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Abstract
The understanding of factors affecting resource uptake is important to elucidate community dynamics in aquatic ecosystems. 
Here, we analyzed nutrient–phytoplankton and phytoplankton–zooplankton interactions in open water areas without macro-
phytes and in areas with floating and submerged macrophytes in the tropical Cajueiro reservoir, semiarid Brazil. Phytoplank-
ton species were classified into functional groups according to life form and cell size, and zooplankton species were grouped 
based on functional feeding groups and trophic guilds. Macrophytes favored the effect of nutrients on phytoplankton and the 
availability of prey for the zooplankton. In open water, unicellular and flagellated phytoplankton were positively influenced 
by nitrate and inorganic phosphate, while colonial, filamentous, small, medium and large phytoplankton were positively 
influenced by total phosphorus and nitrite. Colonial phytoplankton, mainly filamentous cyanobacteria, was positively asso-
ciated with zooplankton in areas with macrophytes, while flagellated phytoplankton was negatively related to zooplankton 
in open water areas. Our results showed that the presence of floating and submerged macrophytes has different influences 
on the effect of nutrients on phytoplankton and on the effects of phytoplankton on zooplankton in Cajueiro reservoir, and 
this should be considered when analyzing these communities’ dynamics in similar environments, i.e. tropical reservoirs.

Keywords  Colonial cyanobacteria · Filter-feeding zooplankton · Filter-scraper zooplankton · Flagellate · Nitrogen · 
Phosphorus

Introduction

Trophic interactions have been studied in aquatic ecology 
for more than five decades (Martin 1970; McQueen et al. 
1986; Brett and Goldman 1997; Sommer 2008; Diniz et al. 
2019; Severiano et al. 2021). The food chain structure can 
be strongly regulated by bottom-up effects, that is, when 
the energy flow in the food chain occurs as a function of 

available resources (McQueen et al. 1989). In this sense, 
nutrients are the main factors controlling phytoplankton 
growth (Carpenter et al. 1985), with nitrogen and phospho-
rus being the limiting nutrients (Müller and Mitrovic 2015; 
Paerl et al. 2018; Lewis et al. 2020; Liu et al. 2021).

The effects of nutrients on phytoplankton have been 
widely demonstrated in several ecosystems (Smith and 
Lancelot 2004; Jeppesen et al. 2012; Liu et al. 2018). More 
recently, studies have shown that bottom-up effects are more 
common in phytoplankton communities than top-down regu-
lation by zooplankton (Li et al. 2020; Frau et al. 2021). For 
zooplankton, trophic interactions are influenced by func-
tional feeding groups and tropic guilds, species body size, 
and selectivity and physiological tolerance to ingested toxins 
(DeMott 1986; Kiørboe et al. 2018; Gomes et al. 2019), and 
by defense characteristics of the prey (Ger et al. 2014; Lür-
ling 2021). In addition, the strength of bottom-up effects on 
zooplankton is dependent on the degree of predation pres-
sure by fish as top-down effects (Braun et al. 2021).

Nutrient uptake by phytoplankton is related to the 
size and structure of organisms, with intermediate-sized 
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phytoplankton being able to exploit available nutrients 
more efficiently (Marañón 2015; Mousing et al. 2018). 
Along with nutrient availability, water turbulences also 
influence phytoplankton metabolism, since they increase 
nutrient uptake, especially in larger organisms (Naselli-
Flores et al. 2021).

Throughout evolution, phytoplankton developed different 
and efficient morphological, physiological and behavioral 
strategies to avoid predation by zooplankton, among which 
the main morphological strategies are the formation of 
spines and colonies and the increase in size (Lürling 2021). 
These strategies can be described as functional traits based 
on their role in regulating predation by zooplankton (Colina 
et al. 2016). They are informative in explaining the dynamics 
and structure of the phytoplankton community and its rela-
tionship with environmental factors (Chen et al. 2019; Kruk 
et al. 2021), such as the climatic, chemical and biological 
factors of the environment (Reynolds et al. 2002).

