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Abstract
Ambient air pollution is the environmental factor with the most significant impact on human health. Several epidemiological 
studies provide evidence for an association between ambient air pollution and human health. However, the recent economic 
literature has challenged the identification strategy used in these studies. This paper contributes to the ongoing discussion by 
investigating the association between ambient air pollution and morbidity using hospital admission data from Switzerland. 
Our identification strategy rests on the construction of geographically explicit pollution measures derived from a dispersion 
model that replicates atmospheric conditions and accounts for several emission sources. The reduced form estimates account 
for location and time fixed effects and show that ambient air pollution has a substantial impact on hospital admissions. In 
particular, we show that SO

2
 and NO

2
 are positively associated with admission rates for coronary artery and cerebrovascular 

diseases while we find no similar correlation for PM10 and O
3
 . Our robustness checks support these findings and suggest that 

dispersion models can help in reducing the measurement error inherent to pollution exposure measures based on station-level 
pollution data. Therefore, our results may contribute to a more accurate evaluation of future environmental policies aiming 
at a reduction of ambient air pollution exposure.

Keywords Ambient air pollution · Dispersion model · Hospital admissions · Count panel data
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Introduction

Even though air quality has improved substantially in the 
past decades, ambient air pollution is still the environmental 
factor with the greatest health impact in developed countries. 
The World Health Organization (WHO) has estimated that 
exposure to ambient air pollution is responsible for health 
care expenses of more than US$ 1.27 trillion in Europe 
alone [28]. The significant decrease in pollution exposure 
in industrialized countries is largely due to stricter environ-
mental regulations and technological progress. However, a 
substantial proportion of the European population is still 
exposed to levels of air pollution that are above national and 
international air quality standards [11]. Among those air pol-
lutants, particulate matter (PM), nitrogen dioxide ( NO2 ), sul-
fur dioxide ( SO2 ), and ground-level ozone ( O3 ) are consid-
ered to have the largest health impacts. These pollutants are 
associated with higher mortality and morbidity rates [27]. 
Although the literature on the relationship between ambient 
air pollution and mortality is extensive, the empirical evi-
dence on the association between ambient air pollution and 
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morbidity is still far from being conclusive. The limited evi-
dence is mainly due to restricted access to patient-level data 
with sufficient geographical resolution. Even when detailed 
data are available, the identification strategy is challenged 
by imprecise pollution measures and unobserved factors that 
are correlated with the treatment variable [10, 20, 26].

This paper builds on recent advances in the economic 
literature and aims at identifying the relationship between 
air pollution exposure and morbidity in the general popula-
tion. We exploit space and time variation in hospital admis-
sion data for specific disease categories covering the entire 
Swiss population between 2001 and 2013. Moreover, we 
use a novel approach to measure pollution exposure which 
builds on a mathematical simulation model that replicates 
the atmospheric conditions and simultaneously accounts for 
various emission sources. The geographical resolution of 
our analysis is the MedStat region, a spatial concept used 
by the Swiss authorities to anonymize patient-level data. 
This resolution allows for a more accurate assignment of 
pollution measures and a more precise identification of the 
treatment effect as compared to previous studies. The level 
of aggregation is prone to systematic measurement error, 
as a single monitoring site for pollution is assumed to be 
representative of a large and likely heterogeneous area. On 
average, the MedStat regions have a size of about 12,000 
inhabitants, which is substantially more detailed than the 
usual level of aggregation which is at the zip code, county 
or even city level (e.g., [8, 18, 20, 22, 26]).1

Our contribution to the growing economic literature on 
the relationship between air quality and human health is 
threefold. First, we explore the association between ambient 
air pollution and hospital admissions that received increas-
ing attention only recently in the health economics literature 
(e.g., [10, 23, 26]). Second, we address the measurement 
error in the treatment variable using geographically explicit 
air pollution measures derived from a dispersion model. 
Prior studies solely rely on the inverse distance interpolation 
approach to compute measures of local pollution exposure 
which can lead to systematic estimation bias if the monitor-
ing network is coarse. Third, we investigate differences in 
the treatment effect for major air pollutants at the disease 
level. Although previous studies recognized this issue, they 
usually look at a single pollutant and do not account for the 
wide range of air pollutants.

The economic literature on the relationship between 
ambient air pollution and human health is extensive. A large 
body of this literature is concerned with the impact of ambi-
ent air pollution on infant health and general mortality (e.g., 
[6, 8, 18, 20, 22, 25]). These studies use explicit location 
information to show that ambient air pollution has a nega-
tive and lasting impact on birth outcomes, fetal death rates, 
and general mortality. The recent interest on the impact of 
ambient air pollution on morbidity is mainly due to bet-
ter access to patient-level data. For instance, Schlenker and 
Walker [26] investigate the impact of air pollution on mor-
bidity using individual-level data from California. They find 
that carbon monoxide exposure is positively associated with 
hospitalization rates. These findings support the results of 
Beatty and Shimshack [1] who estimate the impact of carbon 
monoxide exposure on respiratory health outcomes among 
children based on cohort data from England.

A general concern of the literature is the potential meas-
urement error of pollution exposure. Two approaches are 
commonly used to compute measures of pollution exposure 
at the location level. The prevalent approach builds on the 
assumption that the concentration of air pollutants is homog-
enous within a given region, implying that a monitoring site 
is representative of a wide geographical area. The homoge-
neity assumption is violated whenever the topography has a 
strong effect on the dispersion of air pollutants. Therefore, 
this approach can induce systematic measurement bias in the 
estimation of the treatment effect. As an alternative, spatial 
interpolation methods are used to address the homogeneity 
issue. Although various interpolation methods are applied 
in the literature, these methods differ only in the choice of 
sample weights. The most frequently used weighting method 
is the inverse distance approach (e.g., [8, 20, 21, 26]). This 
method attributes higher weight to monitoring sites that are 
close to the site where the prediction is made. A downside 
of the inverse distance approach is that it does not account 
for emission sources and atmospheric conditions. Therefore, 
both approaches are prone to measurement error and have 
the potential to induce systematic bias in the estimation of 
the treatment effect.

