filter distribution for Z at time
tn is the random vector �n = (�1

n, . . . ,�J
n ) with components

�
j
n := P

(
Zn = z j |Fn

)
= P

(
Zn = z j |(Sn, Hn)

)
j = 1, . . . , J ,

taking values in the J -simplex KJ ⊂ R
J (here | · |1 denotes the l1-norm)

KJ =
⎧
⎨

⎩
x = (x j ) ∈ R

J : x j ≥ 0, j = 1, . . . , J and |x |1 =
J∑

j=1

x j = 1

⎫
⎬

⎭
.

By applying the recursive Bayes’ formula, one obtains, for j = 1, . . . , J ,

�
j
n = P

(
Zn = z j |Sn = sn, Hn = hn, (Sn−1, Hn−1)

)

∝
J∑

i=1

P

(
Zn = z j , Zn−1 = zi |Sn = sn, Hn = hn, (Sn−1, Hn−1)

)

∝
J∑

i=1

Pi j
P

(
Sn = sn, Hn = hn|Zn−1 = zi , Sn−1, Hn−1

)
�i

n−1, (8)

where Pi j was defined in (4) and with the observation distribution (likelihood function)
given by

P

(
Sn = sn, Hn = hq |Zn−1 = zi , Sn−1 = sn−1, Hn−1 = h p

)

=
L∑

�=1

ρ�;p,q(zi )1{sn=I (sn−1,ξ�,hq )} =: F(zi ; sn, sn−1, hq , h p), (9)

where I (s, ξ, h) was defined in (3), and the proportionality coefficient in (8) is obtained
through the normalization condition

∑J
j=1 �

j
n = 1.

Remark 4 Since the model may not correspond exactly to reality, there may be no
ξ� ∈ {ξ1, . . . , ξ L} so that, for the actually observed values of sn−1 and sn , one has
sn = I (sn−1, ξ

�, hq). Following standard usage, we shall then consider the value of �

for which I (sn−1, ξ
�, hq) comes closest to the actually observed value of sn (“nearest

neighbor”).

Given the current observations (sn, hn) and the previous ones (sn−1, hn−1), setting

F(sn, sn−1, hn, hn−1) := diag (F(z; sn, sn−1, hn, hn−1)) , (10)
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98 G. Callegaro et al.

which is a J × J diagonal matrix with elements F(zi ; sn, sn−1, hn, hn−1), i =
1, . . . , J , the recursions (8) can be expressed in vector form as

⎧
⎪⎪⎨

⎪⎪⎩

�′
0 = μ and, for n ≥ 1,

�′
n = P ′ F(sn, sn−1, hn, hn−1)�′

n−1∣
∣P ′ F(sn, sn−1, hn, hn−1)�′

n−1

∣
∣

1

=: F̄ (�n−1, sn, sn−1, hn, hn−1) .

(11)

Remark 5 By having assumed that at least one asset in the market is default free,
the filter is well defined at every time step. Indeed, if we had considered only
defaultable assets, in the case of default of all assets by time tn , we would have
found Sn = (0, . . . , 0) and we would have lost all the information on ξn necessary to
update the filter.

4 Dynamic programming for the “equivalent full information problem”

Under full information corresponding to G, the tuple (S, V, H, Z) is Markov. In the
full information setting equivalent to the partial information problem, the process Z
has to be replaced by the filter process �. Indeed, from (8), it is easily seen (for details
we refer, e.g., to Corsi et al. 2008) that, in the partial information filtration Fn , it is
the tuple (S, V, H,�) that is Markov.

Denoting by Un(s, v, h, π) the optimal value at time tn for Sn = s, V φ
n = v, Hn =

h,�n = π, i.e.,

Un(s, v, h, π) = sup
φ ∈A

E

{
u(V φ

N )
∣
∣(S, V φ, H,�)n = (s, v, h, π)

}

(recall that A denotes the set of admissible strategies over the entire investment inter-
val), an application of the Dynamic Programming Principle (see, e.g., Chap. 4 in
Bertsekas 1976, that concerns the Dynamic Programming Approach to stochastic
control problems with imperfect state information; in particular, see (16) and (17) in
Sect. 4.2.2 therein) leads to the backward recursions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UN (s, v, h, π) = u(v) and, for n ∈ {1, . . . , N },

Un−1(s, v, h, π)

= maxφn−1 E

{
Un(Sn, V φ

n , Hn,�n)
∣
∣(S, V φ, H,�)n−1 = (s, v, h, π)

}
.