In freshwater ecosystems, macrophytes have several 
effects on nutrient cycling, including a reduction in sedi-
ment resuspension through water column stabilization 
(Nurminen and Horppila 2009). Many of the nutrients taken 
up by macrophytes return to the environment through the 
decomposition of plant tissues (Banks and Frost 2017; Xiao 
et al. 2017), or by the release of nutrients from the reductive 
sediment through thermal stratification of the water column 
induced by macrophytes (Vilas et al. 2018), or by fluctua-
tion in water level (Keitel et al. 2016). Although little is 
known about the effects of macrophytes on the availability 
of resources for aquatic communities in tropical reservoirs, 
studies have shown that nutrients released by macrophytes 
favor phytoplankton growth (Vilas et al. 2018; Wang et al. 
2018), and also metaphyton, which consists of large sized 
algae (e.g. Oedogonium sp., Oscillatoria sp.) that are associ-
ated with the presence of macrophytes (Barrow et al. 2019). 
In this sense, macrophytes are also important in the inter-
action between phytoplankton and zooplankton, as they 
increase the availability of prey for zooplankton (Fischer 
and Pusch 2001; Kovalenko et al. 2012).

The main question of the present study was: do macro-
phytes enhance resource uptake by phytoplankton and zoo-
plankton communities? To answer this question, we exam-
ined the effects of resource availability on phytoplankton 
and zooplankton in open water areas without macrophytes 
and in areas with floating and submerged macrophytes in a 
tropical reservoir, in semiarid Brazil. For this, we analyzed 
the potential factors controlling phytoplankton (nutrients) 
and zooplankton (prey availability) in a field study. We 
tested the following hypotheses: (i) the interaction between 
phytoplankton–nutrients and phytoplankton–zooplankton 
is favored by the presence of macrophytes, by increasing 
the availability of resources, and (ii) functional groups of 
phytoplankton and zooplankton respond differently the 

resource availability in areas with and without the presence 
of macrophytes.

Materials and methods

Study area and sampling

The study was carried out in Cajueiro reservoir (8°59′21.3″ 
S and 36°28′19.9″ W), municipality of Garanhuns, state of 
Pernambuco, Northeastern Brazil (Fig. 1). The regional cli-
mate is tropical “As” (Alvares et al. 2013), characterized by 
dry summers and rainy winters. The dry period is concen-
trated between September and March, and the rainy period 
between April and August (APAC 2019). The reservoir is 
shallow, with an average depth of 5.33 ± 0.88 m, and has 
multiple uses, such as water supply for the municipality, irri-
gation, fishing and recreation for the population. The Cajue-
iro reservoir is eutrophic, and the banks are colonized by 
extensive banks of floating macrophytes Nymphoides indica 
(L.) Kuntze, Eichhornia crassipes (Mart.) Solms, Salvinia 
auriculata Aubl. and Salvinia oblongifolia Martius, and 
banks of submerged macrophytes Chara sp., Egeria densa 
(Planch.) Casp. and Myriophyllum aquaticum (Vell.) Verdc.

Samples for analysis of abiotic variables, phytoplankton 
and zooplankton were taken in open water areas (absence of 
macrophytes, n = 3) and in areas with floating macrophyte 
banks (n = 3) and submerged macrophyte banks (n = 3), 
quarterly between November 2018 and August 2019, com-
prising an annual cycle. The sampling sites were located 
approximately 400 m equidistant from each other (Fig. 1). 
Water temperature (°C), dissolved oxygen (mg L−1), pH, 
electrical conductivity (µS cm−1) and total dissolved solids 
(mg L−1) were measured using a HANNA multiparameter 
probe (HI 9829). The Secchi disk was used to estimate the 
water transparency, in meters, and the light intensity (µmol 
photons m−1  s−2) was measured with a photometer (LI-
250A). Reservoir water samples were collected 10 cm below 
the water surface using graduated buckets with a capac-
ity of 10 L in open water areas and in areas with floating 
macrophytes, while in areas with submerged macrophytes, 
water was collected at a depth of 0.86 ± 0.13 m using a van 
Dorn bottle. The mean depth in the open water sites was 
5.33 ± 0.88 m, and 1.06 ± 0.42 m and 0.86 ± 0.12 in the float-
ing and submerged macrophyte banks, respectively.

