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Abstract
The concentrations of particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) and 10 µm (PM10) is a wide-
spread concern and has been demonstrated for 103 countries. During the past few years, the exposure–response function 
(ERf) has been widely used to estimate the health effects of air pollution. However, past studies are either based on the cost-
of-illness or the willingness-to-pay approach, and therefore, either do not cover intangible costs or costs due to the absence 
of work. To address this limitation, a hybrid health effect and economic loss model is developed in this study. This novel 
approach is applied to a sample of environmental and cost data in China. First, the ERf is used to link PM2.5 concentrations 
to health endpoints of chronic mortality, acute mortality, respiratory hospital admission, cardiovascular hospital admission, 
outpatient visits—internal medicine, outpatient visits—pediatrics, asthma attack, acute bronchitis, and chronic bronchitis. 
Second, the health effect of PM2.5 is monetized into the economic loss. The mean economic loss due to PM2.5 was much 
heavier in the North than the South of China. Furthermore, the empirical results from 76 cities in China show that the health 
effects and economic losses were over 4.98 million cases and 382.30 billion-yuan in 2014 and decreased dramatically com-
pared with those in 2013.

Keywords  PM2.5 · Exposure–response function · Cost-of-illness method · Willingness-to-pay method · Health effects · 
Economic losses

JEL Classification  Q5

Introduction

Air pollution has a great effect on human health and has 
become a widespread concern [2]. The World Health 
Organization (WHO) announced that the concentrations 
of particulate matter with aerodynamic diameters less than 
2.5 µm (PM2.5) and 10 µm (PM10) in more than 2400 cities 
distributed throughout 103 countries were higher than the 
ambient air quality standard in 2016 [48], which indicates 
that global PM2.5 pollution is very serious and has become 
a widespread concern.

During the past few years, the exposure–response func-
tion (ERf) has been widely used to estimate the health 
effects of air pollution. It refers to the relationship between 
the concentration of contaminants and the incidence of 
premature death or illness in exposed populations. In this 
article, it indicates more specifically the percentage change 
in the incidence rate of premature death or disease caused 
by per 1 µg/m3 fluctuation of PM2.5 in the concentration 
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level. A large number of studies have used it to meas-
ure the relationships between air pollution exposure and 
human health in developed countries. For example, some 
studies conducted in America [7, 32], Austria, France, 
and Switzerland [20], Europe [26], Italy [6] and 14 WHO 
member states [5] all concluded that great health effects 
could be attributed to PM2.5, PM10, and other air pollutants.

Past studies were either based on the cost-of-illness 
(COI) or the willingness-to-pay (WTP) approach. They 
ignored intangible costs, as well as costs due to the 
absence of work. To address this limitation, this study 
develops a hybrid health effect and economic loss model. 
Based on the previous literature [14, 17, 23, 31, 40], this 
article combines the exposure–response function with 
the economic burden of disease analysis to estimate the 
health effect and economic loss respectively due to PM2.5 
in China. These two approaches were usually used in the 
medical and epidemiology field separately, while rarely 
used to evaluate the costs caused by environmental pollu-
tion. Therefore, the hybrid health effect and economic loss 
model will provide a theoretical reference for cost analysis 
of environmental pollution.

To demonstrate the empirical relevance of the new 
method, we implement it on a sample of Chinese cities. The 
purpose of this illustrative example is to show that the hybrid 
model proposed can be applied in various contexts world-
wide, including Europe. China is the second largest economy 
in term of GDP. Only 16 of 161 cities in China met the 
updated air quality standard in 2014 [34]. Hence it appears 
urgent to estimate the health effect and economic loss of 
air pollutions including PM2.5 to design and implement the 
targeted abatement measures in this country. Recently the 
health effect of air pollutions has also been estimated by the 
ERf method in China [9, 17, 22, 52]. Several characteristics 
can be found from these studies. First, most of them focused 
on developed cities or regions, including Dalian [43], Shang-
hai [40], Taiyuan [38], Hongkong [37], Nanjing [21], the 
Yangtze River Delta [42], the Pearl River Delta [22], 75 
major cities in China [9] and 32 large cities in China [53]. 
However, pollution characteristics, economic development 
level and geographical population distribution are different 
from cities to cities. More empirical results are necessary to 
measure the negative impacts of air pollution in China. Sec-
ond, existing studies focused on estimating the health effects 
of PM10, SO2, and NO2 [35, 53], few on PM2.5. During recent 
years, air pollution in urban areas in China has transformed 
from coal-smog pollution into a mixture of coal-smog and 
automobile pollution. PM2.5 has become one of the heavy 
fog and haze pollutions in China. Third, they only focused 
on the health endpoints of all-cause, cardiopulmonary, res-
piratory mortality and hospital admissions [12], few on 
else health endpoints. However, air pollution has numerous 
health endpoints; more health endpoints should be taken into 

account to make the health effect estimation more accurate 
and comprehensive.

