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Abstract Impacts of invasive species may manifest most

strongly if these organisms are highly distinct functionally

from the native species they often replace. Yet, should we

expect functional differences between native and invasive

species of generalist organisms like freshwater crayfish?

Some existing evidence has pointed to native and invasive

crayfish species as ecologically equivalent. We contribute

to this literature by comparing the trophic niches of the

globally invasive crayfishes Pacifastacus leniusculus and

Procambarus clarkii, by applying carbon and nitrogen

stable isotope analyses to replicated allopatric (alone) and

sympatric (together) lake populations in western Wash-

ington State, USA, where P. clarkii has been recently

introduced and P. leniusculus is presumed native. Our

study corrected for potential inherent differences in lake

food webs as a consequence of lake abiotic or biotic

characteristics using random effects in linear mixed effects

models. We found that although overall trophic niche size

or area of these species was not significantly different, P.

leniusculus was significantly higher in trophic position than

P. clarkii when also accounting for the effects of body size,

sex, and lakes as random effects. This pattern of increased

trophic position of P. leniusculus over P. clarkii was

conserved over time in one sympatric lake for which we

had data over multiple years. Cumulatively, our findings

point to trophic differences between the globally cos-

mopolitan crayfishes P. leniusculus and P. clarkii, partic-

ularly when accounting for the ways that ecosystem

context can affect food web structure of communities and

the trophic resources available to these consumers.
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Bellamya chinensis � Niche width � Non-native species �
Red swamp crayfish � Signal crayfish � Trophic position �
Urban lakes � Washington State

Introduction

Introduced crayfish have been attributed as among the most

detrimental freshwater invasive species globally (Gallardo

et al. 2016), negatively impacting a diversity of taxa across

lotic and lentic food webs, including aquatic macrophytes,

native crayfish species, aquatic invertebrates, and verte-

brates including fish and amphibians (Matsuzaki et al.

2009; Lodge et al. 2012; Twardochleb et al. 2013). The

breadth of these impacts primarily manifests as a conse-

quence of the omnivorous or polytrophic feeding habits of

crayfish (Olsen et al. 1991; Dorn and Wojdak 2004; Rey-

nolds et al. 2013), although the effects of invasive crayfish

can vary with habitat or ecosystem context (Peters and

Lodge 2013; Magoulick 2014; Ruokonen et al. 2014). For

example, the most severe whole-ecosystem impacts of

invasive crayfish are often observed from regions that

historically lacked native crayfish or analogous decapod
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crustaceans altogether (Gamradt and Kats 1996; Geiger

et al. 2005; Moore et al. 2012; Usio et al. 2013). Alterna-

tively, in those ecosystems with native crayfish species,

invasive crayfish have been observed to often achieve

higher abundances or densities than native congeners

(Hansen et al. 2013; Kreps et al. 2016), and these higher

abundances should translate into greater invader impacts or

interaction strengths (Kumschick et al. 2015). However,

owing to the omnivorous nature of crayfish in general,

should we anticipate ecological equivalence (i.e., func-

tional redundancy) between crayfish species when invaders

are not more abundant than native congeners?

Researchers have sought to answer this question by

applying tools ranging from laboratory behavioral trials

(e.g., Renai and Gherardi 2004), to mesocosm experiments

(e.g., Usio et al. 2006), to field sampling of crayfish prey

communities (e.g., Ercoli et al. 2015), to stable isotope

analysis of crayfish trophic function or similarity (e.g.,

Olsson et al. 2009), to studies that have combined some of

the above approaches (e.g., Jackson et al. 2014). To date,

several meta-analyses of laboratory and field experiments

comparing interactions of native and invasive crayfishes

with their food webs have synthesized this literature, and

generally found similar effect sizes between crayfish spe-

cies irrespective of origin (Twardochleb et al. 2013; James

et al. 2014). Efforts to allocate limited resources to prevent

and manage biological invasions need reliable information

on the particular species and habitat combinations where

the most severe unwanted effects will manifest (Yokomizo

et al. 2009; Hauser and McCarthy 2009). Accordingly, the

apparent similarity in ecological function between many

native and invasive crayfish species requires ongoing

investigation and clarification in order to prioritize man-

agement activities.

