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Abstract This paper evaluates the relative efficiency of a

sample of 37 large pharmaceutical laboratories in the

period 2008–2013 using a data envelopment analysis

(DEA) approach. We describe in detail the procedure fol-

lowed to select and construct relevant inputs and outputs

that characterize the production and innovation activity of

these pharmaceutical firms. Models are estimated with

financial information from Datastream, including R&D

investment, and the number of new drugs authorized by the

European Medicines Agency (EMA) and the US Food and

Drug Administration (FDA) considering the time effect.

The relative performances of these firms—taking into

consideration the strategic importance of R&D—suggest

that the pharmaceutical industry is a highly competitive

sector given that there are many laboratories at the efficient

frontier and many inefficient laboratories close to this

border. Additionally, we use data from S&P Capital IQ to

analyze 2071 financial transactions announced by our

sample of laboratories as an alternative way to gain access

to new drugs, and we link these transactions with R&D

investment and DEA efficiency. We find that efficient

laboratories make on average more financial transactions,

and the relative size of each transaction is larger. However,

pharmaceutical companies that simultaneously are more

efficient and invest more internally in R&D announce

smaller transactions relative to total assets.

Keywords Pharmaceutical laboratories � New chemical

entities � Business performance � R&D � Market for

technology � Non-parametric efficiency � DEA

JEL Classification I15 � O32 � L6 � L65

Introduction

Managing a research and development (R&D) portfolio of

new drugs in the pipeline is a challenging task that involves

an active selection and reallocation of resources. In order to

be efficient, pharmaceutical laboratories should decide

upon strategic issues regarding the laboratory size, internal

and external growth options and synergies, and diversity of

innovative drugs in each therapeutic area. This decision

making should take into consideration the R&D strategies

of their competitors.

In this regard, large pharmaceutical laboratories have

two nonexclusive alternatives for managing their portfolio

of new drugs in an efficient way. They may develop new

drugs internally, but simultaneously they may also engage

in mergers and acquisitions (M&As)—or other financial

transactions—to obtain new drugs or to change the com-

position of their portfolio of promising drugs (sometimes

simultaneously selling new drugs and buying other types of

new drugs); see Fig. 1.

Thus, the market for technology is a way to both acquire

and sell knowledge [3] either through collaboration (co-

research, co-development, or other collaborations), licens-

ing or (and) trough financial transactions. Nishimura and

Okada [47] examine how R&D portfolios of Japanese

pharma labs affect licensing decisions (license out and

inward licensing). They observe drug pipelines quite

accurately due to the rigorous regulatory process of clinical
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testing. They conclude that drug pipelines may dictate a

licensing decision as a result of portfolio adjustment across

different stages.

A second alternative to buy (and also sell) knowledge is

through financial transactions. In this paper, we measure

relative efficiency of pharmaceutical labs and then perform

several regressions to test whether efficient labs announce

more or less financial transactions than inefficient labs in

order to realign their R&D portfolios.

To the best of our knowledge, regarding the measure-

ment of efficiency of pharma labs, the only contribution

similar to this paper is the one by Shimura et al. [52],

where large pharmaceutical firms are categorized into four

groups (on the basis of their respective R&D efficiency)

and two dimensions (one based on DEA efficiency scores

and the other based on effectiveness scores) in order to

analyze R&D productivity. They consider new molecular

entities from 21 global pharmaceutical companies in the

period 2002–2007 from a database provided by Barclays

capital. However, many new drugs in the pipeline do not

reach Phase III and some drugs reach it faster than others,

so the R&D activity of a pharmaceutical laboratory is

composed of both successful and unsuccessful drugs. These

authors account for this by considering R&D expenditure

and net present value.

The DEA efficient frontier in our output-oriented model

comprises laboratories that perform better than others. A

laboratory in the sample is efficient, given its inputs, if it is

not possible to find a linear combination of laboratories in

the sample having the same inputs and yielding higher

outputs. In our case, we use information about successful

new drugs from medicines authorized by the EMA and the

FDA but in our models we also consider financial infor-

mation from Datastream, aiming to take into consideration

both short-term and long-term indicators of the success of

R&D activity. So, accounting information, market infor-

mation, and data about new authorized drugs are combined

in our DEA efficiency models. In the case of new autho-

rized drugs, we take the time effect into account in a more

precise manner. We focus exclusively on DEA efficiency

scores, and our objective is to extract as much information

as possible from them.

Fig. 1 Internal and external

R&D management of drug

portfolio
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Regarding internal and external R&D activity, Comanor

and Scherer [16] indicate that, in response to lagging

innovation, some companies have sought refuge in M&As.

Shimura et al. [52] in their 2002–2007 sample, showed that

companies with lower R&D relative to efficiency were

more likely to engage in consolidation.

Higgins and Rodriguez [32] focus on the acquisition of

knowledge by examining the performance of 160 phar-

maceutical acquisitions from 1994 to 2001 and find that on

average acquirers realize significant positive returns. These

returns are positively correlated with prior acquirer access

to information about the R&D activities at target firms and

a superior negotiating position. They also find that firms

experiencing declines in internal productivity or which are

more desperate are more likely to engage in an out-

sourcing-type acquisition in an effort to replenish their

research pipelines.

Girotra et al. [26] indicate that value of an R&D project

depends not only on its properties but also on the other

R&D projects being developed by the pharma lab. They

conduct an event study around the failure of phase III

clinical trials and their effect on the market valuation of the

lab. They find that the presence of other R&D projects

targeting the same market and a build-up of projects that

require the same development resources reduce the value

of an R&D project.

Hagedoorn and Wang [31], using a panel sample of 83

incumbent pharmaceutical firms during the period

1986–2000, find that internal R&D and external R&D,

through either R&D alliances or R&D acquisitions are

complementary innovation activities at higher levels of in-

house R&D investments, whereas at lower levels of in-

house R&D efforts, internal and external R&D turn out to

be substitutive strategic options. Kang et al. [38] show that

external technology acquisition has an inverted U-shaped

relationship with subsequent technology innovation per-

formance, and that is not complementary to internal R&D

activities.

Bena and Li [7], using a large sample of acquirers with

patents and targets with patents over the period 1984–2006,

focus on corporate innovation activity as a source of syn-

ergy. They find that firms with large patent portfolios and

low R&D expenses are more likely to be acquirers, while

R&D-intensive firms with slow growth in patent output are

more likely to be acquired. Also, technological overlap

between firms’ innovation activities has a positive and

significant effect on the likelihood of a merger pair for-

mation. The likelihood of a merger is reduced for firm pairs

that also overlap in product markets. Finally, they show a

positive treatment effect of a merger on post-merger

innovation output when there is premerger technological

overlap between merging firms. They conclude that syn-

ergies obtained from combining innovation capabilities are

an important motivation for corporate acquisitions. The

findings of their paper suggest several new directions for

future research and they mention first that their paper

highlights that many merger transactions are driven by

efficiency motives.

Our paper tries to contribute to previous literature

relating lab efficiency as a whole to internal and external

R&D strategies. The novelty of our approach is that we

consider large laboratories from different countries and,

simultaneously, we combine in a novel way alternative

sources of data—Datastream, the European Medicines

Agency (EMA) and the US Food and Drug Administration

(FDA)—to select and construct relevant inputs and outputs

that characterize the production and innovation activity of

large pharmaceutical companies. Previous papers have

estimated either DEA efficiency or DEA total factor pro-

ductivity of pharmaceutical laboratories, but most of them

consider laboratories from a single country [27, 33, 43] or

consider innovation in several countries but the unit ana-

lyzed is not the pharmaceutical laboratory but the country

itself [29, 50].

In addition, when measuring R&D efficiency of either

countries or pharmaceutical firms, most previous papers

consider the number of patents as a proxy for R&D output

[19, 30, 37]. In our study, as a proxy for R&D output we

consider not only the number of new chemical entities

(excluding generics) approved by the EMA and the FDA

for each laboratory, but also we adjust this figure consid-

ering the specific date of authorization of each approved

medicine. Although studies considering patents adjust for

the quality of patents by considering the number of times

that a patent has been cited, in our case only the most

successful new drugs in the pharmaceutical pipeline (after

a successful Phase III evaluation) are approved by the

EMA and/or the FDA, so we consider this measure to be a

better proxy for successful R&D than patents.

We consider a common efficiency frontier for large

pharmaceutical firms irrespective of their country of origin

given that they compete with each other when trying to

obtain new drug authorizations from the EMA and/or the

FDA. Also, firms with authorized medicines sell the same

chemical entities in many different countries, and global

investors in the pharmaceutical sector analyze the big

laboratories’ returns and risks when deciding on portfolio

weight and diversification issues. So pharmaceutical com-

panies are global in several dimensions.