The economic literature has resorted to instrumental vari-
able (IV) estimation techniques to address the endogeneity 
issue arising from measurement error. For instance, Knittel 
et al. [20] use variation in traffic shocks and local weather 
conditions, and Schlenker and Walker [26] use airport con-
gestion and weather conditions as instrumental variables. 
Lagravinese et al. [21] choose a different route by instru-
menting spatial and temporal lags of the interpolated pollu-
tion measures. Although the IV approach is a viable option 
to address the endogeneity issue, it is only applicable when 
appropriate instruments are available. In this paper, we pro-
pose to solve the measurement problem at the source instead 
of relying on statistical methods. We introduce a novel 

1 For instance, the study by He et  al. [18] relies on Chinese city-
level mortality data. Because a city in China can be relatively large 
and heterogeneous, the estimated level of pollution exposure may be 
significantly different to the true level of pollution exposure. Schlen-
ker and Walker [26] conduct their analysis using zip code level data 
for California. The average size of a zip code in California is above 
37,000 inhabitants, ranging between 11,000 and more than 100,000 
inhabitants.
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approach to compute geographically explicit and reliable 
measures of pollution exposure derived from a dispersion 
model. This approach allows for a more accurate estimation 
of the treatment effect as compared to previous studies.

Our reduced form estimates account for location and time 
fixed effects and show that ambient air pollution is positively 
associated with hospital admissions for cardiovascular and 
respiratory diseases in the general population. Moreover, 
our results show that the inverse distance approach is prone 
to measurement bias, leading to negative and significant 
coefficient estimates for some pollutants. The results for the 
dispersion model approach are robust to different distribu-
tional assumptions and non-linearity in the treatment effect. 
In particular, we find that the impact of SO2 and NO2 on 
admissions for cardiovascular diseases is statistically sig-
nificant and robust.

The remainder of the paper is organized as follows: 
Sect. 2 describes the data used in the empirical analysis. We 
first introduce the dispersion model approach and show how 
this approach addresses the endogeneity issue provoked by 
measurement error. We then discuss our choice of morbidity 
data, explain the selection of causes of hospital admissions, 
and introduce the covariates used in the empirical analysis. 
Section 3 explains the empirical model and our estimation 
strategy. We summarize the estimation results in Sect. 4 and 
also discuss a variety of robustness checks. Section 5 pro-
vides some conclusions.

Data

To assess the relationship between ambient air pollution 
and hospital admissions, it is necessary to carefully define 
the geographical level at which the analysis should be per-
formed. Ideally, we would measure pollution exposure at 
the patient level. However, such detailed patient information 
is not available due to privacy concerns. The most detailed 
geographical resolution at which hospital admission data 
are available in Switzerland is the MedStat region level. 
The MedStat regions are a geographical concept used by 
the Swiss Federal Statistical Office (FSO) to anonymize 
individual-level hospital admission data. An advantage of 
these data is that the 604 MedStat regions are homogenous 
with respect to the population size, with each of them con-
taining about 12,000 people. It is important to note that the 
administrative definition was updated in 2008 to account 
for population growth. Based on postal codes for 2007, the 
old MedStat regions were split up or combined to form new 
MedStat regions. Therefore, it is impossible to study hospi-
tal admissions over the structural break without reassign-
ing the data from the new to the old definition of MedStat 
region. We accomplish this task by matching postal codes 
underlying the MedStat regions over the structural break. 

We obtained detailed information on the general population 
at the postal code level for 2010 from the FSO. We use this 
information to create weights and recode the location infor-
mation in order to obtain a match between the new and the 
old definition. We then reassign the morbidity data over the 
structural break using population weights.2

Ambient air pollution data

To calculate the measures of pollution exposure for the 
dispersion model approach, we obtained geographically 
explicit data on ambient air pollution from the Swiss Fed-
eral Office for the Environment [13]. These data are prepared 
by a mathematical simulation model, which is described in 
Heldstab et al. [19]. The model simulates the dispersion of 
air pollutants in Switzerland using a two-part procedure. The 
first part of the procedure is concerned with the emission 
modeling. Emission inventories are prepared on rectangu-
lar grids with a geographical resolution of 200 m, taking 
into account all major emission sources. These sources are 
road traffic, households, agriculture and forestry, railway 
and aviation, as well as industrial and commercial activi-
ties. The model considers both domestic and foreign emis-
sion sources. It is necessary to account for these sources 
because a considerable share of emissions in Switzerland 
has a foreign origin. The second part of the procedure is 
concerned with the concentration modeling. The dispersion 
model uses pollutant-specific transfer functions to replicate 
the atmospheric dispersion of PM10, NO2 , SO2 , and O3 , 
providing measures of annual concentration for each pol-
lutant. A Gaussian plume dispersion is applied to generate 
these functions. Each transfer function measures the average 
impact of an emission source on the surrounding area. The 
model also accounts for topographical variability by con-
structing separate transfer functions for each of the four main 
topographical areas in Switzerland.3 Moreover, the transfer 
functions consider atmospheric conditions, which include 
wind speed and direction, air temperature and mixing height. 
The correlation between observed and predicted pollution 
concentrations for PM10, NO2 , SO2 , and O3 is above 80% 
[19]. Conversely, the correlation between observed and 
predicted pollution concentrations with the inverse distance 

2 We perform a number of robustness checks to ensure that the reas-
signment method does not affect the identification. For instance, we 
use gridded housing data from the Swiss land register to accomplish 
the recoding of location information. These results are similar to the 
estimates obtained with our baseline specification.
3 The main topographical areas are the Swiss plateau (North of the 
Alps), the Basel region with specific climate conditions due to the 
Rhine valley, the Alpine region (valley floors of all alpine valleys), 
and the remaining parts. Additional information on these regions are 
provided in Heldstab et al. [19].
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approach is around 72%.4 Therefore, we believe that the dis-
persion model approach produces a more precise measure of 
local pollution exposure than the inverse distance approach, 
resolving the endogeneity issue that arises from measure-
ment error at the source. Conversely, the inverse distance 
approach is less precise because the pollution concentration 
is solely determined by the inverse distance of a location 
centroid to a set of monitoring sites.

