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Abstract

Context Statistical models employed in analysing patient-

level cost and effectiveness data need to be flexible enough

to adjust for any imbalanced covariates, account for cor-

relations between key parameters, and accommodate

potential skewed distributions of costs and/or effects. We

compare prominent statistical models for cost-effectiveness

analysis alongside randomised controlled trials (RCTs) and

covariate adjustment to assess their performance and

accuracy using data from a large RCT.

Method Seemingly unrelated regressions, linear regres-

sion of net monetary benefits, and Bayesian generalized

linear models with various distributional assumptions were

used to analyse data from the TASMINH2 trial. Each model

adjusted for covariates prognostic of costs and outcomes.

Results Cost-effectiveness results were notably sensitive

to model choice. Models assuming normally distributed

costs and effects provided a poor fit to the data, and

potentially misleading inference. Allowing for a beta dis-

tribution captured the true incremental difference in effects

and changed the decision as to which treatment is

preferable.

Conclusions Our findings suggest that Bayesian gener-

alized linear models which allow for non-normality in

estimation offer an attractive tool for researchers under-

taking cost-effectiveness analyses. The flexibility pro-

vided by such methods allows the researcher to analyse

patient-level data which are not necessarily normally

distributed, while at the same time it enables assessing the

effect of various baseline covariates on cost-effectiveness

results.

Keywords Cost-effectiveness analysis � Regression
methods � Covariate adjustment � Bayesian regression

methods � Seemingly unrelated regressions � Net monetary

benefits

JEL Classification I190 Health: Other

Introduction

Clinical research has been seen as a key activity and a vital

means of improving the health of the population. Experi-

mental studies of a particular design—randomised con-

trolled trials (RCTs)—have been described as ‘‘the crown

jewel’’ of clinical research [1] and are considered as a

prime source of input in assessing the effectiveness and

cost-effectiveness of competing health care technologies

[2]. Much of the rigor in the results of RCTs stems from the

design characteristics of such studies. A key design char-

acteristic, randomisation of participants across treatment

arms, aims to distribute patients across treatment groups so

that relevant patient characteristics are balanced across

treatments, with a view to avoiding bias and ensuring that

any observed outcomes are due to the assigned treatment

[3, 4, 5].
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However, flaws in randomisation techniques, small

numbers of participants, or simply chance, can lead to

imbalances in baseline covariates [2, 6, 7, 8], which will

inevitably result in biased effectiveness and cost-effec-

tiveness estimates [9–11]. To safeguard against such bias,

researchers often carry out covariate adjustments, which

typically account for the confounding effect of baseline

imbalance through regression techniques [12].

While such adjustments are commonplace in studies

looking into the effectiveness of technologies, they are

relatively less customary in cost-effectiveness analyses

(CEAs), despite the fact that covariate adjustment can

reduce variation and give more accurate cost-effectiveness

estimates, even when covariates are balanced [11, 13]. In

addition to covariate adjustment, CEAs need to account for

possible correlation between costs and effects [14] as well

as the skewed distribution of costs [15].

In recognition of this, Hoch et al. [9] suggested the net

benefit regression model, which is a linear regression

model with net monetary benefits (NMBs) as a dependent

variable allowing for the inclusion of covariates. NMBs are

defined as a measure that combines costs and health out-

comes by transforming health outcomes into monetary

units, using as an exchange rate a hypothesised value of the

decision makers’ willingness to pay (WTP) for a unit of

outcome [16]. Willan et al. [17] extended this work and

considered costs and effects jointly, assuming a bivariate

normal distribution, by proposing the use of a system of

seemingly unrelated regressions (SUR). In essence, SUR

represents a set of regression equations in which the error

terms are assumed to be correlated across a set of regres-

sion equations [18].

A different route was taken by Nixon and Thompson

[13] and Vazquez-Polo et al. [19] who, unlike Hoch et al.

[9] and Willan et al. [17], adopted a Bayesian approach to

provide covariate-adjusted cost-effectiveness estimates.

Nixon and Thompson [13] and Vazquez-Polo et al. [19]

extended Bayesian methods previously considered in the

CEA literature [14, 20–22] to incorporate covariates. A

regression model directly on effects and costs was pro-

posed, in which patient characteristics were included as

covariates, and effects were assumed to be correlated with

costs. The relative advantage of adopting Bayesian meth-

ods is that distributions beyond the normal can be assigned

to costs and effects resulting in more flexible approaches to

estimation.

While a number of approaches have been proposed in

the literature, no definite answers exist as to the most

appropriate method for modelling cost-effectiveness data.

Methods assuming normally distributed costs or effects are

widely used in CEA and are advocated by Thompson and

Barber and Nixon et al. [23, 24]. Inference is based on the

sample means, which can be obtained from linear

regression models modelling cost-effectiveness in the scale

of interest. According to others, the extreme skewness

typically observed in costs and/or effects needs to be

acknowledged by either employing data transformations or

using generalized linear models (GLMs) that can accom-

modate distributions more appropriate for skewed data

[25–27]. Methods assuming normally distributed variables

typically require relatively large sample sizes, non-extreme

skewness and the absence of extreme outliers; unless these

conditions are met, methods based on normal distribution

are considered inappropriate for modelling cost-effective-

ness data [28].

