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Abstract

Objectives To empirically compare Markov cohort

modeling (MM) and discrete event simulation (DES) with

and without dynamic queuing (DQ) for cost-effectiveness

(CE) analysis of a novel method of health services delivery

where capacity constraints predominate.

Methods A common data-set comparing usual orthopedic

care (UC) to an orthopedic physiotherapy screening clinic

and multidisciplinary treatment service (OPSC) was used

to develop a MM and a DES without (DES-no-DQ) and

with DQ (DES-DQ). Model results were then compared in

detail.

Results The MM predicted an incremental CE ratio

(ICER) of $495 per additional quality-adjusted life-year

(QALY) for OPSC over UC. The DES-no-DQ showed

OPSC dominating UC; the DES-DQ generated an ICER of

$2342 per QALY.

Conclusions The MM and DES-no-DQ ICER estimates

differed due to the MM having implicit delays built into its

structure as a result of having fixed cycle lengths, which

are not a feature of DES. The non-DQ models assume that

queues are at a steady state. Conversely, queues in the

DES-DQ develop flexibly with supply and demand for

resources, in this case, leading to different estimates of

resource use and CE. The choice of MM or DES (with or

without DQ) would not alter the reimbursement of OPSC

as it was highly cost-effective compared to UC in all

analyses. However, the modeling method may influence

decisions where ICERs are closer to the CE acceptability

threshold, or where capacity constraints and DQ are

important features of the system. In these cases, DES-DQ

would be the preferred modeling technique to avoid

incorrect resource allocation decisions.
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Introduction

Comparisons of Markov cohort modeling (MM) and dis-

crete event simulation (DES) methods for cost-effective-

ness analysis (CEA) in health are dominated by non-

empirical assessments based on authors’ experiences and

their understanding of these modeling techniques [1]. From

a recent systematic review, only two studies were identified

that compared MM and DES empirically, both assessing

the cost-effectiveness (CE) of drug therapies; one for early

breast cancer and one for HIV [2, 3]. Neither study found

that the different modeling techniques altered CE results

enough to change decision-making; however, these studies

did not consider the impact capacity constraints, competi-

tion for limited resources or queuing had on CE results [2,

3]. The use of these different modeling techniques in set-

tings that have significant capacity constraints and high

demand has the potential to elicit different CE results and

lead to different resource allocation decisions and resultant

clinical practice.

Hospital outpatient services are part of the health care

system where capacity constraints (e.g., specialist staff,

theatre access) are a major feature of the system. Under
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these conditions, it is hypothesized that MM and DES

could produce differing CE ratios. This study investigates

the differences in CE estimates generated by MM and DES

methods in hospital outpatient orthopedic services when

usual orthopedic care (UC) and an orthopedic physiother-

apy screening clinic and multidisciplinary service (OPSC)

are compared. UC relies on medical specialists to assess

and screen all new patients entering the service and

directing them to the most appropriate (conservative or

surgical) care. This model of service delivery has led to

significant delays in service provision due to the limited

availability of funding for medical specialists to conduct

this screening [4–7]. By using physiotherapists to direct

patient care, OPSC seeks to alleviate these delays in low-

risk orthopedic patients in triage urgency category 2 (semi-

urgent) or 3 (non-urgent) with benign musculoskeletal

conditions (primarily of the low back, knee, or shoulder)

where serious pathology is not suspected, immediate sur-

gery is not indicated, and the patient is likely to benefit

from non-surgical management. These types of service

models have been shown to reduce waiting times and staff

costs while maintaining quality of service in Canada, the

UK, and Australia [6, 8–11]. Previous research has

demonstrated the CE of OPSC over UC; however, it is

unknown what impact the use of a MM over a DES in this

evaluation may have had on the results of this analysis

[12].

This study has a number of novel objectives. While

previous studies have empirically compared DES and MM

for pharmaceutical therapies, this is the first study to

empirically compare a MM and DES to determine the CE

of health services provision per se. Second, this study aims

to compare the results of a MM with a constrained-re-

sources DES model (herein described as a dynamic queu-

ing (DQ) DES model), where queuing time is simulated as

a function of the supply of, and demand for, limited

resources [13]. To the author’s knowledge, this is the first

CE study in health care to attempt such a comparison.

Third, this is the only study to provide an empirically based

comparison of a MM and all types of DES (i.e., with and

without dynamic queuing).

Methods

A previously published MM that compared OPSC and UC

was used as the template for the DES model development

[12]. Data for the original MM were obtained from hospital

administrative sources, published studies, and a retrospec-

tive chart audit of 980 patients attending an OPSC with a

primary diagnosis involving the knee, shoulder, or lumbar

spine [12]. The MM was developed in TreeAge Pro 2014

software and the DES was developed using the Simul8�

2014 software package. The MM included waiting times

currently associated with provision of UC in Australia.