One reason that the behavioral, enclosure, and meso-

cosm experiments synthesized in the above meta-analyses

have largely failed to find consistent ecological differences

between native and invasive crayfishes may be that they

occur over too restricted spatial and temporal scales to

accurately reflect actual ecological processes and associ-

ated subtle, persistent distinctions between these species

(Lodge et al. 1998). Stable isotope analysis has emerged

over recent decades as one of the primary tools used to

infer ecological and trophic interactions between species

under natural field conditions (Boecklen et al. 2011), with

most tissue-derived stable isotope samples reflecting

months to years of foraging behavior for focal organisms

(Vander Zanden et al. 2015). For example, stable isotopes

of carbon and nitrogen can be used to reflect energy source

origins and trophic positions of organisms in freshwater

lakes (Vander Zanden et al. 1999), and can be subsequently

applied to evaluate and compare the trophic niche of spe-

cies (Layman et al. 2007). When used to compare trophic

function of native and invasive crayfish species, these

stable isotope tools have produced inconsistent results,

with some studies finding pronounced functional differ-

ences (e.g., Olsson et al. 2009; Jackson et al. 2014) and

others a high degree of trophic similarity or niche overlap

(e.g., Ercoli et al. 2014; Magoulick and Piercey 2016). Yet

this emerging literature is small, and clearly needs further

inquiry to evaluate whether native and invasive crayfishes

are ecologically equivalent.

The two most globally invasive crayfish species are the

signal crayfish Pacifastacus leniusculus and the red swamp

crayfish Procambarus clarkii (Hobbs et al. 1989; Lodge

et al. 2012). Pacifastacus leniusculus is native to the

Columbia River drainage and some of the adjacent Pacific

Northwest region of North America (Larson et al. 2012),

and has been introduced elsewhere in the western United

States, as well as to Japan and widely throughout Europe

(Usio et al. 2007; Lodge et al. 2012). Impacts of P.

leniusculus on recipient communities have included severe

population declines and even one likely extinction of native

crayfish species (Bouchard 1977; Light et al. 1995; Nakata

and Goshima 2003), negative effects on other freshwater

invertebrates and fish (Matsuzaki et al. 2012; Machida and

Akiyama 2013; Wood et al. 2016), and changes to

ecosystem processes owing to the burrowing and foraging

behaviors of this species (Harvey et al. 2011). Procam-

barus clarkii is native to the southern United States and

northeastern Mexico, and has been introduced to all con-

tinents except Antarctica and Australia, with particularly

harmful invasions in the western United States, throughout

Europe, and in Asia (Hobbs et al. 1989; Lodge et al. 2012).

As a few examples, invasion by P. clarkii has transformed

the food webs and ecosystem processes of Mediterranean

wetlands in Europe (Geiger et al. 2005), and caused

declines of vertebrate species like stream-dwelling newts

(Gamradt and Kats 1996). Despite originating from dis-

parate regions in North America, P. leniusculus and P.

clarkii share some overlapping climate tolerances (Capinha

et al. 2011; Larson and Olden 2012), and have been found

occurring in sympatry or close proximity in some regions,

like the Pacific Northwest region of North America (Han-

shew and Garcia 2012; Pearl et al. 2013). These occur-

rences provide opportunities to compare the trophic

function or niche overlap of the two most globally wide-

spread invasive crayfish species under shared habitat cir-

cumstances, and evaluate whether these crayfish species

are ecologically equivalent.

We used stable isotopes to compare the trophic niche of

P. leniusculus and P. clarkii in a series of replicated allo-

patric (each species occurring in isolation) and sympatric

(both species occurring together) lakes located in the Puget

Sound lowlands of Washington State, USA (Larson and

Olden 2013; Twardochleb and Olden 2016). Our analysis
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focused on comparing trophic niche size and similarity

between P. leniusculus and P. clarkii using field, laboratory,

and statistical approaches similar to a number of recent such

studies on native and invasive crayfish species (e.g., Olsson

et al. 2009; Ercoli et al. 2014; Jackson et al. 2014). Our

comparisons were made between populations of a P. clarkii

invasion initially discovered in 2000 (Mueller 2001) and

locations in the putative native range of P. leniusculus,

although a recent analysis of molecular and historical data

suggests that P. leniusculus was introduced to this recently

glaciated lake district by humans from a refugia roughly

100 km to the south sometime over the past century (Larson

et al. 2012). Together, our study contributes to the devel-

oping literature on ecological equivalence between crayfish

species, with a focus on the two most globally cosmopolitan

invaders from this taxonomic group.

Methods

Study sites

The Puget Sound lowlands of Washington State were

glaciated by a lobe of the Cordilleran ice sheet during the

last glacial maxima, leaving behind hundreds of natural

lakes that have recently experienced varying degrees of

land development in association with urban and ex-urban

growth (Alberti et al. 2007). These lakes have been invaded

by a variety of non-native freshwater species owing to

human trade in live organisms and historical ecosystem

management practices (i.e., fish stocking), including at

least four species of non-native crayfish as documented by

Larson and Olden (2013). Larson and Olden (2013) con-

ducted a systematic survey of 100 Puget Sound lowland

lakes during the summers of 2007–2009 using a sampling

protocol of 15–20 baited traps per lake to estimate crayfish

relative abundance, measured as catch-per-unit effort

(CPUE) or the average number of crayfish of each species

per trap. We used data from the 2007 and 2008 sampling

summers to identify eleven lakes for this stable isotope

study, stratified as the only two lakes with known sym-

patric populations of P. leniusculus and P. clarkii at the

time, three lakes with allopatric populations of each spe-

cies, and three lakes with no previously detected crayfish

populations (Fig. 1). Inclusion of these presumed no

crayfish lakes was intended to allow for examination of

how crayfish presence and crayfish species identity might

affect trophic function of other members of the community

like fish species (Nilsson et al. 2012; Kreps et al. 2016).