This study aims to propose a hybrid health effect and eco-
nomic loss model. Besides this theoretical contribution, we 
include an example of application on a sample of 76 Chinese 
cities that can be relevant in the European setting as well. 
The central methodological contribution consists in using 
the ERf to link PM2.5 concentrations to nine health end-
points, including chronic mortality, acute mortality, respira-
tory hospital admission, cardiovascular hospital admission, 
outpatient visits—internal medicine, outpatient visits—pedi-
atrics, asthma attack, acute bronchitis, and chronic bronchi-
tis. Owing to the new method, more health endpoints are 
introduced into the estimation. Namely, the health effect of 
PM2.5 is monetized into the economic loss through the eco-
nomic burden of disease analysis, willingness to pay (WTP) 
and cost of illness (COI) methods [46, 47]. Furthermore, 
scenario analysis is conducted to capture the uncertainties of 
the estimations of health effect and economic loss of PM2.5.

With respect to the illustration based on a sample of 76 
cities in China, the results show that the health effect and 
economic loss were over 4.98 million cases and 382.30 bil-
lion yuan (RMB), accounting for 2.16% of total urban popu-
lation and 1.33% of total GDP of these cities in 2014, which 
decreased dramatically compared with those in 2013. More 
importantly, the health effects in 2014 accounted for 14.34% 
of GDP growth of the 76 cities at the constant prices of 
2013. Furthermore, in the baseline scenario, the mean health 
effect of PM2.5 in the North was 13,366 cases higher than 
that of the South with the same PM2.5 concentration and total 
urban population.

It is worth noting that, although the object of this article 
is Chinese residents, the method of environmental pollution 
costs analysis is appropriate for various countries includ-
ing emerging countries as well as European countries. In 
previous studies, the WTP and COI method were usually 
used in the medical and epidemiology field, while rarely 
used to evaluate the economic losses caused by environ-
mental pollution. Therefore, we combine the two methods 
and the exposure–response function to measure the health 
effects and the economic losses due to PM2.5 respectively, 
which can provide a theoretical reference for cost analysis of 
environmental pollution in various countries. Meantime, the 
article will enable global readers, including European read-
ers, to deeply understand China, and take effective measures 
to avoid greater health costs due to PM2.5 when they invest 
or work in China.

The remainder of the article is structured as follows. 
“Hybrid health effect and economic loss model for PM2.5” 
details the new methodology. “Illustration of the new model 
based on Chinese data” explains the data set of Chinese cities 
used for illustrative proposes. “Empirical results achieved by 
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the hybrid model in the context of Chinese cities” contains the 
results and sensitivity tests. “Conclusion” concludes.

Hybrid health effect and economic loss 
model for PM2.5

The exposure–response function (ERf)

In this study, the ERf is used to estimate the health effect 
of PM2.5 by linking the PM2.5 concentrations to nine health 
endpoints, classified by the ICD-10 code. Not everyone 
exposed to PM2.5 pollution would suffer health effects. The 
human health is often affected by many factors, a threshold 
value that is the lowest concentration of PM2.5 below which 
no harmful health effects can be observed is introduced 
to identify the health effects due to PM2.5. Only when the 
PM2.5 concentration exceeds the threshold value, PM2.5 can 
become a cause of respiratory diseases and cardiovascular 
diseases and so on. The exposure–response coefficient meas-
ures the percentage change of the incidence rate of health 
endpoints due to PM2.5 in populations exposed PM2.5 con-
centrations above the threshold value when compared with 
that of populations under the threshold of PM2.5 concentra-
tion. Following Refs. [9, 22, 40, 52], the exposure–response 
function is expressed as:

where I0 is the incidence rate of mortality or morbidity of 
health endpoints at the threshold of PM2.5 concentration. � 
is the exposure–response coefficient, C is the actual PM2.5 
concentration, C0 is the threshold of PM2.5 concentration, 
and I is the normal incidence rate of health endpoints at the 
actual PM2.5 concentration.

