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Abstract A single artificial neural network (ANN) model

is inadequate for predicting phytoplankton biomass in a

large lake due to its high spatial heterogeneity. In this

study, ANN was combined with a clustering technique to

simulate phytoplankton biomass in a large lake (Lake

Poyang) using a 7-year dataset. Two ANN models (named

ANN_Downstream and ANN_Upstream) were developed

for the downstream and upstream areas based on the

k-means clustering results of 17 sampling sites at Lake

Poyang, China. They performed better than ANN_Poyang

(an ANN model for the whole lake), indicating the success

of the clustering technique in improving ANN models for

predicting phytoplankton biomass in different sub-regions

of the large lake. A sensitivity analysis based on

ANN_Downstream and ANN_Upstream showed that phy-

toplankton dynamics responded differently to environ-

mental variables in different sub-regions of Lake Poyang.

This case study demonstrated the good performance of

ANN models in describing phytoplankton dynamics, and

the potential of coupling ANN with a clustering technique

to describe the spatial heterogeneity of natural ecosystems.

Keywords Chlorophyll a � Artificial neural network �
Clustering � Lake Poyang � Sensitivity analysis

Introduction

Lake eutrophication is one of the most serious water

quality problems around the world. Phytoplankton biomass

(represented by chlorophyll a) is an important indicator for

evaluating the status of lake eutrophication, and has thus

been intensively investigated by lake researchers and

managers for decades (Harmel et al. 2015; Huang et al.

2015b; Mooij et al. 2010). Modeling chlorophyll a (Chl a)

helps us to understand the influence of various environ-

mental variables on phytoplankton dynamics, and thus

support lake managers in taking measures to combat lake

eutrophication (Huang et al. 2012b, 2015a). It is acceptable

to assume that Chl a is homogeneous in small lakes (Mooij

et al. 2007). However, in large lakes (e.g., Lake Erie and

Lake Taihu), Chl a dynamics are highly heterogeneous

(Huang et al. 2012a; Zhang et al. 2008). The ability to

describe the spatial heterogeneity of Chl a in these large

lakes is thus needed.

Simple regression models have been widely used to

predict phytoplankton biomass. However, their model fits

are generally unsatisfactory due to the non-linear rela-

tionship between Chl a and other environmental variables

(Huszar et al. 2006; Phillips et al. 2008). Mechanistic

models describe biological and physical processes of

phytoplankton explicitly (Jørgensen 2010; Robson 2014).

However, their applications are constrained by the re-

quirement for adequate understanding of phytoplankton

dynamics (Huang et al. 2014). As an alternative to re-

gression and mechanistic models, artificial neural network

(ANN) models were demonstrated to have high potential in

modeling highly non-linear and complex natural systems

(Panda et al. 2010; Rao and Alvarruiz 2007; Singh et al.

2009). They have thus been increasingly used to forecast

water quality in complex aquatic ecosystems (Jeong et al.
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2008; Wu et al. 2014a). Their methodological issues (e.g.,

determination of network architecture and choice of per-

formance criteria) have been thoroughly discussed, and

well supported our ANN modeling practice (Maier et al.

2010; Wu et al. 2014b). However, the ANN technique has

so far scarcely been used in describing spatial differences

of phytoplankton dynamics in large lakes (Jørgensen

2008). This is mainly due to the limited ability of ANN in

describing spatial processes related to phytoplankton

dynamics.

The limitation of ANN in spatial modeling may be

overcome by coupling with clustering techniques (e.g.,

k-means method, self-organizing map and hierarchical

clustering). These techniques have been widely used in

partitioning entities with similar characteristics into a

group (Chang et al. 2011; Dietrich et al. 2013; Monem and

Hashemy 2011). Among these techniques, the k-means

method has been widely used for clustering purposes in

environmental sciences (Areerachakul and Sanguansin-

tukul 2010; Ay and Kisi 2014; Elangasinghe et al. 2014).

The k-means method implements clustering by computing

the distance between entities and cluster centers (Celebi

et al. 2013). Ease of implementation, high efficiency and

rich case studies were the main reasons for its popularity

(Jain, 2010). Inspired by the successful clustering case

studies using the k-means method, we argued that it has the

potential to partition a large lake with high spatial

heterogeneity into several sub-regions, and an ANN model

could thus be developed for each sub-region. These ANN

models for the sub-regions of the lake could then be

compared to investigate the spatial difference of phyto-

plankton dynamics in a lake.