(12)

4.1 Explicit solution in the log-utility case

In the log-utility case (and analogously in the power utility case), assuming for sim-
plicity that rn ≡ r , we have the following result.
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Portfolio optimization in a defaultable market under incomplete information 99

Theorem 6 For n = 0, . . . , N and supposing that Hn = h p for some p ∈
{1, . . . , 2M−1}, we have

Un(s, v, h p, π) = log v + Kn(s, h p, π), (13)

with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

KN (s, h p, π) = 0 for every s ∈ R
M+ , p ∈ {1, . . . , 2M−1}, π ∈ KJ ,

Kn(s, h p, π) = k(h p, π) +∑J
i=1 π i ∑L

�=1
∑2M−1

q=1 ρ�;p,q(zi )

×Kn+1
(
I (s, ξ �, hq), hq , F̄

(
π, I (s, ξ �, hq), s, hq , h p

))
,

where F̄(·) was defined in (11) and where

k(h p, π) = max
φ=(φ1,...,φM )

⎧
⎨

⎩

J∑

i=1

π i
L∑

�=1

2M−1
∑

q=1

ρ�;p,q(zi )

× log

[

(1 + r) +
M∑

m=1

φm(1 − h p,m)
[
γ m(ξ�)(1 − hq,m) − (1 + r)

]
]⎫
⎬

⎭
.

(14)

Notice that, in each period tn , the additive term Kn(·) results from the sum of a cur-
rent additive term k(h p, π) and the conditional expectation of the previously obtained
Kn+1(·).

For clarity, we split the proof into two parts: in the first one, that immediately fol-
lows, we straightforwardly obtain the result by backward induction on n and in the
second part, in Sect. 4.1.1, we show that, indeed, k(h p, π) defined in (14) exists and it
is unique. To this (second) end, an intermediate technical result will be required, and
it will be given in Lemma 7.

We first notice that the result holds true for n = N . We now suppose that (13) is
verified at time tn+1, and we show that it remains valid at time tn . We have, given (12)
and recalling (7), where the portfolio value at time tn+1 is written as a function of its
value at time tn (we omit the subscript n in the investment strategy φn = (φ1

n , . . . , φM
n ))

Un(s, v, h p, π) = max
φ

E

{
Un+1(Sn+1, V φ

n+1, Hn+1,�n+1) |(S,V φ,H,�)n=(s,v,h p,π)

}

= max
φ

E

{
log V φ

n+1 + Kn+1(Sn+1, Hn+1,�n+1) |(S,V φ,H,�)n=(s,v,h p,π)

}

= log v + max
φ

E

{

log
[

(1+r)+
M∑

m=1
φm (1−h p,m )

(
γ m (ξn+1)(1−Hm

n+1)−(1+r)
)
]
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100 G. Callegaro et al.

+Kn+1 (I (Sn ,ξn+1,Hn+1), Hn+1, F̄(�n ,I (Sn ,ξn+1,Hn+1),Sn ,Hn+1,Hn))

∣
∣(S, H,�)n = (s, h p, π)

}

,

where I and F̄ were introduced, respectively, in (3) and (11).
We now use iterated conditional expectations, and we introduce a conditional expec-

tation with respect to a larger filtration containing Zn . This allows us to explicitly
compute this conditional expectation that will be a function of Zn , and we find

Un(s, v, h p, π) = log v + max
φ

E

⎧
⎨

⎩

L∑

�=1

2M−1
∑

q=1

ρ�;p,q(Zn)
[
log ((1 + r)

+
M∑

m=1

φm(1 − h p,m)
(
γ m(ξ�)(1 − hq,m) − (1 + r)

)

+Kn+1

(
I (s, ξ �, hq), hq , F̄

(
π, I (s, ξ �, hq), s, hq , h p

))]

∣
∣(S, H,�)n = (s, h p, π)