Water for nutrient analysis was sampled and immediately 
placed in 300 mL plastic bottles and kept under refrigeration 
in a Styrofoam box with ice and transported to the labora-
tory, where samples were frozen until analysis. Samples for 
phytoplankton counting were taken directly from the water 
reservoir at the sampling sites and immediately placed in 
150 mL amber flasks and fixed with 1% acetic Lugol. For 
taxonomic analysis of phytoplankton, water was filtered 
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through a plankton net with 25 µm mesh, placed in 150 mL 
vials and fixed with 4% formaldehyde. Samples for identifi-
cation and quantification of zooplankton were collected by 
filtering 100 L reservoir water from open water areas and 
areas with floating and submerged macrophytes, following 
the procedures for collecting water used for phytoplankton 
analysis, but using a plankton net with 50 µm mesh. Subse-
quently, samples were placed in 200 mL plastic bottles and 
fixed with 4% formaldehyde.

Laboratory analysis

The concentration of nutrients (μg L−1), including nitrite 
(NO2‾), nitrate (NO3‾) and ammoniacal nitrogen (NH4

+) 
was determined according to Golterman et  al. (1978), 
Mackereth et al. (1978) and Koroleff (1976), respectively. 
Dissolved inorganic nitrogen (DIN) concentrations were 
obtained by the sum of concentrations of NO2‾, NO3‾ and 
NH4

+. Orthophosphate (PO4
3‾), inorganic phosphate (Pi) 

and total phosphorus (TP) were quantified according to the 
A.P.H.A. (2005).

Phytoplankton species were identified under an opti-
cal microscope using specific literature (Anagnostidis and 
Komárek 1988; Komárek and Anagnostidis 1999, 2005; 
Komárek and Cronberg 2001; Prescott et al. 1982; Kram-
mer and Lange-Bertalot 1991; Popovský and Pfiester 1990; 
John et al. 2002), and then classified into morphofunc-
tional groups according to life form (unicellular, colonial, 

filamentous and flagellar) and cell size (small: < 50 µm, 
medium: 50–100 µm and large: > 100 µm). Phytoplankton 
density (ind mL−1) was estimated according to Utermöhl 
(1958) using sedimentation chambers and an inverted micro-
scope (Bioval XDS-1B) at 400 × magnification. Biovolume 
(mm3 L−1) was estimated based on the volume of species 
calculated using geometric models by Hillebrand et  al. 
(1999), and multiplied by the population density for each 
species. Biovolume (mm3 L−1) was converted to biomass 
(mg L−1) according to Wetzel and Likens (2000).

Zooplankton species were identified using specific lit-
erature (Koste 1978; Reid 1985; Montú and Goeden 1986; 
Elmoor-Loureiro 1997; Neumann-Leitão et al. 1989). The 
density of zooplanktonic species (ind L−1) was calculated 
by counting the organisms under an optical microscope 
(Opton TNB 41B) with samples concentrated to 100 mL and 
counting three sub-samples of 2 mL in a Sedgewick-Rafter 
chamber. Species-specific biomass of zooplankton (μg DW 
m−3, where DW is dry weight) was determined through the 
density and the average length and body weight of the taxa 
according to the regression equations of Ruttner-Kolisko 
(1977) for rotifers, and of Dumont et al. (1975) for copepods 
and cladocerans. Zooplankton species were grouped based 
on functional feeding groups and trophic guilds: rotifers 
as microphagous (Obertegger et al. 2011), cladocerans as 
filter-feeders and filter-scrapers (Barnett et al. 2007), adult 
Calanoida copepods as herbivorous (Frau et al. 2019) and 
Copepoda nauplii as microphagous. Only groups that can 

Fig. 1   Location of the Cajueiro reservoir, target of the present study
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feed on phytoplankton (herbivorous or omnivorous zoo-
plankton) were considered.

Data analysis

Potential differences in phytoplankton and zooplankton bio-
mass and nutrient concentrations between sampling sites 
(open waters, with floating macrophytes and with submerged 
macrophytes) were tested by an Analysis of Variance (one-
way ANOVA) followed by a Tukey’s post hoc test. Normal-
ity of variance was tested by the Kolmogorov–Smirnov test, 
and homoscedasticity by the Bartlett test. For heteroscedas-
tic variances, we applied the non-parametric Kruskal-Walllis 
test, followed by the pairwise Mann–Whitney U-test.

