
ORIGINAL PAPER

Estimating the expected value of partial perfect information:
a review of methods

Doug Coyle Æ Jeremy Oakley

Received: 18 December 2005 / Accepted: 11 June 2007 / Published online: 19 July 2007

� Springer-Verlag 2007

Abstract

Background Value of information analysis provides a

framework for the analysis of uncertainty within economic

analysis by focussing on the value of obtaining further

information to reduce uncertainty. The mathematical defi-

nition of the expected value of perfect information (EVPI)

is fixed, though there are different methods in the literature

for its estimation. In this paper these methods are explored

and compared.

Methods Analysis was conducted using a disease model

for Parkinson’s disease. Five methods for estimating partial

EVPIs (EVPPIs) were used: a single Monte Carlo simula-

tion (MCS) method, the unit normal loss integral (UNLI)

method, a two-stage method using MCS, a two-stage

method using MCS and quadrature and a difference

method requiring two MCS. EVPPI was estimated for each

individual parameter in the model as well as for three

groups of parameters (transition probabilities, costs and

utilities).

Results Using 5,000 replications, four methods returned

similar results for EVPPIs. With 5 million replications,

results were near identical. However, the difference

method repeatedly gave estimates substantially different to

the other methods.

Conclusions The difference method is not rooted in the

mathematical definition of EVPI and is clearly an inap-

propriate method for estimating EVPPI. The single MCS

and UNLI methods were the least complex methods to use,

but are restricted in their appropriateness. The two-stage

MCS and quadrature-based methods are complex and time

consuming. Thus, where appropriate, EVPPI should be

estimated using either the single MCS or UNLI method.

However, where neither of these methods is appropriate,

either of the two-stage MCS and quadrature methods

should be used.

Keywords Economic evaluation � Value of information �
Uncertainty

Introduction

Value of information analysis provides a framework for

analysing uncertainty within economic analysis, by focus-

sing on the value of reducing uncertainty through further

information [1]. Such analysis adopts a Bayesian approach

to sensitivity analysis [2, 3]. Within the health economics

literature, there has been much focus on the estimation of

EVPI (e.g., 2–4). EVPI is a measure of the reduction in

opportunity loss associated with obtaining perfect infor-

mation (no uncertainty) on a parameter and can be seen as

a measure of decision sensitivity.

EVPI can be calculated for all parameters within a

model (global EVPI). Alternatively, EVPI can be calcu-

lated for a partial set of input parameters (Xi or Xp). This is

termed the expected value of partial perfect information

(EVPPI or partial EVPI). Parameters for which the decision

over optimal treatment is sensitive will have higher EVPPI,

although for all parameters EVPPI will vary substantially

by a decision maker’s willingness to pay for an additional

unit of health benefit (k).
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In this paper, alternate methods for estimating EVPPI

are described in detail in terms of the individual steps re-

quired to obtain estimates. These methods are then applied

to input parameters from a case study to demonstrate how

and when these methods can give similar results.

Methods

Notation

This paper adopts standard notation relating to treatment

options, costs, effects, cost effectiveness and parameters.

T is the set of alternative treatment options with an

individual treatment option represented by tj. Thus, we

wish to determine which treatment option is optimal.

Et1 is defined as the expected value of health benefits

(e.g., QALYs) from treatment t1 and Ct1 as the expected

value of costs. The net monetary benefit (NMB) for t1 is

defined as:

NBt1 ¼ kEt1 � Ct1

where k = a decision makers’s maximum willingness to

pay for a unit of health benefit.

The incremental net benefit (INB) when comparing two

treatment options (t1 and t2) is defined as:

INBt1t2 ¼ k Et1 � Et2ð Þ � Ct1 � Ct2ð Þ

The treatment with the greatest net benefit (NB) can be

considered the optimal treatment (t*).

Let X, represent the set of k data parameters (X1,…., Xk)

used to estimate the cost and effects of the alternative

treatment options. Xp is a subgroup of parameters within X,

whilst Xi represents an individual parameter. Xi
c and Xp

c

denote the complement sets of input parameters, i.e., all

members of X other than Xi or Xp.

Expected value of perfect partial information

The expected value of perfect partial information (EVPPI)

for an individual parameter Xi is defined as:

EVPPIXi
¼ EXi

maxtEXjXi
NBtjXtð Þ

� �
� NBt�

EVPPI for a subgroup of parameters Xp is defined as:

EVPPIXp
= EXp

max
t

EXjXp
NBtjXp

� �h i
� NBt�

EVPPI cannot be solved in a closed form. Thus, all

methods of estimating EVPPI require integration using

either Monte Carlo simulation or quadrature: numerical

methods for estimating the area under the curve for func-

tions that cannot be solved through integration. In this

paper, five different proposed methods of estimating EV-

PPI are outlined.