⎫
⎬

⎭

It suffices now to recall that the conditional distribution of Zn given the investor’s
information at time tn is, by definition, the filter at time tn , so that we finally have

Un(s, v, h p, π) = log v + max
φ

⎧
⎨

⎩

J∑

i=1

π i
L∑

�=1

2M−1
∑

q=1

ρ�;p,q(zi ) log

[

(1 + r)

+
M∑

m=1

φm(1 − h p,m)
(
γ m(ξ�)(1 − hq,m) − (1 + r)

)
]⎫
⎬

⎭

+
J∑

i=1

π i
L∑

�=1

2M−1
∑

q=1

ρ�;p,q(zi )Kn+1
(
I (s,ξ�,hq ),hq ,F̄

(
π,I (s,ξ�,hq ),s,hq ,h p

))

= log v + Kn(s, h p, π). (15)

The theorem is proved once we show that k(h p, π), defined in (14), exists, and this is
the subject of the next subsection.
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4.1.1 Existence of k(h p, π)

Recalling that k(h p, π) is defined in (14) as

k(h p, π) = maxφ=(φ1,...,φM )

⎧
⎨

⎩

J∑

i=1

π i
L∑

�=1

2M−1
∑

q=1

ρ�;p,q(zi )

× log

[

(1 + r) +
M∑

m=1

φm(1 − h p,m)
[
γ m(ξ�)(1 − hq,m) − (1 + r)

]
]⎫
⎬

⎭
,

in this second part of the proof to Theorem 6, we show that the maximum exists and
it is unique. Restricting our attention, as it is reasonable from an economic point of
view, to a truncated domain for φ1, . . . , φM , denoted by DC , we show, in Lemma 7,
that DC has a compact closure. The existence (and the uniqueness) of k(h p, π), for
any p ∈ {1, . . . , 2M−1}, then follows.

At every time step, the maximization problem is defined for φ = (φ1, . . . , φM ) ∈
D, where D is such that the above logarithms are well defined (recall that in the Defi-
nition 2 of admissibility it was required that V φ

n belongs to the domain R+ of u(·)). In
particular, D is nonempty (it contains at least the point (0, . . . , 0)), and it is delimited
by the intersection of a maximum of 2M−1 × L × 2M−1 half-planes of the form

1 + r +
M∑

m=1

φm(1 − h p,m)
(
γ m(ξ�)(1 − hq,m) − 1 − r

)
> 0, (16)

where p and q vary in {1, . . . , 2M−1}, and � is in {1, . . . , L}. Since it is reasonable
from an economic point of view to impose on an investor not to take short positions
in the risky assets for more than a proportion C of his current wealth, we truncate D
from below, by imposing the condition

φm > −C, m = 1, . . . , M,

for a suitable C > 0, thus restricting our attention to a domain DC that is a subset of
D,DC ⊆ D. In the following Lemma 7, we show that the closure of DC , namely D̄C ,
is compact.

Once we have restricted our attention to a domain with a compact closure, the
maximizing φ∗ exists, and it is unique. Noticing that the boundary of DC partly coin-
cides with the boundary of D, the common boundary will be called “natural boundary”
of DC , while the boundary resulting from the truncation of D will be the “artificial
boundary” of DC . We then have:

– if D is bounded by itself, we have to maximize over D a strictly concave and
continuous function, namely (see (15)) the sum over q and � of logarithms of the
left-hand side of (16), that goes to −∞ on ∂D;
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– otherwise, if the domain has been artificially bounded, then we have to maximize
over DC a strictly concave and continuous function that goes to −∞ on the “natural
boundary” of DC and that is well defined on the “artificial boundary” of DC .

The maximum point then exists (possibly only in the truncated domain DC ), it is auto-
matically admissible, and it is unique. Notice that it can be on the “artificial boundary”.
We only state here that φ∗ can be numerically obtained (this will be clarified in Sect. 5,
which is devoted to numerical examples).

Lemma 7 The closure D̄C of the admissibility domain DC is compact.