The phytoplankton dynamics of Lake Poyang, the lar-

gest freshwater lake in China, have become increasingly

important in recent years due to the small-scale algal

bloom events which occurred in 2007 and 2013 (Wu et al.

2014d; Yi and Chen 2015). To combat the severe droughts

and floods in Lake Poyang (Ye et al. 2013), lake managers

have planned to build a dam (named Poyang Dam) in the

downstream area of Poyang. Economic, ecological and

environmental issues regarding this project have been de-

bated by researchers and stakeholders (Yi and He 2012).

Investigating the change of phytoplankton dynamics due to

the dam construction project would be helpful in assessing

the potential impacts on lake eutrophication.

The main objectives of this paper are to predict phyto-

plankton dynamics in different areas of Lake Poyang, and

to quantify the impacts of environmental variables on

phytoplankton dynamics. ANN and k-means clustering

techniques were used for these purposes. Based on a 7-year

dataset, three ANN models were developed to simulate Chl

a dynamics in different areas of Lake Poyang. Spatial and

temporal characteristics of Chl a dynamics in Lake Poyang

were analyzed based on the simulation results. A sensitivity

analysis was carried out to quantify the influence of water

quality, hydrodynamic and meteorological conditions on

the Chl a dynamics in both the downstream and upstream

areas of Lake Poyang. The impacts of Poyang Dam on

phytoplankton dynamics were analyzed.

Materials and methods

Study area

Lake Poyang, located in the northern Jiangxi Province,

China, has a surface area of 3283 km2 and a mean depth of

5.1 m. It has five inflows (Ganjiang, Fuhe, Xinjiang, Raohe

and Xiushui rivers) and one outflow connecting with the

Yangtze River (Fig. 1). However, the water in the Yangtze

River may flow into Lake Poyang to reduce its flood dis-

charge during heavy rainfall periods. The mean hydraulic

retention time is as short as 10 days due to the large dis-

charges of the connected rivers (Wang and Dou 1998). The

water level changes significantly within a year, resulting in

large variation of lake area (Feng et al. 2011).

Chlorophyll a in Lake Poyang was low (6.9 lg/l in

2011). However, high spatial differences existed, with

higher chlorophyll a (9.7 lg/l in 2011) in the south than in

the north (3.7 lg/l in 2011). Chlorophyll a peak (34.4 lg/l)
was observed in eastern Lake Poyang by Wu et al. (2014c).

Algal bloom events were occasionally observed in Lake

Poyang, e.g., in October 2007 (Yi and Chen 2015) and May

2013 (Wu et al. 2014d). Phytoplankton growth in Lake

Poyang was found to be limited by light, because nutrient

(nitrogen and phosphorus) levels were high for

Fig. 1 Locations of on Lake Poyang, sampling sites and hydrological

and weather stations
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phytoplankton growth due to the high loading of inflow

rivers (Lu et al. 2012).

Data

Meteorological, hydrological and water quality data during

2005–2011 in Lake Poyang are presented with their basic

statistical descriptions in Table 1. Eight variables were

selected for model development based on the following

facts:

1. Phytoplankton biomass in a lake is mostly represented

by Chl a (Wu et al. 2011). The biological processes of

phytoplankton are widely recognized to be affected by

water temperature, nitrogen, phosphorus and light

conditions (Fragoso Jr et al. 2008; Hamilton and

Schladow 1997; Jørgensen and Bendoricchio 2001).

2. Although precipitation was scarcely included in

mechanistic models for phytoplankton dynamics, it

has the potential to dilute Chl a, especially during the

heavy rainfall period. Precipitation was thus included

for ANN model development.

3. Hydrological data were also included in these ANN

models, given that hydrological conditions are an

important factor that dominates the dynamics of the

Lake Poyang ecosystem (Shankman et al. 2006).

The water quality data included four variables, i.e., the

chlorophyll a concentration (Chl a, lg/l), water tem-

perature (WT, �C), total phosphorus (TP, mg/l) and nitro-

gen (TN, mg/l). The Chl a, WT, TP and TN were obtained

at 4 sampling sites (sites 2, 7, 11 and 12 in Fig. 1) by the

Ministry of Environmental Protection of the People’s

Republic of China. These samples were collected season-

ally between 2005 and 2008, and were obtained monthly

between 2009 and 2011. In 2011, monthly sampling was

carried out at another 13 sampling sites (Fig. 1). A total of

344 samples were collected during this 7-year period. The

meteorological and hydrological conditions for these 344

samples were obtained from the following two daily

datasets on the sampling day.