These waiting times were modeled in the MM by applying

transition probabilities to the patient cohort at each fixed-

length cycle in the model. To relax the Markovian

assumption of memorylessness, ‘tunnel states’ were

employed to allow the probabilities of the cohort transi-

tioning to the health states of interest (e.g., drop out, sur-

gery) to vary by health state over the modeled period. Full

details of the methods used in the development of the MM

have been published previously [12]. As the DES model is

an individual patient simulation (IPS) technique it was not

necessary to use ‘tunnel states’ to circumvent any Marko-

vian modeling limitations. Instead, each simulated indi-

vidual carries its own history which can inform the future

resource use and pathways that a simulated individual may

take through the model structure.

Three DES models were developed in order to fully com-

pare and contrast the outcomes fromDES to MM. Two of the

DES models had no DQ. The first of these was developed

without restriction (DES-no-DQ). The second model was a

modification of the first, designed to generate results that

calibrated back to those of the MM (DES-CAL). This second

model served to validate the initial DES-no-DQ model and

demonstrate why the results of the DES-no-DQ and MM

differed. The third model incorporated DQ (DES-DQ).

Waiting times to various events such as surgery, drop

out, or time to all-cause mortality in the DES-no-DQ were

sampled from a series of time-to-event distributions using

fixed probabilities at discrete time-points. The time-to-

event distributions were sampled at the appropriate point in

the modeled analysis (e.g., after an event) to determine

when this next event may occur. Other events in the DES-

no-DQ model occur instantaneously. The time for each

event in the DES-no-DQ model was then compared, and

the next event for the simulated patient determined. In this

way, the DES-no-DQ model generates a series of formally

instantaneous discrete events that occur at varying points in

time in the modeled analysis (i.e., not at fixed time points).

In a DES, events are formally instantaneous; this con-

trasts with the MM where a change of health state takes one

full cycle (in this case 3 months). This can lead to the

introduction of artificial time delays in the MM. For

example, in the MM, the cohort transferring from an

orthopedic review to the beginning of the surgical waiting

list requires a change in health state, which takes an

additional 3 months more than the actual surgical waiting

times measured in practice. This is an artificial delay

introduced through the application of the MM methods

(i.e., an artefact of the MM methods). The DES-CAL

model was then developed by simply inserting a number of

3-month delays between the appropriate events into the

DES-no-DQ model to mirror those that were implicitly
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present in the structure of the MM due to its fixed 3-month

cycle length (i.e., artefacts of the MM design). The details

of these delays and their placement in the DES-CAL model

are presented in Table 1. The disaggregated expected

number of events, costs, effects, incremental cost, incre-

mental effects, incremental cost-effectiveness ratios

(ICERs), cost-effectiveness acceptability curves (CEACs),

and response to sensitivity analyses generated by the DES-

CAL and the MM were then compared in detail to deter-

mine if their results calibrated appropriately.

While the DES-no-DQ and the DES-CAL versions of

the model provided a useful starting point for the com-

parison of the results of each of the modeling methods they

did not explore the impact the inclusion DQ may have on

CE in this setting. Therefore, after this comparison, the

DES model was altered such that queuing times were

generated dynamically as a function of the demand (e.g.,

patients requiring orthopedic assessment) and the capacity

of the health care service to assess these patients (e.g.,

driven by the availability of orthopedic specialists).

Full details of the input parameters applied in the MM

and DES economic models, by parameter type (e.g., costs,

probabilities), model arm (i.e., UC, OPSC) and model type

(i.e., MM, DES-no-DQ, DES-CAL, DES-DQ) are pre-

sented in Table 1. The table also presents cross-references

between the input probabilities and the structure of the

economic model presented in Fig. 1. The distributions used

for the probabilistic sensitivity analyses (PSA) were fitted

to the data using the method-of-moments [14].

The structure of the UC and OPSC arms of the DES-DQ

economic model are presented in Fig. 1a, b, respectively.

The reader is referred to the previous publication by

Comans et al. [12] for additional details regarding the

conceptual design of the economic analysis and the MM.

In the UC arm of the model, patients are initially

assessed by an orthopedic specialist, they may then be:

directed back to their general practitioner for continuing

management; referred to conservative management, which

could include physiotherapy or other medical management

(e.g., corticosteroid injections); placed on a surgical wait

list; or continue to be monitored for the need for surgery

and called back for review at a later date.

In the OPSC arm of the model, patients are initially

screened by a physiotherapist who has postgraduate qual-

ifications in musculoskeletal physiotherapy. Following this

assessment, patients may be referred for co-ordinated

multidisciplinary non-surgical management. This can

include physiotherapy, occupational therapy, dietetics,

psychology, and pharmacy as well as other allied health

intervention when indicated (e.g., podiatry). In addition to

services tailored to individual patients, group-based pro-

grams are used to support ongoing self-management,

knowledge, and skill development. Alternatively,

following screening, the patient may be referred back to an

orthopedic specialist. This may occur if issues are identi-

fied that indicate the need for urgent medical attention or

suggest a strong need for surgical review.