In either case, researchers setting out to analyse cost-

effectiveness data will need to select the most appropriate

method, as each dataset is unique and different statistical

models may perform differently according to the charac-

teristics of the data.

Costs typically exhibit positive skewness, or, in some

cases, they may even be multimodal. Distributions typi-

cally used to accommodate positively skewed data are the

gamma and the log-normal. Effects expressed in terms of

quality-adjusted life-years (QALYs) are subject to similar

idiosyncrasies. Data are usually truncated at both ends of

the distribution (ranging between 0 and 1 when the time

horizon is 1 year or less). Also, QALYs exhibit negative

skewness with most values lying in the upper end of the

measurement scale and some extreme outliers at the lower

end of the scale. The beta distribution is a candidate for

modelling data in the range (0, 1), while supporting both

positive and negative skewed distributions. The gamma

distribution can also be used to model effects, though

effects are usually negatively skewed while the gamma

distribution is appropriate for modelling positive skewed

data. To overcome this problem an alternative is to model

1-effects (conditional on effects ranging between 0 and 1)

with the gamma distribution.

Important aspects in statistical analysis of cost-effec-

tiveness data include selection of relevant covariates for

subgroup analyses [29] as well as analyses of cost-effec-

tiveness data which can incorporate covariate adjustment.

The first refers to identifying the optimal decision for dif-

ferent subgroups of patients, as cost-effectiveness estimates

may vary in these populations due to the presence of

treatment-modifying covariates. The second type of anal-

ysis refers to performing an adjustment for any imbalanced

covariates so that their confounding effect can be accoun-

ted for. In this case, the aim is to provide unbiased esti-

mates in order to determine the optimal decision for the

whole population. The latter is the focus of this study.

Given the above, this paper aims to compare the

observed model fit and cost-effectiveness estimates of three

prominent methods for CEA and covariate adjustment: (1)

ordinary least squares (OLS) regression of NMBs; (2) SUR
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and (3) GLMs with interaction between costs and effects

for various distributions for costs (normal, gamma, log-

normal) and effects (normal, gamma, beta). The choice of

NMB and SUR models is based on their popularity and

their easy application in standard statistical software.

Bayesian GLMs are chosen for their flexibility to accom-

modate different distributions. Irrespective of the distri-

bution of costs and effects and the correlation between

them, all the methods considered would be unbiased if we

were to replicate a given study a number of times in a

simulation. That is, what would differ between each

method is the precision of costs and effects and not their

point estimates. In a particular study, we expect on average

to obtain relatively similar cost-effectiveness estimates

with different levels of precision, according to the fit of

each model to the specific data. NMB regression and SUR

models are expected to provide precise estimates when the

cost-effectiveness data are approximately normally dis-

tributed and there are no extreme outliers. In such cases we

could directly consider the NMB regression or the SUR,

since these models are considerably easier to apply than the

Bayesian GLMs. By considering and assessing different

families of models and different underlying distributions,

the model that best reflects the available data can be cho-

sen. To illustrate the above methods, we used data from a

large RCT, the TASMINH2 study, aiming to look into the

effect of self-management compared with usual care of

hypertension in the West Midlands, UK. To make the

methods accessible to applied researchers, supplementary

online material with the code for fitting the Bayesian

models is provided.

The remainder of the paper is structured as follows. The

next Section outlines the purposes and characteristics of the

randomised clinical trial which provided data for this work,

and describes the statistical models employed in this

analysis. The Results section reports the results obtained

from each of the statistical models under assessment,

while the Discussion section discusses and interprets the

results, gives the key strengths and limitations in the

analysis and draws conclusions specific to the trial data.

Materials and methods

Case study: the TASMINH2 trial

The tele-monitoring and self-management in the control of

hypertension (TASMINH2) randomised control trial was

carried out to examine whether tele-monitoring and self-

management of people with hypertension would lead to

lower levels of blood pressure as compared to usual care

[30]. The study took place in 24 general practices (GPs) in

the West Midlands, United Kingdom and involved patients

aged between 35 and 85 years old with blood pressure

more than 140/90 mmHg despite receiving antihyperten-

sive treatment. Patient randomisation to tele-monitoring

and self-management or usual care was stratified by GP,

with minimisation factors including sex, baseline systolic

blood pressure, and presence or absence of diabetes or

chronic kidney disease. The trial’s main clinical endpoint

was change in mean systolic blood pressure between

baseline and the two follow-up periods (6 and 12 months).

Further information about the trial can be found elsewhere

[30].