After dropping laboratories with any missing values, we

end up with a final sample of 37 large firms. If these are

compared with the Datastream sample of 241 companies,

our sample accounts for more than 80 % of market value,

net sales and net income. Thus, we believe that our

37-laboratory sample is significantly representative of the

pharmaceutical industry.
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This article aims to measure first the relative efficiency

of a sample of 37 large pharmaceutical laboratories from

different countries, which can be considered representative

of this industry, in the period 2008–2013 using a Data

Envelopment Analysis (DEA) non-parametric approach.

Our results suggest that the pharmaceutical industry is a

competitive sector with many laboratories at the efficient

frontier and many inefficient laboratories close to the

frontier. Then, we split our sample into efficient labs and

inefficient labs and we analyze in detail financial transac-

tions announced by efficient and inefficient labs.

The paper proceeds as follows. ‘‘Efficiency measure-

ment in pharmaceutical firms’’ describes efficiency mea-

surement in pharma labs, ‘‘DEA efficiency: Results and

discussion’’ discusses DEA efficiency results, and ‘‘M&A

activity and other financial transactions by pharmaceutical

laboratories’’ analyzes M&A as well as other announced

transactions by efficient and inefficient pharmaceutical

laboratories. Conclusions are drawn and suggestions for

future research are given in ‘‘Conclusions’’.

Efficiency measurement in pharmaceutical firms

The development of a globalized economy has led to a new

environment, in which international competitiveness has

become fierce and where the concept of ‘efficiency’ has

become strategically important. The pharmaceutical sector,

in which R&D is key, is no exception and competition in it

has increased dramatically. So, given the importance of this

industry from both the political-economic and the ethical-

healthcare points of view, this paper aims, as a first step, to

measure the efficiency of large pharmaceutical firms.

The pharmaceutical industry is very important not only

in health terms but also in economic terms, so it is relevant

to study its internal and external R&D activity at both

industry and laboratory level, and from the perspectives of

public [9] and private funding of R&D. In addition, phar-

maceutical companies have engaged in R&D collaboration

not only with other laboratories but also with other firms

and universities [45]. According to the IMS Institute [35],

spending on medicines will reach nearly 1.3 trillion USD in

2018. This would mean an average annual growth of 6 %

over the period 2009–2018. The pharmaceutical industry is

therefore a key sector. Few other industries can match its

contribution to investment in R&D, trade balance, and

creation of skilled employment.

Nonetheless, this sector faces major challenges in the

current context. In addition to regulatory hurdles and

escalating R&D costs, it has been severely hit by the

impact of fiscal austerity measures. How pharmaceutical

companies –and related stakeholders—approach these

problems may impact both the worldwide economy and the

future health of the world population.

In this concentrated industry, the ten largest pharma-

ceutical laboratories represent approximately one-third of

the global market. Six of them are from the US, while the

remaining four are from Europe. A study by the IMS

Institute [34] highlights that, although there has been rapid

growth in emerging economies (such as Brazil, China, and

India), North America and Europe currently account for

more than 50 % of global spending, which justifies the use

of the EMA and the FDA in this study.

Regarding the analysis of efficiency in the pharmaceu-

tical sector, most of the literature has centered on Asian

countries. One of the earliest studies was by Honjo and

Haneda [33], who analyzed the efficiency of 14 Japanese

pharmaceutical firms over the period 1977–1991 with a

DEA model comprising one input and two outputs.

You et al. [59] measured the efficiency of pharmaceu-

tical firms and identified their determinants using Korean

and American samples. They used four different types of

efficiency (cost, allocative, technical and scale) based on

DEA and, by means of regression techniques, studied the

impact of ownership structure, R&D investment, and scale

economies. Mao et al. [43] evaluated the business perfor-

mance of thirty-four Chinese pharmaceutical companies

using DEA. They considered three inputs (size of the

workforce, administrative expenses, and gross assets), and

one output (operating revenue). This study concluded that

the overall efficiency of this sector in China was not high.

Other studies have used this methodology to rate pharma-

ceutical firms in India [44] and Iran [36].

In this sector, innovation is of special importance from a

health perspective, so the importance of R&D should be

considered in the analysis. Wang and Huang [56] evaluated

the relative efficiency of R&D activities across countries.

These authors used patents and academic publications as

outputs. Hashimoto and Haneda [30] focused on the R&D

efficiency of pharmaceutical companies in Japan and con-

sidered that the efficiency frontier shifted over time. As an

input, they used R&D expenditure and considered three

outputs: patents (as a proxy of invention), pharmaceutical

sales (as a proxy of product innovation), and operating

profit (as a proxy of process innovation). Shimura et al.

[52] used one input (R&D expenditure) and three outputs

(sales, operating profit, and the accumulated number of

weighted new molecular entities approved by the Japanese

Ministry of Health) to measure R&D productivity. Cruz-

Cáceres et al. [19] discussed the relationship between

innovation and performance and proposed a new approach

to tackle it, using R&D capital stock and highly skilled

staff as innovation inputs, and new products and patents as

innovation outputs.
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DEA optimization technique

A company’s business efficiency can be defined as the

relation between the value created and the resources used

for creating it [6]. It is a broad term that can be assessed by

considering a single ratio or by means of several inputs to

consider resources employed and outputs to express value

creation.

When measuring the efficiency of a company, the lit-

erature offers a wide variety of alternatives for inputs and

outputs depending on the authors’ approach. A general

pattern does exist, however. Input variables tend to repre-

sent investment metrics, both tangible—such as number of

employees, number of branches, and administrative

expenses [58]—and intangible—like product and process

knowledge [2]. On the other hand, output variables are

generally key performance indicators, both in absolute—

such as profit, market share, and market value [55]—and in

relative terms—like profit ratio, return on assets, and B/M

ratio [57].

Under these circumstances, DEA is a common approach

for studying business efficiency. Cooper et al. [18] define

DEA as a ‘‘data-oriented approach for evaluating the per-

formance of a set of peer entities that convert multiple

inputs into multiple outputs’’. For this reason, this tech-

nique has been used to measure relative efficiency in dif-

ferent kinds of entities, such as hospitals [11, 41],

universities [51], retail stores [55], banks [58], airports

[48], holdings [57], and sport teams [24].

Figure 2 outlines the approach followed for assessing

the efficiency of pharmaceutical companies. It is mainly

based on a four-step process. The first one is the study of

strategic issues—the pharmaceutical sector (and its dis-

tinctive features) and DEA-based techniques. The second

one aims to determine how efficiency must be measured in

this environment. Note that DEA allows the efficiency of

companies to be measured from a multidimensional per-

spective, so several inputs and outputs are defined. The

third one is the construction of the DEA model under two

different assumptions: constant returns-to-scale (CRS) and

variable returns-to-scale (VRS). In the last step, results are

analyzed from a double perspective. On the one hand, the

efficiency of a relevant sample of the world’s leading

pharmaceutical companies is evaluated, which is the main

goal of the paper. On the other hand, the peers, i.e., ref-

erences at the frontier for inefficient firms, are discussed.

Additionally, and as intermediate steps in the evaluation

process, data, results, and consistency must be checked.

Data are checked to verify that the DEA model can operate

with the defined combination of inputs and outputs (e.g.,

with non-negative values, or with constraints in the avail-

able data), while results are checked to study the repre-

sentativeness of the solutions. Finally, consistency is

checked to ensure that the results are sufficient to draw

conclusions, so a number of models are created. For rea-

sons of space, in this paper we only discuss the three final

models. The whole process was carried out during

5 months, with weekly meetings of an interdisciplinary

group of five people, some of them experts in the

methodology and others with proven knowledge of this

sector.

In the original study by Charnes et al. [13], DEA is

described as a ‘‘mathematical programming model applied

to observational data that provides a new way of obtaining

empirical estimates of relations—such as the production

functions and/or efficient production possibility surfaces—

that are cornerstones of modern economics.’’

DEA is a non-parametric frontier-efficiency method

using a linear programming technique for measuring

performance. It assesses the relative efficiency of a set of

decision making units (DMUs), pharmaceutical laborato-

ries in this study, that are engaged in performing a similar

function using a set of inputs (related to investment by the

firms) to produce a set of outputs (indicators of their

performance). When a DMU maximizes the relationship

between outputs and inputs, it is located on the frontier,

and is regarded as an efficient unit (100 %). If not, the

relative efficiency of the DMU is measured in the interval

(0, 100 %) subject to the absolute efficiency of the DMUs

on the frontier, which reveals that this efficiency could be

improved by changing the proportion among inputs.

