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Abstract Despite the increasing availability of routine

data, no analysis method has yet been presented for cost-of-

illness (COI) studies based on massive data. We aim, first,

to present such a method and, second, to assess the rele-

vance of the associated gain in numerical efficiency. We

propose a prevalence-based, top-down regression approach

consisting of five steps: aggregating the data; fitting a

generalized additive model (GAM); predicting costs via the

fitted GAM; comparing predicted costs between prevalent

and non-prevalent subjects; and quantifying the stochastic

uncertainty via error propagation. To demonstrate the

method, it was applied to aggregated data in the context of

chronic lung disease to German sickness funds data (from

1999), covering over 7.3 million insured. To assess the gain

in numerical efficiency, the computational time of the

innovative approach has been compared with

corresponding GAMs applied to simulated individual-level

data. Furthermore, the probability of model failure was

modeled via logistic regression. Applying the innovative

method was reasonably fast (19 min). In contrast, regard-

ing patient-level data, computational time increased dis-

proportionately by sample size. Furthermore, using patient-

level data was accompanied by a substantial risk of model

failure (about 80 % for 6 million subjects). The gain in

computational efficiency of the innovative COI method

seems to be of practical relevance. Furthermore, it may

yield more precise cost estimates.

Keywords Cost-of-illness � Massive data � Generalized
additive models � Error propagation

JEL Classification C1 � C5

Introduction

Cost-of-illness (COI) studies are a common type of eco-

nomic study in the medical literature [1–4]. They are

intended to measure either costs per patient or the total

costs of a particular disease, including direct, indirect, and

intangible costs. The rationale of COI studies has been

stated, first, as indicating the potential savings that could be

achieved if the target disease was abolished and, second,

for prioritization purposes based on the total costs across

diseases [2, 5]. Furthermore, findings from COI studies

have been used to parameterize decision-analytic models

for economic evaluation [6, 7]. However, the relevance of

COI studies has also been questioned, as the total amount

of expenditure would not reveal anything about how effi-

ciently resources are used in a corresponding area [2, 8–

10]. Moreover, preventing a disease is often associated
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with a cost increase [2, 9, 11]. Nevertheless, COI studies

provide an impression of the economic impact of a disease,

and are used to strengthen the relevance of associated

research [3].

The methods used for COI studies differ widely. It can

be differentiated into incidence-based and prevalence-

based approaches [3], top-down and bottom-up approaches

[3, 12, 13], studies that sum up all the costs of prevalent

subjects, studies that sum up only those costs that are target

disease related, matched control studies, and studies based

on regression models [1]. Prevalence-based COI studies are

much more common than incidence-based approaches [1].

Whereas incidence-based approaches focus on the lifetime

costs associated with an incident case, prevalence-based

approaches in general calculate (annual) costs that could be

avoided if the prevalence of the disease was set to zero [3].

COI regression approaches can also be divided into

those in which costs are assumed to be normally distributed

[i.e., ordinary least squares (OLS) regression] [1, 14, 15]

and those based on right-skewed distributions [16–18].

Simple regression models based on the normal distribution

lead to easily interpretable parameters [1, 14]. However,

the assumption of normally distributed costs in general

does not hold; the (right-skewed) gamma distribution fits

much better [16, 19–21]. A disadvantage of the gamma

distribution is that it does not allow for zero costs.

Although this problem is often negligible and can be solved

by adding a small constant [14, 22], two-part models could

be used to explicitly model zero costs [14, 23, 24].

The size of the study population used to conduct COI

studies differs widely. Based on a systematic review con-

ducted in 2006, the sample size of 365 COI studies ranged

from eight subjects to 1.8 million subjects [1]. However, as

routine data become more and more available, even cohorts

of more than 14 million insured people have been observed

[25, 26].

Problems related to the usage of massive data go beyond

COI studies. Preliminary work which technically aims at

working with large datasets and efficiency has been estab-

lished in comparable medical topics and other research

areas such as astrophysics, data mining, or genetics: e.g.,

causal inferences on large datasets via propensity score

matching [27], estimating cosmological parameters from

large data sets [28], efficiency of partitioning a set of objects

in databases into homogeneous groups or clusters [29], and

computational efficiency of genotype imputation for large

data sets [30]. In medicine, public health, health economics,

and health services research massive data will be generated

for outcome variables such as patient-reported outcome

measures (PROMs) in the future [31]. Research on massive

data analysis will thus be of pivotal importance [32, 33].