Concerning zero health effects below the threshold of 
PM2.5 concentration, the incidence rate of mortality or mor-
bidity due to PM2.5 is the difference between I and I0 ( ΔI):

Therefore, the health effects associated with PM2.5 can 
be calculated through the difference between actual baseline 
incidence rate of health endpoints and the incidence rate 
under the threshold level, which is specifically defined as 
the product of ΔI and the exposed population:

in which P is the exposed population.

The economic burden of disease analysis

In this study, the economic burden of disease analysis 
is applied to monetize the health effects of PM2.5. The 

I0 =
I

exp(� × (C − C0))
,

ΔI = I − I0 = I ⋅

(

1 −
1

exp(� ⋅ (C − C0))

)

.

E = P ⋅ ΔI,

economic burden due to PM2.5 includes tangible and intan-
gible costs. The former includes the direct costs of treatment 
and hospitalization related to PM2.5, as well as the reduction 
in the income and wealth created by absence from work or 
premature death due to illness. The latter refers to the pains 
and other spiritual losses of diseases due to PM2.5 [31, 46].

The WTP and COI are the prevailing methods for valu-
ing the economic burden due to PM2.5 [9, 22, 40, 52]. The 
WTP measures what a person would pay to reduce the risk 
of illness or death through a questionnaire survey. It can 
not only capture the intangible costs including the value of 
spiritual suffering that people are unwilling to bear and the 
value of leisure time lost due to illness or premature death. 
It also reflects the tangible costs of medical treatment people 
expected. However, it is hard to operate a comprehensive 
large sample survey due to the wide geographical area of 
China.

Moreover, due to different health insurances and eco-
nomic incomes, it is really difficult to obtain reliable and 
correct results from a questionnaire survey. The COI method 
assesses the economic losses caused by environmental pollu-
tion on human health and labor productivity. It can not only 
estimate the medical costs of illness treatment including out-
patient costs, hospital costs, and drug costs but also measure 
the lost earnings due to absences from work because hospi-
talization or premature death leads to reduced working hours 
and illness leads to lower work productivity [19].

Nonetheless, it ignores the indirect costs such as spiritual 
utility losses, resulting in an underestimation of costs [36, 
46, 49]. On the one hand, the WTP method can compre-
hensively reflect the tangible costs and intangible costs of 
diseases or death, but it is quite difficult to collect the data 
in practice. On the other hand, the COI method can only 
reflect the tangible medical expenditure and failed to take 
the intangible spiritual utility losses into account. Hence, 
the COI can be theoretically regarded as a lower bound to 
WTP in cases where WTP estimates are not available [46].

In our opinion, previous literature exhibits two shortcom-
ings. (i) Past studies are solely based on the cost-of-illness 
(COI), or the willingness-to-pay (WTP) approaches to evalu-
ate the economic losses due to PM2.5. (ii) Previous works 
tend to ignore intangible costs, as well as costs due to the 
absence of work. To address these methodological design 
flaws, in this study we propose a new hybrid health effect 
and economic loss model. Given the availability of data, we 
integrated WTP and COI methods to take full use of their 
advantages and capture tangible and intangible costs.

Valuing mortality risks

Economic losses of mortality risks are typically assessed using 
the WTP method. Essentially, how to accurately value the 
WTP for mortality risk reduction is difficult due to commonly 



504	 B. Zhu et al.

1 3

accepted market price. In this study, the “value of a statistical 
life” ( VSL ), advocated in previous studies [10, 31, 44], is intro-
duced into valuing the mortality risks. VSL is the sum of what 
a society is willing to pay to reduce the premature death risk 
of one of the members of society caused by pollution based on 
the WTP method. It is usually estimated using a questionnaire 
survey to ask people directly what they are willing to pay for 
a reduction in risk of dying from air pollution.

The VSLs vary with cities and social–economic factors 
such as age, job and income [1, 8, 13, 14, 41, 51]. Therefore, 
this study introduces the benefits transfer approach to adjust 
the VSLs:

in which VSL
it
 and VSLbase are the VSL of the city i year 

t and the VSL of the base city, respectively. I
it
 and Ibase are 

the urban per capita disposable income of the city i year 
t  and the base city, respectively. e is the income elasticity 
coefficient.