For the purpose of comparison, we also calculate pollu-
tion exposure for PM10, NO2 , SO2 , and O3 using the inverse 
distance weighting (IDW) approach:

where p̂it is the interpolated pollution level for the centroid 
of each MedStat region. We denote the distance between a 
region centroid i and a pollution monitoring site j with dij . 
The monitoring-site pollution data are also obtained from 
the Swiss Federal Office for the Environment (FOEN). We 
follow the literature and limit the interpolation to monitoring 
sites with a Euclidian distance less than 30 km to the loca-
tion where the prediction is made [8, 20]. The geographical 
extent of the pollution monitoring network in Switzerland 
is illustrated in the online supplementary materials (Figure 
A1). Because pollution data from the dispersion model are 
available at a more detailed geographical resolution than the 
MedStat region level, we compute a representative meas-
ure of air pollution exposure for each MedStat region. To 
uniquely assign each grid cell to the corresponding MedStat 
region, we use a Geographic Information System (GIS). If a 
grid cell overlaps two or more regions, we assign the cell to 
the MedStat region that contains the larger part of the cell 
area. To obtain a measure of air pollution for each Med-
Stat region, we calculate a population-weighted measure 
of pollution concentration. We exclude grid cells without 
population, using information from the Swiss land register 
[14]. It is necessary to exclude these cells because people 
spend most of their time in populated areas, implying that a 
pollution measure based on all grid cells would understate 
the actual pollution exposure, particularly in mountainous 
regions. Consequently, the estimates of the treatment effect 
would be systematically biased.

We use the annual arithmetic mean of the daily pollution 
exposure because this measure is a major legislative target 

(1)p̂it =

∑n

j=1

1

dij
pjt

∑n

j=1

1

dij

,

in the Swiss federal law on air pollution [12].5 The average 
concentration of ambient air pollution is calculated for each 
MedStat region and year. We illustrate the geographical vari-
ation in the pollution exposure for PM10, NO2 , SO2 , and O3 
in Fig. 1. The four maps show the average daily pollution 
exposure by MedStat region in the period 2001 to 2013. To 
enable the comparison between pollutants, we use a group-
ing algorithm to find natural breaks in the pollution data. 
For each pollutant, we identify ten classes, where the dark 
green color stands for the lowest class and the dark red color 
for the highest class. The exposure is clearly higher in urban 
areas, and the Southern cantons exhibit the highest pollution 
exposure in Switzerland. A similar pattern is observed for 
variation in pollution exposure within regions (see Fig. 2). 
Some descriptive statistics of treatment measures, as well all 
the other variables considered in the econometric analysis, 
are presented in Table 1. With the exception of O3 exposure, 
all pollutants show a negative time trend, and the average 
pollution levels are below thresholds defined by the Swiss 
air pollution legislation.

Hospital admission data

We obtained hospital admission data from the Medical Sta-
tistics of the Hospitals maintained by the FSO [15]. These 
data are collected by the Swiss cantons and include a wide 
array of information on people that are admitted to the hos-
pital. Since 1998, Swiss hospitals are obliged by the federal 
law to submit patient-level data. According to the FSO, the 
dataset covers 99.9% of hospital admissions. Because the 
quality of data is restricted before 2001, we drop earlier 
years and focus on patients who were stationary treated in 
the period 2001 to 2013. Following Schlenker and Walker 
[26], we select patients based on their main and secondary 
diagnosis and include both emergency and elective admis-
sions. The causes of hospital admissions considered in this 
analysis are listed in Table 2. The table provides informa-
tion on the cause of hospital admissions, the relevant ICD-
10 codes, and a brief description of each cause of hospital 
admission. We select these causes based on the extensive 
literature review in WHO [27] and European Environmental 
Agency [11]. Therefore, we focus on hospital admissions 
for cardiovascular and respiratory diseases. We also look at 
more disaggregated causes of hospital admissions, allowing 
for a better understanding of the disease-specific treatment 
effects. To ensure the validity of our identification strategy, 

5 Other moments of the pollution distribution function (e.g., annual 
median, minimum and maximum) could be also relevant for hospital 
admissions. However, the use of other moments of pollution expo-
sure is limited by a data protection agreement between the FOEN and 
external data providers.

4 Note that there are exceptions since some papers based on the 
inverse distance method can also find high correlation between 
observed and predicted pollutant levels (e.g., [7]).
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we include several negative control outcomes which are 
specified in Table A5 in the online supplementary materials.