Patient level data on resource use and quality of life

collected as part of TASMINH2 were analysed to obtain

estimates of the cost-effectiveness of each treatment. Five

hundred and twenty-seven (n = 527) patients were ran-

domised to either self-management (n = 263) or usual care

(n = 264). Of those patients, 47 were excluded from

complete case analyses as they did not attend follow-up

visits at 6 and 12 months. In the present analysis, a further

17 observations were disregarded due to missing data for

important covariates used in the analysis, giving a total

number of 463 patients (88 % of original sample size; 227

in self-management arm, 236 in usual care arm). The per

patient NHS cost over a 12-month period was estimated as

the sum of the cost for medications, training and equip-

ment, inpatient and outpatient care and GP visits. Along-

side patient’s mean systolic blood pressure (i.e. the

principal clinical outcome in the RCT), the study collected

patients’ responses to EQ-5D-3L [31, 32] a generic mea-

sure of preference-based health-related quality of life. EQ-

5D scores were used to calculate QALYs from baseline to

12 months, using the ‘area under the curve’ (AUC)

approach [33]. EQ-5D scores were calculated using the UK

tariff [34].

Statistical models

Three different methods for covariate adjustment are con-

sidered for the CEA of the TASMINH2 RCT: OLS

regression of NMBs, SUR, and generalized linear regres-

sion models with interaction between costs and effects,

estimated under a Bayesian approach. The following

notation is used: let ci and ei be the costs and effects for the

ith individual.

OLS regression of NMBs

Net benefits can be calculated in order to convert costs and

effects to a single variable and then be used in typical

regression analyses. Hoch et al. [9] proposed a linear

regression model, where NMB is the response variable

with explanatory variables comprising an indicator for the

treatment arm plus the covariates of interest. That is:

Choice of statistical model for cost-effectiveness analysis and covariate adjustment… 929
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NMBi ¼ aþ dti þ
Xp

j¼1

bjxij þ ei ð1Þ

where a is an intercept term, ti a treatment dummy taking

the value zero for the standard treatment and the value one

for the new treatment, xij are the p covariates of interest,

and e is a stochastic error term. The regression coefficient d
represents the incremental net benefit (INB) attributable to

the new treatment controlling for covariates, for that WTP

level. The INB is the difference in the mean NMB of the

new treatment and the mean NMB of the standard

treatment.

Seemingly unrelated regressions

SUR is a system of different regression equations with

error terms that are assumed to be correlated across the

equations [35]. Different sets of covariates can be included

in each equation, allowing for a more flexible modelling

approach to estimation.

ci ¼ ac þ dcti þ bc1xi1 þ � � � þ bcpxip þ eci

ei ¼ ae þ deti þ be1xi1 þ � � � þ bepxip

þ eei ;
eci
eei

� �
�BVN

0

0

� �
;

r2c qrcre
r2e

� �� �
ð2Þ

where, a is the intercept term in each model, t a treatment

dummy taking the value zero for the standard treatment and

the value one for the new treatment, x are the p covariates

of interest, and e are the stochastic error terms in each

model. The regression coefficient dc represents the incre-

mental cost (IC) attributable to the new treatment con-

trolling for covariates, and the regression coefficient de

represents the incremental effect (IE) attributable to new

treatment, again, controlling for covariates [17]. The error

terms (e) are assumed to follow a bivariate normal distri-

bution, with mean zero and variances r2c and r2e , while q
represents the correlation between costs and effects, con-

ditional on covariates.

Generalized linear regression models with interaction

between costs and effects

Cost and effect data are frequently non-normally dis-

tributed, which can be estimated using GLMs [36].

A Bayesian approach provides a flexible way to estimate

non-normal models. Five models with different underlying

distributions for costs and effects are examined to show the

iterative process of changing one distribution at a time. In

this way, the impact from changing the distribution at

either costs or effects is evidenced in the results. The fitted

distributions for costs and effects are described next toge-

ther with the respective models.

(1) Model with gamma distribution on costs and normal

on effects.

Nixon and Thompson [13] and Vasquez-Polo et al. [19]

described a model for covariate adjustment for CEA of

patient level data using normal distribution for effects and

gamma distribution for costs with likelihoods

ei �Normal ue;i; r
2
e

� �
; ci �Gamma ac; kc;i

� �
; kc;i

¼ ac=uc;i

where the treatment and covariate effects are linear on the

mean effects and mean costs

ue;i ¼ ae þ deti þ be1xi1 þ � � � þ bepxip

uc;i ¼ ac þ dcti þ bc1xi1 þ � � � þ bcpxip þ bcpþ1ðei � ue;iÞ
ð3Þ

where be = (be1,…, bep), b
c = (bc1,…, bcpþ1) are vectors of

unknown coefficients and precision term se ¼ 1=r2e for

effects. Correlation between costs and effects is allowed

by including the term bcpþ1ei in the above equation. The

subtraction of ue;i from ei in the above equation is done

so that the interpretation of ac remains the same as the

overall mean cost of the control arm of the trial. For the

same reason, when covariates x1; . . .; xp are continuous,

they are centred on their mean by subtracting each

covariate value from their overall mean ðxip � �xpÞ. In the

presence of categorical covariates, dummy variables equal

to the number of the categories of each covariate are

included in the above model (e.g. 2 dummy variables for

a dichotomous covariate). In this case, constraints on the

coefficients of each covariate are needed so that their sum

over all the trial population is zero and the interpretation

of ac and ae remains the same [13]. The expected IE

attributable to the new treatment, controlling for covari-

ates, is given by coefficient de and the expected IC

attributable to the new treatment, controlling for covari-

ates, is given by

IC ¼ dc þ bcpþ1d
e

Under a Bayesian estimation framework, the simulta-

neous prior distribution on coefficients a, b, d, precision
term se and shape parameter ac must be specified. We use

