
Vol.:(0123456789)1 3

Limnology (2022) 23:57–72 
https://doi.org/10.1007/s10201-021-00666-y

RESEARCH PAPER

Spatial pattern of freshwater habitats and their prioritization using 
additive partitions of beta diversity of inhabitant piscine assemblages 
in the Terai–Dooars ecoregion of Eastern Himalayas

Soumyadip Panja1  · Anupam Podder1  · Munmun Chakrabarty1,2  · Sumit Homechaudhuri1 

Received: 8 February 2021 / Accepted: 10 July 2021 / Published online: 7 August 2021 
© The Japanese Society of Limnology 2021

Abstract
Underlying spatial and habitat attributes of a river network are crucial to comprehend the bio-spatial arrangements within it, 
the study of which suffers from a paucity of information. Despite several reports on various piscine assemblages, no study 
contributes to understanding the characteristic attributes of the freshwater habitats of the sub-Himalayan Terai–Dooars ecore-
gion. Therefore, this study aims to uncover such underlying features through a precise understanding of the spatial profile 
of freshwater habitats and additive partitions of piscine beta diversity. A significant spatial association is found in the upper 
stretches of most of these torrential freshwater reaches confined to the eastward of the River Teesta basin to the tributaries 
of River Jaldhaka. Such a pattern is aligned with a higher local contribution to beta diversity (LCBD) values. The spatial 
map of LCBD indicates that the mid-altitude (100 > elevation > 2000 m) region contains unique or rare species assemblages. 
This fact is further confirmed by the spatial aggregation of characteristically adapted hill stream fish species with higher 
species contribution to beta diversity (SCBD) values. The results are further explained by relevant climatic, topographic, 
nutrients (sediments), and habitat attributes of which climate, topographic, substrate, and land cover features are the most 
contributory factors. Such variables are subjected to severe modulation following increasing anthropogenic pressure and 
changing climatic conditions, leading to the jeopardy of these freshwater habitats. Therefore, prime importance should be 
accorded to the ecological restoration value of these spatially structured torrential freshwater habitats for conservation and 
monitoring in the coming days.
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Introduction

Spatial arrangements of biodiversity varying upon the dif-
ferent spatial scales need to be understood for efficient con-
servation assessment and planning (Ferrier et al. 2007; Mar-
gules and Pressey 2000). The assemblage of both native and 
exotic species within a given landscape is contingent on the 
degree of spatial heterogeneity (Davies et al. 2005). How-
ever, the spatial process directly corresponds to the species 
sorting following the dynamics of environmental gradients, 
attributed by various factors at a given spatial extent (Cot-
tenie 2005; Heino et al. 2015a; Jackson et al. 2001). There-
fore, understanding the active spatial filters for a species at 
varied habitats is crucial, resulting from dispersal limita-
tion, neutral dynamics, and spatially structured environmen-
tal attributes (Leprieur et al. 2009; Sharma et al. 2011). As 
in-field sampling over a large space is not convenient with 
time and effort, it persuades the employment of choosing 
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surrogates for the species under study (Ferrier et al. 2007). 
Such surrogates include habitat types, stream sections, land-
scapes often stemmed from remote sensing imagery, abiotic 
environmental classes, climate, and terrains (Ferrier et al. 
2007).

Beta diversity accounts for the change in species com-
position between certain places representing the differen-
tiation component of diversity and assemblage (McKnight 
et al. 2007). Being central to a wide array of ecological and 
evolutionary understanding (McKnight et al. 2007), beta 
diversity has long been used on many aquatic organisms 
to describe crucial turnover of species with the response to 
specific environmental characteristics resulting from tem-
poral and spatial dissimilarities (Angeler 2013; Melchior 
et al. 2017; Viana et al. 2016). Legendre and De Cáceres 
(2013) have developed another two components to empha-
size the contribution of habitat towards the existing pattern 
of dissimilarities in biodiversity (Vilmi et al. 2017; Yao et al. 
2020). These components are described as a local contribu-
tion to beta diversity (LCBD), indicating the uniqueness of 
the site and its degradation as well as the species contribu-
tion to beta diversity (SCBD), indicating unique and rare 
assemblages of species with conservation values (Legendre 
and De Cáceres 2013; Sor et al. 2018; Vilmi et al. 2017).

The freshwater ecosystem depicts an epitome of 
researches concerning distinct species assemblage, spa-
tial heterogeneity, and insuperable barriers (Leprieur et al. 
2009). The freshwater fish communities are regulated by 
niche differences and dispersal limitations following ecolog-
ical changes limited at a connected stretch of waters (Chase 
and Leibold 2003; Heino et al. 2009; Hubbell 2001). Cli-
mate, energy, and habitat diversity work in close association, 
resulting in a diverse piscine assemblage globally (Guégan 
et al. 1998; Leprieur et al. 2011). Therefore, dismantling 
spatial features arising at a particular site and relevant local 
environmental, catchment, and climatic factors is critical 
(Heino et al. 2007; Perez Rocha et al. 2018) in shaping 
freshwater fish biodiversity. The lotic habitats of freshwater 
fishes are under serious threat. They are subjected to climate 
change, channel modification, fragmentation, flow alteration, 
and degradation (Bhatt et al. 2016; Goswami et al. 2012a, b).