Control variables

The relationship between ambient air pollution and hospital 
admissions may be confounded by factors that vary across 
MedStat regions over time. Among others, such factors are 
population characteristics, economic conditions, and access 
to outpatient and hospital care facilities.6 To account for 
population characteristics, we use registry information from 
the FSO. We compute a measure of population size to cap-
ture changes in the demand for hospital care that are unre-
lated to changes in pollution exposure. We also consider the 
share of foreigners, the share of females, and the share of the 

working-age population in the total population. These vari-
ables are supposed to account for migration patterns and the 
effect of age and gender composition on hospital admissions. 
Moreover, we include a number of economic covariates: the 
average household income, an income equality measure, and 
the unemployment rate. Household income and inequality 
data are obtained from the Swiss Federal Tax Administra-
tion (FTA), and unemployment data from the Swiss State 
Secretariat for Economic Affairs (SECO). These variables 
are supposed to capture changes in the financial abilities of 
the population. Finally, we account for access to outpatient 
care with a measure of the number of ambulatory doctors 
and for access to hospital care with a measure of the number 
of stationary doctors.7

Fig. 1  Between variation in pollution exposure averaged for the 
period 2001 to 2013. The four maps show the average daily pollu-
tion exposure by MedStat region. The dark green color (1) indicates 

the lowest level, whereas the dark red color (10) indicates the highest 
level of pollution exposure (color figure online)

6 As for possible border effects, note that the dispersion model 
already accounts for these effects by construction, since it considers 
emission sources in adjacent regions.

7 Ideally, we would account for access to hospital care with a meas-
ure of distance to the nearest hospital. However, such data are not 
available for the entire study period.
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Some additional factors may complicate the identification 
of the relationship between ambient air pollution and hos-
pital admissions. On the one hand, people living in regions 
with poor air quality may have a worse health status for rea-
sons that are unrelated to ambient air pollution. For instance, 
accessing preventive medical care services can be more dif-
ficult in certain regions. This could induce a systematic bias 
in the parameter estimates. On the other hand, people may 
live in regions with good air quality because they derive 
utility from unobserved location characteristics that are 
confounded with air quality. Among others, such character-
istics are the availability of recreational infrastructure and 
a lower density of commercial and industrial infrastructure. 
When these factors are not accurately taken into account, we 
could obtain spuriously large estimates of the air pollution 
effect on hospital admissions. Given our limited knowledge 
of factors affecting the selection of people into certain geo-
graphical locations, standard ordinary least squares (OLS) 
estimates are likely biased. The potential for selection bias 

calls for an identification strategy that captures the influence 
of confounding factors.

Empirical approach

To account for unobserved factors, we exploit the panel 
structure of our data and include both location and time fixed 
effects in the following count model:8

where i is the MedStat region and t is the year. We denote 
the location fixed effects by �i , and time fixed effects by �t . 

(2)admit = exp(�i + Pit�p + Xit�x + �t)�it,

Fig. 2  Within variation in pollution exposure for the period 2001 to 
2013. The four maps show the within variation of average daily pol-
lution exposure by MedStat region. The dark green color (1) indicates 

the lowest level of within variation and the dark red color (10) indi-
cates the highest level of within variation in pollution exposure

8 Another approach would be to include spatial effects in the regres-
sion model. For this reason, we also estimate spatial lag panel models 
for count data (see, e.g., [4]). The spatial estimates are very similar 
to the results of our main model and indicate that spatial lags are of 
minor relevance for most causes of hospital admissions when using 
the dispersion model pollution measures.
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These variables are supposed to account for the influence of 
unobserved confounding factors. The location fixed effects 
address unobserved heterogeneity between MedStat regions. 

Xit is the matrix of covariates that vary at the region level 
over time, and �it is the multiplicative error term. The treat-
ment variables are summarized by the matrix Pit , measuring 

Table 1  Descriptive statistics of outcome, treatment and control variables

This table summarizes statistics for outcome, treatment, and control variables. The statistics is based on data for 604 MedStat regions and the 
period 2001 to 2013. We present the mean, and the standard deviation in terms of overall, between and within variation, and the time trend. The 
time trend is defined as the correlation between each variable and time

Variables Standard deviation

Mean Overall Between Within Trend

Outcome
   All cardiovascular diseases 213.91 162.51 156.26 45.07 0.10
   Coronary artery disease 60.31 45.93 43.29 15.47 0.02
   Cerebrovascular disease 28.09 23.95 21.80 9.95 0.17
   All respiratory diseases 104.62 86.13 82.28 25.64 0.11
   Pneumonia 26.09 24.22 22.31 9.49 0.15
   COPD 13.37 12.99 11.65 5.77 0.09
   Asthma 3.75 5.02 4.40 2.42 − 0.02

Treatment (inverse distance method)
   PM10 21.90 3.80 2.79 2.75 − 0.51
   NO

2
27.46 5.92 5.55 2.18 − 0.12 

   SO
2

3.71 2.19 1.67 1.34 − 0.46
   O

3
150.83 15.42 9.33 12.28 − 0.37 

Treatment (dispersion model approach)
   PM10 19.58 3.68 2.90 2.26 − 0.47
   NO

2
18.89 5.79 5.70 1.05 − 0.13 

   SO
2

2.33 1.44 1.26 0.69 − 0.39 
   O

3
156.05 14.95 7.50 12.93 − 0.44 

Control
   Population (in thousands) 12.68 9.04 9.02 0.65 0.05
   Share of foreigners 0.19 0.10 0.10 0.01 0.11
   Share of females 0.51 0.01 0.01 0.00 − 0.13 
   Share of working-age population 0.68 0.02 0.02 0.01 0.03
   Average household income (in thousands) 62.38 15.38 14.65 4.72 0.18
   Income inequality measure 0.44 0.05 0.05 0.01 0.12
   Unemployment rate 0.03 0.01 0.01 0.01 0.10
   Number of ambulatory doctors 21.08 51.97 50.73 11.44 0.02
   Number of stationary doctors 22.08 37.20 36.54 7.10 0.04

Table 2  Investigated causes of hospital admissions

Cause of hospital admissions ICD-10 code Description

All cardiovascular diseases I00-I99 All diseases that are related to the cardiovascular system
Coronary artery disease I20-I25 Stable angina, unstable angina, myocardial infarction, and sudden coronary death
Cerebrovascular disease I60-I69 Vascular disease of the cerebral circulation
All respiratory diseases J00-J99 All conditions of the upper respiratory tract, trachea, bronchi, bronchioles,

alveoli, pleura and pleural cavity, and the nerves and muscles of breathing
Pneumonia J12-J18, P23 Inflammatory condition of the lung
COPD J40-J44 Obstructive lung disease characterized by chronically poor airflow
Asthma J45-J46 Chronic inflammatory disease characterized by variable and recurring symptoms,

reversible airflow obstruction and bronchospasm
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the average pollution exposure for PM10, NO2 , SO2 , and O3 , 
and the key parameters of interest are �p . These parameters 
are supposed to measure the effect of ambient air pollution 
on hospital admissions.