The first two methods described are appropriate only in

specific circumstances relating to the characteristics of the

probability density functions of input parameters and their

relationship with INB. In many instances, the requirements

for these methods are not met and hence the methods are

inappropriate for calculating EVPPIs for all input param-

eters. This is especially the case for Markov models.

Hence, it is necessary to adopt more complex methods that

can be applied in the general case. Three such methods are

described. Two of these methods are based on the mathe-

matical definition of EVPI and involve solving double

integrals, neither of which is in closed form. The inner or

nested integration involves estimating the incremental net

benefit with different fixed values of Xi. The outer inte-

gration then determines EVPPI through integration across

the probability density functions for Xi. An alternate

method has been suggested that involves avoidance of the

second integral by assuming Xi is constrained to its ex-

pected value. This method is not based on the mathematical

definition of EVPPI.

Methods of estimating EVPPI

Unit normal loss integral method (UNLI)

EVPI can be defined alternately as the integral of the

incremental net benefit function (INB, defined as the net

benefit of the optimum treatment less the net benefit of the

alternative) for INB < 0 with respect to its density func-

tion:

EVPI ¼
Z0

�-

f ðINBÞINB dINB

If the uncertainty around INB is normally distributed

(INB~N (lINB, r2
INB)), we can evaluate the EVPI by

exploiting the following result:

If Y~N (l, r2):

Z0

�-

y
1
ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp � 1

2r2
y� lð Þ2

� �
dy ¼ lU

�l
r

� 	

� r
ffiffiffiffiffiffi
2p
p exp � l2

2r2


 �

where U is the cumulative density function of a standard

normal random variable.
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Hence we have

EVPI ¼ lINBU
�lINB

rINB


 �
� rINBffiffiffiffiffiffi

2p
p exp � l2

INB

2r2
INB


 �

Thus, if INB is normally distributed, global EVPI can be

solved from the above [4, 5].

A recent review of the use of modeling in research

prioritization found no examples of where the EVPPI has

been estimated using the unit normal loss integral method

[5]. Recent work in estimating EVPPIs has ignored this

method, primarily due to the focus on situations where the

distribution of INB is non-normal. However, in situations

when the global EVPI cannot be estimated through the unit

normal loss integral method (UNLI), it may still be an

appropriate method for calculating EVPPIs for parame-

ter(s).

INB may be non-normally distributed and the relation-

ship between INB and some parameters may be non-linear.

However, consider a normally distributed parameter Xi that

has a linear relationship with INB. The relationship be-

tween the parameter and the expected INB can be ex-

pressed as:

E INB Xijð Þ ¼ aþ bXi

Writing Zi ¼ aþ bXi the EVPPI for Xi can now be

defined as:

EVPPIXi
¼
Z0

�-

zfZi
ðzÞ dz

with fzi (z) the density function of Zi.

Since Zi~N (li, r2
i ) with ui = a + bE(Xi) and r2

i = b2

var(Xi), it follows that

EVPPIXi
¼ liU

�li

ri


 �
� riffiffiffiffiffiffi

2p
p exp � l2

i

2r2
i


 �

Thus, EVPPI for Xi can be evaluated from the above

equation as follows.

1. First we require knowledge of a and b. These can be

estimated through two Monte Carlo simulations by

holding Xi constant at two values at the extreme ends

of its range (xl and xh).

(a) Hold Xi constant at xl and estimate E(INB|Xi = xl)

using a MCS with all other parameters (Xc
i ) random.

(b) Hold Xi constant at xh and estimate E(INB|Xi = xh)

using a MCS with Xc
i random using the same random

seed as previously.

(c) Now, by definition:

b ¼ E INB Xi ¼ xhð Þj½ � � E INB Xi ¼ xlð Þj½ �
xh � xl

a ¼ E INB Xi ¼ xlð Þj½ � � bxl

2. Now we estimate the following: ui = a + bE(Xi) and

r2
i = b2var(Xi)

3. From this we estimate EVPPI

EVPPIXi
¼ liU

�li

ri


 �
� riffiffiffiffiffiffi

2p
p exp � l2

i

2r2
i


 �

One can also derive EVPPIs for a sub-set of parameters

that have the same desired properties using the above ap-

proach. Consider the situation where Xp represents a sub-

set of X of size j in which all parameters are normally

distributed and have a linear relationship with INB. Thus,

E INB Xp

��� �
¼ aþ

X

i¼1;:::;j

biXi ¼ Zp

Zp ~ N (lp, rp
2) with up ¼ aþ

P

i¼1;:::;j

biE Xið Þ and

r2
p ¼

P

i¼1;:::;j

b2var Xið Þ; it follows that

EVPPIXp
¼ lpU

�lp

rp


 �
� rpffiffiffiffiffiffi

2p
p exp �

l2
p

2r2
p

 !