Such threats, coupled with the observed trend of anthro-
pogenic influences, pose more considerable influence over 
the Himalayas (Singh 2015). The freshwater network pri-
marily prevalent in the sub-Himalayan Terai–Dooars (TED) 
ecoregion has been prioritized for conservation based on 
the richness of fish species with higher conservation values, 
endemism, and vulnerabilities (Bhatt et al. 2016). The major 
rivers of the TED ecoregion in Northern Bengal, India, are 
River Teesta, Jaldhaka, Torsha, and Mahananda (Jayaram 
and Singh 1977). However, understanding the spatial dis-
tribution and underlining species sorting in such exclusive 
freshwater habitats is overlooked due to much research effort 

into the identification of fish species, reporting exclusive 
alpha diversity at various local scales (Bhowmik et al. 2016; 
Dey et al. 2015a ,b, c, d, 2019), eco-physiological studies in 
captivity (Dey et al. 2015a; b, c, d), preserving germplasm 
and reporting genetic variabilities (Dey et al. 2015a; b, c, d; 
Kundu et al. 2019). A firm understanding of spatial arrange-
ments of fish communities would reveal the complex inter-
action of multiple factors, which shapes their habitats in a 
more varied or nested manner considering their adaptations, 
invasions, dispersal limitations, and mass effects (Leprieur 
et al. 2009; Leroy et al. 2019; Planque et al. 2011; Shurin 
et al. 2009; Wiersma and Urban 2005). Such a pattern gives 
direct insight into the response of biological communities 
to climate and environment, which often serves as a basis 
of sound management of their commercial or conservation 
interest (Leprieur et al. 2009; Planque et al. 2011). There-
fore, the lack of such foundation stumbles conservation plan-
ning and monitoring over this freshwater habitat, becoming 
more vulnerable following changing geo-climatic conditions 
(Akhter et al. 2019; Barman and Das 2014; Goswami et al. 
2019) and increasing anthropogenic pressure (Karmakar 
2011; Naha et al. 2019; Singh 2015).

Therefore, this study reveals the pattern and reasons 
behind the unique fish assemblage in the sub-Himalayan 
TED ecoregion freshwater network. We delineated the sig-
nificant spatial variables explaining the spatial structure of 
fish assemblages using spatial distance among the sites, 
identifying if the scales have a significant association. Then, 
we conducted a decomposition of the spatial model at rel-
evant scales into submodels, aiming to reveal species–envi-
ronment relationships. Next, using beta dissimilarities, we 
analyzed the individual contribution of fish species and their 
habitat through partitioning the total beta diversity while 
explaining the latter by relevant environmental variables. 
The results were compared to identify the freshwater habi-
tats and their correspondence in unique piscine assemblage, 
subjected to ecological conservation and management con-
sidering the threats of dynamic climatic and anthropogenic 
events in the sub-Himalayan TED ecoregion. This study 
signifies the first attempt to construct such a profile from 
this region to explore ecological sensitivity in species con-
servation values and eco-restorations.

Materials and methods

Study area

The sub-Himalayan TED ecoregion has moist and dense 
riverine forests along the foothills of the snow-capped 
Kanchenjunga range along the Eastern Himalayas (Barman 
and Das 2014; Kandel et al. 2016). Northern Bengal (NB) 
comprises the areas within West Bengal, India, confined to 
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the north of the river Ganges (Barman and Das 2014). Innu-
merable streams are draining these alluvial floodplains of the 
TED ecoregion in NB (Barman and Das 2014; Paul et al. 
2009; Rudra 2018). The freshwater reaches of this region 
are more dynamic due to continuous deposition in the chan-
nel, increasing the height of the riverbeds (Chakraborty and 
Datta 2013). The river channels are experiencing frequent 
shifts following anabranching and changing river courses 
(Akhter et al. 2019; Goswami et al. 2019) Sub-tropical 
monsoon climate causes excessive precipitation in the sub-
Himalayan regions leading to the higher flow in these tor-
rential courses. In the summer months, they are replenished 
by snow-melt waters (Akhter et al. 2019; Bhatt et al. 2012; 
Panja et al. 2020; Rudra 2018). This study has been con-
ducted on a vast drainage network of Teesta–Neora–Jald-
haka rivers, including watersheds of River Teesta, River 
Chel, River Neora, River Dharala, River Murti, and River 
Jaldhaka, draining through the TED ecoregion in NB, India 
(Fig. 1). Along the banks of these rivers, the TED ecoregion 
has several reserve forests and national parks, such as Sin-
galila National Park, Mahananda Wildlife Sanctuary, Neora 

Valley National Park, Gorumara National Park, and Chapra-
mari Wildlife Sanctuary, which indicate the importance of 
this ecoregion (Bhattacharya 2019). A stream network of 
these freshwater reaches was derived using digital elevation 
layers (MERIT-HYDRO DEM) (Yamazaki et al. 2019) in 
the Arc GIS platform (V.10.1).

Fish sampling

A total of 31 sampling sites were selected based on a pilot 
study upon these freshwater reaches. Later, a tri-seasonal 
fish sampling, i.e., pre-monsoon, monsoon, and post-mon-
soon, was conducted during 2016–2019. A 90 m reach, 
at  each location was sampled using the electro-fishing 
method by electro-fisher (300 V, 3–4A, DC) followed by gill 
nets, cast nets, and dragnets, respectively. The dimensions of 
the nets used in samplings were constant (obtained from the 
same source) for all the areas surveyed. Fishes were identi-
fied following existing literature (Barman and Das 2014; 
Jayaram and Singh 1977; Menon 1999; Shaw 1938; Talwar 
and Jhingran 1991). The removal method of estimation was 

Fig. 1  Study area comprising a freshwater network of sub-Himalayan Terai–Dooars ecoregion confined into Northern Bengal of Eastern Hima-
layas
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applied in three consecutive efforts (Bohlin et al. 1989). The 
captured fish specimens were counted, and a single repre-
sentative was preserved in a 10% formalin solution.