Generalized additive models (GAM) were applied to test 
the effect of nutrients on phytoplankton and effects of phy-
toplankton on zooplankton in open waters and in sites with 
floating and submerged macrophytes. The estimated degree 
of freedom (e.d.f.) was used to evaluate the smoothing of 
models, and the fit and significance of the model were evalu-
ated using adjusted R2 and p values. Dissolved inorganic 
nitrogen and orthophosphate for phytoplankton, and total 
phytoplankton biomass for zooplankton, were used as the 
predictor variable, respectively. Data were log-transformed 
(x + 1) before statistical analysis.

Redundancy Analysis (RDA) was used to check the influ-
ence of nutrients on phytoplankton groups and the influ-
ence of phytoplankton groups on zooplankton groups. For 
this, the analysis was applied based on the length of the 
first axis of the Detrended Correspondence Analysis (DCA) 
(Legendre et al. 2011). Dependent variables were log trans-
formed and explanatory variables were standardized. Only 
variables with variance inflation factor below 20 and with 
a significance of p < 0.05 were considered in the final RDA 
models through the Ordistep function.

Analyses were performed using the vegan (Oksanen et al. 
2013) and mgcv (Wood 2004, 2011) package in R software 
(R Development Core Team 2019) with a significance of 
p < 0.05.

Results

Nutrients

The limnological variables found in Cajueiro reservoir 
in areas without macrophytes and areas with floating and 
submerged macrophytes throughout the study period are 
provided in the supplementary material (Table S1). High 
concentrations of nutrients were found in the floating macro-
phyte banks; however, no statistical variation was observed 
between areas without macrophytes and areas with mac-
rophytes for nitrate (F = 0.03, p = 0.962), nitrite (F = 0.15, 

p = 0.857), ammoniacal nitrogen (F = 0.52, p = 0.609), dis-
solved inorganic nitrogen (F = 0.52, p = 0.609), orthophos-
phate (F = 1.38, p = 0.298), inorganic phosphate (H = 0.47, 
p = 0.788) and total phosphorus (F = 1.92, p = 0.201) 
(Fig. 2).

Biomass of phytoplankton and zooplankton

Eighty-four phytoplankton taxa were identified in Cajue-
iro reservoir, which were grouped into seven functional 
groups based on cell size and life form (Table S2). The 
colonial cyanobacteria Coelomoron tropicale P.A.C.Senna, 
A.C.Peres & Komárek and the filamentous cyanobacteria 
Raphidiopsis raciborskii (Wołoszyńska) Aguilera, Ber-
rendero Gómez, Kastovsky, Echenique & Salerno were 
the dominant species in the phytoplankton community of 
the reservoir, representing 30.99% and 10.32% of the total 
biomass of phytoplankton and constituting the colonial and 
filamentous groups, respectively. In addition to cyanobac-
teria, the diatom Cyclotella meneghiniana Kützing (9.43%) 
and dinoflagellate Ceratium furcoides (Levander) Lang-
hans (8.55%), belonging to the unicellular and flagellate 
groups, respectively, were dominant in Cajueiro reservoir. 
The group of algae with flagella was mainly represented 
by dinoflagellates and cryptophyceans. Large and medium 
filamentous species represented 15.20% total biomass of 
phytoplankton, and were composed of the diazotrophic 
cyanobacteria Raphidiopsis and Dolichospermum, and the 
non-diazotrophic cyanobacteria Anagnostidinema, Oscilla-
toria, Phormidium, Planktothrix and Pseudanabaena.

In areas with floating and submerged macrophytes, a sig-
nificant increase was found for the biomass of unicellular 
(H = 9.78, p = 0.007), colonial (F = 3.37, p = 0.046), fila-
mentous (F = 7.34, p = 0.002), small (F = 7.63, p = 0.001) 
and large (F = 3.76, p = 0.034) functional groups, except for 
medium-sized (H = 4.54, p = 0.103) and flagellated phyto-
plankton (F = 0.73, p = 0.489; Fig. 3a–g). The total phyto-
plankton biomass differed significantly between the open 
water areas and sites with floating and submerged macro-
phytes, with higher biomass found in the submerged mac-
rophyte banks (96.52 ± 65.09 mg L−1, H = 9.86, p = 0.007; 
Fig. 3h).