In both arms of the economic model, patients may drop

out of care while waiting for an assessment or treatment or

die due to all-cause mortality.

At the time of these analyses, the demand for OPSC

assessment did not exceed supply and, therefore, queue

development was not a feature of this health service. As

such, a queue was not dynamically modeled for OPSC

assessment. Instead, a brief fixed wait period was applied

prior to OPSC assessment in the model to reflect that no

assessment occurs instantaneously.

To reduce stochastic variability and parameter uncer-

tainty, the number of simulated patients and PSA iterations

were increased until such time as the ICERs generated by

the model stabilized. Around 5000 simulated individual

patients and 1000 PSA iterations were required to generate

stable ICER estimates from the DES models. It was not

necessary to reduce stochastic variability in the MM as it is

a cohort analysis that generates expected values. To further

test the stability of the results, the pseudorandom number

generator was seeded with different starting values and the

ICERs generated assessed to ensure that the ICER values

remained stable. In the DES-DQ version of the model, a

range of ‘run-in’ times (i.e., the time the economic model is

initially run prior to the initiation of data collection to

allow the model to be populated and queues to develop)

were explored to allow the queues in the model to develop

and to determine the impact these differences in initial

conditions have on the CE results.

All versions of the economic model had a time horizon

of 5.25 years. The time horizon of the original model was

guided by clinical experts who identified the minimum

duration in which the main differences in costs and effects

between treatment arms were likely to be realized. Given

that some patients currently wait up to 3 years for care,

5 years was considered an appropriate time horizon for the

modeled analysis. A longer time frame has the potential to

introduce more uncertainty in the results as the type of care

may change over time. Orthopedic treatment is primarily

expected to affect patient quality of life and not life span,

therefore, this time horizon was considered appropriate.

The DES-DQ model employed queues with exponential

inter-arrival times. Each queue used a simple single server

structure to reflect the total throughput of the health service

being modeled (e.g., specialist orthopedic assessment). The

queues used in the DES-DQ model employed a first-in, first

out (FIFO) scheduling discipline. The DES queues allowed

baulking or reneging due to patient compliance (i.e., drop

out) or patient mortality. The DES-DQ model employed a

run-in period of 1 year and a total simulation time of
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Table 1 Base case input parameters by model, model arm, and parameter type

Parameter description Model arm/s Mean SEM Parameter 

distribution 

(PSA)

Cross-

reference of 

probability 

to model 

structure 

(see Figure 

1)

MM & DES-no-DQ & DES-CAL & DES-DQ

Costs:

Conservative care UC $181.27 $181.27 Gamma –

Medical care post-surgery UC & OPSC $425.45 $425.45 Gamma –

Surgical intervention UC & OPSC $12,311.00 $7542.00 Gamma –

Usual care clinic review UC & OPSC $65.44 $21.81 Gamma –

Additional medical care OPSC $120.00 $120.00 Gamma –

OPSC assessment OPSC $60.50 $20.17 Gamma –

OPSC intervention OPSC $470.00 $312.00 Gamma –

Probabilities:

Conservative tx success UC 0.50 0.02 Beta
1

Discharge to a GP UC 0.30 0.02 Beta
2

Referral from regular care to conservative tx UC 0.50 0.02 Beta
3

Discharged to GP after initial review UC & OPSC 0.10 0.01 Beta
4

Referral to surgical waitlist UC & OPSC 0.11 0.01 Beta
5

Surgery success UC & OPSC 0.80 0.02 Beta
6
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Table 1 continued

Time < 1.25 years from model entry UC & OPSC 0.063 – Fixed
7

Time ≥ 1.25 years from model entry 0.01 – Fixed

Mortality UC & OPSC life tables – Fixed
8

Expedited review OPSC 0.50 0.02 Beta
9

OPSC care only 

(no additional medications required)

OPSC 0.91 0.01 Beta
10

OPSC care after initial assessment OPSC 0.83 0.01 Beta
11

OPSC care expedited OPSC 0.50 0.02 Beta
12

OPSC response OPSC 0.52 0.02 Beta
13

Review in OPSC responders OPSC 0.28 0.02 Beta
14

Review in OPSC non-responders OPSC 0.58 0.02 Beta 15

Utilities:

Annual utility entry UC & OPSC 0.510 0.01 Beta –

Annual utility NR UC & OPSC 0.483 0.02 Beta –

Annual utility RES UC & OPSC 0.685 0.02 Beta –

Annual disutility waiting UC & OPSC -0.001 – Fixed –

Drop out (3 month probabilities)

Parameter description Model arm/s Mean SEM Parameter 

distribution 

(PSA)