Effort was made to select study lakes according to

similarities in physicochemical and watershed character-

istics (Table 1). Relative abundance of both crayfish spe-

cies was low relative to what has been observed for some

invasive crayfish species in other systems (e.g., Kreps et al.

2016), ranging from CPUE of 0.05–0.33 for P. leniusculus

and 0.15–0.75 for P. clarkii. These CPUE values were on

the low end of what was observed in 48 other lakes where

P. leniusculus was detected by Larson and Olden (2013),

but higher than six other lakes where P. clarkii was col-

lected by the same study (Fig. 1). Study lakes were gen-

erally relatively small, with shorelines that had experienced

a high degree (30–95 %) of urbanization or human devel-

opment, as visually estimated by the field sampling crew.

We measured Secchi disk depth (m) as a metric of lake

clarity during field sampling, used shoreline development

index (SDI; ratio of lake perimeter to perimeter of a per-

fectly circular lake of the same area) values from Bortleson

et al. (1976) to reflect littoral zone complexity, and com-

piled measures of water quality and chemistry (Table 1)

from average epilimnetic values measured between 1996

and 2008 at each lake by government management agen-

cies (Larson and Olden 2013).

Field sampling

The eleven study lakes were sampled between July 17 and

September 10, 2009. We collected basal resources includ-

ing benthic algae, aquatic macrophytes, and leaf litter from

the littoral zone by hand while snorkeling, or with D-frame

nets nearshore and an Ekman grab from a boat offshore that

were primarily used to sample the aquatic macroinverte-

brate community at multiple locations in each lake. We

field sorted these collected organisms to morpho-species or

coarse taxonomic categories (e.g., taxonomic level

‘order’), kept them in plastic bags on ice during sampling,

and then immediately transported samples back to the

laboratory for storage in a freezer in advance of laboratory

stable isotope analysis. We collected crayfish and small fish

using overnight sets of Gee minnow traps (0.42 m long by

0.21 m diameter) baited with a half cup of dry dog food,

using 20–30 traps (dependent on lake size) with 6.0-cm

openings to collect primarily crayfish and 9–10 traps

(owing to trap theft) with 2.5-cm openings to collect pri-

marily fish. Traps were set at depths between 0.5 and

6.0 m, and distributed around the entire lake perimeter,

maintaining a minimum distance of 10 m between any two

traps.

We collected larger fish using overnight sets of three

hoop nets (7.9 m wing length, five hoops 0.8 m diameter)

dispersed around lake perimeters and baited with punctured

cans of wet cat food, and overnight sets of an experimental

gill net (58.5 m length by 1.8 m height; six panels with 25,

32, 38, 51, 64, and 76 mm mesh). Collected fish were

identified to species, measured to total length (mm), and a

subset of individuals of each species across the available

size range were euthanized and transported to the
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laboratory, where they were frozen until stable isotope

processing. All crayfish of each species were sexed, mea-

sured to total carapace length (mm) using vernier calipers,

and subsequently euthanized, transported to the laboratory,

and frozen as per fish. Collections of crayfish and fish were

made under Washington Department of Fish and Wildlife

Table 1 Study lakes with date sampled for biota, geographic coordinates, and physical characteristics categorized as those with signal crayfish

Pacifastacus leniusculus only, both crayfish in sympatry, red swamp crayfish Procambarus clarkii only, and no previously detected crayfish

Lake Date

sampled

Geographic coordinates Depth

(m)

SDI Secchi

(m)

Urban

(%)

Conductivity

(lS/cm)

TP

(lg/l)
Chl-a

(lg/l)
Latitude Longitude Area (Ha)