Fifty zooplankton taxa were identified, in addition to the 
class Bdelloidea and order Calanoida and Copepoda nau-
plii. Zooplankton taxa were grouped into four functional 
feeding groups and trophic guilds (Table S3). The herbiv-
orous-microphagous group had the highest biomass during 
the study; however, it did not differ significantly between 
sampling sites (H = 5.57, p = 0.061, Fig. 4a). Higher total 
zooplankton biomass was observed in floating macrophyte 
banks (183.80 ± 146.70 µg DW m−3) and in submerged 
macrophyte banks (169.12 ± 218.12 µg DW m−3), signifi-
cantly differing (H = 9.46, p = 0.008) from open water areas 
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(37.88 ± 30.71 µg DW m−3; Fig. 4e). Floating and sub-
merged macrophytes favored the increase in biomass of the 
filter-scraper functional group (F = 24.18, p < 0.001), and 
floating macrophytes favored the increase in filter-feeder 
biomass (F = 3.48, p = 0.042; Fig. 4c–d). Microphagous 
biomass did not differ significantly between sampling sites 
(F = 0.58, p = 0.565; Fig. 4b).

Interaction between nutrients–phytoplankton 
and phytoplankton–zooplankton

Generalized additive models (GAM) showed that total 
phytoplankton biomass had a marginally significant posi-
tive relationship with dissolved inorganic nitrogen in 
open water areas (p = 0.054, Fig. 5a) and a significantly 

Fig. 2   Variation in concentra-
tions (µg L−1) of nitrate (a), 
nitrite (b), ammoniacal nitrogen 
(c), dissolved inorganic nitrogen 
(DIN, d), orthophosphate (e), 
inorganic phosphate (f) and total 
phosphorus (g) between open 
water areas (OW) and areas 
with floating (FM) and sub-
merged (SM) macrophytes in 
Cajueiro reservoir, Northeastern 
Brazil. Lowercase letters repre-
sent statistical differences based 
on the post-hoc test (p < 0.05) 
among sampling sites
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negative relationship in sites with floating macrophytes 
(p = 0.0003, Fig.  5b). No significant relationship was 
observed between dissolved inorganic nitrogen and total 
phytoplankton biomass in areas with submerged macro-
phytes (p = 0.654, Fig. 5c). A positive relationship was 
found between orthophosphate and total phytoplankton 

biomass in open water areas (p = 0.039, Fig. 5d) and with 
submerged macrophytes (p = 0.022, Fig. 5f), while in sites 
with floating macrophytes, no significant relationship was 
observed (p = 0.076, Fig. 5e). Total zooplankton biomass 
was not significantly related to total phytoplankton bio-
mass (Fig. 5g–i).

Fig. 3   Variation in concentra-
tions (mg L−1) of unicellular 
(a), colonial (b), filamentous 
(c), flagellated (d), small 
(e), medium (f) and large (g) 
morphofunctional groups of 
phytoplankton and total phyto-
plankton biomass (h) between 
open water areas (OW) and 
areas with floating (FM) and 
submerged (SM) macrophytes 
in Cajueiro reservoir, Northeast-
ern Brazil. Lowercase letters 
represent statistical differences 
based on the post-hoc test 
(p < 0.05) among sampling sites
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Redundancy analysis

The RDA model revealed that nutrients explained 59.65% 
of variation in phytoplankton community compositions 
(F = 11.08, p = 0.001). Axis 1 (F = 24.64, p = 0.001) and axis 
2 (F = 17.62, p = 0.001) were significant for the distribution 
of explanatory variables, with unicellular phytoplankton 
influenced by inorganic phosphate (Pi), flagellate phyto-
plankton by nitrate (NO3‾), and other groups (colonial, fila-
mentous, small, medium and large) influenced by total phos-
phorous (TP) and nitrite (NO2‾). Two groups distinguishing 
the sites with and without macrophytes were formed on axis 
1, with TP and NO2‾ related to functional phytoplankton 
groups in floating and submerged macrophyte banks and Pi 
and NO3‾ in sites without macrophytes (Fig. 6a).

For functional feeding groups and trophic guilds of 
the zooplankton, the RDA indicated that phytoplankton 

functional groups explained 41.79% of variation in zoo-
plankton community compositions (F = 11.48, p = 0.001), 
with only axis 1 (F = 22.26, p = 0.001) showing the sig-
nificant distribution of groups. On the axis 1, there was a 
separation between open water areas and sites with macro-
phytes, where colonial phytoplankton biomass, positioned 
to the right of the axis, positively influenced herbivores, 
filter-feeders and filter-scrapers in floating and submerged 
macrophyte sites, while flagellate phytoplankton were posi-
tively related to sites without macrophytes (Fig. 6b).