Subsequently, the DMUs can summarize the quantitative

index of overall efficiency and hence can be ranked by

scale.

DEA has been widely used by researchers in a number

of fields for modeling operational processes for perfor-

mance evaluations, in governmental and nonprofit sectors

and in regulated and private sectors. These multiple

applications were supported by further development by

Zhu [60], who tested a number of DEA models that can be

used in performance evaluation and frontier estimation.

DEA can be carried out under the assumption of CRS or

VRS—i.e., by introducing a scale constraint in the model,

hence DMUs are not penalized for operating at a non-

optimal scale [4].

Under the VRS approach, the CCR model (from the

CRS approach) [13] becomes the BCC model if the con-

vexity constraint is added. This classic DEA-based model

in its output-oriented form to measure efficiency is for-

mulated by (1), where n is the number of DMUs (general

index i, while l is the index of the specific DMU whose

efficiency is being assessed), m is the number of inputs

(general index j), p is the number of outputs (general index

k), ki are the multipliers used for computing linear com-

binations of the DMU’s inputs and outputs (i.e., the mod-

el’s decision variables), xij is the observed amount of input
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j of DMU i, and yik is the observed amount of output k of

DMU i. Note that u* refers to the optimal efficiency score

of a DMU. That is, if u* = 1, DMU l is technically effi-

cient. Note that both the CCR and the BCC models are

radial projection constructs for characterizing efficiency,

unlike other models such as non-radial ADD [14]. Finally,

both models are invariant to the units of measurement.

Maximize:

u� ¼ maxu

Subject to:

Pn

i¼1

kixij � xlj; for j ¼ 1; 2; . . .;m

Pn

i¼1

kiyik �uylk; for k ¼ 1; 2; . . .; p

Pn

i¼1

ki ¼ 1; for i ¼ 1; 2; . . .; n

ki � 0; for i ¼ 1; 2; . . .; n:

ð1Þ

The work by Barr [5] can be consulted to decide

between the technological choices that are currently

available to implement DEA. In order to estimate relative

Fig. 2 Evaluation process of

the laboratories’ efficiency
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efficiencies under the standard CRS and VRS models we

used the DEAP software developed by Professor Tim

Coelli. In particular, to solve the linear programming

problems this study used DEAP 2.1 software [15], which is

also valid for computing Malmquist DEA, i.e., for calcu-

lating indices of total factor productivity (TFP).

Some studies estimate Malmquist productivity indexes

(TFP indexes) using DEA and break them down into sources

of productivity change.We did not calculate TFP given that a

data set with no missing values is needed in all the relevant

years (from 2008 to 2013 in our case). The Malmquist pro-

ductivity index was introduced by Caves et al. [12] as the

ratio of two distance functions pertaining to distinct time

periods. There are several alternative ways to compute TFP.

For a discussion and for an empirical example applied to

pharmaceutical laboratories in Spain, see [27]. For a study on

the dynamics of technological innovation, see [1].

Data selection and DMUs

This research uses data within the 2008–2013 time period

obtained from three main sources: the FDA, the EMA, and

Datastream. The FDA and the EMA are responsible for

protecting and promoting public health in the US (the

former) and the EU (the latter) through the regulation and

supervision of medicines. They require that each new

medicine is evaluated through various phases of clinical

trials. Both agencies maintain a historical database with all

medicines approved.1 Data was also taken from Datas-

tream, a global financial and macroeconomic database.

Initially, we focused on a list of 241 large pharmaceu-

tical laboratories taken from Datastream (TR GLOBAL

PHARMA list) and generated on June 4, 2014. All financial

information from large laboratories from different coun-

tries was generated in USD.

We then identified the Datastream constituents with

financial information in the study period 2008–2013 and

computed an average for each of the financial variables

considered over the study period. We chose an average in

order to deal with possible missing values in any given year

for specific laboratories. We also considered the sum of all

values for each variable (instead of the average) with no

significant changes in efficiency estimates.

Subsequently, we searched for Datastream laboratories

with new chemical entities approved by the EMA and FDA

during the study period (at least one drug authorized in the

period 2008–2013 by EMA or FDA). Our final sample is

made up of 37 pharmaceutical laboratories, which are the

DMUs in our research, with full Datastream information

and also with new drugs approved by the EMA and/or FDA

in the period 2008–2013.

Given that there were 241 pharmaceutical laboratories in

the original Datastream list and that a balanced data set

with no missing values in any of the variables is needed in

order to estimate DEA relative efficiencies, two important

issues must be taken into account in order to try to assure

that our final sample of 37 laboratories represents the large

pharmaceutical sector.

The first is to know if the economic activity of our

sample of 37 large laboratories represents a large propor-

tion of the total activity of the pharmaceutical laboratory

sector. The second is related to the absence of a time

dimension in our DEA model because a time dimension is

only included in our DEA analysis when discounting the

number of days that a new drug has been authorized.

To address both issues, we compared the market capi-

talization, net sales, and net income of the Datastream list

of 241 laboratories versus those of the final 37 laboratories

year by year. Our 37 laboratories were seen to represent

80 % of the market value of the 241 laboratories, and

similar figures were obtained for net sales and net income.

Thus, this analysis suggests that our 37 laboratories rep-

resent a large proportion of the large pharmaceutical

companies’ economic activity. However, the time effect

over the period 2008–2013 shows that laboratories exclu-

ded from the 37 gained increasing importance in terms of

creating value, increasing sales and increasing net profit.

The details are shown in Table 8 of ‘‘Appendix 1’’.

Given that the number of new drugs authorized by the

EMA [22] or the FDA [23] per year is very small, we

accounted for the aggregate number of drugs authorized to

each laboratory over the whole period 2008–2013. It must

be stressed that we only consider innovative drugs, i.e.,

generic drugs are NOT taken into consideration and are

totally excluded from our analysis. If we had considered

new drugs authorized per year, we would have had to rule

out additional laboratories every time they had no autho-

rized new drugs in a given year and we would not have

been able to compute the DEA efficiencies at the year level

for such laboratories.

Description of variables: inputs and outputs

In this non-parametric DEA approach aimed at measuring

the relative efficiency of pharmaceutical laboratories, we

used different combinations of inputs and outputs in order

to measure the performance of the laboratories and applied

sensitivity techniques to verify the consistency of the

1 Large pharmaceutical companies operate globally, so they market

their innovative drugs in more markets than Europe and the USA.

Thus, our measure for innovative drugs that have been authorized by

the EMA and the FDA for a given laboratory is a proxy for the

expected authorization of the same innovative drug for other markets.

Europe and USA are two key markets, and an innovative drug can be

expected to be innovative in all the relevant markets. Given that

laboratories operate globally, we consider our proxy to be a good one.
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results. This selection of the inputs and outputs of the

model is a key part of a DEA study. The larger the number

of inputs and outputs, the less discriminatory the model

becomes. Boussofiane et al. [8] stated that, as a rule of

thumb, in most situations satisfactory discrimination is

obtained if the number of units in the assessment set

(DMUs) is three times the number of inputs times the

number of outputs. Cooper et al. [17] uphold that the

number of DMUs should be at least three times higher than

the number of inputs and outputs. The more inputs and

ouputs included in a DEA model, the higher the relative

efficiency and the higher the number of laboratories that

are likely to be at the efficient frontier. There should be a

balance between including all relevant inputs and outputs

and being able to differentiate between efficient and inef-

ficient labs.

Seven variables were used in the final models to mea-

sure the business efficiency of large pharmaceutical firms

in the period 2008–2013. Three of them were considered

inputs, and another three outputs. The remaining one was

considered both an input and an output in different models

as it may be understood either way.

The inputs (I1, I2, I3) represent proxies of the invest-

ment in innovation by the pharmaceutical firms:

– Size of the workforce (I1–SW) This refers to the average

number of employees in the company (including all the

business functions) in the above-mentioned period.

– Total assets (I2–TA) This is expressed as the average

assets (land cost, building cost, inventory, machine and

equipment, and so forth) of the company in the above-

mentioned period, which represent a measure of the

total size of the company.

– Investment in R&D (I3–IRD) This is the average

expenditure by the company onR&D from 2008 to 2013.

The outputs (O1, O2, O3) are common indicators,

related to the firms’ main goals:

– Net profit (O1–NP) This variable considers the average

net results (i.e., after depreciation, amortization, inter-

est, and tax) in the period 2008–2013.

– Market capitalization (O2–MC) This refers to the

average market value of the company from 2008 to

2013. Unlike the previous variable, this one takes into

account not only the company’s current results, but also

its expectations for the future.2

– Total sales (O3–TS) This is expressed as the average

sales of the company within the above-mentioned time

period and contains information on one of the key

indicators in companies, market share.