The daily meteorological data, i.e., precipitation (Pr,

mm) and sunshine hours (PAR, h), were obtained from

three weather stations of the China Meteorological Ad-

ministration (W1–3 in Fig. 1). The meteorological condi-

tions for each sampling site (sites 1–17 in Fig. 1) were

represented by the data from its nearest weather station.

The daily hydrological data included discharge (Q, m3/s)

and water level (WL, m) of the outflow. These data were

recorded at the hydrological station of site 1 (Fig. 1) by the

Bureau of Hydrology, Changjiang Water Resources Com-

mission. Although the Chl a dynamics were significantly

affected by the five inflows (see ‘‘Study area’’) of Lake

Poyang, their hydrological conditions were not included in

the ANN model, because the discharge and water level of

these five inflows were positively correlated with those of

the outflow measured at site 1. For example, the measured

data in 2010 showed a high correlation coefficient (0.83)

between the outflow and largest inflow (Ganjiang)

discharges.

Clustering approach

A clustering approach was used to cluster 17 sampling sites

(Fig. 1) into two clusters by minimizing the distance of

sampling sites in a cluster. Although many clustering

techniques (e.g., k-means method, self-organizing map and

hierarchical clustering) exist (Chang et al. 2011; Dietrich

et al. 2013; Monem and Hashemy 2011), the k-means

method was most widely used in similar classification

cases to this study (Jain 2010), and has good performance

in these case studies (e.g., Areerachakul and Sanguansin-

tukul 2010; Ay and Kisi 2014). It was thus selected to

cluster sampling sites in this study.

Environmental variables at a sampling site may change

significantly in a year. Thus, yearly average data of TN,

Table 1 Data collected during

2005–2011 in Lake Poyang for

developing ANN models

Item Variable Unit Temporal resolution Mean Range

Water quality data Chl a lg/l Monthly to seasonally 6.3 [0.02, 39.3]

WT �C Monthly to seasonally 18.4 [2.0, 37.0]

TP mg/l Monthly to seasonally 0.07 [0.01, 1.5]

TN mg/l Monthly to seasonally 1.02 [0.19, 4.21]

Meteorological data Pr mm Daily 3.7 [0, 53.6]

PAR h Daily 4.5 [0, 12.5]

Hydrological data Q m3/s Daily 3601 [-3040, 19,100]

WL m Daily 11.4 [7.5, 19.8]

Chl a chlorophyll a concentration, WT water temperature, TP total phosphorus, TN total nitrogen, Pr

precipitation, PAR sunshine hours, Q discharge (minus value represents shows that the water from Yangtze

River was has flowed into Lake Poyang), WL water level
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TP, Chl a, Pr, PAR, WL and WT were used to represent the

environmental characteristics of a sampling site. Euclidean

metric was used to compute the distance between sampling

sites and cluster centers. The main steps in implementing

k-means clustering were given as follows (Jain 2010):

• Select an initial partition with two clusters, and repeat

the following two steps until cluster membership

stabilizes.

• Generate a new partition by assigning each pattern to its

closest cluster center.

• Calculate new cluster centers.

Further details about the k-means clustering technique

can be found in Jain (2010) and Liao (2005). The k-means

clustering process was implemented in Matlab software

(Table 4 in Appendix).

Artificial neural network models

The artificial neural network technique was used in this

study based on two hypotheses: (a) the ANN technique

could be used in spatial modeling of Chl a based on

clustering of the sampling sites in Lake Poyang, and

(b) phytoplankton biomass (represented by Chl a) could be

predicted by the water quality and hydrological and me-

teorological conditions in Lake Poyang.

Based on clustering results using the k-means method,

three ANN models (named ANN_Poyang, ANN_Down-

stream and ANN_Upstream) were developed to simulate

Chl a in Lake Poyang. The ANN_Downstream and

ANN_Upstream models were developed using field data

from the sites in the downstream and upstream areas

(Fig. 2), respectively. These two models aimed to simulate

Chl a in the upstream and downstream areas of Lake

Poyang, respectively. Their simulation results were com-

pared with those of ANN_Poyang, which used all the field

data (344 samples) to simulate Chl a of the whole lake. The

comparison between ANN_Poyang and other two models

(ANN_Downstream and ANN_Upstream) aimed to reveal

the contribution of the clustering technique to improve the

performance of ANN models. These ANN models were

developed in Matlab software (Table 5 in Appendix).