UNLI is therefore an appropriate measure of EVPPI for

variables that are normally distributed and have a linear

relationship with INB. UNLI may also work well as an

approximation in certain situations, specifically when the

relationship between the parameter of interest and incre-

mental net benefit is linear and it is approximately normal.

This is of major importance given that whenever a distri-

bution for a continuous parameter is obtained from a

moderately large sample size, it can often be well

approximated by a normal distribution.

Single MCS method

Felli and Hazen have shown that, if INB is multi-linear in

Xc
i (or Xc

p) (i.e., all parameters within the complement set

have a linear relationship with INB), EVPPI for Xi (or Xp)

can be estimated as follows (2,3):

1. Generate one random value XðjÞp from the joint distri-

bution of Xp

2. Calculate the net benefit for each treatment option t

using parameter values Xp = XðjÞp and Xc
p = E(Xc

p|Xp

= XðjÞp ). This will give the value of E(NBt|Xp = XðjÞp )
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3. Obtain the maximum of the net benefits calculated in

step 2, maxt E(NBt|Xp = XðjÞp )

4. Repeat steps 1 to 3 J times. EVPPI is estimated by
PJ

j¼1 = 1 maxt E(NBt|Xp = XðjÞp )/J–NBt*

The single MCS method may also work well when the

relationship between all parameters and INB is approxi-

mately linear.

Two-stage MCS method

Several authors have suggested a method of calculating

EVPPIs that involves solving both the inner and outer

integration through a two-stage Monte Carlo simulation

(e.g., [5–7]). This differs from the single MCS method in

that a second MCS is used in step 2 to estimate

E(NBt|Xp = XðjÞp ) It is conducted as follows:

1. Generate one random XðjÞp from the joint distribution

of Xp

2. Conduct a MCS, by repeatedly sampling from the

conditional distribution of Xc
p|Xp = XðjÞp , to estimate

E(NBt|Xp = XðjÞp ) for each treatment option t, keeping

Xp fixed at XðjÞp

3. Obtain the maximum of the net benefits calculated in

step 2, maxt E(NBt|Xp = XðjÞp )

4. Repeat steps 1–3 J times. EVPPI is the estimated by
PJ

j ¼ 1 maxt E(NBt|Xp = XðjÞp )/J – NBt*

Quadrature method

A second method rooted in the mathematical definition of

EVPPI has been suggested that requires fewer repeat

simulations than the two-stage MCS method [8–9]. Instead

of a two-stage Monte Carlo simulation, the outer integra-

tion across the probability density functions of Xi can be

achieved through numeric quadrature. Estimating the

EVPPI of Xi would require the following approach:

1. A set of values Xi
(1),…, Xi

(N) is determined for the

parameter of interest. The values should be equally

spaced across the individual’s parameters probability

function with a high degree of coverage.

2. For X
ðjÞ
i conduct a MCS by repeatedly sampling from

the conditional distribution of Xc
i |Xi = X

ðjÞ
i , to estimate

E(NBt|Xi = X
ðjÞ
i ) for each treatment option t, keeping

X
ðjÞ
i fixed at Xi

3. Obtain the maximum of the net benefits calculated in

step 2, maxt E E(NBt|Xi = X
ðjÞ
i )

4. EVPPI isestimated by
PN

j ¼ 1 maxt E(NBt|Xp = XðjÞp )

f(X
ðjÞ
i ) wj – NBt* The weights wj are obtained using a

quadrature method such as Simpson’s rule.

(In Simpson’s rule we have wj = sj (X
ð2Þ
i – X

ð1Þ
i )/3,

where sj = 4 when j is even and sj = 2 when j is odd, with

the exceptions of s1 = sN = 1. We must also have N odd).

Note that in step 1 the greater the number of values

chosen and the higher the degree of coverage are, the

more precise the estimate of EVPPI. In the following

sections 101 different values of each parameter are used

and values cover at least 99.99% of the probability den-

sity function. For single parameters Xi this can be pref-

erable to the two-stage MCS approach, as J typically

needs to be larger than N. In principle, the same approach

can be used to estimate the EVPPI for multiple parameters

Xp, but is less desirable as quadrature becomes unwieldy

in high dimensions.