the following prior structure so that the influence of prior

distributions on the model estimates is minimal

a�Normal ð0; 100Þ; b�Normal ð0; 100Þ; d�Normal ð0; 100Þ

se �Uniform ð0; 10Þ; ac � lnNormal ð0; 100Þ

(2) Model with normal distribution on costs and beta on

effects.
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For the model under a beta distribution for effects, a

GLM with a logit link function is chosen due to the unit-

support of the outcome variable (QALYs). The following

likelihoods and equations are applied

ei �Beta ae; ke;i
� �

; ke;i ¼ aeð1� ue;iÞ=ue;i

ci �ðuc;i; r
2
cÞ

where the treatment and covariate effects are linear on the

log-odds (logit) of the mean effects and mean costs

logit ðue;iÞ ¼ ae þ deti þ be1xi1 þ � � � þ bepxip

uc;i ¼ ac þ dcti þ bc1xi1 þ � � � þ bcpxip þ bcpþ1ðei � ue;iÞ
ð4Þ

In model (4) the expected IE is estimated by

IE ¼ eða
eþdeÞ

1þ eðaeþdeÞ �
ea

e

1þ ea
e

and the expected IC is estimated by

IC ¼ dc þ bcpþ1

e aeþdeð Þ

1þ e aeþdeð Þ

� �
� bcpþ1

ea
e

1þ ea
e

� �

With regard to prior distributions, again, log-normal dis-

tributions are assigned to shape parameters and normal

distributions to regression coefficients and the precision

term.

(3) Model with gamma distribution on costs and beta on

effects.

The following likelihoods and equations are applied

assuming a gamma distribution on costs and a beta on effects

ei �Beta ae; ke;i
� �

; ke;i ¼ aeð1� ue;iÞ=ue;i

ci � Gamma ac; kc;i
� �

; kc;i ¼ ac=uc;i

where the treatment and covariate effects are linear on the

log-odds of the mean effects and mean costs:

logit ðue;iÞ ¼ ae þ deti þ be1xi1 þ � � � þ bepxip

uc;i ¼ ac þ dcti þ bc1xi1 þ � � � þ bcpxip þ bcpþ1ðei � ue;iÞ
ð5Þ

In model (5), the expected IE and IC are estimated as in

model (4).

(4) Model with gamma distribution on costs and on

1-effects.

To fit a gamma distribution on costs and 1-effects the

following likelihood and model is used

1� eið Þ�Gamma ae; ke;i
� �

; ke;i ¼ ae=ue;i

ci �Gamma ac; kc;i
� �

; kc;i ¼ ac=uc;i

where the treatment and covariate effects are linear on the

mean (1-effects) and mean costs:

ue;i ¼ ae þ deti þ be1xi1 þ � � � þ bepxip

uc;i ¼ ac þ dcti þ bc1xi1 þ � � � þ bcpxip þ bcpþ1ðei � ue;iÞ
ð6Þ

The expected IE is given by �de (negative because the

model is on 1-effects) and the expected IC estimate is given

as in model (3).

(5) Model with log-normal distribution on costs and beta

on effects.

The final model we consider is a log-normal model for

costs and a beta model for effects:

ei �Beta ae; ke;i
� �

; ke;i ¼ aeð1� ue;iÞ=ue;i

log cið Þ�Normal ðuc;i; r
2
cÞ

where the treatment and covariate effects are linear on the

log-odds of the mean effect and log-mean costs:

logit ðue;iÞ ¼ ae þ deti þ be1xi1 þ � � � þ bepxip

uc;i ¼ ac þ dcti þ bc1xi1 þ � � � þ bcpxip þ bcpþ1ðei � ue;iÞ
ð7Þ

The expected IE is given as in model (4) and the

expected IC is given as

IC ¼ e
acþdcþbcpþ1

e aeþdeð Þ
1þe aeþdeð Þ

� �

� e
acþbcpþ1

ea
e

1þea
e

� �

Model comparison

Each of the statistical methods described above were

applied to adjust for covariates which are prognostic of

costs and effects. The comparison of statistical models was

aided by obtaining values of the Akaike information cri-

terion (AIC) and Bayesian information criterion (BIC)

[37]. Lower AIC and BIC values indicate improved model

fit and are preferred to higher values. The standard error

(SE) of the expected INB at a willingness-to-pay level of

£20,000 per additional QALY is also reported.