Valuing morbidity risks

In this study, the COI method is used to value the morbidity 
risks from direct and indirect costs. Direct costs include treat-
ment, medication and hospitalization expenses, and the indi-
rect costs include the lost earnings due to absence from work 
[31, 33, 46]. The total cost of health endpoint i is defined as:

in which, Cpi is the direct cost of a unit case of illness i , per 
capita medical expenses of health endpoint i . The indirect 

VSL
it
= VSLbase ×

(

I
it
∕Ibase

)e

,

C
i
= (Cpi + GDPp × T

i
) × E

i
,

cost of health endpoint i is estimated by the product of GDPp
and T

i
 . GDPp is a daily average of per capita GDP . T

i
 is the 

treatment and hospitalization days.E
i
 is the cases associated 

with health endpoint i.

The proposed hybrid health effect and economic 
loss model for PM2.5

Inspired by the previous studies [14, 17, 23], this study 
proposes a hybrid health effect and economic loss model to 
estimate the health effect and economic loss of PM2.5 via 
two steps: estimating health effects and valuing economic 
losses, as shown in Fig. 1.

Step 1 Inspired by the previous epidemiological studies 
[14, 17, 31, 36] and ensuring data availability, this study 
chose nine health endpoints closely related to PM2.5 as dis-
cussed before for health effect estimations. Because urban 
populations are likely to be the primary group exposed to 
PM2.5 [15, 45], we chose only the urban residents as the 
main exposed population. Furthermore, the ERf is used to 
linking the PM2.5 concentrations to the nine health end-
points, to obtain the health effect estimations of PM2.5.

Step 2 The economic burden of disease analysis is used 
to monetize the health effects of PM2.5. In this study, the 
VSLs are used to value the mortality risk. The COI method 
is used to value the morbidity risks. All the estimations are 
summed as the final economic losses due to PM2.5.

Fig. 1   The hybrid health effect and economic loss model for PM2.5
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Illustration of the new model based 
on Chinese data

In this section, we detail the dataset of Chinese cities used 
to show the soundness of the new proposed approach. It 
is interesting to note that this application can be carried 
out in various context, such as to investigate the European 
experience on that matter.

•	 PM2.5 concentrations (C): We obtain the actual annual 
PM2.5 concentrations of 76 cities from the China Sta-
tistical Yearbooks on Environment (2014, 2015) [30], 
and Environmental Quality Bulletin published on urban 
environmental protection agency website of each city.

•	 The threshold of PM2.5 concentrations (C0): The PM2.5 
concentrations in China are much higher than that of 
developed countries, so this study selects the Chinese 
second grade standard (35 μg/m3) in the China Ambient 
Air Quality Standard (GB3905-2012) as the threshold 
concentration of PM2.5, rather than the air quality stand-
ards of WHO.

•	 Exposure–response coefficient ( � ): Inspired by the previ-
ous studies [14, 17, 50], we determine the mean expo-
sure–response coefficients of nine health endpoints and 
their 95% confidence intervals, presented in Table 1.

•	 The normal incidence rate ( I ): The normal incidence rate 
of chronic mortality, acute mortality, respiratory hospi-
tal admission, cardiovascular hospital admission, and 
chronic bronchitis are obtained from the China Health 
Statistical Yearbook (2014, 2015) [29]. The percentage 
of outpatient visits—internal medicine and pediatrics 
cases to the total urban populations in Chinese cities 
is reported as the normal incidence of outpatient vis-
its—internal medicine and pediatrics, as also shown in 
Table 1. For lack of data of acute bronchitis and asthma 
attack, their incidence rates are obtained from Huang 
et al. [14].

•	 Value of a statistical life (VSL) and income elasticity 
coefficient (e): Follow Xie [49]; we use the VSL of Bei-
jing (1.68 million RMB) as the VSLbase in our study. To 
adjust the VSLs to other cities, we use the benefits trans-
fer approach, regarding per capita disposable income 
compared with Beijing. Inspired by Hammitt and Zhou 
[11] and Mu and Zhang [25], the elastic income coef-
ficient (e) is set to be 1 in this study.

•	 The unit cost of health endpoints: The per capita medical 
expenses ( Cpi ) and average days spent in the hospital ( T

i
 ) 

of illness i are obtained from the China Health Statistical 
Yearbook (2015, 2016). Referring to Kan and Chen [17], 
the costs of outpatient visits, asthma attack and acute 
bronchitis in 2013 and 2014 are adjusted by the per capita 
disposable income for various cities using the benefits 
transfer approach. For chronic bronchitis, we use find-
ings of Viscusi et al. [39] and multiply the VSL by 0.32 
to obtain the cost of a case of chronic bronchitis.