Cross-

reference of 

probability 

to model 

structure 

(see Figure 

1)
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Table 1 continued

Initial tx (3 month probabilities) UC & OPSC

Time < 1.25 years from model entry 0.00 – Fixed –

Time ≥ 1.25 years from model entry 0.50 – Fixed –

Surgery (3 month probabilities) UC & OPSC –

Time < 2.0 years from waitlist entry 0.01 – Fixed –

Time ≥ 2.0 years from waitlist entry 0.40 0.02 Beta –

DES-CAL

Temporal

Delay between orthopaedic review and: UC

Surgical waitlist 0.25 years – Fixed –

Further review 0.25 years – Fixed –

Discharge to GP 0.25 years – Fixed –

Temporal:

Age of patients entering model UC & OPSC 57.00 – Fixed –

Time horizon (years) UC & OPSC 5.25 – Fixed –

Rates: 

Discount rate effects (per annum) UC & OPSC 0.05 – Fixed –

Discount rate costs (per annum) UC & OPSC 0.05 – Fixed –

MM & DES-no-DQ & DES-CAL

Probabilities:

Parameter description Model arm/s Mean SEM Parameter 

distribution 

(PSA)

Cross-

reference of 

probability 

to model 

structure 

(see Figure 

1)

38 L. B. Standfield et al.

123



10 years. Only simulated patients that entered the model

after the run-in period and were present in the simulation

for the designated time horizon (i.e., 5.25 years) had their

data included in the cost-effectiveness and queuing analy-

ses (see Fig. 2).

The run-in time applied in the base-case analysis was

selected so that the number of simulated patients that had

entered the model and were processed by orthopedic spe-

cialists was equivalent to that recorded in the data

collection used to populate this queue. The total simulation

time of the DES-DQ model was then programmed to col-

lect data until such time as the DQ model estimated a mean

time to orthopedic specialist review (in the UC arm) that

equaled that applied in the MM (i.e., approximately

1.5 years; see Fig. 6). This simply provides a convenient

starting point for the comparison of the MM and the DES-

DQ models. In practice, mean waiting times would be

generated by the modeled analysis based on assumptions

Table 1 continued

Delay between OPSC review and: OPSC

Surgical waitlist 0.25 years – Fixed –

Referral back to waitlist for a re-review 0.25 years – Fixed –

DES-DQ

Temporal

Throughput time for review of a single 

orthopaedic patient (OPSC eligible population in 

a hospital without OPSC)†

UC 7.02 days – Exponential –

Inter-arrival time (OPSC eligible population) † UC & OPSC 3.73 days – Exponential –

Throughput time for a single elective 

orthopaedic surgical procedure (OPSC eligible 

population) †

UC & OPSC 56.15 days – Exponential –

Base case model ‘run-in’ time UC & OPSC 1.0 years – – –

Parameter description Model arm/s Mean SEM Parameter 

distribution 

(PSA)

Cross-

reference of 

probability 

to model 

structure 

(see Figure 

1)

NB. All costs presented in Australian dollars (AUD); 1.00 AUD = 0.7630 USD at the 2nd July 2015 (http://www.federalreserve.gov)

Source: Comans et al. [12] unless otherwise noted

DES-CAL discrete event simulation: calibration version, DES-no-DQ discrete event simulation without dynamic queuing, DES-DQ discrete event

simulation with dynamic queuing, GP general practitioner, NR non-responder, OPSC orthopedic physiotherapy screening clinic and multidis-

ciplinary service, PSA probabilistic sensitivity analysis, RES responder, SEM standard error of the mean, tx treatment, UC usual orthopedic care
a Data taken from a single clinical audit study site
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around the supply and demand of health services. In this

way, the DES-DQ allows the modeler to explore the

implications of altering the supply of, and demand for,

resources over time and the resultant queuing periods. The

impact of altering the mean time to an orthopedic specialist

appointment on the cost-effectiveness of OPSC in the DES-

DQ analysis is presented in Fig. 7.

The results of the four models (i.e., MM, DES-no-DQ,

DES-CAL, and DES-DQ) are compared by presenting the

costs, effects, incremental cost and effects, ICERs and

CEAC. To provide more detailed insights into the differ-

ences generated by each of the economic models, the

expected number of events are also compared in a disag-

gregated form. Further, the dynamically generated queuing

times produced by the DES-DQ model were compared with

those applied in the other economic models to provide

further insight into the differences between these modeling

methodologies.

Results

The MM and the DES-CAL models generated almost

identical results in all analyses and are not discussed fur-

ther, however, the results of the DES-CAL model are

presented in each of the pertinent outcome comparisons for

completeness.