OLS regression and SUR models were estimated in

STATA software, version 12.1 [38], while the Bayesian

models were implemented using Markov chain Monte

Carlo (MCMC) methods in WinBUGS software [39]. For

the Bayesian models, two parallel chains were used with

different starting values. Posterior distributions for the

parameters of interest were derived from 60,000 iterations

of the Markov chain, after an initial burn-in of 20,000

iterations. History and autocorrelation plots were examined

to ensure convergence was achieved.
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Results

Descriptive analyses

The distributions of costs for the control and intervention

groups are presented in Fig. 1a, b, respectively, together

with fitted densities from the normal distribution. It is

obvious from Fig. 1 that costs are positively skewed (me-

dian costs in intervention arm £367, interquartile range

£228 to £558; median costs in control arm £229,

interquartile range £109 to £467) and that the normal dis-

tribution fits the data poorly. Effectiveness data are illus-

trated in Fig. 2. QALYs exhibit negative skewness (median

QALYs in intervention arm 0.848, interquartile range

0.739–0.962; median QALYs in control arm 0.9194,

interquartile range 0.796–1.000). Again, the normal dis-

tribution provided a poor fit of the data. A low level of

correlation between costs and effects was found in the

descriptive analysis (-0.10). Furthermore, as an aid to

modelling NMBs and 1-QALYs, their distributions toge-

ther with fitted densities from the normal distribution are

given in Figs. 3 and 4, respectively.

Table 1 reports the balance of baseline characteristics

between the two treatment groups, measured as per cent

standardised mean differences (SMDs),1 which is invariant

to sample size [41]. There is not a pre-specified level of

imbalance that should be a concern, but a SMD of more

than 10 % is considered to be important [41, 42]. Apart

from the SMD, the correlation between each covariate with

costs and QALYs for the two treatment groups is reported.

As can be seen, baseline EQ-5D scores were imbalanced

(SMD = 30.51 %), while BMI and coronary kidney dis-

ease were slightly imbalanced (SMD = 10.83 % and

SMD = 13.86 %, respectively). With regard to correla-

tions with endpoints, baseline EQ-5D scores were strongly

correlated with QALYs in both treatment groups (rcon-

trol = 0.77, rintervention = 0.88), while for the other covari-

ates a low level of correlation or no correlation was found

with either costs or QALYs.

These findings guide the selection of the covariates to

adjust for the imbalanced and correlated with endpoints
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Fig. 1 a Costs distribution for control group. b Costs distribution for

intervention group
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Fig. 2 a QALYs distribution for control group. b QALYs distribu-

tion for intervention group

1 The formula for calculating the SMD for a continuous covariate

(x) is: SMDx ¼ lx1�lx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarx1þvarx2Þ=2

p , where lx1;lx2 and varx1; varx2 are the

means and variances for each group [40].
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covariates. Therefore, baseline EQ-5D is included in the

analysis while BMI and coronary kidney disease are not,

as despite the slight imbalance between the treatment

arms they are not prognostic of costs or outcomes.

Results of statistical models

Assessment of the overall cost-effectiveness of the TAS-

MINH2 trial using the different regression methods is

provided in Table 2. Generally, each model reports dif-

ferent cost-effectiveness estimates leading to different

reimbursement decisions in some cases. Model fit, reported

in the AIC and BIC measures, also varies across the

methods and so does the precision of the estimates. Models

allowing for the skewness in the observations report

improved fit and in some cases report more precise

estimates.

The NMB regression model achieves the worst model fit

(AIC and BIC values of 8488 and 8501, respectively) with

the expected INB estimated at 14.1. The largest level of

uncertainty is also reported in the NMB model, with the

standard error (SE) of the expected INB being equal to

217.1. The SUR model reports a better performance in

terms of both model fit and precision (AIC and BIC values

of 6718 and 6739, respectively; SE of expected INB equal

to 215.8). The expected INB estimate is equal to -5.2,

indicating that the standard treatment is cost-effective

under the SUR model.

Allowing for a gamma distribution on costs and a nor-

mal distribution on effects in the Bayesian GLM resulted in

further improvement in both the model fit and the precision

of the expected INB. The respective AIC and BIC values

are 6094 and 6127 while the SE of the expected INB is

equal to 203.7, indicating that the gamma distribution is

Table 1 Baseline characteristics of TASMINH2 trial: balance of baseline characteristics, correlation with endpoints

Baseline characteristics Intervention group

(n = 227)

Control group

(n = 236)

Standardised

difference (%)

Correlation with

endpoints

Baseline EQ-5D,

mean (SD)