However, techniques to solve computational and statistical

pitfalls are not yet developed to full extent. With our

prevalence-based, top-down regression approach we sup-

port massive data analysis.

Analyzing massive data is computationally intensive

and requires further considerations when choosing a

research design. Analyzing only a random sample would be

associated with a loss of information and could be con-

sidered inefficient. However, traditional approaches may

fail for numerical reasons when analyzing the data; for

example, the numerical demand may increase exponen-

tially with the number of observations [34, 35]. Further-

more, model assumptions of traditional approaches might

be oversimplifying, as massive data allow much more

precise estimates. For example, a linear or log-linear

relationship between age and costs would not make effi-

cient use of the data [36].

The objective of this study is, first, to present a new COI

approach to analyze massive routine data, which can be

categorized as a prevalence-based, top-down regression

approach, accounting for right-skewed data. Second, we

aim to assess this novel approach in terms of computational

efficiency. This approach has not yet been discussed

explicitly; however, it has already been applied in the

context of breast cancer and coronary artery disease [4, 37].

Methods

The methodological approach

To perform COI studies based on massive data, which we

define as data sets with a huge number of observations, we

propose an approach that consists of the following steps:

specification of the regression equation; data aggregation;

estimating the regression model parameters; predicting

costs for diseased and non-diseased subjects (recycled

predictions); comparing costs between diseased and non-

The cost-of-illness data aggregation and regression approach

Data 
aggregation

Estimating regression parameters

Recycled 
predictions

Error propagation (i.e. delta method)

Per row all subjects with same structure of covariates

Selection of explanatory variables

Assigning classes
Loss of information

Not a sample (all subjects included) Gain of information

Comparing the costs of the prevalent and the non-prevalent 
population

Setting status of the target disease (of subjects prevalent in 
the initial data set) once to “yes” and once to “no”

Estimating stochastic uncertainty

Specification of the regression equation Generalized additive model (GAM)

Fig. 1 Steps of the cost-of-illness data aggregation and regression

approach
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diseased subjects; and applying error propagation to con-

struct uncertainty estimates of attributable cost estimates

(Fig. 1).

Specification of the regression equation

As stated above, the assumption of a linear or a log-linear

association between explanatory variables and costs may be

too simplified, if massive data are available for quantifica-

tion. A way to incorporate smooth terms into regression

models is given by generalized additive models (GAMs)

[36]. GAMs model smooth terms via splines, which are

piecewise defined numeric functions. The purpose of

splines is to model smooth curves without any a priori

specification of a shape or a parametric structure. Splines

are flexible and follow the course of the data points pro-

vided. Originally splines passed through all points provided.

Regression splines are similar as a regression line in the

linear model: they pass through a cloud of points, but not all

points are lying on the line provided. Regression splines are

fitted based on a penalty term, which avoids curves to

wiggle too much. This means smoothness is balanced

against a close fit to the data. Thin plate regression splines

are a special and sophisticated type of splines, which fulfill

some optimality criteria. In contrast to other types of

splines, thin plate splines can smooth several variables

simultaneously, e.g., they can provide a two-dimensional

smoothing [38]. Just as in generalized linear models

(GLMs), GAMs allow the response variable (i.e., the costs)

to follow distributions other than the normal distribution

[20, 39]. When cost data are used as the dependent variable,

typically a gamma distribution and a log-link function are

applied [16, 19–21].

Data aggregation

GAMs are numerically extensive, and fitting these might

cause numerical problems with respect to massive data.

Thus, we propose, first, to aggregate the massive data, in

such a manner that the loss of relevant information is kept

small and, second, to fit the GAM to the aggregated data-

set. In the unaggregated data set we assume the columns to

represent variables and the rows to present observations. In

the aggregated dataset, the columns still represent the

variables, but each row represents multiple subjects.

Additionally to the original variables a count variable will

be added to the aggregated data set, specifying how many

subjects are represented by each row. Before aggregating

the data, the explanatory variables have to be chosen and

classified. For example, classifying the age into 1-year age

groups keeps the loss of information negligibly small. After

all chosen explanatory variables have been classified, one

can determine the average costs for each unique

combination of covariates. Furthermore, if the explanatory

variable has originally been measured on a continuous

scale, one may choose to maintain the continuous scale by

assigning a single value (e.g., the class mean) to each class

of this variable.