Many of our 37 laboratories have zero drugs authorized

in a given year and DEA requires a balanced data set in

order to compute the frontier and estimate relative effi-

ciencies. Given that we take averages for financial data, we

also had to add up all the new drugs during the period. One

simple alternative would have been to directly consider the

number of new chemical entities authorized by EMA and/or

FDA during the study period from 2008 to 2013. However,

it is not the same to have a new drug authorized at the

beginning of the study period (generating cash flow during

the whole period) than at the end of the study period. We

show in Table 9 of ‘‘Appendix 1’’ the evolution over time of

new drugs authorized by EMA and/or FDA. We also show

the accumulated number of days until 31st December 2013

and the number of days discounted. To account for this time

effect, we computed a new variable that we define below.

In any case, it is striking from our authorized drug

sample summarized in Table 9 that the number of new

drugs authorized by the EMA, in any of the years between

2008 and 2013, is higher than the number of new drugs

authorized by the FDA. We carefully double-checked our

database and, to the best of our knowledge, we believe that

the authorized drug information has been extracted cor-

rectly. Thus, our interpretation of the available data is

related to the fact that there is not a clear-cut difference

between a really new chemical entity and a generic drug.

There is a grey zone in between for drugs that are not a

radical innovation but an incremental innovation. This may

explain why in Table 9 of the Appendix, the EMA has

more authorized new drugs than the FDA. The EMA

database includes generic and non-generic drugs and pro-

vides a field named ‘‘generic’’, while the FDA separates

new chemical entities from the rest.

As mentioned above, one variable is considered both an

input and an output:

– Number of days of authorized innovative medicines

considering the time effect (I4/O4-NDAIMCTE) A

simple approach for considering new authorized drugs

in the analysis would have been just to count the

number of authorized drugs per laboratory during our

study period. However, we wished to take into account

the time effect. Thus, NDAIMCTE refers to the number

of days that each innovative medicine has been

authorized in the US and in the EU until the end of

the period (or until the date of removal, if the medicine

is no longer sold), taking into account the time effect –

in order to consider the decline in innovation in

medicines as time passes.

2 Market capitalization is the result of a consensus in the market

about current cash flows and expected future cash flows. In the case of

pharmaceutical labs, it takes into account innovative drugs that are in

the pipeline but have not yet been authorized because they are in the

different phases of clinical research (Phase I, Phase II, Phase III), as

well as some innovative drugs that have been authorized but are still

in postmarketing surveillance (Phase IV).
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Note that, although both the EMA and the FDA also

provide information for new generic drugs, which are a

very important part of the pharmaceutical drugs picture

[25], there were substantial differences between EMA

generic authorizations and FDA generic authorizations.

This is because the FDA considered many minor changes

as new authorizations so these were not directly compa-

rable to EMA generic authorizations.

This final variable was devised from the initial variable

‘number of authorized innovative medicines’, with the aim

of checking consistency in the results. After exploring

several alternatives, the time effect—required for modeling

the passing of time on the effect of an innovative medicine

on company profits—was introduced by means of a

mathematical function expressed in (2). Equation (3) rep-

resents the value of this variable for each medicine.

Afterwards, the local results were added to obtain the

global value of each laboratory. Note that tF refers to the

end of the period (December 31, 2013) or date of removal

and t0 represents the date of authorization. After testing

several alternatives, the parameters were set at the values

k1 = 0.000632208 and k2 = 0.01.

f tð Þ ¼ 1� k2ðek1 t�t0ð Þ � 1Þ ð2Þ

NDAIMCTE ¼
Ztf

t0

1� k2 ek1 t�t0ð Þ � 1
� �h i

dt

¼
Ztf�t0

0

1� k2 ek1Dt � 1
� �� �

dDt

¼ 1þ k2ð ÞDt � k2

k1
ek1Dt

� 	tf�t0

0

¼ 1þ k2ð Þðtf � t0Þ �
k2

k1
ek1ðtf�t0Þ þ k2

k1
: ð3Þ

Table 1 presents the descriptive statistics of the seven

variables considered for the database comprising 37 phar-

maceutical laboratories.

The dataset for the 37 pharmaceutical laboratories and

the seven relevant variables (inputs and outputs) for the

different DEA models are given in Tables 11 and 12 of

‘‘Appendix 2’’.

Models

The iterative process followed led to the consideration of

three models that are summarized in Fig. 3.

Model I only considers the six macroeconomic variables

(three inputs and three outputs) explained above. Models II

and III take into account the NDAIMCTE variable: model

II as an input, and model III as an output. A double

approach is adopted for this variable according to the fol-

lowing interesting interpretations:

– NDAIMCTE can be understood as an input, because

the more approvals of medicines the laboratory has, the

more its outputs can be expected to improve (more

sales, more net income, and more market value). That

is to say, this approach considers that the authorization

of a medicine makes sense only if reflected in these

indicators.

– NDAIMCTE can be considered an output, because the

higher the inputs (the more employees the laboratory

has, the bigger the investment, and the more investment

in R&D), the more authorizations of medicines it can

expect. In other words, if this variable is set as an

output, the model measures how efficient the laboratory

is in developing new products. This approach, which

considers innovative medicines as an output indicator,

highlights the importance of innovation in this sector.

For the three models, we consider an output-oriented

DEA model where there are as many objectives as output

variables in each case- net profit, market capitalization, and

total sales—and the issue of new drugs in model II.

It is also important to consider the relationship between

the number of DMUs and the number of inputs and out-

puts in the model. Since the number of DMUs (37) is

more than three times higher than the numbers of inputs

and outputs (six in model I, and seven in models II and

III), the Cooper et al. [17] criterion is verified, hence the

models are appropriate. Regarding the Boussofiane et al.

[8] criterion, satisfactory discrimination is obtained as the

number of inputs is at least three times the number of

inputs times the number of outputs (nine in model I, 12 in

models II and III).

Table 1 Summary statistics for

the database
Variable Unit Average Min Max St. Dev.

I1-SW Employees 34,788.61 272.5 120,300.00 39,910.4

I2-TA Million USD 33,521.3 106.7 176,414.2 41,399.7

I3-IRD Million USD 2601.5 0.6 9092.6 2743.6

O1-NP Million USD 2829.2 1.6 12,150.8 3326.9

O2-MC Million USD 44,847.0 136.7 190,890.1 49,688.5

O3-TS Million USD 17,506.9 32.7 65,151.2 19,208.5

I4/O4-NDAIMCTE Days 7368.3 111.7 43,543.9 9077.1
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Note that our iterative process led us to study different

alternatives. Our first approaches were based on consider-

ing the NDAIMCTE as a core output in the study. How-

ever, when considering new authorized drugs, not all of

them are equally innovative or equally successful. Inno-

vation is difficult to measure, while success is difficult to

predict. Researchers approach this problem in different

ways. Kesselheim et al. [39] perform a systematic search

for papers measuring drug innovation characteristics and

compare different approaches. Light [42] evaluates drug

innovation from 1982 to 2003 in three geographic areas

(the US, Europe, and Japan) by calculating the ‘‘research

productivity’’, which is defined as the ratio of the number

of new molecular entities (NMEs) to the amount of

investment in R&D.

One way to capture this future uncertainty about the

success of a new drug is based on including market capi-

talization as an output. Analysts following large pharma-

ceutical firms will recommend buying or selling shares

according to the pipeline and future prospects of existing

and yet to be drugs. On the other hand, current success of

chemical entities is captured by total sales and net income.

In summary, these three outputs (market capitalization,

total sales, and net profit) are good proxies to capture the

innovation and success of authorized new drugs.

The use of these variables is a common approach. In

their variable returns to scale DEA model, Shimura et al.

[52] utilize three variables to evaluate R&D productivity

(cumulative R&D expenses in the period 2002–2007,

number of new molecular entities and aggregate net present

value). In our analysis, we had to decide whether to include

only new chemical entities or to include both new drugs

and generic drugs. After analyzing both databases (EMA

and FDA), we decided to exclude generic drugs because, at

the FDA, minor changes (i.e., in the prospect or leaflet)

were included for generic drugs while this was not the case

at the EMA.

DEA efficiency: results and discussion

The main efficiency results of this research are reported in

this section. It should be clarified that, as previously

explained, we evaluated the efficiency of the 37 pharma-

ceutical firms only under the VRS assumption because the

CRS model is not valid given the importance of scale

effects in the pharmaceutical industry.3

Table 2 re ports the main results of models I, II, and III

under the VRS assumption, in which the overall ranking is

not influenced by the size of the company. The relative

efficiencies of the 37 pharmaceutical laboratories are dis-

played. Note that, firstly, this table points out the compa-

nies that are relatively efficient in model I, and, secondly,

their significant change rates (greater than 5 % in model II)

are highlighted in bold in models III and IV. Table 3

summarizes the main results.