P. leniusculus

Killarney 8/17/2009 47.2867 -122.2909 9.7 4.6 1.82 2.9 60 54 38.2 6.7

Martha 7/22/2009 47.8512 -122.2446 23.1 14.6 1.33 5.4 80 99 15.6 1.9

Wilderness 8/10/2009 47.3726 -122.0344 27.9 11.6 1.53 5.1 50 65 16.0 3.2

Sympatric

Pine 8/24/2009 47.5866 -122.0448 34.8 11.9 1.84 6.5 80 72 9.6 3.1

Steel 8/13/2009 47.3269 -122.3029 18.6 7.3 1.41 2.3 80 76 14.8 5.2

P. clarkii

Five mile 9/10/2009 47.2717 -122.2872 15.4 9.8 1.34 1.5 60 56 18.1 7.6

North 7/17/2009 47.3051 -122.2896 22.7 10.4 1.62 4.3 30 55 12.1 6.5

Silver 8/19/2009 47.8904 -122.2120 42.9 15.5 1.25 4.1 90 38 5.0 5.2

No crayfish

Angle 7/23/2009 47.4261 -122.2883 41.7 15.8 1.53 8.2 95 72 11.0 3.0

Cottage 8/20/2009 47.7539 -122.0866 25.5 7.6 1.23 2.0 75 88 25.6 11.7

Star 8/12/2009 47.3547 -122.2889 14.2 15.2 1.33 5.2 85 84 9.6 2.7

Physical characteristics include area (Ha), maximum depth (m), shoreline development index (SDI), Secchi disk depth at time of sampling (m),

shoreline urbanization as visually estimated by the field sampling crew (%), and the water chemistry variables conductivity (lS/cm), total

phosphorus (lg/l), and chlorophyll-a (lg/l) as recent averages from governmental lake monitoring; see main text and Larson and Olden (2013)

for additional detail on lake physical characteristics

Fig. 1 Location of study lakes

in the vicinity of the city of

Seattle, Washington State, USA

(a), with the first two axes of a

principal component analysis

(PCA) of lake physical

attributes (Table 1) represented

in the inset (b), the relative

abundance of the crayfishes

Pacifastacus leniusculus and

Procambarus clarkii in study

lakes from preliminary data as

catch per unit effort (CPUE)

from baited traps (Electronic

Supplementary Material)

compared to all other lakes in

the region where these crayfish

were found (Larson and Olden

2013) (c), and the first two axes

of a correspondence analysis

(CA) of fish genus abundance

(Electronic Supplementary

Material) in study lakes from all

sampling gears combined (d)
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permit 07-323 and 08-344, and University of Washington

Institutional Animal Care and Use Committee permit

4172-04.

Stable isotope samples

We dissected fish muscle tissue from the lateral area pos-

terior to the operculum, and muscle tissue from the abdo-

men of crayfish consistent with Stenroth et al. (2006), for

use as stable isotope samples of these larger organisms. We

used whole organisms for benthic macroinvertebrates and

all collected biomass for basal resources; as an exception,

we used a subsample of muscle tissue from the foot of

larger snails (see below). Samples were dried at 60 �C for

24 h and then homogenized using a mortar and pestle. We

weighed approximately 1 mg of animal tissue and 2–3 mg

of plant tissue into tin capsules, and shipped samples to the

University of California-Davis Stable Isotope Laboratory

for dual carbon and nitrogen analysis using a PDZ Europa

ANCA-GSL elemental analyzer interfaced to a 20–20

isotope ratio mass spectrometer. Long-term standard

deviations of lab standards used at this facility have been

0.2 % for 13C and 0.3 % for 15N. Stable isotope ratios are

reported per convention in d notation as 13C/12C relative to

a Pee Dee belemnite standard and 15N/14N relative to an

atmospheric nitrogen standard.

Statistical analyses

We first used multivariate statistics to explore the similarity

of our sympatric, allopatric, and no crayfish lakes with

respect to both their abiotic attributes (Table 1) and fish

communities as observed in our field sampling (above;

Electronic Supplementary Materials). Lake attributes like

habitat area or productivity can affect trophic position and

resource use of consumers (Post et al. 2000; Larson et al.

2011), whereas some predatory fish species may affect the

distribution, abundance, and behavior of crayfish (Collins

et al. 1983; Edwards et al. 2013), and invasive crayfish may

in turn extirpate other fish species from lakes owing to

competition or predation (Dorn and Mittelbach 2004;

Kreps et al. 2016). We performed a principal component

analysis (PCA) on the lake abiotic attributes and a corre-

spondence analysis (CA) on total fish abundance from all

sampling gears aggregated to the genus level, with both

analyses conducted using the vegan library in R (R

Development Core Team 2008; Oksanen et al. 2016). We

visually evaluated the dispersion of our sympatric, allo-

patric, and no crayfish lake categories on the first two axes

from each of these ordinations.

Calculations of trophic position using stable isotopes

generally require comparison to a baseline organism; in

freshwater lakes, this comparison is most often made to

pelagic and/or littoral benthic primary consumers (trophic

position of two), because the isotopic values of primary

producers like phytoplankton or periphyton can be extre-

mely variable in space and time (see Vander Zanden et al.