We consider two model specifications to address unob-
served heterogeneity over time. Our baseline specification 
includes common time fixed effects, whereas our preferred 
specification includes canton-time fixed effects.9 We pre-
fer the specification with flexible time fixed effects because 
the Swiss cantons have some autonomy in designing health 
policy instruments. In this way, we can account for shocks 
generated by cantonal health policies.10 Moreover, the can-
ton-time fixed effects are supposed to control for other time-
variant factors, such as the progression of diseases, that are 
predictive of the outcome and correlated with the treatment. 
Among others, such unobserved variables are the reloca-
tion of sicker people into areas with better air quality and 
the access to transport facilities. Ideally, we would like to 
track people over time and space to explore the temporal 
component of pollution exposure and, therefore, account for 
the possible progression of diseases. However, such detailed 
information is not available for the Swiss population. In any 
case, the location and canton-time effects should allow us to 
circumvent the endogeneity problem. Furthermore, we can 
exclude that sick people are more likely to move because of 
easier hospital admissions since waiting times in Switzer-
land are generally absent.

Following Schlenker and Walker [26], the outcome vari-
able in our regression model is denoted by admit , represent-
ing the non-negative integer count of hospital admissions.11 
One might transform the outcome variable and then estimate 
the relationship using a linear regression model. Although 
this approach is practicable for particular types of data, it 
is inappropriate when the outcome is a count. As discussed 
in Wooldridge [29], the linear regression model does not 
ensure positivity for the predicted values of the count out-
come. Moreover, the discrete nature of the count outcome 
makes it difficult to find a transformation with a conditional 
mean that is linear in parameters. Finding such a transfor-
mation is a particular problem in the presence of heteroske-
dasticity as the transformed errors would be correlated with 

the covariates, leading to inconsistent estimates of the treat-
ment effect. Even when the transformation of the conditional 
mean is correctly specified, it would be impossible to meas-
ure the relationship of primary interest. Hence, we model the 
relationship between the health outcome and the covariates 
directly, using the exponential form to ensure positivity for 
the covariates as shown in Eq. 2. An advantage of the expo-
nential form is that the response variable can follow different 
distributional assumptions.

To explore the relationship between ambient air pollution 
and hospital admissions, we use the Poisson pseudo-maxi-
mum likelihood (PML) estimator [16, 17]. The Poisson PML 
estimator is consistent in the presence of heteroskedasticity, 
and even if the conditional variance is not proportional to 
the conditional mean, the Poisson PML estimator is con-
sistent [4, 29]. Because the Poisson PML estimator makes 
no assumption on the dispersion of the fitted values, we do 
not need to test for this aspect. An advantage of the Poisson 
PML estimator is that the scale of the dependent variable has 
no effect on the parameter estimates, which is a challenge 
for the Negative Binomial PML estimator. Moreover, as long 
as the conditional mean is correctly specified, the Poisson 
PML estimator yields estimates that are similar in size to the 
estimates of both the Gaussian and Negative Binomial PML 
estimators. To ensure that the distributional assumption has 
no impact on the parameter estimates, we also estimate Eq. 2 
using these alternative PML estimators (see the online sup-
plementary materials). Last, to address heteroskedasticity 
in the error term, we use a robust variance estimator and 
account for clustering at the MedStat region level [3].

Results

We first explore the relationship between ambient air pollu-
tion and hospital admissions with the baseline specification; 
then we extend the analysis by comparing the effect of differ-
ent distributional assumptions and testing for non-linearity 
in the treatment effect. Finally, we conduct falsification tests 
to ensure the robustness of our identification strategy.

The effect of ambient air pollution on hospital 
admissions

We commence our empirical analysis by exploring the rela-
tionship between ambient air pollution and hospital admis-
sions in the general population. Table 3 summarizes the 
Poisson PML estimates for the investigated causes of hos-
pital admission. All specifications include covariates and 

9 Switzerland is a federal state of 26 cantons. Each canton has its 
own constitution, legislature, and government. Among others, the 
cantons are responsible for healthcare services, welfare, law enforce-
ment, and public education.
10 For instance, Switzerland has recently introduced a new hospital 
financing system to promote cost-effective health care. Although the 
system was simultaneously introduced in all cantons, the reimburse-
ment rates for medical treatment are different between cantons.
11 We are aware that several studies in the health economics litera-
ture use admissions per population as the outcome variable. However, 
the absolute number of admissions is more appropriate in this context 
because we can use a count-data model that reflects the data generat-
ing process of hospital admissions due to pollution exposure.
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fixed effects for MedStat regions and time.12 We report the 
estimates of the treatment effect measuring the air pollution 
using the inverse distance approach in columns 1–4, and the 
dispersion model approach in columns 5–8.13 As suggested 
earlier, our regression results could indicate an endogeneity 
problem for the inverse distance approach as most estimates 
have a negative sign or are not statistically significant at the 
10% confidence level.14 This problem is the primary concern 
of our analysis and the reason why we advance the use of a 
dispersion model approach to solve the endogeneity issue. 
Therefore, the remaining discussion is solely concerned with 
the parameter estimates of the dispersion model approach 

as these estimates are likely less affected by measurement 
bias.15

The Poisson PML estimates based on the dispersion 
model approach explain between 80 and 91% of the varia-
tion, and the pollution measures account for 2.4 to 10.1% of 
the overall variation in hospitalization data.16 The estimates 
provide evidence for a significant association between ambi-
ent air pollution and hospital admissions for cardiovascular 
diseases, but only weak evidence for respiratory diseases. 
Except for PM10 exposure and hospital admissions for 
asthma, all estimates for respiratory diseases are not statis-
tically significant. As for cardiovascular diseases, the strong-
est association with pollution is found for SO2 , for which a 
1 unit increase in pollution exposure is associated with a 
2.6% increase in the incidence of hospital admissions for 
coronary artery diseases. This implies that an increase in 
SO2 exposure by one standard deviation increases hospitali-
zations by more than 2.2 patients. Although only some of 
the estimates for O3 exposure are statistically significant, the 