Further information on ANN implementation (data pro-

cessing, model architecture, performance evaluation and

model validation) is described below.

Data processing

The variables, resulting in a multicollinearity problem of

the ANN models, were firstly detected using multi-

collinearity analysis (Demirhan 2014). These variables

were then excluded for ANN model development. To en-

sure that all input variables received equal attention during

the training process, the min–max normalization method

was used to rescale all the variables to the range of 0.1–0.9.

The dataset for the ANN models was randomly divided

into three sub-sets (training, testing and validation data-

sets). The training dataset was used to estimate the un-

known connection weights in the training algorithm. The

testing dataset was used to prevent the ANN model from

overfitting during the training process. The validation

dataset was used to evaluate the generalization ability of

the trained ANN model (Maier et al. 2010). The data di-

vision proportion for training, testing and validation data-

sets was 15:2:3 (Fig. 2). This data partition proportion has

been widely used in previous studies (see the review by

Maier and Dandy (2000)).

Model architecture

All these three ANN models included an input layer, a

hidden layer and an output layer (Fig. 2). This structure has

been widely used due to its flexibility and good perfor-

mance (Hornik et al. 1989; Maier and Dandy 2000; Scardi

and Harding Jr 1999). The input layer consisted of seven

input variables with a linear transfer function, and the

output layer included a single node of Chl a with a sigmoid

transfer function. The hidden layer linked the input and

output variables by its nodes. The node number of the

hidden layer normally varied from 2 to 20, and was de-

termined by a trial-and-error approach in this study.

A Levenberg–Marquardt backpropagation algorithm

was used to train these three ANN models. The weights

(wn?1) in the Levenberg–Marquardt backpropagation al-

gorithm were adjusted during training using the following

equation (Parisi et al. 1996):

wnþ1 ¼ wn � gndn; ð1Þ

where wn is the weight vector of the network, gn is the step
size, dn is a vector defining the direction of descent, and

n is the iteration number. The model training process was

stopped when the errors for the testing set began to rise, or

the training error (mean squared error) was lower than the

goal value (0.0001), or a maximum of 1000 iterations was

reached. This early stopping rule prevented the ANN

models from overfitting.

Performance evaluation

The simulation results were compared with measurements

at the 4 sampling sites (sites 2, 7, 11 and 12 in Fig. 1),

because long-term measurement data were available at

these 4 sampling sites (see Section ‘‘Data’’). Six widely

used indicators were used to compare the model fits of

these three ANN models. The mathematical equations and

the value ranges of these indicators are given in Table 2.
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Mean absolute error (MAE) and root mean square error

(RMSE) describe the model deviations with the same units

as Chl a (i.e., lg l-1). Mean absolute percent error (MA%E

) is a dimensionless measure ranging from 0 to infinity. The

MA%E value of 0 indicates that the simulation Chl a ex-

actly agrees with the measured Chl a. Three correlation-

based measures were used, including the coefficient of

determination (r2), index of agreement (d), and Nash–

Fig. 2 Neural network

structures of ANN_Poyang,

ANN_Downstream and

ANN_Upstream

Table 2 Indicators to evaluate

model fits
Indicator Description Unit Equation Range

MAE Mean absolute error lg l-1

MA%E ¼
Pn

i¼1

Ci � Ĉi

�
�

�
�=n

[0, ??)

MA%E Mean absolute percent error %
MA%E ¼

Pn

i¼1

Ci�Ĉij j
Ĉi

=n
[0, ??)

RMSE Root mean square error lg l-1

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðCi � ĈiÞ2=n
s

[0, ??)

r2 Coefficient of determination

r2 ¼
Pn

i¼1
ðĈi�ĈÞðCi�CÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðĈi�ĈÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðCi�CÞ2

pq

0

@

1

A

2 [0.0, 1.0]

d Index of agreement
d ¼ 1

Pn

i¼1
ðĈi�CiÞ2

Pn

i¼1
Ci�Ĉ

�
�

�
�þ Ĉ1�Ĉ

�
�

�
�

� �2

[0.0, 1.0]

NSE Nash–Sutcliffe efficiency
NSE ¼ 1

Pn

i¼1
ðCi�ĈiÞ2

Pn

i¼1
ðCi�ĈÞ2

(-?, 1]

Ci and Ĉi the simulation and measured chlorophyll a in Lake Poyang, C and Ĉ the mean values of

simulation and observed chlorophyll a in Lake Poyang C ¼
Pn

i¼1 Ci; � � � Ĉ ¼
Pn

i¼1 Ĉi

� �
, n the number of

days when both simulated and observed results are available during the modeling period

Limnology (2015) 16:179–191 183

123



Sutcliffe efficiency coefficient (NSE). Higher values of

these three indicators imply better model fit. More details

about these model fit indicators can be found in previous

studies (e.g., Harmel and Smith 2007; Krause et al. 2005;

Nash and Sutcliffe 1970).