Environmental data

Seven bioclimatic variables, four topographic, two sub-
strates, and two land-cover attributes had been considered 
under the environmental profile. The ecological success, 
reproductive behaviors, and physiology of freshwater fishes 
are significantly driven by variability in temperature and pre-
cipitation (Barbarossa et al. 2021; Ficke et al. 2007). Despite 
being coarse-scale modulators, previous studies (Domisch 
et al. 2011, 2015, 2013, 2011; Durance and Ormerod 2007; 
Leprieur et al. 2009; Oberdorff et al. 1999; Reyjol et al. 
2007) found the significant contribution of annual mean 
temperature, the max temperature of the warmest month, 
min temperature of the coldest month, annual precipitation, 
precipitation of wettest month, precipitation of driest month 
and evatransportation in shaping the spatial assemblage of 
freshwater fishes. Furthermore, the topographical charac-
teristics of streams, i.e., elevation, slope, stream order, and 
terrain position index, directly correspond to local ecologi-
cal attributes of freshwater habitats viz. water temperature, 
dissolved oxygen, and flow regimes (Austin 2007; Domisch 
et al. 2011, 2013; Kuemmerlen et al. 2014). On the other 
note, stream substrate characteristics (upland & valley bot-
tom characteristics, soil sediment) and landcover attributes 
(normalized difference vegetation index and land cover) con-
trol the productivity, pH, turbidity, and nutrient dynamics 

of water which are responsible for various species-specific 
adaptations (Brooks et al. 2005; Effenberger et al. 2006; 
Fausch et al. 2002; Kozel and Hubert 1989). Therefore, these 
fifteen variables (Table 1) are pertinent to understand fresh-
water species distribution. All these variables were obtained 
in 30 arc-second resolution and sampled for the selected 31 
sampling sites. The respective sources of the environmental 
data (Haynes et al. 2018; Huntington et al. 2017; Karger 
and Zimmermann 2019; Pelletier et al. 2016; Trabucco and 
Zomer 2019; Yamazaki et al. 2019) are listed in Table 1. 
Slope, stream order (Strahler), and topographic position 
index were calculated using the DEM raster (Yamazaki 
et al. 2019) in the QGIS platform (QGIS version 3.10.0-A 
CoruÃ ± a) (https:// www. qgis. org/ en/ site/). Before fitting 
into analytical models, these variables were resampled, 
standardized, and stacked for the study region and sampled 
against the 31 sites to conduct a Pearson’s correlation among 
them. Predictors with high collinearity (Pearson’s r ≥ 0.8) 
(Domisch et al. 2011; Thuiller et al. 2014) were discarded 
(See Supporting Information: Fig. S1).

Data analysis

Identification of the spatial structures

The spatial arrangements of habitats significantly structure 
the fish community composition considering space, scale, 
and connections within a landscape (Jackson et al. 2001; 
Legendre and Legendre 2012; López‐Delgado et al. 2019). 

Table 1  List of environmental variables used as explanatory variables for the fish assemblage patterns in the freshwater river system of Terai–
Dooars ecoregion, Eastern Himalayas

Category Variables Abbreviation Source

Bio-Climatic Annual mean temperature B1 Climatologies at high resolution for the earth’s land surface areas
(https:// chelsa- clima te. org/) (Karger and Zimmermann 2019)Max temperature of the warmest month B5

Min temperature of the coldest month B6
Annual precipitation B12
Precipitation of wettest month B13
Precipitation of driest month B14
Eva-transportation EV Potential evapotranspiration climate Database version 2

(https:// cgiar csi. commu nity/) (Trabucco and Zomer 2019)
Topography Elevation EL MERIT Hydro: global hydrography data sets

(http:// hydro. iis. utokyo. ac. jp/ yamad ai/ MERIT_ Hydro/) (Yamazaki et al. 
2019)

Slope SL Calculated using EL in QGIS 3.16.0
Stream order SO
Terrain position index TPI

Substrate Upland & valley bottom characteristics UV Oak ridge national laboratory distributed active archive center (ORNL 
DAAC) (https:// daac. ornl. gov/) (Pelletier et al. 2016)Soil sediment SS

Land Cover Normalized difference vegetation index NDVI Climate Engine (http:// clima teeng ine. org/) (Huntington et al. 2017)
Landcover LC IPUMS-TERA (https:// terra. ipums. org/) (Haynes et al. 2018)

https://www.qgis.org/en/site/
https://chelsa-climate.org/
https://cgiarcsi.community/
http://hydro.iis.utokyo.ac.jp/yamadai/MERIT_Hydro/
https://daac.ornl.gov/
http://climateengine.org/
https://terra.ipums.org/
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This widely recognized concept would reveal the role of 
space in habitat heterogeneity and spatial aspects of biotic 
and abiotic conditions (Hanski 2001; Jackson et al. 2001). 
The framework of Moran’s eigenvectors map (MEM) has 
gained popularity as a recent family of spatial analysis tech-
niques (Ali et al. 2010; Jackson et al. 2001; Legendre and 
Legendre 2012; Perez Rocha et al. 2018). This machinery 
aims to model the correlation structure present at each scale, 
linking with the spatial heterogeneity of environmental fac-
tors (Ali et al. 2010). Based on this framework, a distance-
based Moran’s eigenvectors map (dbMEM) (Dray et al. 
2006) would identify the characteristic spatial scales through 
a spatial filtering technique (Blanchet et al. 2008) to define 
a set of spatial proxy variables and their selection to explain 
the spatial structure of the response variable under study, 
i.e., fish species assemblage. The dbMEMs corresponding to 
smaller eigenvalues usually represents very fine-scale spatial 
patterns, where spatial autocorrelation is presumed low. On 
the contrary, dbMEMs corresponding to larger eigenvalues 
signify coarse spatial variability scales, often selected to 
define prominent spatial structures. Furthermore, dbMEMs 
corresponding with positive eigenvalues (Positive Moran’s 
I) depicts a positive spatial association, which is more cru-
cial to consider than a negative spatial association (Ali et al. 
2010; Griffith and Peres-Neto 2006; Legendre and Legendre 
2012).