1999; Post et al. 2000). Long-lived, large bodied primary

consumers average out this variability. For our study, we

used the non-native Chinese mystery snail Bellamya chi-

nensis to calculate trophic positions for other organisms

including P. leniusculus and P. clarkii. We used B. chi-

nensis because this large-bodied (up to 65 mm total length)

snail is both a grazer and filter feeder (Olden et al. 2013),

and consequently may reflect trophic baselines of both

pelagic and littoral benthic food webs simultaneously.

Further, both P. leniusculus and P. clarkii had been pre-

viously documented to feed on B. chinensis under labora-

tory conditions (Olden et al. 2009), and we collected B.

chinensis from 10 of our 11 study lakes, therefore stan-

dardizing trophic position calculations between study sites.

In the one lake where we did not collect B. chinensis

(Martha), we calculated trophic position using the average

of all other collected snails after correcting for their

mean - 1.36 % d15N depletion relative to B. chinensis

observed in the other 10 lakes (Electronic Supplementary

Material). We calculated trophic position for consumers as:

Trophic position (TP) ¼ d15NConsumer � d15NB:chinensis

3:4
þ 2;

ð1Þ

where 3.4 is an average discrimination or fractionation

factor (D) of d15N used between consumers of different

trophic levels (Minagawa and Wada 1984).

We compared trophic niche size and overlap between P.

leniusculus and P. clarkii by calculating small sample-size

corrected standard ellipse areas (SEAc) of trophic position

and a standardized d13C axis (below) using the siar library in

R (Jackson et al. 2011; Parnell and Jackson 2013). The

SEAc metric of isotopic niche area is analogous to standard

deviations for univariate data (Jackson et al. 2011). Our

stable isotope sample sizes were relatively low but generally

consistent for both crayfish species. Allopatric sample sizes

for P. leniusculus were 6 (Killarney), 7 (Wild), and 13

(Martha), sympatric sample sizes for this crayfish were 9

(Steel) and 10 (Pine), and the mean P. leniusculus

stable isotope sample size across five lakes was 9. Allopatric

sample sizes for P. clarkii were 4 (Five Mile), 8 (North), and

9 (Silver), whereas sympatric sample sizes for this crayfish

were 10 (Steel) and 20 (Pine), and the mean P. clarkii

stable isotope sample size across lakes was 10. See Dis-

cussion for some implications of these levels of replication

for our comparison of SEAc between crayfish species.

Consistent with Olsson et al. (2009), we standardized

d13C of crayfish samples relative to the d13C mean and
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range of all consumers collected from their lake in order to:

(a) place all populations on an equivalent d13C axis relative

to the breadth of available d13C sources from primary

producers in their originating community, and (b) scale

axes of trophic position and d13C over similar ranges with

respect to influence in calculating trophic niche area

(Larson et al. 2010). We standardized d13C using the

formula:

Standardizedd13C ¼ d13CConsumer � d13CLakeConsumerMean

d13CLakeConsumerMax � d13CLakeConsumerMin

:

ð2Þ

We compared trophic niche area as SEAc of P. lenius-

culus and P. clarkii with t-tests across all categories

combined (allopatric and sympatric), in order to have

enough degrees of freedom for statistical comparisons (i.e.,

there were only two sympatric lakes). We used the siar

library in R to calculate percent overlap of SEAc between

(and within; see below) species in some cases where

sympatric (Parnell and Jackson 2013).

To further evaluate factors affecting isotope values of

our individual crayfish, we performed linear mixed effects

models in the nlme library of R (Pinheiro et al. 2016), in

which we regressed crayfish trophic position and original

(non-standardized) d13C against factors including whether

or not the two crayfish species were occurring in sympatry

as defined above (allopatric = 0, sympatric = 1), crayfish

species (P. clarkii = 0, P. leniusculus = 1), sex

(male = 0, female = 1), and size (continuous as mm

carapace length). These models included individual lakes

as unordered random effects, to account for ways that

factors like ecosystem size, productivity, or disturbance

(e.g., degree of urbanization) have been observed to

influence the trophic ecology of freshwater consumers

(Post et al. 2000; Larson et al. 2011). Given our relatively

low level of replication at the lake level and the large

number of both abiotic and biotic lake attributes that might

affect crayfish trophic ecology, we used random effects to

control for this heterogeneity between our study sites in

general (Bolker et al. 2009). Finally, organism size can

influence trophic function through ontogenetic niche shifts,

a phenomenon that has been observed for crayfish (Larson

et al. 2010), and sex has similarly been observed to affect

crayfish behavior and trophic function under mesocosm

conditions (Usio and Townsend 2002).

Isotopic consistency in time

To evaluate whether isotopic niche relationships were

consistent between P. leniusculus and P. clarkii over time,

we used additional crayfish specimens collected by baited

trapping from one of our sympatric lakes (Pine) during

summer 2012. Five P. leniusculus and 6 P. clarkii collected

during this summer had stable isotope samples processed

and analyzed as above, and we calculated SEAc on original

d15N and d13C (rather than trophic position and standard-

ized d13C) for these and specimens of both species col-

lected from this lake in summer of 2009. We did not

convert to trophic position and standardized d13C owing to

differences in sampling protocols between years. We

compared trophic niche area and overlap between these

species within years, and within species between years, to

evaluate the stability or consistency of our conclusions

with respect to P. leniusculus and P. clarkii ecological

equivalence.