Figure 3 presents the expected number of modeled

events predicted to occur in the UC arm of the four eco-

nomic models. The expected number of modeled events

generated by the MM and the DES-no-DQ models were

similar. However, the DES-no-DQ model predicted a slight

increase in the expected number of modeled events for

surgery, ongoing monitoring reviews, discharge to a GP,

and a slight reduction in the expected number of drop out

events. The most pronounced difference between the DES-

DQ model and the other models in the UC arm was that

DES-DQ predicted a reduction in the expected number of

surgical procedures.

Figure 4 presents the expected number of modeled

events predicted to occur in the OPSC arm of the four

economic models. The expected number of modeled events

generated by the MM and the DES-no-DQ models were

similar. The DES-no-DQ model predicted a slightly higher

expected number of modeled events for the OPSC inter-

vention, being referred back to the waitlist to undergo

reassessment by the OPSC, and a slight reduction in the

expected number of monitoring reviews or drop out events.

The most pronounced difference in the results of the DES-

DQ model compared to the other models in the OPSC arm

was that DES-DQ predicted an increase in the expected

number of surgical procedures per patient.

Table 2 presents the cost, effect (quality-adjusted life-

years; QALYs) and ICERs (cost per additional QALY)

results generated by each of the four economic models. As

expected, the MM and the DES-CAL models generate very

similar cost, effect, and cost-effectiveness estimates.

While the QALYs predicted by the MM and the DES-no-

DQmodels are similar, theDES-no-DQmodel predicts higher

costs in the UC arm and slightly higher costs in the OPSC arm

than the MM. This led to OPSC dominating UC in this anal-

ysis. TheDES-DQmodel predicted lower costs in the UC arm

and higher costs in the OPSC arm compared to the other

models. SimilarQALY resultswere recorded in theUCarmof

the DES-DQ model and slightly higher QALYs were gener-

ated in the OPSC arm of the DES-DQmodel. These cost-and-

effect results led to the DES-DQmodel generating the highest

ICER of the four models at $2342 per additional QALY. The
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Fig. 1 a UC arm of the DES-DQ model. b OPSC arm of the DES-

DQ model. DES-DQ discrete event simulation with dynamic queuing,

GP general practitioner, NR non-responder, MDS multidisciplinary

service, OPSC orthopedic physiotherapy screening clinic, Q queue,

RES responder, UC usual orthopedic care
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DES models without DQ took substantially longer than the

MM to run (10.0 h versus 4.4 s, respectively).

A series of univariate sensitivity analyses were con-

ducted for each of the four economic analyses to compare

how these changes affected the ICER results generated in

the economic models (Table 3). In all models, decreasing

the disutility associated with waiting reduced the incre-

mental difference in QALYs between arms and worsened

the ICER for OPSC versus UC slightly. Increasing the

disutility of waiting had the opposite effect in all analyses.

Similarly, decreasing the utility of responders to surgery

and other interventions decreased the incremental differ-

ence in QALYs between arms and worsened the ICER for

OPSC versus UC in all analyses and vice versa. Doubling

the cost of OPSC led to an increase of around $1630–

$1700 in the ICER for OPSC versus UC. The different

models behaved similarly in respect to univariate sensi-

tivity analyses.

Figure 5 presents the cost-effectiveness acceptability

curves (CEAC) generated by the PSA conducted with each

of the four economic models. The DES-no-DQ CEAC

predicts that OPSC is more CE compared to UC than

predicted by the MM. In fact, the DES-no-DQ model

suggests that around 54 % of the PSA-iterations of this

model predict OPSC will cost less and provide more ben-

efit than UC (i.e., OPSC dominating UC). Of the four

models, the DES-DQ model predicts the highest ICER for

OPSC versus UC with less than 3 % of the PSA-iterations

predicting that OPSC would dominate UC.

Figure 6a, b present the mean waiting times to see an

orthopedic specialist, or to receive orthopedic surgery,

respectively. Each figure compares the wait times applied

in the non-dynamic queuing models (i.e., MM, DES-no-

DQ and DES-CAL) with those generated by the DES-DQ

model over various total simulation run times. The fig-

ures also present the maximum individual patient queuing

times generated by the DES-DQ model over this period.

The non-dynamic queuing models have fixed mean queu-

ing times, whereas the mean queuing times generated by

the DES-DQ model increase dynamically over time as the

demand for orthopedic specialist appointments and surgery

exceeds supply over the model period.

Pt 2 

Pt 1 

Pt 3

Time horizon = 5.25 years

Pt 4
Time  horizon = 5.25 years

< 5.25 years

Pt 5

< 5.25 years

Pt 6 

Pt n

Run in  time 
(base case = 1 year)

Total simulation time  
(base case = 10 years)

0 1 2 3 4 5 6 7 8 9 10

Time horizon = 5.25 years

Total simulation time 
(years)

Simulated patient data included in analysis

Simulated patient data excluded from analysis

Fig. 2 DES-DQ run-in and

total simulation time, time

horizon, and data collection

methods. Pt patient
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As discussed previously, the base case run-in and total

simulation time were set such that the mean time to see an

orthopedic specialist generated by the DES-DQ model was

equal to that applied in the MM (i.e., 1.5 years; see Fig. 6a).