Model validation

A cross-validation approach was used by partitioning the

dataset into the training, testing and validation datasets. In

the ANN_Poyang model, the full dataset included 344

samples. The data of the first 51 samples were used for

validation. Then, the data of sequence samples (52–102,

103–153, 154–204, 205–255, 256–306, and 307–344) were

used in turn for validation. This cross-validation strategy

ensured that the data of each sample have been used for

validation, and improved the stability of the ANN model

developed with a limited amount of data. The Chl a output

of ANN_Poyang was the mean Chl a output of seven ANN

models in Fig. 3. This cross-validation strategy was also

used for both ANN_Upstream and ANN_Downstream.

Further details about this cross-validation method can be

found in previous studies (Burden et al. 1997; Huang et al.

2014; Stone 1974).

Sensitivity analysis

One of the sensitivity analysis methods (mentioned as

‘Perturb’ method in Gevrey et al. 2003) was used to

quantify the contributions of the environmental variables

on the phytoplankton dynamics in different areas of Lake

Poyang. In the sensitivity analysis, each input variable at

each sampling site was changed by 10 %, while all other

variables were kept fixed. All the input variables in

ANN_Downstream and ANN_Upstream were tested. Thus,

14 simulations were simulated and compared with the base

simulation (without changing any input variable) for each

ANN model. The sensitivity value of each testing variable

(Sa) was calculated by the relative change of the simulation

Chl a due to its 10 % change:

Sa ¼ jCTest
i � CBase

i j
CBase
i 10 %

; ð2Þ

where CTest
i and CBase

i are the simulation Chl a of sample

i from the test simulation and base simulation, respectively.

A variable with a higher sensitivity value implies that it is

more important for phytoplankton dynamics.

Results

ANN model development

Some results from the ANN model development can be

listed as follows:

• K-means clustering The k-means clustering process

resulted in two groups (sites 1–8 and 9–17 in Fig. 2).

Sites 1–8 are located in the downstream area of Lake

Poyang, and sites 9–17 are located in upstream area

(Fig. 2).

• Multicollinearity analysis The multicollinearity analy-

sis results showed that the variable of WL has a

condition index of 17.3, implying a multicollinearity

problem. This multicollinearity problem was overcome

by excluding the variable of WL. There was no severe

multicollinearity problem in the models using six

variables without WL (Fig. 2).

• Node number for hidden layer Eight nodes for the

hidden layer were found to be the optimal selection for

these three ANN models using a trial-and-error ap-

proach (Sect. ‘‘Model architecture’’).

• Model training During the ANN model training

process, none of the ANN models reached the goal

and maximum iterations.

Chlorophyll a dynamics

Six model fit indicators were used to evaluate the model

performances of ANN_Poyang, ANN_Downstream and

ANN_Upstream (Table 3). The ANN_Downstream model

well predicted the Chl a in the downstream area of Lake

Poyang, with relatively high values of r2, d and NSE. Its

model fit was significantly better than that of

ANN_Poyang. The model fit of ANN_Upstream was

slightly better than that of ANN_Poyang.

Fig. 3 Procedure of the cross-validation used in ANN_Poyang

(redrawn from Huang et al. 2014). n represents the sampling number,

ANNi (i = 1, …, 7) represents an ANN model
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Figure 4 shows the simulation results of ANN_Down-

stream, ANN_Upstream and ANN_Poyang. It can be

clearly seen that the Chl a dynamics in the downstream

area was better simulated than that in the upstream area.

Several Chl a peaks in the upstream area were

underestimated.