Results

Lake abiotic characteristics

Lakes supporting crayfish populations of either one or both

species demonstrated high environmental similarity. The

PCA on lake abiotic attributes (Table 1) resulted in a first

ordination axis that explained 46.5 % of the variation in the

dataset reflecting a gradient of more productive lakes

(negative) to larger and deeper lakes (positive), and 19.7 %

of variation on a second axis that captured a gradient of

more urban lakes with higher conductivity (positive) to

lakes with more complex shorelines per SDI (negative).

Lakes with P. leniusculus and P. clarkii both in allopatry

and sympatry were well dispersed over these gradients on

the PCA, although no crayfish lakes were generally more

urban (positive on second axis).

Lake biotic communities

Owing to disparities in fish communities between the study

lakes, we chose not to evaluate potential effects of crayfish

or particular crayfish species on fish trophic function. The

CA on fish abundance per genus collected from field

sampling (Electronic Supplementary Material) resulted in a

first dimension that explained 41.6 % of the variation in the

dataset on a gradient of lakes dominated by rock bass

Ambloplites rupestris (negative) relative to all other lakes

(more positive), and a second dimension that explained

27.4 % on a gradient of lakes with more Ictalurus,

Micropterus, and Pomoxis species (negative) to lakes

dominated by sunfishes of the genus Lepomis (Fig. 1). The

yellow perch Perca flavescens was common in many lakes

(Electronic Supplementary Material). Two of three no

crayfish lakes were characterized by Ambloplites, and none

of the a priori allopatric P. leniusculus or sympatric lakes

contained this species.
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In three cases we collected a single (Angle, Silver) or

two (Cottage) P. leniusculus from lakes where this crayfish

had not been detected in the previous 2007 and 2008 field

sampling (Electronic Supplementary Material). Due to the

overall rarity of P. leniusculus in these lakes, we retain our

a priori sympatric, allopatric, and no crayfish designations

in interpreting results. Similarly, as a consequence of the

inadequate replication of P. leniusculus samples in these

lakes, we excluded these four crayfish from our trophic

niche comparisons.

Crayfish trophic niches

There was no significant difference in trophic niche area

(as measured by SEAc) between all P. leniusculus and P.

clarkii populations (t4 = -0.728, P = 0.507; Fig. 2).

Trophic position and niche width as standardized d13C
varied widely among lake populations. We did observe

significant effects of species, size, and sex on crayfish

trophic position, and an effect of size on d13C; no signifi-

cant effect of whether or not crayfish occurred in sympatry

or allopatry was found for either measure of their trophic

niche (Table 2). Trophic position was higher for P.

leniusculus than P. clarkii, for female rather than male

crayfish, and increased with increasing crayfish body size.

Crayfish d13C depleted or decreased with increasing body

size, indicating a shift from enriched d13C associated with

littoral benthic primary producers (smaller crayfish) to

depleted d13C associated with pelagic primary producers or

terrestrial detritus (larger crayfish). We used sympatric

crayfish populations in Pine and Steel lakes to illustrate

increased trophic position of P. leniusculus over P. clarkii

when accounting for the effect of body size and inherent

food web differences between lakes (Fig. 3).

Crayfish isotopic consistency in time

Higher trophic position or d15N enrichment of P. lenius-

culus relative to P. clarkii was consistent over time

between 2009 and 2012 in Pine Lake (Fig. 4). Trophic

position of P. leniusculus was higher than P. clarkii in

2009, with only 0.8 % overlap of P. clarkii into the P.

leniusculus SEAc ellipse. Similarly, trophic position of P.

leniusculus was higher than P. clarkii in 2012, with 19.8 %

overlap of P. clarkii into the P. leniusculus SEAc ellipse.

The 2012 P. leniusculus SEAc overlapped with 9.3 % of

the 2009 P. leniusculus SEAc, whereas the 2012 P. clarkii

SEAc overlapped with 54.1 % of the 2009 P. clarkii SEAc.