0.81 (0.21) 0.88 (0.19) 30.51 r cost 1 = -0.08 r cost 0 = –0.04

rQALYs 1 = 0.87 rQALYs 0 = 0.77

Male, n ( %) 105 (46.30 %) 108 (45.80 %) 1.11 rcost 1 = –0.15 rcost 0 = –0.11

rQALYs 1 = –0.07 rQALYs 0 = –0.08

Age (years), mean (SD) 66.10 (8.73) 65.70 (8.86) 4.34 rcost 1 = –0.01 rcost 0 = 0.07

rQALYs 1 = –0.14 rQALYS 0 = –0.01

Baseline SBP*, mean (SD) 151.96 (11.92) 151.66 (11.88) 2.49 rcost 1 = 0.05 rcost 0 = 0.03

rQALYs 1 = 0.04 rQALYs 0 = –0.01

Ethnicity: white, n (%) 218 (96.00 %) 228 (96.60 %) 3.14 rcost 1 = –0.04 rcost 0 = 0.34

rQALYs 1 = –0.04 rQALYs 0 = –0.09

Height, mean (SD) 1.66 (0.10) 1.66 (0.09) 0.11 rcost 1 = 0.09 rcost 0 = –0.02

rQALYs 1 = –0.01 rQALYs 0 = 0.05

Body mass index,

mean (SD)

29.46 (5.68) 30.06 (5.47) 10.83 rcost 1 = 0.02 rcost 0 = –0.05

rQALYs 1 = –0.18 rQALYs 0 = –0.10

Marital status: married (n %) 171 (77.00 %) 172 (73.00 %) 3.71 rcost 1 = 0.06 rcost 0 = –0.05

rQALYs 1 = –0.08 rQALYs 0 = –0.12

Occupation:

managerial, n (%)

96 (42.30 %) 106 (44.90 %) 5.81 rcost 1 = –0.06 rcost 0 = 0.06

rQALYs 1 = 0.06 rQALYs 0 = 0.02

IMD** 2007 score,

mean (SD)

16.85 (13.38) 17.31 (13.88) 3.39 rcost 1 = –0.02 rcost 0 = 0.01

rQALYs 1 = –0.14 rQALYs 0 = –0.11

Current smoker, n (%) 16 (7.10 %) 14 (6.00 %) 4.53 rcost 1 = –0.06 rcost 0 = 0.04

rQALYs 1 = 0.03 rQALYs 0 = –0.10

Alcohol intake in last year, n (%) 184 (81.10 %) 188 (79.70 %) 3.51 rcost 1 = 0.02 rcost 0 = 0.03

rQALYs 1 = 0.29 rQALYs 0 = 0.10

Past medical history:

Coronary kidney disease, n (%) 16 (7.10 %) 26 (11.00 %) 13.86 rcost 1 = 0.00 rcost 0 = 0.22

(CKD) rQALYs 1 = 0.04 rQALYs 0 = –0.01

Diabetes, n (%) 18 (7.90 %) 16 (6.80 %) 4.39 rcost 1 = 0.01 rcost 0 = 0.03

rQALYs 1 = –0.01 rQALYs 0 = –0.06

* Systolic blood pressure; ** Index of multiple deprivation
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more appropriate for modelling the cost data. The expected

INB is equal to 51.1 under this model. The change in the

expected INB compared to the SUR model is driven from

the change in the expected incremental cost.

Allowing for the skewness in the effect data by using a

beta distribution also results in improved model fit. That is,

the GLM having a normal distribution on costs and a beta

distribution on effects provides better fit of the data;

however, the expected INB is less precise compared to the

gamma-normal distributed GLM. The AIC and BIC values

are 5987 and 6020, respectively and the SE of the expected

INB is equal to 212.4. A possible explanation for the

increased uncertainty in the expected INB relates to the

flexibility of the beta distribution in fitting different types

of data. This flexibility in handling QALYs results in

improved fit at the expense of reduced precision. Modelling

effects with a beta distribution results in a negative incre-

mental effect, indicating that the new treatment is less

effective than the current one. The expected INB in this

model is -282.2.

The same pattern is noticed in the SE of the expected

INB in the model having a gamma distribution on costs and

a beta on effects. Even though an improved fit of the data is

observed compared to all previous models (AIC and BIC

values of 5222 and 5255, respectively), the SE of the

expected INB is equal to 210.8. That is, less accurate

results are obtained from the models using the beta distri-

bution to model the effect outcome compared to the

remaining models for the effect data. The expected INB is

estimated at -330.8 due to the negative incremental effect.

Applying the beta distribution on effects changes the

decision rule and in this case the current treatment domi-

nates the new treatment as it is less costly and more

effective.

Allowing for a gamma distribution on both costs and

effects results in worse model fit compared to the gamma-

beta distributed model (AIC and BIC values of 5461 and

5494, respectively). This indicates that the beta distribution

is more appropriate for modelling the effect data. However,

the precision of the expected INB is considerably improved

(SE equal to 199.0) resulting in the most precise estimates

of all the models under consideration. Using a gamma

distribution on effects results in an incremental effect of

0.0082 which is similar to the incremental effect estimate
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obtained using a normal distribution. The expected INB

under this model is 94.8.

Finally, allowing for a log-normal distribution on costs

and a beta on effects results in the best model fit with AIC

and BIC values of 4801 and 4834, respectively. However,

the precision of the INB estimate (SE of 214.1) is less than

all the remaining Bayesian GLMs. Despite this, the

expected INB is more precise than that of the NMB and

SUR models. The expected INB under this model is esti-

mated at -378.0, similar to the other two models with beta

distributed effects.