The last individual to successfully traverse both the

orthopedic specialist appointment queue and the orthopedic

surgical queues in the UC arm had spent a total of

5.25 years (i.e., the total time horizon of the economic

model) waiting for specialist assessment and surgery. Of

this waiting time, approximately 1.60 years were spent

waiting for orthopedic assessment and 3.65 years (see

Fig. 6b) were spent in the surgical queue.

Figure 7 shows the impact-increased mean queuing

time for a specialist orthopedic appointment has on the

ICER estimates generated by the DES-DQ model. The

figure also presents the incremental difference in the per-

centage of surgical events predicted in each of the model

arms (i.e., percentage surgery incremental = percentage

surgery OPSC - percentage surgery UC). At a queuing

time of around 0.9 years, OPSC dominates UC. As the

orthopedic assessment queuing time increases, the ICER

increases to a maximum of around $3060 per additional

QALY at 1.95 years and then declines to around $2300 per

QALY at around 2.8 years. The change in the incremental
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percentage of surgical procedures with queuing time clo-

sely matches the changes in ICER.

Discussion

This study is the first to compare MM and DES CE esti-

mates in a capacity-constrained system. In this example,

the choice of MM or DES modeling (with or without

dynamic queuing) would be unlikely to result in a different

resource allocation decision as OPSC was predicted to be

highly cost-effective compared to UC in all analyses.

However, the results of these analyses did differ, with the

MM estimating that OPSC was very cost-effective at

around $495 per QALY, the DES-no-DQ predicting that

OPSC would dominate UC (i.e., cost less and provide more

benefit), and the DES-DQ model predicting a higher ICER

estimate at $2342 per QALY.

The two previously published studies comparing DES

and MM empirically did not model resource constraints

and, therefore, most closely resemble the DES-no-DQ and

MM comparison presented herein [2, 3]. In line with pre-

vious studies, the DES-no-DQ model generated only

slightly different outcomes compared to the MM. In con-

trast, in the DES-DQ model, which incorporated DQ of

capacity constraints, a number of important model outputs

differed from those generated by the MM.

The primary reason for the differences in the ICERs

predicted by the MM and the DES-no-DQ model was that

the MM had fixed cycle lengths of 3 months, which led to

some implicit and artificial delays of this duration being

incorporated into its structure that were not present in the

Table 2 Cost-effectiveness results by model type

Model description UC OPSC Incremental

Cost QALYs Cost QALYs Cost QALYs ICER (95 % CIa)

MM $1292 2.4 $1404 2.6 $112 0.23 $495 (-$1928 to $3552)

DES-no-DQ $1461 2.4 $1425 2.6 -$37 0.22 -$165 OPSC dominates (-$3638 to

$3042)

DES-CAL $1296 2.4 $1403 2.6 $107 0.22 $482 (-$2154 to $3594)

DES-DQ $1009 2.4 $1557 2.7 $548 0.23 $2342 ($13 to $6729)

NB. All costs presented in Australian dollars (AUD); 1.00 AUD = 0.7630 USD at the 2nd July 2015 (http://www.federalreserve.gov)

CI confidence interval, DES-CAL discrete event simulation: calibration version, DES-no-DQ discrete event simulation without dynamic queuing,

DES-DQ discrete event simulation with dynamic queuing, ICER incremental cost-effectiveness ratio—cost per additional quality-adjusted life

year gained, MM Markov cohort model, OPSC orthopedic physiotherapy screening clinic and multidisciplinary service, QALYs quality-adjusted

life-years, UC usual orthopedic care
a The meaning of a negative ICER in these analyses is informative as all negative ICER estimates generated in these analyses fall into the South-

Eastern quadrant of the cost-effectiveness plane where OPSC is predicted to be less costly and more effective than UC (i.e., OPSC dominates

UC)

Table 3 Univariate sensitivity analyses

Description of sensitivity analysis ICER (cost per QALY)

MM DES-CAL DES-no-DQ DES-DQ

Base case $495 $482 -$165 $2342

Decrease disutility of waiting from 0.001 to 0.0001 $498 $483 -$166 $2353

Increase disutility of waiting from 0.001 to 0.01 $473 $464 -$159 $2239

Decrease utility in responders from 0.685 to 0.585 $1266 $1262 -$434 $6424

Increase utility in responders from 0.685 to 0.785 $308 $298 -$102 $1432

Half cost of OPSC -$350 -$392 -$1044 $1527

(OPSC dominates) (OPSC dominates) (OPSC dominates)

Double cost of OPSC $2186 $2170 $1537 $3971

NB. All costs presented in Australian dollars (AUD); 1.00 AUD = 0.7630 USD at the 2nd July 2015 (http://www.federalreserve.gov)

DES-CAL discrete event simulation: calibration version, DES-no-DQ discrete event simulation without dynamic queuing, DES-DQ discrete event

simulation with dynamic queuing, ICER incremental cost-effectiveness ratio—cost per additional quality-adjusted life-year gained, MM Markov

cohort model, OPSC orthopedic physiotherapy screening clinic and multidisciplinary service
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DES-no-DQ model or in the system being modeled. When

these artificial delays were added back into the DES-no-

DQ model to produce the DES-CAL model, the outcomes

generated by the DES-CAL and MM were nearly identical.