Discussion

In the present study, we showed the nutrient-phytoplank-
ton and phytoplankton–zooplankton interactions in areas 
with and without macrophytes. The unicellular, colonial, 

Fig. 4   Variation in concentra-
tions (µg DW m−3) of her-
bivorous (a), microphagous (b), 
filter-feeders (c) and filter-scrap-
ers (d) functional groups of zoo-
plankton and total zooplankton 
biomass (e) between open water 
areas (OW) and areas with 
floating (FM) and submerged 
(SM) macrophytes in Cajueiro 
reservoir, Northeastern Brazil. 
Lowercase letters represent sta-
tistical differences based on the 
post-hoc test (p < 0.05) among 
sampling sites
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filamentous, small and partly the large functional phy-
toplankton groups presented higher values of biomass in 
floating and submerged macrophyte banks. For zooplankton, 
only cladocerans (filters and scrapers) presented high bio-
mass in floating and submerged macrophyte banks. Phyto-
plankton was positively correlated with orthophosphate in 
sites with submerged macrophytes, and negatively corre-
lated with dissolved inorganic nitrogen in sites with floating 
macrophytes, while no significant relationship was found 
between zooplankton and phytoplankton, partially confirm-
ing our first hypothesis.

Our results showed that floating and submerged mac-
rophytes promoted changes in the phytoplankton com-
munity. Macrophytes are responsible for providing het-
erogeneous ecological niches that support diverse aquatic 
communities (Barrow et al. 2019; Stephan et al. 2019). 
For phytoplankton, macrophytes act as nutrient sources 
because, through the decomposition of plant tissues, nutri-
ents become bioavailable in water (Wang et al. 2018), in 
addition to serving as substrate for algal colonization due 
to structural complexity (Nascimento-Filho et al. 2021). 
Algarte et al. (2017) showed that both the species richness 

Fig. 5   Generalized additive models (GAM) showing the relation-
ships between nutrients–phytoplankton (a– f) and phytoplankton–
zooplankton (g, h, i) in open water areas (orange line) and areas with 
floating (blue line) and submerged (green line) macrophytes. The 

solid line represents the fitted values of the general model. DIN: dis-
solved inorganic nitrogen, PO4: orthophosphate, TPhytoplankton: 
total phytoplankton biomass, TZooplankton: total zooplankton bio-
mass
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of small-motile algae and the richness of large species 
were positively related to the presence of macrophytes, so 
the presence of macrophyte banks may have facilitated the 
coexistence of different species of algae.

For zooplankton, macrophytes serve as a refuge against 
predators (Figueiredo et al. 2018) and a place for colo-
nization and egg laying (Battauz et al. 2017), and they 
also increase food availability (Rossa and Bonecker 2003; 
Brito et al. 2020). In this way, different macrophyte spe-
cies may harbor different zooplankton species (Zeng et al. 
2017), and this can have different effects on phytoplank-
ton. In the present study, although floating macrophytes 
harbored higher biomass of herbivorous filter-feeders and 
scrapers zooplankton (cladocerans), no negative effect 
was found on phytoplankton biomass (Fig. 5h). Differ-
ently, the negative effect of zooplankton filter-feeders on 
phytoplankton was evidenced in other studies (Kozak et al. 
2015; Gerasimova et al. 2018), and this can be explained 

by their generalist habit, predominant in several species 
represented by cladocerans.

Our second hypothesis was partially confirmed, as the 
RDA analysis showed that unicellular and flagellated phyto-
plankton were favored by nitrate and inorganic phosphate in 
open water areas, and nitrite and total phosphorus positively 
influenced the colonial, filamentous, small, medium and 
large functional phytoplankton groups in sites with macro-
phytes. According to Zhang et al. (2020), some macrophyte 
species can provide suitable substrates for filamentous algal 
growth. Similar results were observed by Takamura et al. 
(2003), who showed that phytoplankton species responded 
differently to the presence of macrophytes, with colonial 
and filamentous species of medium to large size positively 
related to lakes with the presence of macrophytes, and flagel-
lated and unicellular species related to both the presence and 
absence of macrophytes. Our results showed that this rela-
tionship can be explained by the effect of nutrients (Fig. 6a). 
Studies performed in semi-arid regions of Brazil showed that 
submerged macrophytes play an important role in providing 
nutrients, especially during the dry season and rewetting, 
common in these regions due to the reduction in water level 
(Keitel et al. 2016; Barbosa et al. 2020). Thus, the nutrients 
available in areas covered by submerged macrophytes have a 
positive effect on phytoplankton, favoring filamentous, uni-
cellular or colonial species (Monteiro et al. 2021).