Fig. 2 Small sample size standard ellipse areas (SEAc) from the

stable isotope analysis in R (siar) package, calculated on standardized

d13C and trophic position for the signal crayfish Pacifastacus

leniusculus (a), both crayfishes where sympatric (b), and the red

swamp crayfish Procambarus clarkii (c), using only those lakes where
more than three individuals were collected for a given species

Table 2 Results of linear mixed effects models (nlme library in R) of

crayfish trophic position (TP) and d13C values as predicted by crayfish

occurrence in sympatry (allopatric = 0, sympatric = 1), species (P.

clarkii = 0, P. leniusculus = 1), sex (male = 0, female = 1), and

size (continuous as mm carapace length) given as regression coeffi-

cients with standard errors (SE) and significance as P\ 0.001 (***),

P\ 0.010 (**), P\ 0.050 (*)

Trophic position (SE) d13C (SE)

Intercept 1.774 (0.215)*** -24.677 (1.078)***

Sympatric 0.240 (0.352) 2.509 (1.337)

Species 0.348 (0.071)*** 0.853 (0.474)

Sex 0.118 (0.052)* -0.086 (0.365)

Size 0.011 (0.0002)*** -0.052 (0.015)**

Pseudo-R2 0.760 0.570

Individual lakes (Table 1) are included in models as unordered ran-

dom effects, and only included in cases where more than three indi-

viduals were collected of focal crayfish species. Models used 96

observations (crayfish) in eight groups (lakes). Pseudo-R2 values of

models are estimated as the fit of estimated versus observed isotope

values for crayfish
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Procambarus clarkii trophic niche as SEAc was highly

consistent between years, whereas the trophic niche as

d13C seemingly narrowed for P. leniusculus in 2012

(Fig. 4).

Discussion

There are many instances where the introduction of an

invasive crayfish species is clearly and unfailingly unde-

sirable. Invasive crayfishes spread diseases including the

crayfish plague Aphanomyces astaci that has decimated

native European crayfishes (Jussila et al. 2015b), can have

strong negative effects on native taxa that are naı̈ve to

interactions with crayfish (Gamradt and Kats 1996), may

change the phenology of key ecosystem processes like

decomposition of detritus (Kobayashi et al. 2011; Alp et al.

2016), and can reach hyper-abundance relative to native

crayfish populations (Hansen et al. 2013; Kreps et al.

2016). Yet even outside of these particular examples, our

study contributes further evidence that not all crayfish

species are ecologically equivalent, despite their catego-

rization as omnivores or polytrophic generalists. Across

replicated lake ecosystems and irrespective of occurrence

in allopatry or sympatry, P. leniusculus was significantly

higher in trophic position than P. clarkii, and this distinc-

tion could have important implications for how these

organisms interact with and affect freshwater food webs

and communities. As one example, such differences in

trophic position between P. leniusculus and P. clarkii could

result in different roles as vectors of contaminants like

mercury in freshwater food webs (Johnson et al. 2014).

We believe that findings of our study are likely trans-

ferable over space and time, owing to the general

consistency in trophic niche position and size observed

between P. leniusculus and P. clarkii from 2009 to 2012 in

Pine Lake, as well as the previous results of Larson et al.

(2010). That study compared the trophic niche between the

native (Pacific Northwest) and invasive (Japan) range of P.

leniusculus, and found that although trophic function of

this crayfish could vary with ontogeny (size) and habitat

context, this range and pattern of trophic niche variability

were conserved between native and invasive regions.

Similar to our current study, Larson et al. (2010) found

increasing trophic position for larger crayfish, and d13C
depletion with increasing crayfish size. This pattern in d13C
may reflect a transition of larger crayfish towards more

reliance on terrestrial or detrital food sources in these lakes

(Larson et al. 2010, 2011). Furthermore, results of a recent

mesocosm experiment also supported a higher trophic

Fig. 3 Trophic position for Pacifastacus leniusculus and Procam-

barus clarkii in the sympatric Pine and Steel lakes regressed against

body size, with 95 % confidence intervals

Fig. 4 Stable isotope biplots for Pacifastacus leniusculus and

Procambarus clarkii in Pine Lake for the years 2009 and 2012 with

sample sizes in parantheses in legend (a), and small sample size-

corrected standard ellipse areas (SEAc) for these data calculated using

the stable isotope analysis in R package (b)
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position of P. leniusculus relative to P. clarkii. Olden et al.

(2009) compared consumption and handling times of the

Chinese mystery snail B. chinensis by both P. leniusculus

and P. clarkii, using specimens collected from the same

lakes as our current study. Olden et al. (2009) found that P.

leniusculus consumed more and larger B. chinensis relative

to P. clarkii. Accordingly, several lines of evidence —

feeding and mesocosm experiments as well as stable iso-

tope analysis — suggest a higher trophic position of P.

leniusculus than P. clarkii in lakes of the Puget Sound

lowlands of Washington State, USA.

Our findings conflict with those of Jackson et al. (2014),

who observed a higher trophic position of P. clarkii than P.

leniusculus using stable isotopes on crayfish sampled from

field sites in the United Kingdom. Notably, the comparison

of Jackson et al. (2014) was made between a single allo-

patric site for each species, with no controls or corrections

for potential ways that site differences may affect trophic

resources available to each of these crayfish populations.