Importantly, these implicit time delays present in the MM

did not reflect true delays present in clinical practice, rather

they are artefacts of the MM process. In contrast, DES

models have no fixed cycle length and therefore no such

implicit artificial delays were present. This demonstrates

one of the advantages of DES over the MM method.

However, as other authors have discussed, it would be

possible to mitigate this inaccuracy in the MM by

employing shorter cycle lengths [15, 16]. Nevertheless, it

may be argued that DES incorporates time more explicitly

and therefore it is potentially less likely that such implicit

time delays from the use of fixed cycle lengths will be

introduced during the construction of DES compared to a

MM analysis. This is also an advantage DES without DQ

has compared to techniques such as Markov modeling with

individual patient simulation which, like a Markov cohort

modeling has fixed cycle lengths. Further, DES without DQ

also differs from Markov modeling with individual patient

simulation methods as it manages the sequencing of events

by generating a future events list and selects the next

closest time-to-event to ascertain which event occurs next

in the process. This process is then repeated and any impact

the updated patient history may have on future events is

captured. In contrast, in Markov modeling with individual

patient simulation, a transition probability is calculated for

each mutually exclusive competing health state and the

individual patient moves into the appropriate health state.

The DES-DQ model has a number of advantages over

the other analyses, particularly for economic models of

health service provision. In both arms of the MM, DES-no-

DQ and DES-CAL models average waiting times are

assumed to be fixed over the course of the modeled period

(see Fig. 6). The assumption that queues have reached a

steady state simplifies such economic analyses and the

interpretation of their results. However, in some situations,

these assumptions do not adequately reflect the reality of

the system being modeled. For example, it is common that

demand exceeds supply in health services delivery and, in

reality, this leads to dynamically increasing queuing times

for patients over the period for which the analyst wishes to

measure CE. Further, analyses that assume that queuing

has reached a steady state often take these queuing times

from historical data and are, in effect, modeling the past. In

contrast, the DES-DQ model may use current demand and

resourcing levels to dynamically project future queuing

times and their impact on CE.

In Australia, the number of people on waiting lists for

public hospital orthopedic outpatient clinics, and the length

of time they wait, has steadily increased over recent years

[7]. This indicates that demand for specialist orthopedic

resources in these settings exceeds supply. Often, con-

straints on health care funding make it unfeasible for a
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hospital to employ enough specialist resources to review

and treat these non-urgent outpatients. Therefore, in the

base case of the economic model, it is assumed that

orthopedic specialist and surgical throughput is not par-

ticularly flexible and remains static over time. When

combined with excess demand for these resources, this

results in dynamically growing queues over the modeled

period. In situations where the nature of the resource in

question is highly flexible, then resources could fluctuate

rapidly to meet demand, and in some cases, this could be

approximated using static waiting times. However, the

advantage of using DES-DQ over a static waiting time

approach is that it allows the modeler to explore the CE of

the intervention of interest under different supply and

demand scenarios to assist the decision maker to make

informed decisions about the appropriate level of resour-

cing and the cost-effectiveness of altering such resourcing.

Waiting times for surgery are a function of the number

of people seen in screening clinics and the referral patterns

from these clinics. The models with fixed average waiting

times do not capture the impact the introduction of new

capacity such as the OPSC has on waiting times for sur-

gery. DES-DQ allows the model to dynamically predict the

change in surgical queuing times in line with the altered

demand for these procedures with the introduction of

OPSC. In the base case, this results in a decrease in the

mean waiting times for patients in the OPSC arm requiring

orthopedic surgery (see Fig. 6) and a resultant increase in

the percentage of patients that undergo surgical procedures

(Fig. 4). This in-turn results in higher costs being accrued
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in this arm of this model than seen in the other analyses

(Table 2).