Initially, the spatial coordinates of the sites and a Hell-
inger transformed presence–absence data set was subjected 
to define dbMEMs (Blanchet et al. 2008; Dray et al. 2006; 
Legendre and Legendre 2012) and their spatial association 
with the fish species assemblage of the freshwater habi-
tats. The data was checked for linear trends and detrended 
if present. The dbMEM eigenvectors were computed, and 
those with positive association (positive Moran’s I) were 
retained. Then the dbMEMs were tested in a redundancy 
analysis (RDA) with species data for significance and run a 
forward selection with double-stopping criteria (adjusted R 
square of the RDA and α level of rejection) (Blanchet et al. 
2008) to select significant dbMEMs. Now a new RDA was 
run with the significant dbMEMs to tests the significance 
of the axes. Based on the results, maps were drawn for each 
significant axes identifying spatial structures among the 
sites. (Borcard and Legendre 2002; Borcard et al. 1992; Dray 
et al. 2012; Legendre and Legendre 2012). This analysis 
was performed in the R platform with the quickMEM func-
tion from package adespatial. The total variation in the fish 
species assemblage was further partitioned using the spatial 
(dbMEMs) and environmental variables (Perez Rocha et al. 
2018; Vilmi et al. 2017) to assess their relative and cumula-
tive roles through partial RDA testing.

The site scores of each significant RDA axes were fur-
ther explained by the environmental variables (Borcard and 
Legendre 2002; Borcard et al. 1992; Legendre and Legendre 

2012) to identify the significant association of environmental 
variables resulting in positive-broad scale spatial structures. 
This assessment was achieved by applying boosted regres-
sion trees (BRT) models (Elith et al. 2008). The boosted 
regression tree (BRT) is much exploited as an excellent 
modeling tool for the predictive purpose of ecological 
researches (Elith et al. 2008). However, BRT modeling 
with smaller data set would face a slight penalty for using 
larger trees which are usually overcome using low learning 
rates and smaller decision trees (Elith et al. 2008). BRT is 
advantageous in accommodating different predictors, with 
no dependencies on response data transformation, outlier 
removal, and handling complex non-linear relationships 
while considering interactions between the predictors to 
reduce predictive errors (Carslaw and Taylor 2009; Elith 
et al. 2008; Jafari et al. 2014; Panja et al. 2020). Considering 
such an advantage, previous studies have appropriately used 
this machine learning model using a small data set (Jafari 
et al. 2014; Panja et al. 2020, 2021b, a; Zhang and Ling 
2018). A combination of learning rates (high to low) was 
tried to achieve the minimum 1000 trees initially based on 
the tenfold cross-validation method. Since the present study 
dealt with a comparatively smaller data set, tree complexity 
was set to 3 (Elith et al. 2008). A pseudo determinant factor, 
 D2 was calculated for the fitted model accounting for their 
credibility (Nieto and Mélin 2017). The environmental vari-
ables contributing highest to the model are identified.

Beta diversity measures

Legendre and De Cáceres (2013) emphasized the advan-
tages of estimating beta diversity  (BDTotal) as the total 
variation of the community matrix (Z). They showed that 
Z could be linked with the beta diversity assessments com-
puted from the dissimilarity matrix of community com-
position while establishing the closer relevance of other 
beta diversity measures (Anderson et al. 2006; Ricotta 
and Marignani 2007; Whittaker 1972). Based on such 
principle,  BDTotal could be disintegrated into two attrib-
utes accounting for contributions of single sites to over-
all beta diversity and individual species to overall beta 
diversity (Heino and Grönroos 2017; Legendre and De 
Cáceres 2013). The former is referred to as local contri-
butions to beta diversity (LCBD) which comparatively 
indicates the ecological uniqueness of the study sites. The 
latter attribute is defined as species contributions to beta 
diversity (SCBD) which denotes the degree of variation of 
individual species across the study region (Legendre and 
De Cáceres 2013). The LCBD values identify sites with 
more (or less) contribution than the mean to beta diversity, 
which comparatively indicates the uniqueness of species 
composition at a particular site. LCBD directly corre-
sponds to the number of rare species across geographical 



62 Limnology (2022) 23:57–72

1 3

space, while were negatively related to the occurrences 
of common species, therefore, accounting for dispersal 
limitation as well as the local environment and commu-
nity characteristics (Legendre and De Cáceres 2013; Vilmi 
et al. 2017; Yao et al. 2020). On the other note, SCBD 
indices are not the same as indicator species for a given 
group of sites. Instead, it directly corresponds to signifi-
cant variations imposed by each species across the study 
area (Cáceres and Legendre 2009; Dufrêne and Legendre 
1997; Legendre and De Cáceres 2013).

Z could be obtained by calculating a matrix of squared 
deviations along the column means based on computing 
community dissimilarity matrices from the transformed 
species presence–absence data. Then the total sum of 
squares  (SSTotal) is obtained when summing all the squared 
values, which forms the initial basis of  BDTotal.