•	 Exposed population and GDP: The urban population and 
per capita GDP are obtained from the China City Statis-
tical Yearbook (2014, 2015) [28]. The urban per capita 
disposable incomes are obtained from the Statistical 
Communique of China on China Economic and Social 
Development (2014, 2015) [27]. All the data are adjusted 
to the constant prices of 2013.

Empirical results achieved by the hybrid 
model in the context of Chinese cities

Health effects of PM2.5

Results in Table 2 show that, in total, 5.67 million cases of 
deaths and diseases were related to PM2.5 in 2013, account-
ing for 2.63% of the total urban population. In details, there 
were 0.19 million cases of premature deaths, 0.23 million 
cases of hospital admissions, 2.80 million cases of outpatient 
visits, 0.16 million cases of an asthma attack, 0.12 million 
cases of chronic bronchitis, and 2.16 million cases of acute 

Table 1   Exposure–response 
coefficients and normal 
incidences of health endpoints

Health endpoints Exposure–response coefficients (lower 
limit, mean, upper limit)

Incidence rate (‰)

2013 2014

Chronic mortality (0.00076, 0.00296, 0.00504) 7.16 7.16
Acute mortality (0.00019, 0.00040, 0.00062) 7.16 7.16
Respiratory hospital admission (0.00000, 0.00109, 0.00221) 11.5 11.5
Cardiovascular hospital admission (0.00043, 0.00068, 0.00093) 21.9 21.9
Outpatient visits—internal medicine (0.00027, 0.00049, 0.00070) 442.07 476.07
Outpatient visits—pediatrics (0.00020, 0.00056, 0.00090) 191.36 205.1
Asthma attack (0.00145, 0.00210, 0.00274) 9.4 9.4
Chronic bronchitis (0.00366, 0.01009, 0.01559) 1.8 1.8
Acute bronchitis (0.00270, 0.00790, 0.01300) 38 38
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bronchitis. The health effects were over 4.98 million cases 
due to PM2.5 in 2014, accounting for 2.16% of the total urban 
population of the 76 cities, which was smaller than that of 
2013.

Economic losses of health effects

Economic losses of health effects due to PM2.5 are also 
reported in Table 2. A loss of 430.53 (382.30) billion RMB 
was associated with PM2.5, accounting for 1.67% (1.33%) of 
total GDP of the sample in 2013 (2014). More importantly, 
the economic losses in 2014 accounted for 14.34% of GDP 
growth of these cities at the constant price of 2013. PM2.5 
had a great influence on the health of urban residents.

A comparative analysis between 2013 and 2014

This study finds two common characteristics through estima-
tions. Firstly, the ranks of economic losses corresponding to 
health endpoints were unchanged, i.e., chronic mortality, and 
chronic bronchitis contributed most to the total economic 
loss of PM2.5. From the perspective of WTP, premature 
death can make the loss of labor income that residents may 
earn in future work, and chronic bronchitis needs greater 
treatment costs and spiritual utility loss. Therefore, residents 

are willing to pay more to reduce the risk of death or chronic 
bronchitis.

Second, besides PM2.5 concentrations, urban populations, 
and economic levels were also important factors of health 
effects. The larger populations and the more developed econ-
omy, the higher health effects of PM2.5. For example, Beijing 
and Wuhan had similar PM2.5 concentrations in 2014 (86 and 
82 μg/m3). However, the health effect of Beijing (430,384 
cases) was much higher than that of Wuhan (163,669 cases), 
because Beijing had larger urban populations and a more 
advanced economy.

However, a difference between 2013 and 2014 is also 
evident. The health effect and economic loss of PM2.5 in 
2014 were much lower than those of 2013. The reason may 
be that on the one hand, China has taken a series of poli-
cies to improve her air quality. On the other hand, with the 
economic development, medical equipment, technology, 
and insurance system are further improved, to the decline in 
mortality due to PM2.5.