One of the explanatory variables should correspond to

whether the target disease is present (i.e., 1 = ‘diseased’,

0 = ‘not diseased’). In a prevalence-based approach, this

enables us to use the predictions of our regression model for

prevalent subjects also for the non-prevalent subjects in a

second step (recycled predictions). Therefore, we set the

prevalence status of diseased subjects to ‘not diseased’,

when estimating attributable costs. When choosing the fur-

ther explanatory variables, one has to ensure that none of

them is causally affected by the target disease, as this could

lead to biased results [3, 40]. In contrast, the main relevant

confounders should be included [1]. As the number of rows

in the aggregated dataset increases with the number of

selected explanatory variables, and the number of categories

per variable, the choice of both variables has to be made very

carefully within regression approaches for massive data.

Estimating the model parameters

After aggregating the data, the regression model has to be

fitted (i.e., a GAM with response variable costs, log-link

function, and gamma-distributed response variable). The

number of subjects represented by each row serves as the

weight. Even though this model will be quite accurate in

predicting costs, the parameters of this model will not be

easily interpreted. This is due to applying a log-link

function, incorporating smooth terms and potentially

including interactions of explanatory variables into the

regression equation. Models, which are too simple, given

the available data, may yield easily interpretable parame-

ters, but are imprecise and do not make an efficient use of

the data. More sophisticated models, like the one we

present, make efficient use of the data, but the parameters

cannot be easily interpreted. Incorporating multiple smooth

terms and interactions, like in our case, make it impossible

to interpret the parameters directly. However, the study

results do not necessarily need to be extracted from the

regression parameters. In the current case, we present the

results graphically: In the figure ‘‘Chronic lung disease

attributable costs’’ we present results, which are easily to

grasp but cover the complexity of the real data structure.

Recycled predictions

The measure of interest of a COI analysis is the disease

attributable costs. Attributable costs have been calculated

for the whole population (or a subpopulation), but also per

prevalent subject. Disease attributable costs were estimated
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by predicting costs via the fitted regression model, first for

prevalent subjects and then for non-prevalent subjects.

However, the first prediction corresponds to the rows in the

aggregated data frame that refer to target disease-prevalent

subjects. The second prediction is based on ‘recycled

predictions’, i.e., the data frame of the first prediction is

used, but the prevalence status is set to ‘no’ (i.e., 0 = ‘not

diseased’). The sum of the first cost prediction corresponds

to the costs of all prevalent subjects, and the sum of the

second prediction corresponds to the hypothetical costs

among the same subjects given that the target disease was

eliminated. The difference between both sums corresponds

to the disease attributable costs. The goal of the method is

to estimate the costs that are due to a target disease. In the

study population, however, many factors affect the costs.

To calculate the costs that are due to the target disease,

some adjustment has to take place. We know the popula-

tion characteristics of the subjects who are diseased. The

healthy population, however, has different characteristics.

The method of ‘‘recycled predictions’’ is a method for

controlling these population characteristics. A hypothetical

population is generated that has the same population

characteristics as the diseased population. The only dif-

ference between these two populations is the target disease

status. By predicting for both of these populations the costs

and by calculating the difference, the disease attributable

costs can be estimated.

Error propagation

So far, the target disease attributable costs have been

estimated per age group and gender. However, the sto-

chastic uncertainty of this estimate still needs to be

quantified. This can be done via Gauss’s error propaga-

tion law [37]. Basically, this is done using the standard

error (SE) of each single cost prediction and their

covariance matrix. These values are provided by standard

statistical software [36, 41]. Also, the uncertainty of the

prevalence of disease is considered. The single SEs,

taking into account their covariance matrix, can be

transformed into a SE estimate of the target parameter.

Details regarding the application of Gauss’s error prop-

agation law have already been described elsewhere at

some length [37].

Application example of the cost-of-illness approach

To apply the COI method for massive data, we used data

from four major German sickness funds [25, 26, 37, 42].

The data represent 7.3 million insured people; the base year

was 1999. We approximated this number by dividing the

observed days of insurance by 365 [4, 37]. Due to health

insurance changes of few patients we cannot provide an

exact number for the insured people represented by the

dataset. The variables of the dataset are the health expen-

ditures (i.e., the total costs resulting from hospital stays,

medication spending and sickness benefit; hospital costs

reported include all costs for inpatient care, i.e., physician

costs, medication costs, general costs for hospital stay and

nursing care) per day of insurance, the age and gender of

subjects and the prevalence of seven chronic diseases [i.e.,

hypertension, diabetes mellitus, heart failure (HF), coronary

heart disease, breast cancer, stroke and chronic lung dis-

ease; chronic lung disease was defined as asthma and

chronic obstructive pulmonary disease (COPD)]. In the

application example, the variables included were given, and

not explicitly selected for the purpose of this application.