The simulation results of ANN_Downstream and

ANN_Upstream were compared with the simulation results

of ANN_Poyang at four sampling sites (sites 2, 7, 11 and

12) with relatively long-term sampling data (Fig. 5). Site 2

was located in the downstream area of Lake Poyang. Its

Chl a dynamics between 2005 and 2011 were predicted

well by ANN_Downstream. However, ANN_Poyang

showed clear overestimation of Chl a between 2005 and

2007. The model fit of ANN_Upstream at site 7 was better

than that of ANN_Poyang. The Chl a dynamics at sites 11

and 12 were not adequately predicted by either

ANN_Poyang or ANN_Upstream.

If the Poyang Dam was constructed in the downstream

area, the environmental conditions in the downstream area

would be more similar to those in the upstream area. To

predict phytoplankton dynamics of the downstream area in

the case of building a dam, simulation Chl a at site 2 from

ANN_Upstream was compared with the simulation results

from ANN_Downstream. The simulation Chl a from

ANN_Upstream showed about 84 % increase compared

with that from ANN_Downstream (Fig. 6).

Sensitivity analysis

Sensitivity values of the input variables in ANN_Down-

stream and ANN_Upstream were compared (Fig. 7). These

values represented the sensitivity of Chl a dynamics to

environmental variables in the downstream and upstream

areas. It was found that Chl a dynamics were not sensitive

to sunshine hours (PAR) and precipitation (Pr) in both the

Table 3 Model fits of ANN_Poyang, ANN_Downstream and ANN_Upstream

Area Model n RMSE (lg l-1) MAE (lg l-1) MA%E (%) r2 d NSE

Downstream ANN_Poyang 166 (Fig. 2) 2.70 2.38 0.747 0.121 0.47 -0.355

ANN_Downstream 166 (Fig. 2) 1.50 0.98 0.268 0.610 0.827 0.584

Upstream ANN_Poyang 178 (Fig. 2) 5.14 3.33 4.712 0.396 0.623 0.298

ANN_Upstream 178 (Fig. 2) 4.16 2.77 4.762 0.589 0.796 0.540

n sample number, RMSE root mean square error, MAE mean absolute error, MA%E mean absolute percent error, r2 coefficient of determination,

d index of agreement, NSE Nash–Sutcliffe efficiency

Fig. 4 Measured and simulation chlorophyll a of ANN_Downstream, ANN_Upstream and ANN_Poyang models in Lake Poyang
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upstream and downstream areas (sensitivity value less than

0.15). However, Chl a dynamics responded differently to

environmental factors in different areas of Lake Poyang.

In the downstream area, Chl a dynamics were sensitive to

water temperature (WT), discharge (Q) and total phosphorus

(TP), and were dominated by total phosphorus (TP) with its

high sensitivity value at 1.25. In the upstream area, water

temperature (WT) was the most sensitive variable with a

sensitivity value of 0.32. The sensitivity values of several

input variables (e.g., WT) had wide ranges.

Discussion

Performance of the ANN models

The model fit of ANN_Downstream (Table 3) was ac-

ceptable compared with previous case studies on Chl

a predictions in two reviews (Arhonditsis and Brett 2004;

Phillips et al. 2008). This acceptable model fit of

ANN_Downstream was mainly attributed to the reasonable

clustering of the sampling sites and the high potential of the

ANN technique in simulating phytoplankton dynamics. It

also demonstrated the high potential of the ANN technique

in modeling aquatic systems with limited prior knowledge.

It is particularly useful in case studies where the process

Fig. 5 Measured and simulation chlorophyll a of ANN_Poyang,

ANN_Downstream and ANN_Upstream models at a site 2, b site 7,

c site 11 and d site 12

Fig. 6 Simulation chlorophyll a at site 2 using ANN_Downstream

and ANN_Upstream

Fig. 7 Sensitivity values of the input variables in ANN_Downstream

and ANN_Upstream. WT water temperature, TN total nitrogen, TP

total phosphorus, Pr precipitation, PAR sunshine hours, Q discharge
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mechanism has not been adequately studied and good

model fits are preferred. However, the model fits of these

three ANN models (Table 3) were not as good as the model

fits of other water quality models using the ANN technique

(Panda et al. 2010; Singh et al. 2009). This is because the

phytoplankton dynamics in such a large lake, influenced by

intensive human activity, are very complex and challeng-

ing to predict (Huang et al. 2014).

The sample amount was not large compared with pre-

vious case studies using ANN models (see the review by

Maier and Dandy 2000; Maier et al. 2010). However, the

cross-validation method was used to alleviate data limita-

tion, and resulted in seven ANN models for each ANN

model. Their model fits did not vary considerably, imply-

ing the reliability of these ANN models. Some method-

ological issues (e.g., data pre-processing, selection of input

variables, determination of network architecture and choice

of performance criteria) were determined based on previ-

ous studies (Bowden et al. 2005; Maier et al. 2010).