Fig. 3 Overview of the three

final models

3 We thank one reviewer for this insight and suggestion.
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Table 3 shows that average efficiency rises to 93.45 %

in model II, while the number of efficient companies

amounts to 21. These are ABBOTT, AMGEN, ASTEL-

LAS, BAYER, CELGENE, CELLTRION, CSL, EISAI,

GILEAS GLAXOSMITHKLINE, HOSPIRA, JOHNSON

& JOHNSON, MEDA AB, MEDICINES COMP., MERCK

(KGAA), NOVO NORDISK, ORION, PFIZER, REGEN-

ERON, ROCHE and TEVA.

From Table 2, it is possible to see that—as expected—

more companies are judged to be part of the efficient

frontier in models II and III since the number of variables is

greater, so efficiency is measured over more dimensions.

Table 2 Efficiency of the pharmaceutical laboratories using DEA (models I, II, and III): VRS assumption

Company Model I Model II Model III

Efficiency (%) Efficiency (%) Change rate (%) Efficiency (%) Change rate (%)

ABBOTT 100.00 100.00 0.00 100.00 0.00

ALLERGAN 86.30 86.30 0.00 96.30 10.00

AMGEN 100.00 100.00 0.00 100.00 0.00

ASTELLAS 100.00 100.00 0.00 100.00 0.00

ASTRAZENECA 95.20 97.00 1.80 95.20 0.00

BAYER 100.00 100.00 0.00 100.00 0.00

BIOGEN 88.20 88.20 0.00 100.00 11.80

BRISTOL 91.90 95.20 3.30 91.90 0.00

CELGENE 100.00 100.00 0.00 100.00 0.00

CELLTRION 100.00 100.00 0.00 100.00 0.00

CSL 100.00 100.00 0.00 100.00 0.00

EISAI 100.00 100.00 0.00 100.00 0.00

ELI LILLY 97.60 100.00 2.40 97.60 0.00

GILEAD 100.00 100.00 0.00 100.00 0.00

GLAXOSMITHKLINE 100.00 100.00 0.00 100.00 0.00

H. LUNDBECK 91.10 91.10 0.00 91.20 0.10

HOSPIRA 100.00 100.00 0.00 100.00 0.00

IPSEN 81.60 81.60 0.00 83.30 1.70

JOHNSON & JOHNS. 100.00 100.00 0.00 100.00 0.00

MEDA AB 100.00 100.00 0.00 100.00 0.00

MEDICINES COMP. 100.00 100.00 0.00 100.00 0.00

MERCK (KGAA) 100.00 100.00 0.00 100.00 0.00

MERCK & CO 82.80 91.50 8.70 82.80 0.00

MITSUBISHI 72.10 72.10 0.00 93.60 21.50

NOVARTIS 86.80 100.00 13.20 86.80 0.00

NOVO NORDISK 100.00 100.00 0.00 100.00 0.00

ORION 100.00 100.00 0.00 100.00 0.00

OTSUKA 95.10 95.10 0.00 96.30 1.20

PFIZER 100.00 100.00 0.00 100.00 0.00

REGENERON 100.00 100.00 0.00 100.00 0.00

RICHTER 70.20 70.20 0.00 82.60 12.40

ROCHE 100.00 100.00 0.00 100.00 0.00

SANOFI 75.00 81.60 6.60 75.00 0.00

SHIRE 97.60 100.00 2.40 97.60 0.00

TAKEDA 93.90 100.00 6.10 93.90 0.00

TEVA 100.00 100.00 0.00 100.00 0.00

UCB 52.10 75.40 23.30 52.10 0.00

The ‘change rate’ columns show in bold those companies whose improvement in efficiency is significant (greater than 5 %)
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When the NDAIMCTE variable is added to the model,

average efficiency tends to increase, because the model is

less discriminatory. Nonetheless, the increase is slight:

1.83 % when it is considered an output, and 1.59 % when it

is considered an input. The number of efficient firms

increases to 25 in the first case, as ELI LILLLY,

NOVARTIS, SHIRE, and TAKEDA become efficient. In

the second case, the number of efficient laboratories

increases to 22 as BIOGEN becomes a new member of the

frontier.

It must be highlighted that, given the slight change when

the NDAIMCTE variable is considered either as an output

(only five firms increase their efficiency more than 5 %) or

as an input (four firms in this case improve their efficiency

more than 5 %), the robustness of model I under the VRS

assumption is verified. Thus, our study can be interpreted

as a realistic approach for measuring efficiency in the

pharmaceutical industry.

Broadly speaking, the results provide evidence of the

good position of pharmaceutical companies in terms of

competitiveness in innovation. In model I, 31 out of the 37

companies analyzed in this study present a level of effi-

ciency greater than 85 %. In models II and III, this number

increases to 32.

Finally, Table 4 presents the DEA-based analysis of

peers for models II, III, and IV under the VRS assumption.

The benchmark peers of each pharmaceutical company

refer to the efficient laboratories that are taken as refer-

ences to calculate their efficiency. Note that benchmark

peers are ordered from the most influential to the least

influential. Obviously, the most efficient companies do not

have benchmark peers.

M&A activity and other financial transactions
by pharmaceutical laboratories

In the introduction, we have indicated that large pharma-

ceutical laboratories have two nonexclusive alternatives for

managing their portfolio of new drugs and we have dis-

cussed previous contributions. Simultaneously, they may

develop new drugs internally but they may also engage in

mergers and acquisitions or other transactions to obtain

new drugs or to change the composition of their portfolio

of promising drugs (selling new drugs and buying other

types of new drugs).

In this section, we discuss, first, the direct effect of

M&A activity among laboratories with drugs authorized by

EMA and FDA during our study period and, second, the

effect of large and smaller transactions. We analyze the

effect of large merger and acquisition (M&A) activity

(with direct effects on the number of new drugs authorized

by EMA and FDA) in the pharmaceutical industry during

the period 2008–2013 and its potential effect on the esti-

mated DEA relative efficiency of pharmaceutical labora-

tories. Some pharmaceutical laboratories acquire other

innovative laboratories that have new chemical entity

authorizations from the EMA and the FDA. If we restrict

the mergers considered in [16] to those that occurred dur-

ing our study period, there were four major mergers (Pfi-

zer ? Wyeth 2009, Novartis ? Alcon 2009, Roche ?

Genentech 2009 and Sanofi ? Genzyme 2011) with

acquirers from our sample of 37 laboratories and targets

with new drugs authorized by either FDA or EMA. After

considering the four large successful M&As relevant for

our research, eleven additional new chemical entities were

included in the list of drugs authorized by EMA and FDA.

We then re-estimated our DEA models, and found very

small changes (or none at all) in the relative efficiencies of

pharmaceutical laboratories. Table 10 in the Appendix

describes new drugs authorized by EMA and FDA to lab-

oratories that do not belong to our sample of 37 laborato-

ries but to laboratories that have been acquired by, or have

merged with, any of our 37 laboratories.

In order to further address financial transactions by

pharmaceutical labs, we also obtained much more detailed

data on transactions announced by our 37 pharmaceutical

laboratory sample in the period 2008–2013. We provide

two summary tables (transactions announced by year and

by pharmaceutical lab) including information about all

announced transactions from the S&P Capital IQ transac-

tions database performed by our sample of 37 pharma-

ceutical laboratories during the period 2008–2013. In total,

2071 transactions were announced by our sample of large

pharmaceutical labs. Transactions include merger and

acquisitions, private placements and buybacks (Table 5).

The total size of announced transactions during the

study period for our sample of laboratories was 982,036

million USD. Given that for some of the 2071 transactions

the size was not reported, this is a conservative

figure (Table 6).

We split our sample in two. One subsample is made up

of 21 efficient laboratories that are at the DEA frontier

according to our DEA model I and the other is made up of

the remaining 16 inefficient labs. Our sample of inefficient

laboratories has an average efficiency of 84.8 %.

The size of the announced transaction was not available

for all transactions (in smaller transactions some transac-

tion details were not reported). Whenever this information

was available, we used it to estimate the total size of these

announced transactions for the two subsamples (efficient

laboratories and inefficient labs).

We now make a simple comparison of these two sub-

samples. The total number of announced transactions is

very similar in our two subsamples: 1025 announced

transactions by 21 efficient laboratories, and 1046
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announced transactions by 16 inefficient laboratories. On

average, each efficient laboratory made 48.8 transaction

announcements during our study period while each ineffi-

cient laboratory made 65.4.