Such differences may have been particularly severe, given

that P. clarkii isotope samples were from a population in a

lentic (pond) environment, whereas those for P. leniusculus

were from a population in a separate lotic (navigation

canal) environment. Our study is somewhat unique in being

able to include comparisons of trophic niches of two

invasive crayfish species in sympatry, as these studies are

most often made only on allopatric populations, owing to

the tendency of invasive crayfish to entirely displace native

congeners through mechanisms including competition and

disease transmission (Olsson et al. 2009; Ercoli et al.

2014).

Our results suggest that — where possible — these types

of comparisons should include some sympatric popula-

tions, and when only allopatric contrasts are possible, study

sites should be as closely matched by abiotic and biotic

characteristics as feasible. Further, tools like linear mixed

effects models can be deployed to accommodate site dif-

ferences or heterogeneity. However, a suite of additional

factors might contribute to variability in trophic function

even between populations of the same crayfish species,

ranging from behavioral syndromes associated with newly

introduced or spreading populations of invaders (Pintor

et al. 2008) to complicated effects of parasites or symbionts

on crayfish foraging behaviors and ecological interactions

(Reisinger et al. 2015; James et al. 2015). In particular, we

propose that some trophic niche similarity (Magoulick and

Piercey 2016) or distinctions (Jackson et al. 2014) observed

between crayfish species might be attributable to phylo-

genetic similarity, with closely related crayfish (e.g., within

the same genera) being more ecologically equivalent, and

more distantly related crayfish (e.g., in different genera or

families) being more dissimilar. Specific tests of this

phylogenetic niche conservatism hypothesis (Webb et al.

2002) using crayfish stable isotope data might be a fruitful

direction for future research (Comte et al. 2016).

Our results are dependent on consistent isotopic dis-

crimination factors (e.g., 3.4 for d15N; Eq. 1) between spe-

cies and diets, an assumption that has been called into

question over recent years (Caut et al. 2009). Few studies

have compared isotopic discrimination or fractionation fac-

tors for crayfish species, and those that have generally fail to

run experiments on adult crayfish long enough for organisms

to reach equilibrium with their diets (Carolan et al. 2012;

Jussila et al. 2015a). As one exception, Glon et al. (2016)

used fast-growing juvenile crayfish of two congeneric spe-

cies that were fed both an invertebrate and algal diet. Over

experimental durations generally long enough to reach iso-

topic equilibrium, Glon et al. (2016) found that d13C and

d15N discrimination factors were largely indistinguishable

between these species over both diets and in comparison to

literature values (3.4 for d15N) in the majority of cases.

However, more laboratory studies of isotopic discrimination

or fractionation factors for crayfish species and diet com-

binations would be valuable for future applications of this

tool. Furthermore, our relatively low sample sizes per

crayfish species and lake (four to 20 individuals) could

affect our results, particularly as the measure of trophic

niche size or area (SEAc) that we used provides less precise

estimates of the overall population trophic niche size at

lower levels of replication (Syväranta et al. 2013). This may

have contributed to our failure to find a significant difference

in SEAc between our two crayfish species (i.e., a type II

error), although we did have adequate statistical power to

detect a suite of other trophic distinctions among these

crayfishes (Table 2) and believe that both species do likely

share similarly large trophic niches given what we know of

their biology in general.

Pacifastacus leniusculus and P. clarkii are globally

cosmopolitan freshwater invaders that have spread to

multiple continents and may increasingly share sympatric

regions or even specific habitats in the future (Capinha

et al. 2011; Larson and Olden 2012). Our study provides

guidance to researchers and managers in other regions on

one type of ecological difference that should be anticipated

between these two crayfish species, although there are

certainly others (e.g., the superior burrowing ability of P.

clarkii; Gherardi 2006). We re-emphasize that both species

are highly plastic generalists or omnivores that can feed on

a variety of potential diet items, from high reliance on low

food-quality terrestrial detritus (Gutiérrez-Yurrita et al.

1998; Bondar et al. 2005) to predation on vertebrates

(Gamradt and Kats 1996; Matsuzaki et al. 2012) dependent

on community and ecosystem context, as well as crayfish

ontogeny or life history (see also Larson et al. 2010). Yet,

where all else is equal, our results predict that P. lenius-

culus will be higher in trophic position than P. clarkii
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under the same conditions, and we believe this distinction

is likely consistent in time and space owing to our past

work on niche conservatism for one of these crayfish

species (Larson et al. 2010). More work is needed on

ecological equivalence between native and invasive cray-

fish species in light of meta-analysis results (Twardochleb

et al. 2013; James et al. 2014) and some stable isotope

studies (e.g., Magoulick and Piercey 2016), but we lend

support to the expectation that one crayfish species is not

necessarily equal to another.
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