Table 3  Baseline specification with MedStat region and time fixed effects (poisson PML estimates)

This table reports the joint estimates of the treatment effect of pollutants on different causes of hospital admissions. All estimates and standard 
errors are rescaled (x100). The sample consists of 604 MedStat regions for the period 2001 to 2013. We assume that the data generating process 
follows a Poisson distribution. All regressions include control variables and both year and MedStat region fixed effects. Columns 1–4 report the 
estimates of the treatment effect by pollutant for the inverse distance approach, and columns 5–8 the results for the dispersion model approach. 
The heteroscedasticity-robust standard errors are provided in parenthesis and are adjusted for within cluster correlation at the MedStat region 
level. ∗∗∗ , ∗∗ , and ∗ indicate significance at the 1%, 5%, and 10%, respectively

Cause of hospital admissions Inverse distance approach Dispersion model approach

(1) (2) (3) (4) (5) (6) (7) (8)

PM10 NO
2

SO
2

O
3

PM10 NO
2

SO
2

O
3

All cardiovascular diseases 0.526***  − 0.325***  − 0.186 − 0.014 0.775 1.235 0.709 0.140* 
(0.186) (0.118) (0.300) (0.036) (0.601) (0.817) (0.648) (0.072)

Coronary artery disease 0.843***  − 0.531***  − 0.949**  − 0.085*  0.712 1.834**  2.567***  0.134
(0.225) (0.159) (0.445) (0.050) (0.695) (0.929) (0.856) (0.086)

Cerebrovascular disease 0.320 − 0.291 0.195 0.010 − 0.047 2.197*  0.814 0.247** 
(0.325) (0.204) (0.401) (0.061) (0.914) (1.130) (0.797) (0.114)

All respiratory diseases 0.320 0.099 − 0.566*  − 0.124***  0.826 − 1.001 − 0.360 0.094
(0.275) (0.161) (0.297) (0.043) (0.635) (0.772) (0.636) (0.072)

Pneumonia 0.342 0.075 − 1.160***  − 0.079 0.171 − 0.258 − 1.564*  0.151
(0.289) (0.184) (0.347) (0.056) (0.817) (0.971) (0.833) (0.092)

COPD 0.306 − 0.230 − 2.127***  − 0.234***  − 1.151 − 0.884 − 0.545 0.160
(0.426) (0.269) (0.644) (0.088) (1.082) (1.222) (1.084) (0.133)

Asthma 2.070***  − 1.010***  − 0.861 − 0.804***  6.050***  − 0.049 − 1.781 − 0.632*** 
(0.635) (0.390) (0.779) (0.135) (1.519) (1.334) (1.684) (0.186)

12 We do not report the estimates of the control variables because 
of space limitations. The table shows the estimates of 14 ( 7 × 2 ) 
regressions. The estimates including all covariates are available upon 
request from the authors.
13 Note that the effects of different pollutants are comparable since 
they are all measured in μg∕m2.
14 The negative parameter estimates for some types of pollution 
could also be caused by insufficient variation in the measures of 
exposure. For instance, since there are only a few SO2 monitoring 
sites, the within variation in pollution exposure is limited, inducing 
collinearity between the fixed effects and the measures of pollution 
exposure.

15 As discussed in the literature, in this case the measurement error 
is likely non-classical. This implies that the covariance tends to be 
negative (see, e.g., [2]).
16 As a measure of explanatory power, we use the Pseudo R-squared 
value, which is defined as the squared correlation between predicted 
and observed count outcome.
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treatment effect is in general much smaller than for PM10, 
NO2 , and SO2.

Even though our baseline specification with MedStat 
region and time fixed effects provides evidence for a posi-
tive association between some ambient air pollutants and 
hospital admissions for cardiovascular diseases, it is possi-
ble that unobserved location characteristics varying between 
cantons and over time are correlated with the measures of 
air pollution. To account for these factors, we allow the time 
fixed effects to be flexible and estimate Eq. 2 with canton-
time fixed effects. The regression results are provided in 
Table 4. Again, we compare the estimates using the inverse 
distance approach with the estimates of the dispersion model 
approach. The negative and partially significant estimates for 
the inverse distance approach provide further evidence of a 
possible endogeneity issue. Conversely, the estimates for the 
dispersion model approach generally show the expected sign 
and are statistically significant.

The difference in parameter estimates for the IDW 
approach and the dispersion model is likely due to the ina-
bility of the IDW approach to account for different emis-
sion sources, such as road traffic and industrial and com-
mercial activities, as well as the atmospheric conditions, 
which include wind speed and direction, air temperature 
and mixing height. For instance, in the Southern part of 
Switzerland, where the mountains channel the wind, the 

Alpine topography has a significant impact on the distribu-
tion of pollutants. Most monitoring sites in this area are in 
the central valleys (see Figure A1 for the distribution map), 
where North is the primary wind direction. Since the IDW 
approach is unable to account for these characteristics of 
pollutant dispersion, the method suffers from an endogeneity 
issue that is systematic but likely not normally distributed. 
This type of measurement error is not easily resolvable with 
econometric methods and implies that finding insignificant 
and biased treatment estimates is not surprising.