BDTotal =
SSTotal∕(n − 1), n represent the number of sites 

(Legendre and De Cáceres 2013).
Computation of  SSTotal is advantageous to directly 

assess the contributions of individual species and indi-
vidual sampling units to the overall beta diversity (Heino 
and Grönroos 2017; Legendre and De Cáceres 2013). 
Therefore, SCBD and LCBD indices were developed on 
total sum squares of species composition, thereby calcu-
lating the proportion of jth species and the ith sampling 
unit for SCBD and LCBD viz.  SCBDj =  SSj/SSTotal and 
 LCBDi =  SSi/SSTotal (Legendre and De Cáceres 2013). 
Sites with higher LCBD values are identified. The fish 
species with higher SCBD values than the average value 
of all are identified.

BRT was fitted similarly with the LCBD values against 
the predictor environmental data set. The significant vari-
ables were identified, contributing highest to explain the 
LCBD attributes of each site and compared with the spatial 
model. LCBD site scores were further assessed through a 
correlation approach with the significant RDA axes about 
surrogacy in conserving and monitoring these freshwater 
ecosystems. Based on the best trees of the suited model, 
the LCBD was predicted over the restacked spatial map 

of selected environmental variables to construct a spatial 
LCBD profile for this study area.

All the statistical analyses have been performed in the R 
platform (Team R 2015; Team RC 2013) using packages, 
namely, raster, maptools, rgeos, dismo, and gbm. The spatial 
maps are created using the Arc GIS platform (version 10.1).

Results

Initially, a total of 175 fish species were recorded from the 
sampling. However, discarding exotic species (See Sup-
porting Information: Table S1) from the study (Bhowmik 
et al. 2016; Sarkar and Pal 2018), a total of 170 indigenous 
fish species with 11,560 individuals has been recorded from 
the sampling along 31 sites (See Supporting Information: 
Table S2 and Fig. S2). River Jaldhaka has the highest species 
richness with 158 fish species. In comparison, the lowest has 
been observed in River Neora with 22 fish species.

Partitioning spatial component of ecological 
variation

A total of nine spatial variables, i.e., dbMEM eigenvec-
tors (Table 2), have been produced with  R2 of the global 
model = 0.484. Among them, four dbMEM eigenvectors 
have been forward selected (Table 2) at p < 0.001. In the 
final RDA model, two canonical axes are significant, i.e., 
RDA 1 (Axes1) at p < 0.001 and RDA 2 (Axes 2) at p < 0.05 
(Table 2; Fig. 2), explaining the underlying spatial associa-
tion of sites resulting into species sorting in these selected 
freshwater habitats. It appears that Axes 1 (Fig. 2) indicates 
substantial positive spatial influence on the species assem-
blages around the upper stretches of most of these freshwater 
reaches confined to the TED ecoregion. However, Axes 2 
(Fig. 2) indicates a secondary spatial pattern occurring spe-
cifically in River Teesta and its tributaries around the mid 
altitudinal zone.

In variation partitioning, the selected spatial vari-
ables significantly influence the fish species variation 
in the partial RDA model at p < 0.001 (See Supporting 

Table 2  Details of analysis 
uncovering the broad-
scale spatial pattern of fish 
assemblage in the freshwater 
river system of Terai–Dooars 
ecoregion, Eastern Himalayas

¶ dbMEM Distance-based Moran’s eigenvector, MEM Moran’s eigenvector, RDA Redundancy analysis

Sl. No. Features Values Names P value

1. Number of dbMEM produced 9 MEM 1 to MEM 9 –
2. Number of forward selected dbMEM 4 MEM 1, MEM 2, MEM 3 & MEM 5 P < 0.001
3. Number of RDA axes explained by 

selected dbMEM
2 RDA Axes 1 & RDA Axes 2 P < 0.001 

(for Axes 
1)

P < 0.05 
(for Axes 
2)
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Information: Table S3). The purely spatial components 
have explained 22%, while purely environmental factors 
have explained the variation of 11%. However, they both 
cumulatively address 2% of the total constrained varia-
tion (Fig. 3).

Additive components of beta dissimilarity

The higher LCBD values are projected in the upper 
stretches of River Chel, Neora, Murti, Jaldhaka, and mid 
altitudinal reaches of River Teesta (Fig. 4a). RDA Axes 
1 depicting substantial spatial patterns in the sites are 
highly correlated (Pearson’s r > 0.8) with the respec-
tive LCBD values (Fig. 4b). The higher SCBD values 
are observed for 54 fish species. The top ten fish species 
with significant contribution are Neolissochilus hexasti-
chus, Neolissochilus hexagonolepis, Garra lamta, Tor tor, 
Badis badis, Devario aequipinnatus, Garra annandalei, 
Crossocheilus latius, Amblyceps mangois, and Barilius 
vagra (Fig. 5).

Boosted regression models

A Pearson’s correlation test has identified the highly corre-
lated predictors among fifteen predictor environmental vari-
ables. As the highly correlated variables would increase the 
uncertainty in the model and decrease robustness, they were 
removed from the predictor set (See Supporting Informa-
tion: Fig. S1). Therefore, eight variables have been retained, 
which are annual mean temperature (B1), annual precipita-
tion (B12), precipitation of driest month (B14), slope (SL), 
stream order (SO), land cover (LC), upland & valley bottom 
characteristics (UV) and soil sediment (SS).