The average size of the announced transactions is higher

for efficient laboratories (575,039 mm USD) than for

inefficient laboratories (407,258 mm USD).

As a robustness check, we excluded Mitsubishi (an

inefficient laboratory with 365 announced transactions)

from the comparison given that this company is a con-

glomerate and some announced transactions are not

directly related to the pharmaceutical sector. Once Mit-

subishi is excluded, the total number of announced trans-

actions is: 1025 transactions by all efficient laboratories (as

before) and only 681 transactions by all inefficient labo-

ratories in our sample. On average, each efficient labora-

tory made 48.8 transaction announcements during our

study period (as before), while on average each inefficient

laboratory (excluding Mitsubishi) made 45.4.

As an additional robustness test, we used yearly data on

announced transactions during our study period to run two

OLS regression s, see (4) and (5). The results are shown in

Table 7, see respectively OLS 1 and OLS 2.

Announced transaction SIZEit

Total assetsi

¼ b0 þ b1 �
R&Di

Total assetsi
þ b2 � Efficiencyi ð4Þ

Announced transaction SIZEit

Total assetsi

¼ b0 þ b1 �
R&Di

Total assetsi
þ b2 � Efficiency dummyi:

ð5Þ

The dependent variable is the size of the total transac-

tions per year per lab divided by average total assets of the

lab during the study period. There are two independent

variables: the ratio of R&D to total assets, and a measure of

efficiency (either relative efficiency of each pharma lab

during the whole study period or, alternatively, a dummy

that takes value 1 when the pharma lab is at the frontier and

zero otherwise).

In both cases, our two OLS regressions show that both

R&D/TA and Efficiency (or efficiency dummy) have a

positive and significant impact on the number of

announced transactions relative to total assets. That is to

say, the labs that invest more in R&D and that have with

higher DEA efficiency strike more deals (more announced

transactions relative to the size of the lab measured as total

assets). Relative Efficiency is significant at the 1.5 % level

and the efficiency dummy is significant at the 1 % level.

R&D relative to total assets is also significant at the 1 %

level in both OLS regressions.

Given our study period and considering only 36 labora-

tories, in our two OLS regressions, efficient laboratories

make on average more transaction announcements, and the

relative size of each transaction announcement is higher.

Also, labs with more R&D relative to total assets strike more

deals than labs with lower R&D relative to total assets.

We ran two additional OLS regressions with an inter-

action term in each regression, see (6) and (7) corre-

sponding to OLS 3 and OLS 4 in Table 7.

Announced transaction SIZEit

Total assetsi

¼ b0 þ b1 �
R&Di

Total assetsi
þ b2 � Efficiencyi þ b3

� R&Di

Total assetsi
� Efficiencyi ð6Þ

Announced transaction SIZEit

Total assetsi

¼ b0 þ b1 �
R&Di

Total assetsi
þ b2 � Efficiency dummyi

þ b3 �
R&Di

Total assetsi
� Efficiency dummyi: ð7Þ

After including the interaction term, results continued to

be significant and positive for the estimates of b1 and b2

Table 3 Summary of the

results for models II, III, and IV

under the VRS assumption

Company Model I Model II Model III

Efficiency Efficiency Change rate Efficiency Change rate

Average 93.45 % 95.28 % 1.83 % 95.03 % 1.59 %

St Dev 11.02 % 8.59 % 4.64 % 9.63 % 4.61 %

Efficient firms (*) 21 25 (5) 22 (4)

Efficiency: [85, 100 %) 10 7 10

Efficiency: [70, 85 %) 5 5 4

Efficiency: [50, 70 %) 1 0 1

Efficiency: [0, 50 %) 0 0 0

The ‘Change rate’ columns show the number of companies whose improvement in efficiency is significant

(greater than 5 %)

Measuring the efficiency of large pharmaceutical companies: an industry analysis 599

123



and the estimate of the interaction term b3 is significant but
negative. We interpret the results as follows.

When we include the interaction term, the interpretation

of this interaction term is that the labs that simultaneously

are both more efficient and also invest more internally in

R&D relative to total assets, announce smaller transactions

relative to total assets of the lab (if you are very efficient

and you invest more in R&D then you do not need so much

to make more external acquisitions and other transactions).

One concern when interpreting the results of our

regression results would be that R&D/TA is a ratio variable

Table 4 Benchmark peers of

each pharmaceutical laboratory

(models I, II and III): VRS

assumption

Company Ref. Model I Model II Model III

ABBOTT [1] 1 1 1

ALLERGAN [2] 6-26-27-14 26-14-6-27 10-7-1-14-26-32

AMGEN [3] 3 3 3

ASTELLAS [4] 4 4 4

ASTRAZENECA [5] 32-26-19-14 32-16-19-14-26 26-32-14-19

BAYER [6] 6 6 6

BIOGEN [7] 26-12-14-21 26-21-12-14 7

BRISTOL [8] 14-32-3-19 35-14-15-32-19 14-3-19-32

CELGENE [9] 9 9 9

CELLTRION [10] 10 10 10

CSL [11] 11 11 11

EISAI [12] 12 12 12

ELI LILLY [13] 26-32-19-14 13 19-32-26-14

GILEAD [14] 14 14 14

GLAXOSMITHKLINE [15] 15 15 15

H. LUNDBECK [16] 4-26-12-21 4-27-26-12-21 14-26-4-21

HOSPIRA [17] 17 17 17

IPSEN [18] 26-27-21 21-26-27 21-26-10-14

JOHNSON & JOHNS. [19] 19 19 19

MEDA AB [20] 20 20 20

MEDICINES COMP. [21] 21 21 21

MERCK (KGAA) [22] 22 22 22

MERCK & CO [23] 32-3-29-19 29-35-25-19 32-3-19-29

MITSUBISHI [24] 6-14-26-27 26-14-6-27 1-7-10-32

NOVARTIS [25] 14-19 25 14-19

NOVO NORDISK [26] 26 26 26

ORION [27] 27 27 27

OTSUKA [28] 14-32-26-6 14-32-6-26 26-14-10-6-32

PFIZER [29] 29 29 29

REGENERON [30] 30 30 30

RICHTER [31] 11-17-20-22 11-20-22-17 1-17-10-36-11

ROCHE [32] 32 32 32

SANOFI [33] 6-19-14 15-36-6-19 14-6-19

SHIRE [34] 14-12-26-21 34 14-12-26-21

TAKEDA [35] 14-3 -32 35 32-14-3

TEVA [36] 36 36 36

UCB [37] 6-14 -26 -27 25-34 26-6-27-14

Table 5 Transactions per year in the sample of 37 pharmaceutical

laboratories

Company Number of announced

transactions

Total accumulated

size

2008 346 154,762.56

2009 335 211,270.56

2010 338 159,756.12

2011 339 218,567.56

2012 369 106,518.07

2013 344 131,421.59

Overall 2071 982,296.46
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made up of two variables that are also inputs in our DEA

efficiency models. Thus, it is important to check if the two

regressors (R&D/TA and Efficiency) are independent or

not (if they are weakly or strongly correlated). If they were

strongly correlated, our OLS results would be biased. We

tried to assess whether R&D/TA and DEA efficiency (or

DEA efficiency dummy) are independent of each other or

not. First, we analyzed the correlation matrix of all the

variables used in our four regressions. Also, we made two

additional regressions (R&D/TA on DEA efficiency and

R&D/TA on DEA efficiency dummy). The R square is

0.0022 in one case and 0.0409 in the other. Given these

robustness checks, we conclude that the results obtained in

our OLS models are valid and not biased. For reasons of

space, we do not report the correlation matrix and the extra

regressions although they are available upon request.

Table 6 Transactions per

pharmaceutical laboratory in the

period 2008–2013

Company Number of announced transactions Total accumulated size

ABBOTT 39 80,697.08

ALLERGAN 20 3032.35

AMGEN 42 38,462.54

ASTELLAS 47 8434.67

ASTRAZENECA 53 31,058.81

BAYER 87 9978.34

BIOGEN 32 7735.07

BRISTOL 26 43,903.35

CELGENE 43 23,724.35

CELLTRION 8 156.41

CSL 0 0

EISAI 12 406.54

ELI LILLY 64 25,353.78

GILEAD 14 28,020.47

GLAXOSMITHKLINE 156 29,984.79

H. LUNDBECK 18 1767.05

HOSPIRA 11 1129.29

IPSEN 24 4743.54

JOHNSON & JOHNS. 168 64,503.65

MEDA AB 28 2341.58

MEDICINES COMP. 10 1909.29

MERCK (KGAA) 58 19,057.58

MERCK & CO 74 79,208.71

MITSUBISHI 365 42,644.27

NOVARTIS 158 83,839.67

NOVO NORDISK 28 11,698.79

ORION 5 459.63

OTSUKA 4 260.19

PFIZER 112 159,115.88

REGENERON 4 75.53

RICHTER 22 1104.19

ROCHE 83 64,088.58

SANOFI 87 43,349.41

SHIRE 35 8547.54

TAKEDA 48 28,933.18

TEVA 70 30,793.83

UCB 16 1776.53

OVERALL 2071 982,296.46
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Conclusions

This paper estimates the relative efficiency in the period

2008–2013 of 37 large pharmaceutical firms that received

authorization for innovative medicines in the United States

and/or the European Union within this time period.