We now turn to the discussion of our estimates in detail. 
The results of the dispersion model approach indicate that 
PM10 exposure has no statistically significant effect on 
hospital admissions for cardiovascular and respiratory dis-
eases in Switzerland. One possible reason for this result 
is that PM10 levels in Switzerland are lower than in other 
developed countries. Another reason is that the inclusion of 
time and canton-time fixed effects is capturing the impact 
of PM10 levels that steadily decreased in the past two dec-
ades. Therefore, we cannot conclude that current PM10 
exposure does not affect hospital admissions. Conversely, 
the estimates of the treatment effect for NO2 and SO2 indi-
cate a positive association between pollution exposure and 
hospital admissions, as suggested by some recent studies 
[5, 9, 24]. Both pollutants have statistically significant and 
economically meaningful effects on hospital admissions for 

Table 4  Preferred specification with MedStat region and canton-time fixed effects (Poisson PML estimates)

This table reports the joint estimates of the treatment effect of pollutants on different causes of hospital admissions. All estimates and standard 
errors are rescaled (×100) . The sample consists of 604 MedStat regions for the period 2001 to 2013. We assume that the data generating process 
follows a Poisson distribution. All regressions include control variables and both canton-year and MedStat region fixed effects. Columns 1–4 
report the estimates of the treatment effect by pollutant for the inverse distance approach, and columns 5–8 the results for the dispersion model 
approach. The heteroscedasticity-robust standard errors are provided in parenthesis and are adjusted for within cluster correlation at the MedStat 
region level. ∗∗∗ , ∗∗ , and ∗ indicate significance at the 1%, 5%, and 10%, respectively

Cause of hospital admissions Inverse distance approach Dispersion model approach

(1) (2) (3) (4) (5) (6) (7) (8)

PM10 NO
2

SO
2

O
3

PM10 NO
2

SO
2

O
3

All cardiovascular diseases 0.403**  − 0.310*  − 0.051 − 0.134**  − 0.175 1.506*  2.827***  0.036
(0.205) (0.176) (0.265) (0.059) (0.718) (0.868) (0.864) (0.099)

Coronary artery disease 0.354 − 0.364 − 1.089***  − 0.180**  − 1.185 4.327***  2.017**  0.143
(0.305) (0.244) (0.384) (0.091) (0.958) (1.123) (0.988) (0.148)

Cerebrovascular disease 0.400 − 0.565**  − 0.476 − 0.178**  − 1.562 2.394*  3.834***  − 0.120
(0.347) (0.235) (0.427) (0.077) (1.154) (1.272) (1.253) (0.196)

All respiratory diseases − 0.135 0.187 − 0.381 − 0.177***  − 1.024 − 0.201 2.301***  − 0.078
(0.266) (0.169) (0.330) (0.065) (0.728) (0.880) (0.893) (0.110)

Pneumonia 0.622*  − 0.024 − 1.571***  − 0.181**  − 1.444 0.123 0.639 0.010
(0.367) (0.235) (0.431) (0.085) (1.189) (1.273) (1.066) (0.178)

COPD 0.031 − 0.424 − 1.600**  − 0.387***  − 2.470 − 0.587 2.143 0.015
(0.537) (0.403) (0.775) (0.134) (1.628) (1.651) (1.577) (0.263)

Asthma 2.024**  − 1.384**  − 1.020 − 0.317 5.237 − 5.737**  2.559 − 0.202
(0.843) (0.633) (1.087) (0.207) (3.385) (2.780) (2.544) (0.413)
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cardiovascular diseases. The treatment effect is overall larger 
for SO2 than for NO2 . We find that the incidence of hospital 
admissions for cardiovascular diseases is 1.5% higher for 
NO2 , and 2.8% higher for SO2 , when the pollutant exposure 
increases by 1 unit. This implies that a one-standard devia-
tion increase of pollution exposure results in an increase of 
hospitalization by 18.7 patients for NO2 and by 8.7 patients 
for SO2 , respectively. The SO2 effect on hospital admissions 
for respiratory diseases is smaller with the incidence rate 
increasing most for chronic obstructive pulmonary diseases 
(COPD). Moreover, we find no evidence for a statistically 
significant association between pollution exposure and hos-
pital admissions for asthma. The last column of Table 4 
reports the parameter estimates for O3 . We find no evidence 
for a significant effect of O3 exposure on hospital admis-
sions, which is likely because summer spikes are captured 
insufficiently by our annual pollution measure.

To ensure the validity of our baseline estimation results, 
we conducted two robustness checks of our statistical 
approach. First, we extended the analysis by comparing the 
effect of different distributional assumptions. The estimates 
of the treatment effect for the Gaussian and the Negative 
Binomial PML estimators are provided in the online supple-
mentary materials (Tables A1 and A2 ). We find that all esti-
mates are similar to the estimates for the Poisson distribu-
tion regarding the significance level, but are larger regarding 

the size of the treatment effect. Second, we account for the 
potential effect of non-linearity in the treatment effect. We 
classify each treatment variable for the dispersion model 
approach into quartiles and interact the quartile dummies 
with the treatment measure. We find no compelling evi-
dence for non-linearity in the PM10 treatment effect (see 
Tables A3 and A4 in the online supplementary materials). 
The Poisson PML estimates confirm that PM10 exposure 
has no statistically significant effect on hospital admissions 
in Switzerland. Additionally, the quartile regression results 
indicate that both NO2 and SO2 have statistically significant 
effects on hospital admissions. We find no evidence for non-
linearity in the treatment effect for NO2 , and only limited 
evidence for SO2 . Overall, the largest estimates are observed 
for the last quartile. The estimation results for O3 are similar 
to those presented in our main regression table, providing 
no evidence for a statistically significant treatment effect. 