Discussion

This study explores the appropriateness of three prominent

methods for covariate adjustment in cost-effectiveness

analyses: OLS regression of NMBs, SUR, and generalized

linear regression with interaction between costs and effects.

Each of the methods was applied to patient-level cost and

health outcome data from the TASMINH2 trial. Distribu-

tions other than the normal (gamma and log-normal on

costs, gamma and beta on QALYs) were fitted for the

purposes of these analyses. Prognostic factors of costs and

QALYs were considered as covariates with only baseline

EQ-5D found to be a significant predictor of QALYs.

Findings suggest that cost-effectiveness inferences are

sensitive to the statistical model employed, and therefore

an assessment of model fit is essential. Despite the different

INB estimates obtained from each model, such differences

are not statistically significant and they are driven from

small differences in the estimates of incremental QALYs.

On the basis of the available data from TASMINH2, we

found that OLS regression of NMBs gave a poor fit to the

data. Without taking into consideration the skewed

distributions of costs and effects, the SUR model provided

relatively good fit of the trial data. Moreover, considering

that its application requires less time and effort than

Bayesian GLM models, SUR can be a preferred modelling

approach in circumstances where costs and effects are

approximately normally distributed.

Distributions of cost data usually exhibit a high degree

of skewness and other idiosyncrasies, such as non-negative

values and heteroskedasticity [43]. In such occurrences,

based on the findings from our study, non-normal distri-

butions could be applied to costs as model fit and accuracy

is improved. While this finding is in agreement with con-

clusions in previous studies [13, 26, 44, 45], it is not in line

with previous findings stipulating that methods that assume

normality are reasonably robust to skewed cost data [17,

46]. In this particular dataset, extreme outliers in costs

resulted in poor fit to the normal distribution. In contrast,

the Bayesian GLMs were more robust to these outliers,

reporting more precise estimates, in accordance with

findings from Cantoni and Ronchetti [47].

Distributions of QALYs can also present the same

idiosyncrasies observed in cost data [48]. Therefore,

methods that extend beyond the normal distribution could

be applied. In this specific example, fitting a gamma dis-

tribution to effects improved the goodness of fit of the

model compared to a normal distribution, yet it was not

enough to capture the negative difference in mean QALYs

between the two groups. The beta distribution provided

further improvement in model fit and captured the true

incremental difference in QALYs. This finding is in line

with previous research suggesting that beta regression

models are superior to different regression techniques [48–

50]. Overall, the best fit of the TASMINH2 trial dataset

was provided by a GLM specified under a Bayesian

approach, allowing for a log-normal distribution on costs, a

Table 2 Estimates and model fit of statistical models applied to TASMINH2 data

n = 463 NLB
regression

SUR Bayesian regression models with different underlying distributions (costs-QALYs)

Gamma-

normal

Normal-beta Gamma-beta Gamma-

gamma

Log-normal-

beta

Mean [SE] Mean [SE] Mean [SE] Mean [SE] Mean [SE] Mean [SE] Mean [SE]

Incremental cost Not applicable 107.57 [72.36] 68.25 [7.91] 13.39 [9.89] 68.30 [7.82] 68.43 [7.89] 110.90 [29.07]

Incremental

QALY

Not applicable 0.0051

[0.0099]

0.0060

[0.0102]

–0.0134

[0.0106]

–0.0131

[0.0105]

0.0082

[0.0099]

–0.0133

[0.0106]

INB at

k = £20,000

14.1 [217.1] -5.2 [215.8] 51.1 [203.7] –282.2 [212.4] –330.8 [210.8] 94.8 [199.0] –378.0 [214.1]

AIC 8488 6718 6094 5987 5222 5461 4801

BIC 8501 6739 6127 6020 5255 5494 4834

MLB net monetary benefit, SUR seemingly unrelated regression, QALYs quality-adjusted life years, SE standard error, INB incremental net

benefit, AIC Akaike information criterion, BIC Bayesian information criterion
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beta distribution on QALYs and controlling for baseline

EQ-5D scores.

An unexpected finding was the performance of the

Bayesian GLMs in terms of both the fit of the data and the

precision of the estimates. Modelling effect data with a

beta distribution resulted in a considerably improved model

fit, but the precision of the expected incremental effect and

consequently the expected INB was reduced. A potential

explanation for the loss of precision is employing a logit

link function to model effects which required back-trans-

forming data to the original scale. The issue of loss of

precision from transformation of data has already been

considered in terms of the analysis of cost data [28].

However, in a Bayesian MCMC framework, the transfor-

mation is calculated at each iteration of the simulation and

this is not expected to lead to less precise estimates, only to

slower convergence of the Markov chain. Having carefully

examined convergence in the models under consideration,

we believe that it is the flexibility of the beta distribution in

modelling QALYs that provides improved fit of the data,

while giving less precise estimates. In any case, better

model fit of the data does not always imply more precise

estimates. For instance, in some circumstances more flex-

ible statistical models may provide better fit and this flex-

ibility in fitting the observed data results in less precise

estimates. Random-effect models, typically used in meta-

analyses of trial data, are an example of models that can

provide a better fit while giving less precise estimates

compared to fixed-effects models [51].