Difference method

In an evaluation of treatments for Alzheimer’s disease, an

alternative formulation for estimating EVPPI was adopted

with the EVPPI for Xi estimated by the difference be-

tween global EVPI given uncertainty in all parameters and

global EVPI when Xi is fixed [10]. Similar methods have

been used in an evaluation of management strategies for

urinary tract infection [11]. The method defines EVPPI as

follows:

EVPPIXi
¼ EVPI� EX Xij maxt NBtjXi ¼ E Xið Þf g½ �
�maxt EX Xij NBtjXi ¼ E Xið Þf g

� �

Thus, the approach involves the following

1. Estimate global EVPI as described in Sect. 4.5.2.

2. Estimate the NB for all treatment options by con-

ducting MCS by keeping the parameters of interest (Xi)

fixed at their expected values and by sampling from

the probability density functions of all other parame-

ters (Xc
i ).

3. Calculate the expected value over all replications of

the net benefit of the optimum therapy subtracted from

the maximum net benefit over all therapeutic options.

4. EVPPI is the difference in the values obtained in step 1

and step 3.

Case study

The case study is an evaluation of entacapone for the

treatment of advanced Parkinson’s disease [12]. Analysis

was conducted within a Markov model that assumed three

distinct states of Parkinson’s disease severity: mild/

moderate disease, severe disease and death.

All patients were assumed to be in the severe state at onset

of treatment (Fig. 1). For patients receiving entacapone,
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transition probabilities were required for improvement from

severe to mild/moderate disease, progression from mild/

moderate to severe disease and death. For patients receiving

usual care only progression from severe disease to death was

required

Analysis compared usual practice with and without the

inclusion of entacapone. Usual therapy was assumed to

include levodopa used in combination with other anti-

Parkinsonian medication. The model was based on a

6-month cycle. A 5-year time horizon was chosen, which is

relevant for a chronic disease such as Parkinson’s disease.

All outcomes were discounted at 5%. Analysis was taken

from the perspective of the health care system.

Input parameters and their associated probability dis-

tributions are detailed in Table 1. Drug costs were assumed

fixed. The probability of mortality during each cycle was

obtained from national population data and was also as-

sumed fixed.

Analysis

Analysis focuses on estimating the EVPPI for each

parameter within the decision analysis. The difference,

quadrature and two-stage MCS methods are used to esti-

mate EVPPI for all parameters within the model.

The UNLI method is appropriate for estimating EVPPI

for cost and utility parameters as they are assumed normal

and are linear in INB. The single MCS method is an

appropriate method for estimating EVPPI for PPROGRESS,

as INB is linear in all parameters except PPROGRESS.

The UNLI and single MCS methods are used as

approximations for EVPPI for specific parameters as

detailed above.

The single MCS method is appropriate for parameters

where INB is multilinear in the complement set. Thus, in

the case study it would only be appropriate for PPRO-

GRESS as the relationship between PPROGRESS and INB

is not linear. The degree of this non-linearity was assessed

by regression analysis whereby the INB was estimated for

a range of values of PPROGRESS by conducting MCS

with the value of PPROGRESS assumed fixed at various

values. Analysis found that although the relationship was

non-linear the estimated linear function was associated

with a high R2 (0.985) (Fig. 2).

The UNLI method is appropriate only for parameters

that are normally distributed and are linear in INB. The

variable PIMPROVE is linear in INB, but is not normal.

However, the UNLI method may give a close estimate of

EVPPI for PIMPROVE as the variable is well approxi-

mated by normals of the same mean and variance

(Fig. 3).

The number of MCS conducted will affect the accuracy of

the predicted EVPPI due to the associated Monte Carlo error.

For the base analysis all Monte Carlo simulations involved

5,000 replications. To assess the accuracy of each method

with respect to Monte Carlo error, analysis was repeated for a

subset of parameters (utility and transition probabilities)

using an extreme number of replications (5 million).

Results

Table 2 compares the estimates of EVPPI for each

parameter and set of parameters based on the alternative

methods. The difference method gave substantially differ-

ent values from the other methods and can be dismissed as

a true measure of EVPPI. The other four methods gave

broadly similar values for EVPPI for most parameters.