During the growth period, macrophytes can accumulate 
nutrients from water or sediment, and when they decom-
pose, the absorbed phosphorus is returned to the aquatic 
ecosystem (Wang et al. 2018). The algae attached to these 
macrophytes absorb 3.4–8.9% phosphorus released by 
macrophytes (Carignan and Kalff 1982). High phospho-
rus concentrations favor the development of phytoplank-
ton, especially cyanobacteria (Simić et  al. 2017), and 
non-diazotrophic cyanobacteria due to their inability to fix 
atmospheric nitrogen. Reservoirs in Northeastern Brazil are 
susceptible to cyanobacterial blooms (Moura et al. 2018), 
and eutrophication represents a factor that contributes to 
the success of these organisms (Amorim and Moura 2021; 
Macêdo et al. 2021).

In contrast, although no significant difference was 
observed in the biomass of flagellated species between 
sampling sites, a positive relationship between flagellated 
algae and nutrients was observed in the absence of macro-
phytes (Fig. 6a). This suggests that flagellated algae, pre-
dominantly represented by C. furcoides in the present study, 
use resources more efficiently in areas without macrophytes. 
According to Crossetti et al. (2019), reduction in the relative 
stability of the water column caused by the absence of mac-
rophytes and the increase in water transparency are decisive 
for the success of C. furcoides. This supports our results, as 
the flagellated group was related to nitrogen in sites without 
macrophytes, as shown in the RDA (Fig. 6a).

Fig. 6   Redundancy Analysis (RDA) of (a) phytoplankton morpho-
functional groups and (b) zooplankton functional feeding groups and 
trophic guilds in relation to variables in open water areas and areas 
with floating and submerged macrophytes. TP: total phosphorus, Pi: 
inorganic phosphate, NO2: nitrite, NO3: nitrate



20	 Limnology (2024) 25:11–23

1 3

Colonial phytoplankton was positively related to three 
functional groups of zooplankton in sites with macrophytes. 
This result accord with Amorim et al. (2020), which showed 
a positive correlation between cyanobacteria and zooplank-
ton, such as rotifers and copepod nauplii. This relationship 
can be explained by ability of zooplankton to coexist with 
cyanobacteria in eutrophic waters (Amorim et al. 2020), in 
addition to a poor ability to avoid the ingestion of cyanobac-
teria (Lürling 2003, 2021; Colina et al. 2016), leading to the 
exploitation of alternative food sources, such as other algae 
(Ger et al. 2016). In contrast, a negative relationship was 
found between flagellated phytoplankton and zooplankton. 
Herbivorous crustaceans, such as cladocerans and calanoid 
copepods found in our study, have a feeding preference for 
medium to large-sized flagellated organisms (Colina et al. 
2016; Titocci et al. 2022). Any evidence was found of zoo-
plankton grazing C. furcoides (Colina et al. 2016).

Conclusion

This study showed that the macrophytes promoted signifi-
cant changes in plankton communities, favoring the growth 
of small and large-sized algae and unicellular, colonial and 
filamentous species, in addition to increasing the biomass 
of filter-feeder and filter-scraper zooplankton. Floating and 
submerged macrophytes favored nutrient-phytoplankton 
interactions, while phytoplankton–zooplankton interac-
tions occurred both in the presence of submerged macro-
phytes and in open water sites, partially confirming our first 
hypothesis. Our second hypothesis was partially confirmed 
too, as colonial, filamentous, small, medium and large phy-
toplankton were favored by the presence of macrophytes, 
and flagellated and colonial phytoplankton, represented by 
cryptophyceans, C. furcoides and colonial cyanobacteria, 
respectively, significantly influenced zooplankton in sites 
with macrophytes. Our results highlight the importance 
of evaluating the effects of floating and submerged macro-
phytes on the relationship between phytoplankton and zoo-
planktonic communities in tropical reservoirs.
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