Being, by definition, DC obtained as a truncation from below of the domain D, by
imposing the condition φm > −C, m = 1, . . . , M, for a suitable C > 0, we have
to show that DC is bounded also from above in each variable. Let us recall that D is
delimited by the intersection of a maximum of 2M−1 × L × 2M−1 half-planes of the
form as given in (16), where p and q vary in {1, . . . , 2M−1} and � is in {1, . . . , L}. Let
us then set, without loss of generality, r = 0 and consider the half plane in (16) iden-
tified by p = 1 and q = 2M−1 (i.e., for h p = (0, 0, . . . , 0) and hq = (0, 1, . . . , 1)),
namely

1 + φ1(γ 1(ξ�) − 1) − φ2 − · · · − φM > 0 (17)

(the other cases, namely when h p,m = 1 for some m ∈ {2, . . . , M}, are simpler to
treat).

Next denote by � and �̄ ∈ {1, . . . , L}, �̄ �= �, the indexes such that γ m(ξ�) ∈ (0, 1)

and γ m(ξ �̄) > 1, respectively, for every m ∈ {1, . . . , M} (recall the description after
(2)). Since by definition of DC we have −φm < C for all m, focusing on φ1, we find
that a necessary condition for φ1 ∈ DC is that

φ1(1 − γ 1(ξ�)) < 1 − φ2 − · · · − φM < 1 + C(M − 1) ∀ � ∈ {1, . . . , L}.

By taking � = �, so that 1 − γ 1(ξ�) > 0, we find that the boundedness from below of
DC ensures its boundedness from above with respect to φ1. For what concerns φ2 (the
reasoning is the same for φ3, . . . , φM ), taking � = � in (17), we have that a necessary
condition for φ2 ∈ DC is that

φ2 < 1 − φ1(1 − γ 1(ξ�)) − φ3 − · · · − φM < 1 + C(1 − γ 1(ξ�)) + C(M − 2).

This allows us to conclude that, given the boundedness from below, the domain DC

is also bounded from above in each variable and its closure is compact (for details in
the simpler binomial model see Callegaro 2010).

4.2 Particular cases

We now consider three particular cases, namely the full information case, the case
when Zn ≡ Z with Z unobservable and when it is observable. As previously done,
we suppose, for simplicity, that rn ≡ r .
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4.2.1 Full information about Zn

In this case, the Markovian tuple is (S, V, H, Z), so that we replace � by Z , and the
optimal wealth at time tn is

Un(s, v, h, z) = sup
φ ∈A

E

{
u(V φ

N )
∣
∣Sn = s, V φ

n = v, Hn = h, Zn = z
}

.

In the log-utility case, we find the following corollary of Theorem 6. Having fixed
Zn = zi , we just substitute π with zi in K (·) and in k(·), and we drop the∑J

i=1 π i everywhere. Moreover, since Kn(s, h p, zi ) is the conditional expectation
of Kn+1(Sn+1, Hn+1, Zn+1), in the definition of Kn(s, h p, zi ) we will also find the

sum
∑J

j=1 Pi j Kn+1(·, ·, z j ). We obtain

Corollary 8 For n = 0, . . . , N, we have

Un(s, v, h p, zi ) = log v + Kn(s, h p, zi ), (18)

with KN (s, h p, zi ) = 0 for every s ∈ R
M+ , p ∈ {1, . . . , 2M−1}, i ∈ {1, . . . , J } and

Kn(s, h p, zi ) = k(h p, zi ) +
L∑

�=1

2M−1
∑

q=1

ρ�;p,q(zi )

J∑

j=1

Pi j Kn+1

(
I (s, ξ �, hq), hq , z j

)
,

where

k(h p, zi ) = max
φ

L∑

�=1

2M−1
∑

q=1

ρ�;p,q(zi ) log
[

1+r+∑M
m=1 φm (1−h p,m )

[
γ m (ξ�)(1−hq,m )−1−r

]]
.