B14, SO, UV, LC, B1, B12, and SL have a more substan-
tial influence in the spatial model (Table 3), explaining Axes 
1 with BRT (See Supporting Information: Fig. S3). How-
ever, B12, UV, B14, SO, LC & B1 are relevant (Table 3) to 
explain Axes 2 in the BRT model (See Supporting Informa-
tion: Fig. S3). Therefore, B14, B12, B1, SO, UV, and LC are 
cumulatively responsible for the underlying spatial profile 
in the freshwater habitats of differential fish species assem-
blage. On the other note, LCBD values of these freshwater 

Fig. 2  Significant canonical axis of redundancy analysis: Axes 1 and 
2 of four forward selected dbMEM eigenvectors in Distance-based 
Moran’s Eigenvector Maps (dbMEM) analysis explaining the spatial 
association of freshwater habitats regarding differential fish assem-

blages in the freshwater network of sub-Himalayan Terai–Dooars 
ecoregion. (Darker and larger the circle indicates the larger and posi-
tive eigenvalues depicting stronger positive spatial association)
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Fig. 3  Variation partitioning of environmental and spatial variables explaining piscine assemblages in the freshwater network of sub-Himalayan 
Terai–Dooars ecoregion

Fig. 4  a Local contribution to beta diversity (LCBD) values of fresh-
water habitats in the freshwater network of sub-Himalayan Terai–
Dooars ecoregion (Larger the circle indicates the higher values). b 
Correlation between the LCBD values and significant RDA axes (A1: 

Axes1 & A2: Axes 2) of the spatial model depicting the spatial asso-
ciation of freshwater habitats in the sub-Himalayan Terai–Dooars 
ecoregion
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habitats are best explained by B14, SO & B1 (Table 3) in the 
BRT model (See Supporting Information: Fig. S3).

The projected spatial map of LCBD (Fig. 6) following the 
best trees projects higher values in the upstream reaches of 
River Jaldhaka, Murti, Chel, Neora. Comparatively, lower 
LCBD values are dispersed around the plains of Terai and 
Dooars, confined into the district of Jalpaiguri and Cooch 
Bihar. Moderate LCBD values are predicted within mid alti-
tudinal stretches of River Teesta.

Discussion

In this study, a prominent spatial association determining 
the fish assemblages among the water reaches is observed. 
Such spatial features contribute at large to the differential 
fish species assemblage in these freshwater habitats. At the 
same time, they are substantially associated with climatic 
(precipitation of driest month, annual precipitation, annual 
mean temperature), topographical (stream order), substrate 
(upland & valley bottom characteristics), and land cover 
(landcover) characteristics of these freshwater reaches of 
TED ecoregion of NB. On the other note, the LCBD profile 

is aligned with axes 1 of significant spatial association of 
these freshwater habitats. However, such profile is best 
explained by climatic (precipitation of driest month, annual 
mean temperature) and topographical (stream order) attrib-
utes. Furthermore, higher SCBD values emphasized 54 fish 
species which are differentially distributed among these 
freshwater reaches of the TED ecoregion of NB.

The freshwater habitats of this study belong to different 
freshwater river reaches that are not necessarily connected 
(Fig. 1). Our result suggests a spatial metacommunity struc-
ture among the freshwater habitats presumed to result in 
these broad-scale spatial associations (Grönroos et al. 2013; 
Heino et al. 2015a, b; Thompson and Townsend 2006). How-
ever, the more delicate spatial association is not achieved as 
they are hard to discern (Ali et al. 2010; Legendre and Leg-
endre 2012) and might be associated with local mass effect 
dynamics (Borcard and Legendre 2002; Heino et al. 2015a, 
b). Such an approach is apposite considering the identifi-
cation of broad-scale spatial structures and coarse-scale 
resolution of relevant environmental variables explaining 
them. Broad-scale spatial variables tend to be associated 
with dispersal limitation (Heino et al. 2015a, b; Heino et al. 
2015a, b; López‐Delgado et al. 2019) as the watercourse 

Fig. 5  List of 54 fish species with higher species contribution to beta diversity (SCBD) values in the freshwater network of sub-Himalayan 
Terai–Dooars ecoregion. (For species names, see Supporting Information: Table S2)

Table 3  Modelling output with boosted regression trees using environmental predictors of fish assemblage in the freshwater river system of 
Terai–Dooars ecoregion, Eastern Himalayas

RDA Redundancy analysis, LCBD Local contribution to β diversity

Sl. No. Feature modeled with 
boosted regression 
trees

Cross-valida-
tion correla-
tion

Pseudo determi-
nant coefficient 
(D2)

Variables with a higher relative influence (> 5)

1. RDA Axes 1 0.13 ± 0.03 0.86 Precipitation of the driest month, Stream order, Upland & valley bottom, 
Landcover, Annual mean temperature, Annual precipitation & Slope

2. RDA Axes 2 0.13 ± 0.04 0.85 Annual precipitation, Upland & valley bottom, Precipitation of the driest 
month, Stream order, Landcover & Annual mean temperature

3. LCBD 0.05 ± 0.24 1 Precipitation of the driest month, Stream order & Annual mean tempera-
ture
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distances are more stringent for stream organisms (Altermatt 
2013). Therefore, the community dynamics of each habitat 
rely significantly upon spatial autocorrelation (SA) (Shurin 
et al. 2009) than changes in rates of movements.