A uncertainty analysis of health effects 
and economic losses due to PM2.5

Kroop et al. [18] and Nam et al. [26] argue that the expo-
sure–response coefficients vary with pollution levels and 

Table 2   Health effects and economic losses of PM2.5 in 2013 (top) and 2014 (bottom)

Health endpoints Health effects (cases) Percentages of total 
health effects (%)

Economic losses (ten 
thousand yuan)

Percentages of total 
economic losses (%)

2013
 Chronic mortality 171,996 3.03 31,022,673 72.06
 Acute mortality 24,820 0.44 4,466,661 10.37
 Respiratory hospital admission 106,696 1.88 77,948 0.18
 Cardiovascular hospital admission 128,116 2.26 159,383 0.37
 Outpatient visits—internal medicine 1,872,795 32.98 52,068 0.12
 Outpatient visits—pediatrics 924,801 16.28 25,713 0.06
 Asthma attack 163,723 2.88 1625 0.00
 Chronic bronchitis 124,391 2.19 7,216,888 16.76
 Acute bronchitis 2,161,872 38.07 30,493 0.07
 Total 5,679,211 100.00 43,053,452 100.00

2014
 Chronic mortality 147,350 2.96 27,516,387 71.98
 Acute mortality 21,011 0.42 3,915,153 10.24
 Respiratory hospital admission 89,200 1.79 64,821 0.17
 Cardiovascular hospital admission 106,888 2.15 132,773 0.35
 Outpatient visits—internal medicine 1,681,050 33.75 48,413 0.13
 Outpatient visits—pediatrics 826,469 16.59 23,803 0.06
 Asthma attack 137,553 2.76 1414 0.00
 Chronic bronchitis 108,158 2.17 6,499,836 17.00
 Acute bronchitis 1,863,578 37.41 27,227 0.07
 Total 4,981,258 100.00 38,229,828 100.00
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places, so the estimations of health effects and economic 
losses due to PM2.5 could be biased. To obtain robust esti-
mations, we conduct an uncertainty analysis. Regarding 
uncertainty analysis in economic evaluation, Briggs et al. [3] 
reviewed the different types of sensitivity analysis and their 
strengths and weaknesses, respectively, and pointed out that 
sensitivity analysis is similar with the extreme-conditions 
test. Therefore, we define the means of exposure–response 
coefficients as the normal scenario, with the lower limits and 
upper limits of exposure–response coefficients as the lower 
limit scenario and upper limit scenario, respectively, which 
can be regarded as an extreme-conditions test. Inspired by 
Huang and Zhang [14], Kan and Chen [16] and Xie et al. 
[50], we determine the mean exposure–response coefficients 
of nine health endpoints and their 95% confidence inter-
vals, as listed in Table 1. The detailed results of uncertainty 
analysis are reported in Table 3. It is obvious that PM2.5 had 
great health effects and economic losses, even if in the lower 
limit scenario.

In the lower limit scenario, the health effects and eco-
nomic losses due to PM2.5 were respectively 2.35 million 
cases and 129.91 billion RMB in 2013, which fell by 58.55% 
and 69.83%, respectively, compared with those in the nor-
mal scenario. The health effects and economic losses due to 
PM2.5 were respectively 2.14 million cases and 116.17 bil-
lion RMB in 2014, which fell by 56.86% and 69.61%, 
respectively compared with those in the normal scenario. 

Meantime, the estimations in 2014 were much smaller 
than those in 2013, which was consistent with the normal 
scenario.

In the upper limit scenario, the health effects and eco-
nomic losses due to PM2.5 were respectively 7.82 million 
cases and 639.04  billion RMB in 2013, which rose by 
37.81% and 48.43%, respectively compared with those 
in the normal scenario. The health effects and economic 
losses due to PM2.5 were respectively 7.26 million cases 
and 583.39 billion RMB in 2014, which rose by 45.82% 
and 52.60%, respectively compared with those in the nor-
mal scenario. Meantime, the estimations in 2014 were much 
smaller than those in 2013, which was also consistent with 
the normal scenario.

Robustness checks: a comparative analysis 
between the South and North of China

To further explore the research question, we divided the 76 
cities into the South and North by the line formed by the 
Huai River and Qinling Mountain range: 44 cities in the 
South and 32 cities the North. In 2013, the highest/lowest 
concentration of PM2.5 in the North was in Xingtai/Zhangji-
akou with 160 μg/m3 and 40 μg/m3, respectively. These 
two cities kept their rankings in 2014 but with the ratio of 
131 μg/m3 and 35 μg/m3. For cities in the South, the highest 
concentration in 2013/2014 was Chengdu and Taizhou with 

Table 3   The uncertainty 
analysis of health effects and 
economic losses due to PM2.5 in 
2013 (top) and 2014 (bottom)

Health endpoints Health effects (cases) Economic losses (ten thousand yuan)