4.2.2 Zn ≡ Z unobserved

In the case when Zn ≡ Z , the factor process reduces to an unobserved parameter that,
in accordance with the Bayesian point of view, is considered as a random variable Z ,
with given a priori law μ. Even if Z is modeled as not time varying, the successive
updating of its conditional distribution, i.e.,

�
j
n := P(Z = z j | (Sn, Hn)) , j = 1, . . . , J , n ≤ N

makes the context dynamic. The solution is obtained as in the general case, and here
it simplifies considerably. In fact, the recursive Bayes’ formula (8) reduces to the
ordinary one that here becomes

�
j
n = P

(
Z = z j |Sn = sn, Hn = hn, (Sn−1, Hn−1)

)

∝ P

(
Sn = sn, Hn = hn|Z = z j , Sn−1 = sn−1, Hn−1 = hn−1

)
· �

j
n−1.
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Having fixed the previous observations (sn−1, hn−1) and recalling the Definition (10)
of the diagonal matrix F , (11) then becomes

⎧
⎪⎪⎨

⎪⎪⎩

�′
0 = μ and, for n ≥ 1,

�′
n = F(sn, sn−1, hn, hn−1)�′

n−1∣
∣F(sn, sn−1, hn, hn−1)�′

n−1

∣
∣

1

:= F̄ (�n−1, sn, sn−1, hn, hn−1) .

(19)

With these changes, the statement of Theorem 6 remains valid in the same form also
for the present case.

4.2.3 Zn ≡ Z fully observed

In this case, the factor Z has no relevance anymore, and the model is fully defined.
Defining, in perfect analogy with (5),

ρ�;p,q := P(ξn = ξ�, Hn = hq |Hn−1 = h p),

for � = 1, . . . , L and for p, q ∈ {1, . . . , 2M−1}, one immediately finds

Corollary 9 For n = 0, . . . , N, we have

Un(s, v, h p) = log v + Kn(s, h p), (20)

with KN (s, h p) = 0 for every s ∈ R
M+ , p ∈ {1, . . . , 2M−1} and

Kn(s, h p) = k(h p) +
L∑

�=1

2M−1
∑

q=1

ρ�;p,q Kn+1

(
I (s, ξ �, hq), hq

)
,

where

k(h p) = max
φ

L∑

�=1

2M−1
∑

q=1

ρ�;p,q

× log

[

1 + r +
M∑

m=1

φm(1 − h p,m)
[
γ m(ξ�)(1 − hq,m) − 1 − r

]
]

. (21)

Remark 10 Due to the (assumed) time homogeneity of ρ, i.e., of the processes ξ and
H , the maximizing investment strategy φ∗ does not depend on time. It does not depend
on the current values s and v of the prices and the wealth either; however, it depends
on the current default state h.
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5 Numerical results and the issue of robustness

Numerical results from simulations are presented in the case when

– M = 3, i.e., there are one non-defaultable and two defaultable risky assets on the
market (it is the smallest value of M allowing for contagion);

– L = 2, i.e., ξn ∈ {ξ1, ξ2} (binomial model). Here ξ1 corresponds to an “up”
movement in asset prices and ξ2 to a “down” movement;

– J = 2, i.e., Zn ∈ {0, 1}, ∀ n, with the following economic interpretation

{
Zn = 0 : good state (bull market),
Zn = 1 : bad state (bear market);

– rn ≡ r = 0;
– u(x) = log(x), x > 0.

The initial law μ of the Markov chain Z is fixed by assigning

P(Z0 = 0) = 0.5, P(Z0 = 1) = 0.5

and its transition probability matrix is supposed to be

P =
(

P11 P12

P21 P22

)

=
(

0.6 0.4
0.4 0.6

)

.

For simplicity of presentation, in this section, we assume that given Z , ξ and H are
independent. The conditional distribution of ξ given Z is then assigned, for every
n = 1, . . . , N , as

p(0) := p1(0) = P(ξn = ξ1|Zn−1 = 0) = 0.6, p(1) := p1(1) = 0.4,

meaning that, when the economy is in good state, the probability of having an “up”
movement in asset prices is equal to 0.6, while when the economic situation is bad,
this probability decreases to 0.4. It is also useful to introduce the following notation

γ m(ξ1) = um and γ m(ξ2) = dm, m = 1, 2, 3,

where u· stands for “up” and d · for “down” and, typically, 0 < dm < 1 < um, m =
1, 2, 3. We fix the following listing of the possible default states h p, p = 1, . . . , 4:

h1 = (0, 0, 0), h2 = (0, 1, 0), h3 = (0, 0, 1), h4 = (0, 1, 1)

and we assign, in the next two matrices, the values of ρ p,q(z) := P(Hn = hq |Hn−1 =
h p, Zn−1 = z), for n = 1, . . . , N and p, q ∈ {1, . . . , 4}, according to the value of z,