The results indicate a substantial role of climate, topogra-
phy, landscape, and substrate features behind the prominent 
positive spatial association of the habitats. Such findings are 
relevant as a significant geomorphological recess has been 
observed in the east of River Teesta to River Jaldhaka–Diana 
channel, further segmented by Chel–Mal, Mal–Murti, Jald-
haka–Gathia interfluves (Goswami et al. 2019). This region 
is predominantly manifested by a transitional zone between 
the Eastern Himalayan mountains and the upper Gangetic 
plains (Chakraborty and Datta 2013), where a marked differ-
ence exists in annual temperature, precipitation, and climate 
extremities (Das 2020; Panja et al. 2021b, a; Rudra 2018; 
Sam and Chakma 2019). The substrate composition of fresh-
water channels is characterized by the piedmont fans, chan-
nel deposition, frequent shifting of courses (Chakraborty 
and Datta 2013; Goswami et al. 2019) which cumulatively 

modulated by topography. Such characteristics might have 
resulted in the recurrence of high and low flow regimes and 
a pronounced temperature gradient in these freshwater hab-
itats (Bandyopadhyay et al. 2014; Chakraborty and Datta 
2013; Goswami et al. 2012a, b; Guha et al. 2007; Panja et al. 
2020). The spatial structure in the mid altitudinal freshwater 
habitats of River Teesta and Chel might be associated with 
the stream frequency, braiding, and drainage density (Akhter 
et al. 2019; Dhali et al. 2020) which has previously exhib-
ited a positive spatial pattern autocorrelation (Akhter et al. 
2019). Goswami et al. (2019) explained that two extrinsic 
factors, i.e., tectonism and climate coupled with extreme 
anthropogenic events (Dhali et al. 2020), have been causing 
land cover changes and interfluve characteristics of these riv-
ers, a significant modulator of the observed spatial structures 
of our results. Such variables are presumed to create the 
spatial association and segregation among these freshwater 
reaches by modulating flow regimes, pH, dissolved oxygen, 
turbidity, and the ecological integrity of the river channel 
and aquatic habitats (Akhter et al. 2019; Comiti et al. 2011; 

Fig. 6  Projection of spatial map of local contribution to beta diversity (LCBD) of freshwater habitats in the freshwater network of sub-Himala-
yan Terai–Dooars ecoregion
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Dhali et al. 2020), leading to more spatially structured pis-
cine assemblages. Such finding is further strengthened by 
the higher influence of spatial variables than environmental 
factors in variation partitioning (Fig. 3) (de Campos et al. 
2019; Erős et al. 2012; Leonidas et al. 2020). However, the 
unexplained remnant variation is comparatively large and 
could be often described for several local factors, biotic 
interactions, and their lack of fidelity to include in the study 
(López‐Delgado et al. 2019; Perez Rocha et al. 2018).

The degree of dispersal limitation (Cottenie 2005; 
Villéger et al. 2013) is arduous to fathom for each fish spe-
cies; instead, the focus has been given to its additive parti-
tions of beta dissimilarities, i.e., LCBD and SCBD (Heino 
2011; Leibold et al. 2004). Previously LCBD indices were 
accounted to assess the uniqueness of the aquatic habitats 
of a fish community (Legendre and De Cáceres 2013). The 
higher LCBD values indicate unusual species composition 
and species-poor sites requiring ecological restoration (Leg-
endre and De Cáceres 2013; Panja et al. 2021a; Vilmi et al. 
2017), which is reflected for the freshwater habitats of the 
transitional zone between the Eastern Himalayan mountains 
and the upper Gangetic plains. Such a pattern is aligned with 
the spatial association of the sites. This alignment is also 
supported by the positive correlation between significant 
spatial Axes 1 and LCBD values. Therefore, the LCBD 
analysis captures the broad-scale spatial association of these 
freshwater habitats and infers factual information about 
these freshwater habitats. The LCBD attribute is explained 
by precipitation of driest month, annual mean temperature, 
and stream order. The facts support these findings that most 
Eastern Himalayan foothill rivers become feeble during the 
post-monsoon season due to low discharge (Ayaz et al. 2018; 
Dhali et al. 2020; Rudra 2018). These torrential freshwa-
ter reaches harbor strong temperature gradients as they are 
replenished by snow-melt waters and originated under dense 
canopies at higher elevations (Akhter et al. 2019; Barman 
and Das 2014; Bhatt et al. 2016, 2012; Das 2020; Panja 
et al. 2020; Rudra 2018). Following the requirements colder, 
higher flow modulated oxygen-rich habitats of some char-
acteristically adapted fish species; the assemblages might 
become spatially segregated (Jackson et al. 2001), leading 
to unique assemblage structures. On the other note, higher 
order streams are prevalent in the torrential upland rivers, 
viz. Chel, Neora, Mal, and Murti, while lower order streams 
are predominant in large-scale rivers, such as River Jaldhaka 
and Teesta (Akhter et al. 2019; Dhali et al. 2020; Goswami 
et al. 2019). The lower stream orders are usually negatively 
associated with species richness (Beecher et al. 1988; Platts 
1979). Therefore, stream order has a significant relationship 
with LCBD, negatively correlated species richness (Leg-
endre and De Cáceres 2013). However, these variables are 
similar to the variables explaining spatial association except 
for substrate and land cover attributes. Such difference is 

presumed to be raised due to the more direct role of sub-
strate and land cover in shaping these freshwater habitats 
(Akhter et al. 2019; Ali et al. 2010; Biswas and Paul 2020; 
Dhali et al. 2020; Goswami et al. 2019) in comparison to 
the differential distribution of fish species (Chakrabarty and 
Homechaudhuri 2015; Panja et al.2021b, 2020).