Contribution of clustering to ANN models

Based on the clustering results of 17 sampling sites, the Chl

a dynamics in the upstream and downstream areas were

simulated using ANN_Downstream and ANN_Upstream,

respectively. The better performance of these two ANN

models than ANN_Poyang (Table 3) indicated that the

partition of the sampling sites was reasonable and neces-

sary for such a large lake as Lake Poyang. The study

demonstrated a successful clustering of spatial sites in a

lake using the k-means clustering method, and was a pri-

mary step for the ANN technique in describing spatial

heterogeneity. Modelers from other disciplines are en-

couraged to couple ANN with clustering techniques for

modeling other target variables (e.g., precipitation and flow

discharge) with high spatial heterogeneity. Many other

clustering methods, such as self-organizing map, hierar-

chical clustering and the subtractive clustering method

used in previous studies, could also be used for spatial

clustering of a lake (Doan et al. 2005).

The relatively low model fit of ANN_Upstream implies

that spatial differences of the Chl a dynamics at sites 9–17

(Fig. 1) existed. Further partition of these sampling sites

would be helpful to improve the model fit. However, this

was not carried out in this study due to the limited amount

of field data. This shortage could be overcome with an

increasing amount of measured data.

Influences of environmental conditions

on chlorophyll a dynamics

Phytoplankton growth is widely recognized to be limited

by temperature, nutrients and photosynthetically active

radiation in lakes (Arhonditsis and Brett 2005; Fragoso

et al. 2008). However, algal blooms have so far rarely

been found in Lake Poyang, even with a relatively high

nutrient concentration for phytoplankton growth. The

sensitivity analysis results (Fig. 7) showed that hydro-

logical conditions were important factors affecting phy-

toplankton growth in the downstream area of Lake

Poyang. This conclusion was in agreement with previous

studies on other lake ecosystems (Rangel et al. 2012;

Souza Cardoso and Motta Marques 2009). From this

perspective, the inclusion of hydrodynamic conditions is

necessary for a proper prediction of phytoplankton bio-

mass in Lake Poyang.

Nitrogen and phosphorus are major nutrients that limit

phytoplankton growth in freshwater lakes. The sensitivity

analysis results (Fig. 7) showed that phytoplankton

growth in Lake Poyang was more limited by phosphorus

than nitrogen. This result was reasonable and in accor-

dance with previous studies based on TN/TP ratios

(Smith 1982). It is generally recognized that phyto-

plankton growth is limited by phosphorus with a high

TN/TP ratio (higher than 17 in Smith 1982), and was

limited by nitrogen with a low TN/TP (lower than 10 in

Smith 1982). The measured data showed that 60.2 % of

the 344 samples had TN/TP ratios higher than 17,

indicating phosphorus limitation of phytoplankton

growth. Only 14.8 % of these samples had TN/TP ratios

lower than 10, indicating nitrogen limitation of phyto-

plankton growth.

Although the nutrient conditions were not significantly

heterogeneous in Lake Poyang, the sensitivity analysis

results (Fig. 7) indicated that phytoplankton dynamics re-

spond differently to total phosphorus between the down-

stream and upstream areas. Phytoplankton dynamics were

sensitive to total phosphorus in the upstream area, while

they were less sensitive to total phosphorus in the down-

stream area. This result was attributed to the dominance of

hydrological conditions for phytoplankton dynamics in the

downstream area.

The high sensitivity values of water temperature in

ANN_Downstream and ANN_Upstream indicated that

temperature was a key limiting factor for phytoplankton

growth in both the downstream and upstream areas of

Lake Poyang. This was consistent with previous studies

on the relationship between water temperature and phy-

toplankton growth (Davis et al. 2009). The sensitivity

analysis results showed that Chl a dynamics were slightly

affected by precipitation, indicating a slight decrease of

Chl a due to dilution. This was different from the lakes

with severe algal blooms (e.g., Lake Taihu in China),

where precipitation affected Chl a significantly, espe-

cially during the heavy rainfall period (Huang et al.