Costs were converted from ‘Deutsche Mark’ (DM) to euros

(exchange rate 1 euro = 1.95583 DM). The dataset has

already been highly aggregated (9,517 rows), and reports

the overall days of insurance per unique combination of age,

gender and comorbidities. It has been aggregated, for data

protection purposes, in part by the sickness funds them-

selves and in part by the Institute of Health Economics and

Clinical Epidemiology, University of Cologne. The data has

originally been collected for a survey report to assess a

forthcoming health care reform in Germany.

In our application example, we estimate the age- and

gender-specific attributable costs of chronic lung disease.

The response variable of the GAM is the average costs per

day of insurance. A log-link function was applied. Smooth

terms were the age and the interactions of age with gender

and with each chronic disease. Thin plate regression splines

were used to represent smooth terms [38]. Covariates of the

regression models were age, gender, and the seven chronic

diseases. Furthermore, pairwise interactions were included.

For convergence reasons, no gamma distribution was

assumed, but the quasi likelihood was maximized [36, 37].

The number of subjects represented by each row was used

as weights within regression analysis.

Attributable costs for the whole population of Germany

in 1999 were derived by multiplying age- and gender-

specific costs by the corresponding population size, as

supplied by the German Federal Statistical Office [43], and

by the age- and gender-specific prevalence of chronic lung

disease. All confidence intervals were calculated based on

Gauss’s error propagation law.

Whereas fitting the GAM is only one step in the method

we propose, the figure of the excess costs is the main

output, i.e., the result which method produces. The fitted

GAM is used to predict costs for a population with vs. a

population without the disease. Subsequently, the differ-

ence between these two cost predictions is calculated (in

our case separately for each age-gender-group). This dif-

ference is the output of the method, which we displayed

graphically.
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Simulation study to assess computational efficiency

To assess whether the gain in computational efficiency

resulting from aggregation is of practical relevance, we

performed a simulation study. As the dataset used for the

application example is available only in an aggregated form,

we first simulated an individual-level dataset from the ori-

ginal dataset. The number of subjects for each unique

combination of age, gender and comorbidities (i.e., for each

row of the aggregated data frame) was estimated based on

the observed number of days of insurance. This was done by

dividing the number of days of insurance by 365 and taking

the ceiling of this value. Individual costs were simulated via

the gamma distribution. The parameters of the gamma dis-

tribution were approximated based on the standard deviance

and the expected value. The average cost estimates (i.e., the

expected value used for gamma simulation) were predicted

via the fitted GAM. Furthermore, SEs of the predicted cost

estimates were supplied by the GAM. However, as the

standard deviation (SD) required for simulating costs on an

individual level exceeds the SE (the SE refers to the preci-

sion of the expected value), a further assumption was

required. For simplicity, as more detailed information was

missing, the relationship between the SE and the SD in the

context of a single sample’s mean was applied (see one

sample t test) [44]. In other words, the SDwas approximated

by multiplying the SE by the square root of the number of

subjects represented by the average estimate. Based on these

assumptions, an individual patient-level data set represent-

ing 7.3 million subjects was simulated.

The goal was to assess to what extent the gain in

numerical efficiency via the aggregation process is of

practical relevance. For this purpose, we randomly drew

(with replacement) datasets from the simulated individual-

level data frame with a total number of observations

ranging from 100,000 to 7 million subjects. The grid of the

sample sizes was narrower in the range from 100,000

observations to 1 million observations (i.e., increments of

100,000 observations) and wider in the range from 1 to 7

million observations (i.e., increments of 1 million obser-

vations). For each given sample size, 10 data frames were

randomly sampled. To each of the sampled data frames, a

regression model was fitted with the same regression

equation as in the application example. The time needed to

fit each regression model was measured. Furthermore, as

fitting the regression model sometimes failed for numerical

reasons, we performed a logistic generalized additive

regression with the probability of failure as the response

and the sample size (smooth term, thin plate regression

splines) as the explanatory variable. For analysis, we used a

desktop personal computer (PC), Windows 7 (64-bit) with

8 processor kernels and 16 gigabytes (GB) of RAM. Fur-

thermore, the statistical software R (version 3.1.0) was

used, including the R-package ‘mgcv’ (version 1.7-29) to

fit GAMs [36, 41]. Even though we applied the R function

‘gam’ to fit the aggregated data regression model (9,517

rows), we applied the function ‘bam’ to the individual-level

datasets, as ‘bam’ is computationally faster for big data

(bam = ‘GAMs for very large datasets’). However, ‘bam’

has not been applied to the aggregated dataset, as the

algorithm is not stable for datasets with ‘few’ observations.