It is apparent that these habitat attributes have facili-
tated the enriched assemblage of rare and characteristically 
adapted fish species from genus Neolissocheilus, Garra, 
Tor, Devario, Barilius, Psilorhynchus, Crossochelius, and 
Glyptothorax of the EH (Barman and Das 2014; Chakra-
barty and Homechaudhuri 2015; Goswami et al. 2012a; 
Panja et al. 2021a, b). The SCBD analysis emphasized these 
genera, which have driven the higher contribution towards 
the beta dissimilarity (Fig. 5), resulting in higher LCBD of 
their habitats (Heino and Grönroos 2017; Legendre and De 
Cáceres 2013). SCBD values also associate with general 
species characteristics (for example, species niche & degree 
of occupancy) and adaptive traits of a species (Heino and 
Grönroos 2017; Legendre and De Cáceres 2013). Consider-
ing the top contributors in SCBD analysis, Neolissocheilus 
hexastichus and N. hexagonolepis are migratory Mahseer 
fish species that prefer riffles and pools, characterized by the 
higher water current and substrate coarseness (Arunachalam 
2010; Froese and Pauly 2011; IUCN 2020). They are also 
experiencing threats of extinction, being categorized as near 
threatened in IUCN red list (IUCN 2020). Although least 
concerned (IUCN 2020), Garra lamta and G. annandalei 
dwell in swift and clear torrential hill streams and exhibit 
a high degree of adaptation against rocky substratum (Fro-
ese and Pauly 2011; Nagar et al. 2012). Unlike the other 
Mahseer species, Tor tor inhabits rapid streams with rocky 
substrate exhibiting upstream spawning migration into 
more oxygen-rich cascades, riffles, deep pools, and reser-
voirs (Froese and Pauly 2011; Menon 1999). Amblyceps 
mangois, Devario aequipinnatus, Barilius vagra, and Cros-
socheilus latius also inhabit hill streams and prefer mid-hill 
clear waters with coarser bedrock pebbles, gravel, and stones 
(Froese and Pauly 2011; Menon 1999; Talwar and Jhingran 
1991). In contrast, Badis badis dwells in tropical freshwa-
ters with a moderate temperature and lower pH. Therefore, 
the choice of freshwater habitats characterized by a similar 
range of variables in these fish species might have led to 
spatial aggregation and unique or rare species composition 
in the upper reaches of River Chel, Neora, Murti, Jaldhaka, 
and upper-west stretches of River Teesta. Such inference 
is reflected in both the spatial and LCBD models, which 
are fairly explained by characteristic climate, topography, 
substrate, and land cover attributes. However, the predictive 
model with LCBD is overfitted, indicating reduced fidelity 
and the need for higher resolution studies in his field (Elith 
et al. 2008; Nieto and Mélin 2017). Previous studies (Milardi 
et al. 2018, 2019) accorded a higher native species richness 
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in upland sites with significant SCBD than exotic fish spe-
cies. Besides, exotic fishes usually override the critical envi-
ronmental drivers (relevant to native) as they uniquely rely 
upon geography and human-mediated dispersal limitations 
(Gavioli et al. 2019; Leprieur et al. 2009). However, evi-
dence regarding the impact of exotic fishes on functional 
diversity, predation, and trophic overlap with the native fish 
lack from this region; therefore, the present inferences are 
solely based on native fish species and presumed to be less 
moderated by exotics considering the spatial scale of the 
study (Davies et al. 2005; Gavioli et al. 2019; Milardi et al. 
2019).

The torrential freshwater reaches of these vast TED 
ecoregions are experiencing a frequent change in river 
courses with increasing habitation and altered land use pat-
tern (Chakraborty and Datta 2013; Dhali et al. 2020; Naha 
et al. 2019). A severe trend of deforestation due to natural 
and anthropogenic hazards regarding replacement, settle-
ments, mining, pebble displacements, and cultivation is 
leading to increased siltation and vulnerability of these river 
beds (Akhter et al. 2019; Chakraborty and Datta 2013; Dhali 
et al. 2020; Goswami et al. 2012a, b; Naha et al. 2019; Panja 
et al. 2020; Rudra 2018). Climate change would aggravate 
such perils more disastrously, leading to severe degradation 
of this spatially structured freshwater habitat with unique 
or rare piscine assemblage (Barman and Das 2014; Gos-
wami et al. 2012a, b; Panja et al. 2021b). Due to their spatial 
association and dispersal limitation, a wide range of fish 
species will be experiencing immense threats, while their 
freshwater habitat will be in jeopardy in the future (Barman 
and Das 2014; Bhatt et al. 2016, 2012; Bhattacharya 2019; 
Chakraborty and Datta 2013; Goswami et al. 2012a; Naha 
et al. 2019; Panja et al. 2020; Rudra 2018).

Conclusion

This study reveals the underlying control of freshwater 
habitats resulting in freshwater fish species sorting as a first 
of its kind information in the TED ecoregion of the EH. 
The decomposition of spatial models and local contribu-
tion has led to identifying the spatial range of freshwater 
habitats with unique assemblage and higher eco-restoration 
values. Such habitats must be prioritized for monitoring and 
conservation assessments following constant alteration in 
tectonic, climate, and anthropogenic events. The inferences 
also raise concern for managing and restoring these charac-
teristic freshwater habitats that share significant association 
and more nested assemblage of unique and rare fish species. 
Therefore, using spatial decomposition and additive beta 
partitions would be beneficial to demarcate the habitats and 
identify the characteristically adapted species for conserva-
tion and prioritization. A future application of such analytics 

through a multi-taxa approach across the expansive land-
scape would reveal important information on the freshwater 
habitats of ecologically sensitive ecoregion of EH.
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