Falsification tests

To provide further support for the robustness of our iden-
tification strategy and our claim that the dispersion model 
approach allows for more accurate identification of the pol-
lution treatment effects, we conducted a couple of negative 
control falsification tests. For this purpose, we randomly 
selected diagnoses at different ICD-10 levels excluding 

Table 5  Falsification tests for preferred specification with MedStat region and canton-time fixed effects (Poisson PML estimates)

This table reports the joint estimates of the treatment effect of pollutants on different causes of hospital admissions. All estimates and standard 
errors are rescaled (×100) . The sample consists of 604 MedStat regions for the period 2001 to 2013. We assume that the data generating process 
follows a Poisson distribution. All regressions include control variables and both canton-year and MedStat region fixed effects. Columns 1–4 
report the estimates of the treatment effect by pollutant for the inverse distance approach, and columns 5–8 the results for the dispersion model 
approach. The heteroscedasticity-robust standard errors are provided in parenthesis and are adjusted for within cluster correlation at the MedStat 
region level. ∗∗∗ , ∗∗ , and ∗ indicate significance at the 1%, 5%, and 10%, respectively

Cause of hospital admissions Inverse distance approach Dispersion model approach

(1) (2) (3) (4) (5) (6) (7) (8)

PM10 NO
2

SO
2

O
3

PM10 NO
2

SO
2

O
3

Infectious and parasitic diseases 0.253 − 0.835*  0.606 − 0.170 3.005 − 0.767 2.891 0.005
(0.848) (0.478) (0.922) (0.174) (2.797) (3.107) (2.854) (0.414)

Endocrine, nutritional, and metabolic diseases − 0.726 − 0.340 0.926 0.056 − 0.441 1.053 0.592 0.076
(0.613) (0.438) (0.936) (0.166) (2.632) (2.371) (2.723) (0.398)

Bone fractures 0.549 − 0.208 0.436 − 0.168 0.221 0.941 2.968 0.307
(0.497) (0.430) (0.644) (0.142) (1.517) (1.891) (2.234) (0.250)

Diabetes − 1.050 − 0.206 0.436 0.074 − 2.583 0.790 0.307 − 0.256
(0.923) (0.610) (1.486) (0.266) (3.474) (3.136) (3.340) (0.617)

Diseases of middle ear and mastoid − 4.365***  1.888**  − 2.168 0.431 − 3.040 − 1.270 1.277 0.163
(1.505) (0.909) (1.942) (0.320) (4.956) (5.603) (4.649) (0.823)

Tonsillitis − 0.754 1.636***  0.006 − 0.103 1.561 1.510 0.384 − 0.727
(0.906) (0.596) (0.982) (0.172) (2.817) (3.086) (2.317) (0.450)

Diseases of liver 0.929 − 0.166 − 1.256 − 0.072 0.876 1.625 3.187 − 0.446
(1.325) (1.243) (1.964) (0.411) (6.004) (4.705) (4.425) (0.868)
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diagnoses considered in the baseline selection. These diag-
noses are listed in Table A5 of the online supplementary 
materials. We estimated the relationship for the preferred 
specification with MedStat region and canton-time fixed 
effects.

The estimation results are summarized in Table  5. 
Again, we observe that the dispersion model approach out-
performs the inverse distance approach. Indeed, while we 
find no evidence for a statistically significant relationship 
between pollution exposure and the negative control out-
comes in the dispersion model approach, the inverse distance 
approach shows statistically significant evidence (positive 
or negative).

Conclusions

Ambient air pollution is the environmental factor with the 
greatest impact on human health. Several epidemiologi-
cal studies provide evidence for a significant association 
between ambient air pollution and human health. However, 
the recent economic literature has challenged the identifica-
tion strategy used in these studies. This paper explores the 
association between ambient air pollution and morbidity 
using hospital admission data from Switzerland. We try to 
strengthen the understanding of the impact of air pollut-
ants on morbidity using geographically explicit air pollu-
tion measures derived from a dispersion model. This novel 
approach enables us to circumvent the measurement problem 
at the source and to construct a reliable measure of local 
pollution exposure.

We find a significant association between ambient air pol-
lution and health outcomes, and these results are robust to 
different distributional assumptions and non-linearity in the 
treatment effect. We also find substantial differences among 
causes of hospital admission. While SO2 and NO2 exposure 
appear to be significantly associated with admission rates for 
coronary artery and cerebrovascular diseases, the associa-
tion between PM10 exposure and hospital admissions is not 
confirmed in all model specifications. The limited statistical 
evidence on the impact of PM10 exposure may be due to the 
low levels of pollution in Switzerland, or to the econometric 
specification that include time and canton-time fixed effects 
capturing the steadily decrease of this pollutant in the past 
decades.

Our results show that the IDW approach, which is the 
conventional approach to measure air pollution in previous 
studies, is likely to induce systematic estimation bias. In 
contrast, the dispersion model approach seems to be able 
to address the endogeneity problem related to the measure-
ment of local pollutant exposure. Still, some of the emis-
sion sources and process characteristics used in the disper-
sion model could be subject to imprecise measurement. For 

instance, the amount of pollution from the use of vehicles 
is estimated using road usage inventories instead of actual 
road usage.

Although exposure to air pollution has decreased signifi-
cantly during the study period, our findings may indicate 
that there is still potential to further reduce the exposure 
to pollutants with the aim to mitigate the negative impact 
on health outcomes. Thus, our results may contribute to a 
more accurate evaluation of future environmental policies 
aiming at a reduction of air pollution exposure. For instance, 
effort should focus on reducing the exposure to SO2 and 
NO2 , which show the strongest association with hospital 
admissions, to provide the largest benefits for human health.
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