2013
 Chronic mortality (43,700, 259,596) (7,970,526, 47,550,404)
 Acute mortality (11,093, 35,783) (2,021,978, 6,525,584)
 Respiratory hospital admission (0, 196,463) (0, 145,304)
 Cardiovascular hospital admission (76,295, 162,825) (78,277, 167,064)
 Outpatient visits—internal medicine (971,176, 2,489,082) (27,348, 70,126)
 Outpatient visits—pediatrics (311,990, 1,377,950) (8785, 38,830)
 Asthma attack (107,478, 196,387) (1080, 1977)
 Chronic bronchitis (49,064, 158,448) (2,872,143, 9,362,363)
 Acute bronchitis (783,121, 2,949,937) (11,151, 42,366)
 Total (2,353,917, 7,826,471) (12,991,288, 63,904,018)

2014
 Chronic mortality (38,240, 232,046) (7,098,931, 43,222,699)
 Acute mortality (9677, 31,288) (1,795,615, 5,807,854)
 Respiratory hospital admission (0, 173,212) (0, 125,707)
 Cardiovascular hospital admission (66,642, 142,605) (82,688, 176,950)
 Outpatient visits—internal medicine (912,767, 2,344,785) (26,165, 67,240)
 Outpatient visits—pediatrics (291,724, 1,293,282) (8362, 37,093)
 Asthma attack (94,389, 173,608) (966, 1778)
 Chronic bronchitis (43,570, 147,713) (2,594,391, 8,860,094)
 Acute bronchitis (692,148, 2,725,104) (10,027, 39,744)
 Total (2,149,157, 7,263,643) (11,617,144, 58,339,159)
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96 μg/m3 and 107 μg/m3 accordingly. The lowest ratio in 
2013/2014 was at Fuzhou, Xiamen, and Fuzhou, Shenzhen, 
Zhuhai with 36 μg/m3 and 34 μg/m3 subsequently.

In 2013, the mean of PM2.5 in the South was 62 μg/m3, 
related to 2,626,111 cases of health effects, 211.91 billion 
RMB of economic losses, and the per capita loss of 80,700 
RMB. It can be found that PM2.5 of the North is more seri-
ous than that of the South when the average of PM2.5 in the 
North were 1.42 times, 1.16 times, 1.03 times, 0.89 times 
of those of the South, respectively. First, the Huai River and 
Qinling Mountain line is divided by differences of climate 
and terrain. For the South, its rich rainfall can take away the 
PM2.5 [36]. Besides this, the main terrain of hills and basins 
makes it easy to form local convections to diffuse PM2.5 
better. For the North, however, dry climate, poor vegetation 
coverage, and loosen soil surface can form the higher PM2.5 
concentrations. Second, there is a significant difference in 
energy structures between the two regions. The South gener-
ally produces electricity with water, while the North mainly 
adopts thermal power with coal. Last but not least, due to 
rich mineral resources in the North, more heavy industries, 
instead of tertiary industries, are developed for economic 
growth. When we consider the gross cases, the health effects 
and economic losses due to PM2.5 of the North were more 
serious. Regarding the individual case, per capita economic 
loss in the North due to PM2.5 was much lower, because resi-
dents in the South were willing to pay more for reducing the 
risk of dying from PM2.5 with higher per capita disposable 
income level. Furthermore, the coefficient of variation (CV) 
in the North is higher than that of the South (35% compared 
with 25%). Therefore, the PM2.5 in the North is more dis-
persed, as shown in Fig. 2.

In 2014, the mean of PM2.5 in the South was 56 μg/m3, 
related to 2,218,380 cases of health effect, 186.97 billion 
RMB of economic loss, and 84,200 RMB of per capita loss. 
While the mean of PM2.5 in the North was 77 μg/m3, related 
to 2,762,878 cases of health effect, 195.33 billion RMB of 
economic loss and 70,700 RMB of per capita loss. Com-
pared with 2013, the health effect and economic loss in the 
North dropped by 12.50%, 9.51%, and 11.36%, respectively 
at the constant prices of 2013. At the same time, the health 
effects and economic losses in the South dropped by 9.68%, 
15.53%, and 12.47%, respectively at the constant prices of 
2013. The main reason for a big drop of PM2.5 in the North 
could lie in coal-fired boiler modification and old motor 
vehicle abolishment [24].