Authorized drugs are concentrated in a small number of

large and efficient pharmaceutical laboratories and it make

sense for health authorities at the national level in the US

(FDA) or at the European level (EMA) to discuss R&D

strategies for the future with a small number of large lab-

oratories. In addition, we analyze announced financial

transactions by our sample of pharmaceutical laboratories

as an alternative way to gain access to new drugs and new

R&D.

The novelty of our approach is that we considered 37

large laboratories from different countries in the period

2008–2013 and, simultaneously, we combined information

from several different sources: Datastream financial and

market information, EMA, and FDA drug approvals and

announced financial transactions from Capital IQ.

Although studies considering patents adjust for the

quality of patents considering the number of times that a

patent has been cited, in our case, only the most successful

new drugs in the pharmaceutical pipeline are approved by

EMA and FDA, so this measure is a better proxy for suc-

cessful R&D.

We used DEA non-parametric techniques, considering

multiple inputs and outputs, and defined several dimen-

sions in which large laboratories are considered to be

efficient. While the inputs refer to different ways of mea-

suring investment in the company, the outputs consider

performance indicators. The relevance of R&D in this

sector was also taken into special consideration. 21 com-

panies proved to be efficient and 16 inefficient when con-

sidering three inputs and three outputs under the VRS

assumption. The average level of efficiency in the base

model was 93.45 %. In addition, ten companies are not

efficient, but present a level of efficiency greater than

85 %. Broadly speaking, this indicates the high competi-

tive level of companies in this sector.

Some previous papers estimate either DEA efficiency or

DEA total factor productivity of pharmaceutical firms but

most studies focus on a single country. Also, when mea-

suring R&D efficiency, most previous papers consider the

number of patents as a proxy for R&D. In this study, as a

proxy for R&D we considered not only the number of new

chemical entities approved by EMA and FDA for each

laboratory but we also adjusted this figure considering the

specific date of authorization of each new chemical entity.

Shimura et al. [52] perform statistical analysis to explore

links between R&D and industry consolidation in the

period 2002–2007 considering a sample of 21 pharma-

ceutical laboratories. We, however, focus only on DEA

estimates but consider more efficiency dimensions and we

explore in detail peers at the frontier for the pharmaceutical

laboratories that are not fully efficient. We perform an

efficiency analysis without a DEA second stage approach

given that DEA second stages are subject to some con-

troversy as discussed above.

We extend prior literature related to markets for tech-

nology and internal and external R&D strategy by con-

sidering in much more detail announced transactions and

including not only a few very large M&As or a few hun-

dred acquisitions but also many smaller transactions.

Prior related contributions on acquisitions and innova-

tion [3, 7, 16, 26, 31, 32, 38, 47, 52] focus on different

characteristics of the acquirer and/or target and whether

and how acquisitions create value. In our case, we estimate

first the relative efficiency of each pharma lab and then we

introduce financial transactions into the analysis. Thus, we

searched for further evidence of the link between lab effi-

ciency and financial transactions in the pharmaceutical

industry during our study period. Large M&As have been

Table 7 Summary of the results of the regression models

Explanatory variables OLS 1 OLS 2 OLS 3 OLS 4

R&D/total assets 5.528*** (1.162) 6.275*** (1.239) 41.541** (16.272) 10.010*** (1.915)

DEA efficiency 1.107*** (0.320) 4.149*** (1.207)

DEA efficiency dummy 0.255** (0.101) 0.777*** (0.196)

R&D/total assets* -37.464** (16.921)

DEA efficiency

R&D/total assets* -5.141** (2.441)

DEA efficiency dummy

Constant -0.690** (0.289) 0.134 (0.125) -3.620*** (1.169) -0.263 (0.168)

R-squared 0.159 0.163 0.190 0.183

Number of observations 178 178 178 178

*, **, *** Indicate significance at the 1, 5 and 10 % level. Robust standard errors in parentheses
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studied in previous papers but we contribute by analyzing

in detail 2071 announced transactions by our sample of 37

laboratories. Our sample is split in two. One subsample is

made up of 21 efficient laboratories that are at the DEA

frontier according to model I. The second subsample is

made up of 16 inefficient firms. After adjusting for the

market cap of each pharmaceutical laboratory (as a proxy

for size), the transaction size relative to the size of the

pharmaceutical laboratory is slightly larger for efficient

laboratories (0.597) than for inefficient laboratories

(0.530).

Given our study period and considering only 36 labo-

ratories (excluding Mitsubishi), efficient laboratories make

on average more transaction announcements, and the rel-

ative size of each transaction announced is higher. Also,

labs with more R&D relative to total assets strike more

deals than labs with lower R&D relative to total assets.

However, when we include the interaction term, this term

suggests that labs that simultaneously are more efficient

and also invest more internally in R&D announce smaller

transactions relative to total assets of the lab.

Although we think that new drugs authorized are a better

proxy for successful research than patents, the authoriza-

tion procedure is not perfect. New drugs submitted for

authorization to EMA and FDA are subject to close scru-

tiny, especially during phase III. However, part of the

results of the clinical trials is never published or is pub-

lished with a considerable delay. Recent legislation tackles

this problem. The USA passed legislation in 2007 and, in

Europe, new legislation will come into force in 2016. The

FDA has the power to fine laboratories that do not comply

but it is reported that it has never actually done so [54].

We propose several possible extensions of our paper.

We did not consider information from laboratories with

zero new drugs authorized during the study period. This

was because of our DEA methodology for estimating

efficiency as well as the fact that many laboratories had

zero new drugs authorized in many of the years of our

sample. However, different approaches and a different

methodology may be able to exploit the data in order to

further contribute to the subject. Censored regression

models could be used to incorporate more pharmaceutical

laboratories into the analysis and to consider many labo-

ratories with zero drugs authorized.

Alternatively, with an unbalanced data set, the use of

panel data would be helpful in order to account for unob-

served heterogeneity and to study the dynamics of the

population. Pindado et al. [49] show how firm character-

istics influence the relationship between R&D and firm

value but, when constructing the unbalanced panel, they

impose the restriction that there should be six consecutive

years of information available from companies in the

sample. This is only possible with a very large database

comprising more sectors than the pharmaceutical sector.

Another possible extension would be to estimate a two-

stage DEA using, in the second stage, variables that were

not used in the first stage. Explaining DEA inefficiency in a

second stage analysis is a common practice for identifying

factors whose impact on efficiency is statistically signifi-

cant. However, the use of ordinary least squares, Tobit or

other alternatives is subject to controversy, as well as to

limitations and biases according to recent papers. Simar

and Wilson [53] compare the pros and cons of the different

alternatives, but one alternative which is not subject to

controversy is to incorporate all the relevant variables in

the first step. This is what we did.

In the case of EMA authorizations, there is authorization

information since 1995 and, in the case of the FDA, there is

information about new molecular entities since 1999 so this

could be used to estimate changes in Total Factor Pro-

ductivity adopting a DEA/Malmquist methodology in order

to study the frontier shift, while also comparing relative

efficiency and interpreting the individual evolution of

companies. Another alternative would be to explore the

differences between generics and new drugs authorized by

EMA or FDA.

Another alternative for future research would be to

identify the sources and key factors of innovation of the

different laboratories in different geographical regions.

These factors may be identified at firm level or at country

or regional level. In the latter case, factors such as the

regulatory environment or approval times are important for

pharmaceutical innovations—see e.g., [10, 20, 21].