2014).
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Implications for lake management

This study investigated the response of Chl a dynamics to en-

vironmental variables, and identified the important factors

which dominated Chl a dynamics in both the downstream and

upstream areas of Lake Poyang. Different water management

strategies could thus be proposed for different areas of Lake

Poyang. Phytoplankton dynamics were most sensitive to water

temperature in the downstream area; however, they were most

sensitive to total phosphorus in the upstream area. This indi-

cated that reduction of external phosphorus loading could be

used as a measure to prevent eutrophication in the upstream

area of Lake Poyang .

The impacts of Poyang Dam construction on phytoplankton

dynamics were investigated based on the simulation results in

Fig. 6. The simulation Chl a at site 2 by ANN_Upstream was

significantly higher (an increase of 83.8 %) than that by

ANN_Downstream (Fig. 6), indicating that the Chl a concen-

tration would increase in the case of building the Poyang Dam.

The conclusionwas in consensus with previous studies in other

large reservoir dams in the world, such as the Three Gorge

Dam, the Danube River Dam and the Aswan Dam (Humborg

et al. 1997; White 1988; Zeng et al. 2006). From this per-

spective, adequate measures should be taken to alleviate or

avoid algal blooms if the Poyang Dam is built.

Conclusions

Seventeen sampling sites at Lake Poyang were clustered

into two groups using the k-means method, and an ANN

model was developed for each group to simulate phyto-

plankton biomass. These two ANN models performed

better than another ANN model that simulated phyto-

plankton biomass in the whole lake, implying the necessity

of partitioning a large lake into two (or more) regions and

developing an ANN model for each sub-region. Sensitivity

analysis based on these two ANN models showed that

phytoplankton dynamics responded differently to environ-

mental variables in different sub-regions. This study

demonstrated the high performance of ANN models and

the value of coupling a clustering technique with an ANN

model for environmental modeling. Supported by the in-

creasing amount of spatial data, a combination of ANN and

clustering techniques will be useful in investigating the

spatial heterogeneity of complex natural ecosystems.

Acknowledgments The project was financially supported by Na-

tional Basic Research Program of China (No. 2012CB417006). The

authors would like to thank the Ministry of Environmental Protection

of the People’s Republic of China, Changjiang Water Resources

Commission and the National Meteorological Information Center for

providing the measured data for model development. We would like

to thank the editor and reviewers for their extensive review, which

significantly improved the manuscript.

Appendix

See below Appendix Tables 4 and 5.

Table 4 MATLAB code to implement clustering

% Read data from Excel file.
Data = xlsread('Data')
X = zscore(Data);

% K-Means clustering.
[idx,ctrs,sumD,D] = kmeans(X, 2, 'Replicates',5);
plot(X(idx==1,1),X(idx==1,2),'ro','MarkerSize',6)
hold on
plot(X(idx==2,1),X(idx==2,2),'bo','MarkerSize',6)
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Table 5 MATLAB code to develop ANN model

% Read input and output data from Excel file.
Ins = xlsread('Data_Ins');
Outs = xlsread('Data_Outs');

% Read the disorder number from 1-344.
ind = xlsread('Data_Order');
trainInd = ind(85:344);
valInd = ind(1:51);
testInd = ind(52:84);

% Construct training, validation and testing sampling.
[trainP,valP,testP] = divideind(Ins,trainInd,valInd,testInd);
[trainT,valT,testT] = divideind(Outs,trainInd,valInd,testInd);
trainSamples = [];
trainSamples.P = trainP;
trainSamples.T = trainT;
validateSamples = [];
validateSamples.P = valP;
validateSamples.T = valT;
testSamples = [];
testSamples.P = testP;
testSamples.T = testT;

% Model development.
net=newff(minmax(Ins),[8,1],{'tansig','purelin'},'trainlm');
net.trainParam.epochs = 1000; 
net.trainParam.show = 100; 
net.trainParam.lr = 0.1;
net.trainParam.goal =0.0001;
net.trainParam.mc=0.9;
net = init(net);  

% [net,tr]=train(net,InTrain,MeaTrain); 
[net,tr] = 
train(net,trainSamples.P,trainSamples.T,[],[],validateSamples,testSamples);

% Model simulation using the training and validation datasets.
SimTrain = sim(net,trainSamples.P);
SimVal = sim(net,validateSamples.P);

% Save the training plot, network and the simulation reslults.
saveas(gcf, 'Train.jpg', 'jpg');
save('ANN.mat', 'net');
sims = [SimTrain; SimTrain];
Arr2Txt(sims', 'Results.txt');
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