{z = 0} :

⎛

⎜
⎜
⎝

0.91 0.03 0.03 0.03
0 0.80 0 0.20
0 0 0.80 0.20
0 0 0 1

⎞

⎟
⎟
⎠ {z = 1} :

⎛

⎜
⎜
⎝

0.25 0.25 0.25 0.25
0 0.50 0 0.50
0 0 0.50 0.50
0 0 0 1

⎞

⎟
⎟
⎠ .
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In the simulations, we consider three cases:

GOOD : full information, where the true model is known and corresponds to the
case {Zn ≡ Z = 0} (see Sect. 4.2.3);

BAD : full information, where the true model is known and corresponds to the
case {Zn ≡ Z = 1};

PARTIAL : partial information, where there is uncertainty about the true model (Zn

is unobserved and evolves according to the Markov chain specified by
the initial law μ and the transition probability matrix P).

We have two goals in mind:

(i) investigating for each one of the three cases the effect of allowing for shorting
in the risky assets;

(ii) investigating the “robustness” of the optimal solution obtained in the partial
information case (case “PARTIAL”).

5.1 Shorting vs. no shorting

We analyze and compare two possible situations: the first one corresponds to the case
when no shorting is possible and the investment strategy is constrained from above,
namely (recall that φm

n is the proportion of wealth invested in Sm at time tn)

φm
n ∈ [0, 2], m = 1, 2, 3, ∀ n,

while in the second one, shorting is allowed and the strategy is constrained from above
and below, i.e.,

φm
n ∈ [−2, 2], m = 1, 2, 3, ∀ n.

It can furthermore be easily seen that, in order for V φ
n to be in the domain of u(x) =

log(x), in the case when no shorting is allowed (i.e., C = 0), we even have

φ2
n , φ3

n < 1, ∀ n

(it suffices to look at the function to be maximized in (14) and to consider the case
when r = 0, Hn+1 = h4, Hn �= h4, as was done in Lemma 7 to show that the domain
DC is bounded).

Remark 11 In the context just described, we thus consider investment strategies in a
truncated domain, φ ∈ DC (this notation was introduced in the proof of Theorem 6),
with C = 0 in the case of no shorting and C = 2 when shorting is possible. According
to Theorem 6, the optimal strategy exists and it is unique. In our calculations, it was
obtained by means of a “search procedure”, performed on the basis of a numerical
code written in C on a grid of points constructed on the admissibility domain (for
further details see Callegaro 2010). The precision of the grid is fixed to 0.01.
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Numerical values of the optimal investment strategy and of the corresponding expected
terminal utility have been computed in cases “GOOD” and “BAD” in the simulations
reported in Callegaro (2010), for various values of the parameters um , dm, m = 1, 2, 3.
As pointed out in Remark 10, these values do not depend on s and v, but only on the
current default configuration h. Numerical results are reported in Callegaro (2010)
also for case “PARTIAL”, and here the optimal strategy depends on the current default
configuration as well as on the prices of the assets.

From the numerical simulations in Callegaro (2010), it results that:

(1)When no shorting is possible: in state “BAD”, the optimal solution consists in not
investing at all in risky assets and in placing all the money in the bank account.
On the contrary, in state “GOOD”, it is optimal to invest as much as one can in
the default-free risky asset, regardless of the default state. In case “PARTIAL”, it is
never optimal to invest in the defaultable assets.

(2)When shorting is allowed: for “reasonable” returns on the assets (up to a certain
level of rewarding) both in the states “GOOD” and “BAD”, it is optimal to invest all
the wealth in S1, but if the defaultable assets have a very high yield, then it becomes
interesting to invest also in them; this latter fact happens also in case “PARTIAL”.

To better illustrate this analysis, in Fig. 1, we show in three diagrams the optimal
expected utility of terminal wealth in the log-utility case, when

v0 = 1, H0 = h1 and N = 1, 2, . . . , 5.