Recently, Kinch [40] used information on FDA approved

NMEs and merged this information with patent informa-

tion. Grabowski and Wang [28] is another relevant paper

on the subject that finds that biotech and orphan products

enjoyed tremendous growth, especially for cancer treat-

ment. Naci et al. [46] examined why the drug development

pipeline is not delivering better medicines. Finally, it

would be possible to explore in much more detail

announced financial transactions in order to gain further

insights regarding external R&D acquisitions.
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Appendix 1

See Tables 8, 9 and 10.
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Table 8 Datastream output measures; 37 laboratories versus 241 laboratories (data in million USD)

Output Number of pharma labs 2008 2009 2010 2011 2012 Sum 2013

O1-NP 37 87,018 113,048 100,980 109,562 107,580 108,967

O1-NP 241 93,279 121,845 115,168 125,961 124,379 123,492

Percentage (%) – 93.3 92.8 87.7 87.0 86.5 88.2

O2-MC 37 1,316,178 1,497,453 1,479,184 1,591,657 1,797,990 2,242,927

O2-MC 241 1,465,046 1,693,558 1,742,159 1,856,308 2,181,790 2,823,773

Percentage (%) – 89.8 88.4 84.9 85.7 82.4 79.4

O3-TS 37 543,044 602,776 673,175 685,712 692,554 676,711

O3-TS 241 628,929 721,607 820,815 856,171 883,483 867,525

Percentage (%) – 86.3 83.5 82.0 80.1 78.4 78.0

Table 9 New drugs authorized

by EMA and FDA in the period

2008 to 2013 without the effect

of M&A

Agency Year Number of authorized drugs Number of days Number of days discounted

EMA 2008 38 72,209 67,676

EMA 2009 44 70,465 66,915

EMA 2010 22 25,205 24,229

EMA 2011 38 32,876 32,005

EMA 2012 22 11,252 11,082

EMA 2013 43 7135 7088

FDA 2008 10 19,759 18,504

FDA 2009 12 19,847 18,819

FDA 2010 7 9116 8753

FDA 2011 14 12,969 12,611

FDA 2012 17 8430 8304

FDA 2013 14 2430 2413

EMA ? FDA 2008 48 91,968 86,180

EMA ? FDA 2009 56 90,312 85,734

EMA ? FDA 2010 29 34,321 32,982

EMA ? FDA 2011 52 45,845 44,616

EMA ? FDA 2012 39 19,682 19,386

EMA ? FDA 2013 57 9565 9502

Table 10 New drugs

authorized by EMA and FDA in

the period 2008 to 2013

belonging to M&A

Agency Year Number of

authorized drugs

Number of days Number of days

discounted

EMA 2008 1 1862 1752

EMA 2009 2 3279 3111

EMA 2010 0 0 0

EMA 2011 0 0 0

EMA 2012 0 0 0

EMA 2013 1 110 110

FDA 2008 1 2132 1985

FDA 2009 0 0 0

FDA 2010 1 1453 1388

FDA 2011 0 0 0

FDA 2012 3 1755 1725

FDA 2013 2 401 398

EMA ? FDA 2008 2 3994 3736

604 F. Gascón et al.

123



Appendix 2

See Tables 11 and 12.

Table 11 Outputs for the DEA model

Company Ref. O1–NP (*)

Net income basic

O2–MC (*)

Market capitalization

O3–TS (*)

Net sales

O4–NDAIMCTE (*)

Number of days discounted

until December 13

ABBOTT [1] 4,728,933 81,795 32,672,025 127

ALLERGAN [2] 703,150 23,442 5,225,333 1205

AMGEN [3] 4,422,833 63,146 16,029,000 6921

ASTELLAS [4] 1,312,290 20,471 11,049,964 6924

ASTRAZENECA [5] 6,535,839 64,026 29,901,216 9045

BAYER [6] 2,843,425 69,912 48,787,267 7291

BIOGEN [7] 1,204,907 28,791 5,121,517 1148

BRISTOL [8] 3,006,000 55,933 19,023,167 6972

CELGENE [9] 724,639 35,263 4,233,646 6347

CELLTRION [10] 1560 137 32,695 112

CSL [11] 941,535 21,068 4,072,829 3040

EISAI [12] 472,294 11,645 8,224,303 7081

ELI LILLY [13] 3,407,917 48,338 22,548,833 7129

GILEAD [14] 2,669,696 52,759 8,263,849 3113

GLAXOSMITHKLINE [15] 7,117,737 109,774 42,449,777 28,802

H. LUNDBECK [16] 310,826 3818 2,607,541 2614

HOSPIRA [17] 184,750 6478 3,929,667 1362

IPSEN [18] 121,484 3282 1,543,927 1616

JOHNSON & JOHNS. [19] 12,150,833 190,890 65,151,167 14,429

MEDA AB [20] 183,033 2858 1,805,137 2283

MEDICINES COMP. [21] 35,758 1122 486,871 1853

MERCK (KGAA) [22] 12,745 185 108,256 936

MERCK & CO [23] 6,391,050 112,088 39,450,600 24,469

MITSUBISHI [24] 373,502 8144 4,491,237 341

NOVARTIS [25] 9,307,241 162,456 53,173,503 43,544

NOVO NORDISK [26] 2,982,551 54,037 11,684,809 4140

ORION [27] 247,665 1056 1,184,442 2549

OTSUKA [28] 924,146 15,321 12,549,824 3174

PFIZER [29] 9,172,833 159,328 57,351,500 13,270

REGENERON [30] 116,311 9003 834,308 3810

RICHTER [31] 237,170 3387 1,392,848 664

ROCHE [32] 9,703,329 30,595 48,172,073 5838

Table 10 continued
Agency Year Number of

authorized drugs

Number of days Number of days

discounted

EMA ? FDA 2009 2 3279 3111

EMA ? FDA 2010 1 1453 1388

EMA ? FDA 2011 0 0 0

EMA ? FDA 2012 3 1755 1725

EMA ? FDA 2013 3 511 508
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Table 12 Inputs for the DEA model

Company Ref. I1–SW (*)

Employees

I2–TA (*)

Total assets

I3–IRD (*)

Investment in R&D

I4–NDAIMCTE (**)

Number of days discounted

until December 13

ABBOTT [1] 80,500 52,395,697 3,153,094 127

ALLERGAN [2] 9740 8,365,350 842,350 1205

AMGEN [3] 17,883 48,142,000 3,234,833 6921

ASTELLAS [4] 15,651 15,273,737 2,059,089 6924

ASTRAZENECA [5] 58,200 52,071,173 4,231,109 9045

BAYER [6] 110,650 68,614,409 3,982,957 7291

BIOGEN [7] 5350 9,361,089 1,267,042 1148

BRISTOL [8] 28,833 32,178,833 3,507,500 6972

CELGENE [9] 3949 9,113,421 1,309,492 6347

CELLTRION [10] 273 186,354 975 112

CSL [11] 10,303 5,279,541 306,281 3040

EISAI [12] 10,977 11,545,267 1,808,208 7081

ELI LILLY [13] 38,928 31,830,383 4,813,633 7129

GILEAD [14] 4159 14,730,257 1,291,045 3113

GLAXOSMITHKLINE [15] 98,679 61,559,984 5,668,148 28,802

H. LUNDBECK [16] 5582 3,400,398 503,502 2614

HOSPIRA [17] 15,000 5,582,733 269,217 1362

IPSEN [18] 4518 1,953,324 306,635 1616

JOHNSON & JOHNS. [19] 120,300 103,129,833 7,470,000 14,429

MEDA AB [20] 2769 5,071,538 92,668 2283

MEDICINES COMP. [21] 478 742,416 111,289 1853

MERCK (KGAA) [22] 1267 106,656 640 936

MERCK & CO [23] 82,367 96,384,650 6,901,817 24,469

MITSUBISHI [24] 9478 9,188,473 794,988 341

NOVARTIS [25] 117,179 107,311,781 8,699,227 43,544

NOVO NORDISK [26] 31,633 10,737,626 1,647,363 4140

ORION [27] 3320 1,075,103 122,836 2549

OTSUKA [28] 24,526 17,422,894 1,828,382 3174

PFIZER [29] 96,967 176,414,167 7,828,500 13,270

REGENERON [30] 1556 1,405,310 143,325 3810

RICHTER [31] 9315 2,719,582 140,159 664

ROCHE [32] 81,886 65,889,688 9,092,583 5838

Table 11 continued

Company Ref. O1–NP (*)

Net income basic

O2–MC (*)

Market capitalization

O3–TS (*)

Net sales

O4–NDAIMCTE (*)

Number of days discounted

until December 13

SANOFI [33] 6,550,360 105,872 42,740,575 17,114

SHIRE [34] 586,697 16,201 3,844,582 6694

TAKEDA [35] 2,669,367 36,543 16,746,817 19,833

TEVA [36] 2,015,502 41,540 16,822,439 6186

UCB [37] 310,067 8635 4,046,009 6149

* Datastream data is in thousand USD for Net Income Basic and Net Sales, while market cap is in million USD

** The number of days discounted is computed for each pharmaceutical laboratory until December 2013. M&A activity only affected two

pharmaceutical laboratories with authorized drugs in the period 2008 to 2013 (Pfizer and Roche)
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