Although Bayesian GLMs are extremely flexible in

handling different types of datasets, their application

requires considering some aspects. First, it should be

highlighted that such bivariate models are only an

approximation of the true joint distribution of costs and

effects by recognising the correlation between them. There

is no reassurance that the combination of a marginal (ef-

fects) with a conditional (costs) model will converge to

their true joint distribution, as the properties of the

bivariate distributions considered here are not well known.

Prior distributions require attention as their impact on the

posterior estimates should be minimum, although in large

datasets their impact diminishes. Prior distributions should

also be chosen so that model parameters do not cause costs

or effects to lie outside their appropriate bounds (e.g.

become negative). We should also consider the conver-

gence of the posterior estimates, as the more complex

themodels applied, the slower the convergence of the

simulation. Therefore, in order to reach convergence,

wemight have to run the simulation a larger number of

iterations. A final consideration regards issues of autocor-

relation in the simulation due to high correlation between

the intercept and slope parameters. This correlation results

in poor mixing of the MCMC chains, which in turn results

in lack of convergence [52]. However, centring of effects

and covariates at their mean values, as discussed in the

Materials and Methods Section, would solve such prob-

lems. It must be noted that the correct method of model

selection from a family of possible models under a Baye-

sian paradigm is through their associated Bayes factors

[53]. Whilst Bayes factors are very helpful in model

selection, they are complex to compute, and not available

from an MCMC simulation in WinBUGS, which is the

most commonly used tool for such analyses. In addition,

presenting the Bayes factor of each Bayesian GLM does

not allow a comparison with frequent models (includ-

ing NMB regression and SUR). Presenting model fit in

terms of AIC and BIC together with visual inspection of

the data is a common method of model comparison, which

can result in robust conclusions.

Covariates can be incorporated in the analysis for the

additional reason of assessing the cost-effectiveness of

interventions at a more individualised level, by examining

whether different subgroups of the population are associ-

ated with different cost-effectiveness estimates. This is

owing to the fact that effects, or even costs, may be

modified by a covariate and, as a consequence, the choice

of an optimal intervention may vary for different values of

the covariate [29]. While testing for subgroup effects,

especially for subgroups that have not been pre-specified in

the trial protocol, is viewed with some suspicion in clinical

effectiveness studies [54–57], subgroup analyses have been

actively encouraged in cost-effectiveness studies [58].

Such analyses give policy makers the flexibility not only to

identify the optimal treatment for the trial population, but

also to make more ‘individualised’ decisions for subgroups

of the trial population. The case study in our analysis

focuses on identifying the optimal intervention for a pop-

ulation akin to the trial population; nonetheless, results for

patient subgroups can also be obtained by extending the

models to consider treatment with covariate interaction

terms.

Data from the TASMINH2 trial have informed a recent

economic evaluation by Kaambwa et al. [59]. The authors

developed a Markov model to predict the costs and health

effects associated with usual care and self-management of

hypertension over a 35-year time horizon. The results of

this study suggest that self-management is cost-effective

for both men and women, with a probability of cost-ef-

fectiveness at £20,000 per QALY exceeding 0.99 for both

genders. While there is disagreement between the very

appealing ICER values cited by Kaambwa et al. [59] and

the results obtained from the present study, there are

important differences between these studies which render

any comparisons between them potentially misleading.

While the analysis by Kaambwa et al. [59] makes use of a

decision model which is populated by estimates of clinical
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progression taken from various studies, the present study is

based solely on patient-level data from the TASMINH2

trial, and relates to a follow-up period of 12 months. It

must be noted that, rather than conducting an economic

evaluation to highlight differences in the results between

dissimilar studies, our study aimed to assess the perfor-

mance of different statistical approaches.

The above findings are specific to the TASMINH2 RCT

and different models and methods may perform better in

different situations. To draw solid conclusions on the rel-

ative performance of each model, simulated data that

compare these models across a range of circumstances that

may be faced by researchers should be employed. How-

ever, such work is beyond the scope of this paper and could

be the objective of a future study. Future studies should

also examine the relative performance of QALYs gener-

ated by other measures, including the longer version EQ-

5D 5 level that has recently been developed [60].

Our findings illustrate that cost-effectiveness results can

be sensitive to the choice of model and distributional

assumptions. We would therefore recommend that a wide

variety of modelling assumptions are considered, and model

fit is thoroughly assessed and taken into account when

selecting a model for analysis. This should be coupled with

visual inspection of the empirical distribution of the cost

and effect observations. In particular, this application has

shown that methods based on Bayesian approaches that

allow for non-normality in estimation, offer an attractive

alternative for cost-effectiveness analyses and covariate

adjustment. The flexibility provided by employing such

methods allows the researcher to explore different under-

lying distributions and baseline covariates in order to

identify an optimal methodology. On this basis, it is thought

that the use of such methods in economic evaluations of

healthcare technologies warrants more attention.
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