Results

Cost-of-illness of chronic lung disease in Germany

The age- and gender-specific costs of COPD and asthma-

related chronic lung disease are displayed in Fig. 2. The

coefficients of the regression model are presented in

Table 1. The course of attributable costs differs signifi-

cantly from a linear or a log-linear relationship. The sto-

chastic uncertainty is reasonably small, which can be

explained by the huge amount of data incorporated into the

analysis. There are four peaks in attributable costs of

COPD/asthma: in the first years after birth, in the early

20 s, in the 60 s, and in the 80 s. Taking into account the

age and gender distribution of Germany from 1999, the

quantified annual costs of chronic lung disease amount to

6.78 million euros (SE = 0.01 million euros).

A simple linear or log-linear relationship does not cap-

ture the course of the attributable costs. This can be con-

cluded (a) from the significance values of the smooth terms

in the regression model: the smooth terms are highly sig-

nificant; and (b) from the figure illustrating the ‘‘chronic

lung disease attributable costs’’: this figure includes very

narrow confidence bands. A straight line or a line which is

straight on the log scale would not stay within the confi-

dence bands at all.

Computational performance of the COI method

for massive data

The computational time for fitting the aggregated data

regression model was 6.2 min plus 12.5 min for calculating

the point estimates and applying the error propagation

approach. The computational time required for fitting the

individual-level data regression model increased dispro-

portionately more by sample size (Fig. 3). Fluctuation of

time used increased with the size of the dataset, as more

runs fail with an increasing number of observations. For 5

million observations, it amounted on average to 2.8 h. The

increase in computational time was accompanied by an

increasing failure probability (Fig. 4). For 3 million

observations, one in ten regression approaches failed, for 5

million observations, three approaches failed, for 6 million
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observations, nine approaches failed, and for 7 million

observations, all ten approaches failed.

Discussion

In this paper, we have presented a COI method for massive

data, and applied it in the context of chronic lung disease.

Furthermore, we have assessed the practical relevance of

the computational efficiency gain of this method. Up to

now, no method has yet been presented for COI studies

based on massive data. The smooth terms included in the

regression models were highly significant, and the age-

specific costs per gender group differed significantly from a

simple model structure that would have been achieved via,

for example, a linear or a log-linear relationship. The

average attributable costs of men and women have differ-

ent shapes and are even crossing. This completely different

curve is significant, as we can conclude from the narrow

confidence bands (Fig. 3). Furthermore, applying extensive

GAMs to massive data was associated with a dispropor-

tionately high time increase, and even more problematic,

with a high probability of computational failure. Thus,

applying current COI methods to massive data would be

oversimplifying, would lead to computational problems or

would require the drawing of a subsample.

With respect to the application example, the attributable

costs per patient were similar to previous studies, consid-

ering differences in severity of stage, included cost com-

ponents and differences in health system [45–50]. The peak

in younger years is due to asthma and corresponds with the

prevalence of asthma in children and adolescents. There

are few studies regarding the prevalence of COPD. One is

the international BOLD study (burden of obstructive lung

disease), which assessed the prevalence of COPD after the

age of 40. The results of the cost distribution in our study

correspond with the prevalence distribution of COPD in the

BOLD study with men having a higher prevalence com-

pared with women and the highest prevalence between the

ages of 65 and 84 years [51]. The decrease in attributable

costs between the ages of 60 and 70 years can be explained

by the consideration of sickness benefit and by the fact that

many people retire within this age range.

The approach that we present is a prevalence-based

approach. Even though prevalence-based approaches have

been stated to be most suitable for assessing the current

economic burden of a disease [3], it might be desirable to

use massive data to conduct incidence-based analyses.

However, this would require longitudinal data, and the

transferability of the principle of fitting GAMs to aggre-

gated data in the context of incidence-based COI studies

still needs to be shown.

Furthermore, in our application example, we referred to

health expenditures from a sickness fund perspective.