The first diagram corresponds to the situation when no shorting is possible, while in
the second and third diagrams, shorting is allowed, whereby in the second diagram,
one has “reasonable” asset returns and in the third one the defaultable assets have a
high yield. Notice that, due to the fact that in the case of no shorting, the optimal
strategy in state “BAD” consists in not investing in the risky assets, the corresponding
optimal portfolio value (in red in Fig. 1a) remains constant over time and is always
lower than in state “GOOD”. Notice also that in case “PARTIAL”, the optimal value
is lower than in state “BAD”.

When shorting is allowed, up to a certain level of “return” on the risky assets
(Fig. 1b), the optimal value in state “BAD” is superior to that in state “GOOD”, which
is due to the returns on the defaultable assets as well as on the fact that they are subject
to default risk: these facts make it convenient to go short in them. Beyond that level,
when it becomes convenient to invest in S2 and S3 (Fig. 1c), the optimal value in state
“GOOD” is superior than in state “BAD”, as one would expect.

5.2 Robustness

For what concerns robustness, it is here intended in the sense of obtaining a solution
that works well for a variety of possible models. This is an important issue because
the “exact model” is practically never known and, on the other hand, the solution may
be rather sensitive to the model.

From the numerical calculations, which we show in the next set of diagrams in
Figs. 2 and 3 (notice that in both cases the graph on the right-hand side is a zoom of
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Optimal expected terminal utility: no shorting
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Fig. 1 Optimal expected utility from terminal wealth, when V0 = 1, h0 = h1. a Shorting not allowed.
b Shorting allowed, reasonable assets’ returns. c Shorting allowed, high defaultable assets’ returns

Robustness: GOOD economy, no shorting
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Fig. 2 Robustness: shorting not allowed, GOOD state
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Robustness: BAD economy, no shorting
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Fig. 3 Robustness: shorting not allowed, BAD state

the one on the left-hand side) for the case when shorting is not allowed, respectively,
in case “GOOD” and “BAD”, it turns out that the solution obtained for the model
under incomplete information possesses this property of robustness in the sense that
(as can be seen from Figs. 2, 3)

– while it underperforms the solution under a hypothetical full information about the
model,

– it performs much better with respect to using the wrong solution for the wrong
model.

Remark 12 From Theorem 6, it follows that the optimal strategy in case “PARTIAL”
depends, in addition to the current default configuration, also on the current filter val-
ues, while under full information (cases “GOOD” and “BAD”), it depends only on the
default configuration. The strategy in case “PARTIAL” is therefore more refined and
as such can be applied also in the cases “GOOD” and “BAD”.

In the four diagrams of Figs. 2, 3, we now show the “robustness” of the partial informa-
tion optimal strategy (case “PARTIAL”) with respect to using the wrong full informa-
tion optimal strategy in the wrong state, in the case of no shorting in the risky assets.
Figure 2 concerns state “GOOD”, Fig. 3 the case “BAD”, and we plot the optimal
expected utility from terminal wealth as a function of tN when

v0 = 1, H0 = h1 and N = 1, 2, 3.

In particular, in Fig. 2 (recall that the graph on the right-hand side is a zoom of the one
on the left-hand side), we plot the optimal expected utility of terminal wealth in the
situation when the true state is “GOOD” (analogously, in Fig. 3 when the true state is
“BAD”) in the following three cases:

– using the optimal solution for case “GOOD”, dark blue line (upper benchmark
case);

– using the optimal solution for case “PARTIAL”, orange line;
– using the optimal solution for case “BAD”(lower benchmark case), light blue line.
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Robustness: GOOD economy, shorting
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Fig. 4 Robustness: shorting allowed, high assets’ returns. a Robustness: shorting allowed, high assets’
returns, GOOD state. b Robustness: shorting allowed, high assets’ returns, BAD state

In addition, for comparison purposes, we also plot the optimal expected utility of ter-
minal wealth for case “PARTIAL” using the corresponding optimal strategy (fuchsia
line).

It is evident from the figures that the optimal investment solution obtained in the
partial information case is robust, in the sense specified at the outset.

The two additional diagrams in Fig. 4 illustrate the robustness of the optimal strat-
egy for case “PARTIAL” in the situation when the true state is “GOOD” and “BAD”,
respectively, when shorting is allowed and with the defaultable assets having a con-
siderably high return (analogous to case (c) in Fig. 1).
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