Regarding the individual case, per capita, economic 
loss in the North due to PM2.5 was much lower than that 
of the South, which was consistent with 2013. Per capita 
economic loss rose by 4.3% in the South, while fell by 1.3% 
in the North. Explanations could be that the growth rate 
of economic losses due to PM2.5 was greater than that of 
health effects in the South because of rapidly increasing 

income levels. Also, the growth rate of health effects due to 
PM2.5 was greater than that of economic losses in the North 
because of the rapid rise of PM2.5 concentrations. The CV 
of PM2.5 decreased in the North while rose in the South, so 
the PM2.5 tended to be centralized in the North while scat-
tered in the South.

To compare the health effects of PM2.5 in the North and 
South, we conduct a regression analysis with the health 
effect as the dependent variable, PM2.5 concentration, the 
exposed population and a dummy variable (the Northern 
cities: 1; and the Southern cities: 0) as the independent vari-
ables. With pooled data, we introduce the OLS to estimate 
the regression analysis. All the variance inflation factors 
(VIFs) of independent variables are less than 1.5. Thus, there 
is no serious multicollinearity between them.

where, E and C are the health effect and PM2.5 concentration, 
respectively. P is the exposed population of 76 cities. D is 
the dummy variable. The regression equation is significant at 
the level of 1%. Therefore, it can be concluded that the mean 
health effect of PM2.5 in the North was 13,366 cases higher 
than that of the South when their PM2.5 concentrations and 
urban population are same.

To compare the health effects due to PM2.5 between the 
North and South in 2013 and 2014, we implement another 
regression analysis, and the results obtained are reported 
in Table 4. D was not significant in 2013 while significant 
in 2014 at the level of 5%. It seemed that the diversity of 
health effects due to PM2.5 between the North and South 
had become larger.

The Kruskal–Wallis test is also used to test the differences 
in PM2.5 concentrations between the North and South, and 
the results obtained are presented in Table 4. It implied that 
there was significant heterogeneity of PM2.5 concentrations 
between the North and South at the level of 1%.

Conclusion

This study proposes a new hybrid health effect and economic 
loss model to estimate the health effects and economic losses 
of PM2.5. This new methodology is illustrated based on a 
sample of 76 cities in China in 2013 and 2014. Against this 
background, the results obtained show that in the normal 
scenario, a substantial social–economic burden was related 
to PM2.5. In 2013, more than 5.67 million cases of health 
effects and 430.53 billion RMB of economic losses were 
associated with PM2.5. In 2014, the health effects and eco-
nomic losses due to PM2.5 were over 4.98 million cases and 
382.30 billion RMB, which decreased substantially com-
pared with those of 2013. More importantly, the economic 
loss in 2014 accounted for 14.34% of GDP growth of the 76 

E = 1158.595C + 24153.810P + 13366.256D − 86422.874,
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Fig. 2   The PM2.5 concentrations in the North and South of China

Table 4   OLS regression analysis (top) and Kruskal–Wallis test results (bottom)

*** and ** are significant at the levels of 1% and 5%, respectively

Independent variables Whole 2013 2014

OLS
 C 1158.595*** 1139.448*** 1142.811***
 P 24153.810*** 25870.053*** 22664.344***
 D 13366.256** 10809.139 16722.419**

Years Chi square df Sig.

Kruskal–Wallis test
 2013 13.927 1 0.000
 2014 14.888 1 0.000
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cities at the constant price of 2013. A comparison between 
the South and North showed that PM2.5 pollution was much 
heavier in the North than the South.

The empirical application contained in this article aims 
at showing the accuracy achieved by the new hybrid model. 
Its implementation in Europe is left for further research, 
although the policy implications of our work can already 
be appealing to policymakers in the European context. 
Although China has taken much effort to reduce PM2.5 pol-
lution, more effective countermeasures are needed. On the 
one hand, the data disclosure of PM2.5 should be reinforced 
to get a more sound and comprehensive assessment of its 
health effect and economic loss. On the other hand, urban 
residents should strengthen environmental protection con-
sciousness and take the environmental-friendly ways to com-
mute. Especially, to reduce the heavy PM2.5 pollution in the 
North, more abatement and control measures are needed. 
First, massive afforestation can be helpful. Second, it is 
necessary to reduce coal utilization rate, implement stricter 
emissions standards, and promote the development of clean 
energy. Last but not least, industrial structure adjustment 
for heavy industry is also important, such as promoting the 
development of financial services and high technology enter-
prises [4].
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