However, a complete COI study includes the overall direct,

indirect, and intangible costs [1, 3]. Indirect costs such as

loss of earnings are partially not covered by our approach

from a sickness fund perspective and intangible costs such

as loss in quality of life are not covered at all. If, as in our

case, the data cover costs only partially, further data

sources have to be analyzed to quantify the overall costs

associated with a disease.

A limitation of the presented approach is that data might

get lost due to aggregation. In our particular case, this has

not been a problem, as the individual-level data have

already been classified, and 1-year age groups have been

used. However, the big advantage of not losing participants

due to aggregation is reduced by classifying (e.g.,

0

1

2

3

4

5

Observations in millions

D
ur

at
io

n 
in

 h
ou

rs

1 2 3 4 5 6

Fig. 2 Computational time

needed to fit the person-level

data regression model (given the

model fitting did not fail)
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Table 1 Estimates of the fitted

generalized additive model to

predict health expenditures

CHD coronary heart disease,

HF heart failure, BC breast

cancer, NA not available, df

degrees of freedom
§ Parameters were set to zero

for identification reasons

(identification problems, i.e.,

columns in the design matrix

that could be represented as

linear transformation of the

remaining columns, occurred

due to the various interactions

included into the regression

model)

Parameter estimate Standard error t statistic p value

Intercept 0.72 0.01 114.1 \0.001

Female 0.11 0.16 0.7 0.499

Diabetes 4.82 0.67 7.2 \0.001

CHD 2.63 0.90 2.9 0.003

Hypertension 0.00§ 0.00§ NA NA

Asthma 0.00§ 0.00§ NA NA

HF -2.30 0.60 -3.8 \0.001

BC 0.00§ 0.00§ NA NA

Stroke 0.00§ 0.00§ NA NA

Female 9 diabetes 0.05 0.01 4.4 \0.001

Female 9 CHD -0.08 0.01 -8 \0.001

Female 9 hypertension -0.09 0.01 -7.8 \0.001

Female 9 asthma -0.07 0.01 -6.7 \0.001

Female 9 HF -0.10 0.01 -8.7 \0.001

Female 9 BC 0.27 0.14 1.9 0.054

Female 9 stroke 0.15 0.01 10.1 \0.001

Diabetes 9 CHD -0.06 0.01 -5.4 \0.001

Diabetes 9 hypertension -0.44 0.02 -24.8 \0.001

Diabetes 9 asthma -0.14 0.01 -10.1 \0.001

Diabetes 9 HF -0.04 0.02 -2.7 0.007

Diabetes 9 BC -0.47 0.04 -11.5 \0.001

Diabetes 9 stroke -0.23 0.02 -14.1 \0.001

CHD 9 hypertension -0.10 0.02 -6.1 \0.001

CHD 9 asthma -0.14 0.01 -11.3 \0.001

CHD 9 HF 0.00 0.01 0.1 0.914

CHD 9 breast cancer -0.37 0.04 -9.4 \0.001

CHD 9 stroke -0.29 0.02 -19.0 \0.001

Hypertension 9 asthma -0.34 0.02 -21.1 \0.001

Hypertension 9 HF -0.11 0.02 -5.5 \0.001

Hypertension 9 BC -0.40 0.04 -11.2 \0.001

Hypertension 9 stroke -0.42 0.02 -17.6 \0.001

Asthma 9 HF -0.04 0.02 -2.3 0.022

Asthma 9 BC -0.35 0.04 -9.8 \0.001

Asthma 9 stroke -0.25 0.02 -12.4 \0.001

HF 9 BC -0.15 0.04 -4.0 \0.001

HF 9 stroke -0.27 0.02 -12.5 \0.001

BC 9 stroke -0.87 0.06 -13.6 \0.001

Estimated df Estimated rank F p value

Approximate significance of smooth terms

Age 9.0 9 1,035 \0.001

Age 9 female 8.9 9 187 \0.001

Age 9 diabetes 8.9 9 203 \0.001

Age 9 CHD 7.4 8 110 \0.001

Age 9 hypertension 10.0 10 593 \0.001

Age 9 asthma 9.9 10 866 \0.001

Age 9 HF 8.4 9 34 \0.001

Age 9 BC 6.7 8 100 \0.001

Age 9 stroke 9.6 10 1,014 \0.001
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information gets lost when transforming continuous vari-

ables into ordinal variables) and choosing variables for

aggregation. Furthermore, it might be questioned whether

it is really necessary to include all individuals, or whether

performing, for example, a propensity score matching

would not lead to sufficient results.