Unlike the models with fixed queuing times, the DES-

DQ model does not assume that the queues in the model

have reached a steady-state. For instance, while the

waiting times for surgical procedures generated in the

OPSC arm of the model appear shorter than recorded in

clinical practice for UC, these waiting times are dynamic

and are increasing over the modeled time-horizon as the

demand for surgery out-strips supply. Therefore, a patient

that enters the model early is more likely to gain access to

an orthopedic assessment or a surgical procedure than one

that enters the model later (see Fig. 6). Consequently, as

the duration of the modeled analysis is extended, on

average, the proportion of all patients that gain access to

surgery in the OPSC arm decreases over the given time-

horizon. In the UC arm, this effect is more pronounced, as

patients have to traverse two queues, one for orthopedic

assessment, and the wait list for the surgical procedure

itself. In the base case, the dynamic increases in these

queuing times over the modeled time horizon lead to a

decrease in the average number of patients that have a

surgical procedure in the UC arm of the DES-DQ model

compared to the other non-dynamic analyses. This in-turn

leads to a decrease in the average cost accrued in the UC

arm of the model.

In the DES-DQ model, at relatively short total simula-

tion times, the waiting times generated by the model are

also short, allowing quicker access to surgery and thereby

increasing the proportion of the patient population

accessing these expensive procedures over the modeled

time-horizon. In analyses with short waiting times, more

patients receive surgery in the UC arm of the model than

the OPSC arm leading to lower incremental costs and

OPSC dominating UC (Fig. 7). As the total simulation time

is extended, and the queuing times further increase, the

proportion of total patients in the UC arm receiving surgery

falls more rapidly than in the OPSC arm, as these patients

have to traverse two dynamically growing queues. Even-

tually, the queuing times in the UC arm increase to such an

extent that the simulated patients cannot traverse both

orthopedic specialist assessment and surgical queues and

receive surgery within the 5.25-year time horizon of the

model, and, as such, these surgical results are not recorded

in the results of the analysis. This leads to a higher pro-

portion of patients undergoing surgery in the OPSC arm

than the UC arm driving the incremental cost and ICER

higher for OPSC compared to UC (Fig. 7). As the total

simulation time is further extended, the queues into surgery

in the OPSC arm grow to such an extent that the incre-

mental difference in the percentage of surgical procedures

per patient predicted in each model arms narrows, reducing

incremental costs and reducing the ICER for OPSC versus

UC (Fig. 7).

The DES-DQ model captures these dynamic increases in

queuing times and their effects on patient morbidity and the

CE of the interventions being investigated whereas the MM

and the DES models without DQ do not. In this way, the

DES-DQ model makes any assumptions about the nature of

queue development in the clinical setting explicit. In

practice, this makes the interpretation of the modeled

results more complex. However, these results are poten-

tially more accurate and may provide the decision-maker

with deeper and more nuanced insights into the research

question being analyzed.

This study is not without its limitations. Due to data

availability, the data used to populate the dynamic queues

in the DES-DQ models were derived from a more recent
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data-set taken from one of the clinical audit study sites,

whereas the non-DQ models used older queuing data from

multiple hospital sites. This could lead to different modeled

results beyond those expected due to modeling methods

alone. However, this difference further demonstrates the

aforementioned advantage of the DES-DQ analysis over

the MM as it is truly modeling the future CE of the

intervention by explicitly taking into account current

demand, staffing levels and throughput, whereas the MM is

relying on a static depiction of historical queuing times.

Furthermore, while not the primary focus of this research,

it should be acknowledged that the comparison of UC and

OPSC presented herein is based on non-randomized evi-

dence and, therefore, the possibility that these data may be

affected by confounding cannot be entirely ruled out.

Nevertheless, any confounding will affect all four models

in a similar manner.

In summary, the MM and DES without DQ can produce

nearly identical results when the cycle length used in the

MM is accounted for. As such, these models are likely to

elicit the same resource allocation decisions. Similarly, in

this setting, the use of the DES-DQ model would be unli-

kely to change the resource allocation decisions sur-

rounding the use of OPSC, as it appears to be highly cost-

effective compared to UC. However, in this analysis, the

queues of interest were formed outside of the hospital in a

low-cost environment where patient disutility due to

waiting was assumed to be low. In another setting where

queues are formed and where costs or disutility are high,

the use of a modeling method with dynamic queuing may

alter resource allocation decisions. Furthermore, in situa-

tions where the cost-effectiveness estimates of the pro-

posed intervention are closer to decision-makers’ WTP

threshold per QALY the use of DES-DQ over a MM (or a

DES model without DQ) may lead to a change in reim-

bursement priorities and resultant clinical practice. By

making any assumptions around the development of queues

explicit, the DES-DQ model may more fully inform the

decision-makers’ understanding of the interventions CE

and thereby better support their resource allocation deci-

sions than the comfortable fiction of invariant queuing

times. However, if the mean queuing time in the research

question of interest is known, and has reached a steady

state, both MM and DES-DQ models are likely to generate

similar results. Where mean queuing times are changing

dynamically over the model period, a DES-DQ model

would be preferred. DES with DQ is likely to become

increasingly valuable when modeling research questions

where multiple queues interact and generate emergent

results that are otherwise intractable to simple calculations

with a MM. However, these insights come at a cost, with

the time required to develop, verify, validate, and run the

DES analyses substantially exceeding those of the MM.
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