In our methodological approach, we chose GAMs as

regression models, which are based on GLMs. We made

this choice because GAMs include smooth terms. How-

ever, there is a wide range of approaches that can be used

for skewed outcome data. Manning and Mullahy, for

example, compared log models, GLMs and OLS models

with log-transformed response variables, but none of these

options has been found to be best under all conditions [52].

Furthermore, the generalized gamma (GMM) distribution

was found to yield potentially more robust results than

GLMs with gamma distribution [53, 54]. However, coef-

ficients of log-link GAMs with smooth terms cannot be

interpreted. They are meant to be used for cost prediction.

Without smooth terms, exponentiated coefficients could be

interpreted as relative changes compared to the base

category.

Finally, in the R package ‘‘mgcv’’ the optimization is

based on direct optimization and on an approximation of

the penalized likelihood function (i.e., backfitting via the

Fisher scoring). This results in a high dimensional system

of equations. When the Fisher information matrix needs to

be calculated based on huge matrices, numerical problems

might result from the coordination of the numeric deriva-

tives. Furthermore, this process is based on inverting

matrices. As there are a high number of predictors, this

may yield numerical instabilities.

Regarding the application example, there are several

potential sources of bias that should be mentioned. First,

the data may not be representative for Germany, as the

insured subjects only represent the four corresponding

sickness funds. Second, there might be some bias due to the

methods used to classify the prevalence status of the seven

chronic diseases [4, 37]. In consequence, the supplied

standard errors only represent the stochastic uncertainty.

The true uncertainty, due to the presence of bias, is prob-

ably reasonably larger. However, this is a limitation that

holds for all COI studies, which should not preclude efforts

to optimize the precision of cost estimates. Third, in the

current approach, the ICD-9 code 493 and the ACT code

RO3 were used to define the population of subjects with

COPD and asthma, which probably underestimates the

prevalent subjects with chronic lung disease and thus also

the overall costs. Furthermore, several cost components
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were not included in the analysis. In particular, physician

costs, medical advice, and indirect costs were not included.

In future analyses, the impact of the number of cate-

gories per variable and the number of variables itself on the

possibility of numerical failure and the length of compu-

tational time should be analyzed to get a broader view on

abilities and limitations of regression approaches for COI

analysis with massive data. In conclusion, we provide an

innovative method to conduct COI studies based on mas-

sive data. This method may yield more precise cost esti-

mates and also improves computational efficiency.

Acknowledgments Financial support for this study was provided by

the Helmholtz Zentrum München, German Research Centre for

Environmental Health (HMGU) and the Institute of Health Eco-

nomics and Clinical Epidemiology, University of Cologne, Germany.

The funding agreement enabled the authors to design the study,

interpret the data, and write and publish the manuscript. The fol-

lowing authors are employed by the sponsors: Björn Stollenwerk

(HMGU), Stephanie Stock (University of Cologne). We thank Hea-

ther Hynd for proofreading the manuscript.

References

1. Akobundu, E., Ju, J., Blatt, L., Mullins, C.D.: Cost-of-illness

studies: a review of current methods. Pharmacoeconomics 24(9),
869–890 (2006)

2. Byford, S., Torgerson, D.J., Raftery, J.: Economic note: cost of

illness studies. BMJ 320(7245), 1335 (2000)

3. Larg, A., Moss, J.R.: Cost-of-illness studies: a guide to critical

evaluation. Pharmacoeconomics 29(8), 653–671 (2011)

4. Gruber, E.V., Stock, S., Stollenwerk, B.: Breast cancer attribut-

able costs in Germany: a top-down approach based on sickness

funds data. PLoS One 7(12), e51312 (2012)

5. Ament, A., Evers, S.: Cost of illness studies in health care: a

comparison of two cases. Health Policy 26(1), 29–42 (1993)

6. Stollenwerk, B., Gandjour, A., Lungen, M., Siebert, U.:

Accounting for increased non-target-disease-specific mortality in

decision-analytic screening models for economic evaluation. Eur.

J. Health Econ. (2012). doi:10.1007/s10198-012-0454-z

7. Stollenwerk, B., Gerber, A., Lauterbach, K.W., Siebert, U.: The

German coronary artery disease risk screening model: develop-

ment, validation, and application of a decision-analytic model for

coronary artery disease prevention with statins. Med. Decis.

Making 29(5), 619–633 (2009)

8. Shiell, A., Gerard, K., Donaldson, C.: Cost of illness studies: an

aid to decision-making? Health Policy 8, 317–323 (1987)

9. Wiseman, V., Mooney, G.: Burden of illness estimates for pri-

ority setting: a debate revisited. Health Policy 43(3), 243–251
(1998)

10. Reuter, P.: What drug policies cost: estimating government drug

policy expenditures. Addiction 101(3), 315–322 (2006)

11. Shenoy, A.U., Aljutaili, M., Stollenwerk, B.: Limited economic

evidence of carotid artery stenosis diagnosis and treatment: a

systematic review. Eur. J. Vasc. Endovasc. Surg. 44(5), 505–513
(2012)

12. Liu, J.L., Maniadakis, N., Gray, A., Rayner, M.: The economic

burden of coronary heart disease in the UK. Heart 88(6), 597–603
(2002)

13. Hodgson, T.A., Meiners, M.R.: Cost-of-illness methodology: a

guide to current practices and procedures. Milbank. Mem. Fund.

Q. Health Soc. 60(3), 429–462 (1982)

14. Andersen, C.K., Andersen, K., Kragh-Sorensen, P.: Cost function

estimation: the choice of a model to apply to dementia. Health

Econ. 9(5), 397–409 (2000)

15. Andersen, C.K., Lauridsen, J., Andersen, K., Kragh-Sorensen, P.:

Cost of dementia: impact of disease progression estimated in

longitudinal data. Scand. J. Public Health 31(2), 119–125 (2003)

16. Maetzel, A., Li, L.C., Pencharz, J., Tomlinson, G., Bombardier,

C.: The economic burden associated with osteoarthritis, rheu-

matoid arthritis, and hypertension: a comparative study. Ann.

Rheum. Dis. 63(4), 395–401 (2004)

17. Penberthy, L.T., Towne, A., Garnett, L.K., Perlin, J.B., DeLor-

enzo, R.J.: Estimating the economic burden of status epilepticus

to the health care system. Seizure 14(1), 46–51 (2005)

18. Perencevich, E.N., Sands, K.E., Cosgrove, S.E., Guadagnoli, E.,

Meara, E., Platt, R.: Health and economic impact of surgical site

infections diagnosed after hospital discharge. Emerg. Infect. Dis.

9(2), 196–203 (2003)

19. Bassi, A., Dodd, S., Williamson, P., Bodger, K.: Cost of illness of

inflammatory bowel disease in the UK: a single centre retro-

spective study. Gut 53(10), 1471–1478 (2004)

20. Dobson, A.J.: An introduction to generalized linear models.

Chapman and Hall/CRC, London (2002)

21. Wenig, C.M.: The impact of BMI on direct costs in children and

adolescents: empirical findings for the German Healthcare Sys-

tem based on the KiGGS-study. Eur. J. Health Econ. 13(1), 39–50
(2012)

22. van Rutten- Molken, M.P., van Doorslaer, E.K., van Vliet, R.C.:

Statistical analysis of cost outcomes in a randomized controlled

clinical trial. Health Econ. 3(5), 333–345 (1994)

23. Menn, P., Heinrich, J., Huber, R.M., Jorres, R.A., John, J., Kar-
rasch, S., Peters, A., Schulz, H., Holle, R.: Direct medical costs of

COPD: an excess cost approach based on two population-based

studies. Respir. Med. 106(4), 540–548 (2012)

24. Mihaylova, B., Briggs, A., O’Hagan, A., Thompson, S.G.:

Review of statistical methods for analysing healthcare resources

and costs. Health Econ. 20(8), 897–916 (2010)

25. Stock, S., Redaelli, M., Luengen, M., Wendland, G., Civello, D.,

Lauterbach, K.W.: Asthma: prevalence and cost of illness. Eur.

Respir. J. 25(1), 47–53 (2005)

26. Stock, S.A., Redaelli, M., Wendland, G., Civello, D., Lauterbach,

K.W.: Diabetes–prevalence and cost of illness in Germany: a

study evaluating data from the statutory health insurance in

Germany. Diabet. Med. 23(3), 299–305 (2006)

27. Rubin, D.B.: Estimating causal effects from large data sets using

propensity scores. Ann. Intern. Med. 127(8 Pt 2), 757–763 (1997)

28. Tegmark, M., Taylor, A.N., Heavens, A.F.: Karhunen-Loève
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