Severe Parkinson’s Disease Severe Parkinson’s Disease

Mild/Moderate
Parkinson’s Disease

Death

PIMPROV *E (1-PD AE HT )
PDEATH

#

1st Cycle

1st Cycle

Severe Parkinson’s Disease Severe Parkinson’s Disease

Mild/Moderate
Parkinson’s Disease

Death

PPROGRESS*(1-PDEATH)
#

Subsequent Cycles

Mild/Moderate
Parkinson’s Disease

Death

PDEATH

#
PDEATH

1

 Entacapone 

Severe Parkinson’s Disease Severe Parkinson’s Disease

Death

PDEATH

#

Severe Parkinson’s Disease Severe Parkinson’s Disease

Death

PDEATH

#

Subsequent Cycles

Death
1

 Usual therapy 

a

b

Fig. 1 Design of Markov model for evaluation of entacapone
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PPROGRESS had the highest EVPPI, followed by utility

parameters and PIMPROVE. Cost parameters had little

information value.

Table 2 also provides evidence of the appropriateness of

both the single MCS and UNLI methods as proxy methods

for estimating EVPPI. It is shown that under the scenarios

arising within this model, these methods do give close

approximations to EVPPI.

Table 3 compares the estimates of EVPPI from the four

methods based on 5,000 and 5 million replications. The

values obtained from using 5 million replications differ

modestly from analysis based on 5,000 replications sug-

gesting that, in this instance, a MCS based on 5,000 rep-

lications may be sufficient. The results from the UNLI,

quadrature and two-stage MCS are very similar, confirming

that each method is estimating the same variable. Thus, the

Table 1 Probability density

functions for input parameters
Parameter Variable name Mean Probability

density function

Probabilities

Improvement from severe disease

to mild disease with therapy

PIMPROVE 0.324 Beta (61, 127)

Progression from mild disease to

severe disease

PPROGRESS 0.183 Beta (11, 49)

Probability of mortality PMORT 0.032 Fixed

Utilities

Mild disease UMILD 0.75 Normal (0.75, 0.03)

Severe disease USEVERE 0.64 Normal (0.64, 0.03)

Costs—mild disease

Consultations CCONSM 949 Normal (949, 189.25)

Hospital care CHOSPM 1,148 Normal (1,148, 287)

Additional health care CADDM 283 Normal (283, 70.75)

Costs––severe disease

Consultations CCONSS 2,934 Normal (2,934, 733.5)

Hospital care CHOSPS 2,567 Normal (2,567, 641.75)

Additional health care CADDS 578 Normal (578, 144.5)

Drug costs

Usual care CDRUGU 546 Fixed

Inclusion of entacapone CDRUGE 1,313 Fixed

-$1,000

$0

$1,000

$2,000

$3,000

$4,000

$5,000

$6,000

0 0.05 0.1 0.15 0.2 0.25 0.3

Probability of Disease Progression

tife
ne

B
te

Nlat
ne

merc
nI

Actual INB=7000-26000*PPROGRESS

Fig. 2 Relationship between

the probability of disease

progression and incremental net

benefit
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difference between methods can simply be put down to

error with respect to integral measurement.

Conclusions

The estimation of EVPPI for parameters and subsets of

parameters is an essential component in the analysis to

identify the value of obtaining further information given

decision-making under uncertainty. In addition, EVPPI has

been argued to be a theoretically correct measure of the

sensitivity of a study’s results [2, 3]. However, to facilitate

such usage, EVPPI has to be accurately measured.

In this paper, five alternate methods for estimating

EVPPI have been identified, described and applied to a

case study. All measures are subject to Monte Carlo error.

As the number of replications used to estimate EVPPI in-

crease, the appropriate method for the estimation of EVPPI

will converge to the same value.

Within this paper a number of issues relating to the

conduct of probabilistic analysis and the estimation of

EVPPI are raised. One method for estimating EVPPI, the

UNLI method, is only appropriate when a variable is dis-

tributed normally. In this study, normal distributions are

used to characterise uncertainty with respect to costs and

utilities. Clearly if other distributions were used then the

UNLI method would be less appropriate, though it may still

give approximate results if distributions were well

approximated by normals.

The case study used in this paper is simple to aid in

demonstrating the methods used and to allow replication of

results if desired. This contributes to the relative linear

nature of the model, which in turn leads the single MCS

method to provide useful approximations of EVPPI.

Clearly, in more complex models a higher degree of non-

linearity may be observed and this method may not provide

as accurate a measure on EVPPI. In addition, in more

complex models we may wish to assume some degree of

correlation between parameters, which would likely further

enhance the non-linear nature of the model.

More complex models will also lead to a requirement to

increase the number of replications required to estimate

EVPPI. In the case study, 5,000 replications were used to

estimate EVPPI as a base case. It is likely in more complex

models that a greater number of replications will be

0

2

4

6

8

10

12

0.2 0.3 0.4 0.5

Probability of improvement

ytis
ne

D
Beta (61,127)
Normal (0.324, 0.034)

Fig. 3 Comparison of beta distribution for PIMPROVE and the

approximate normal distribution

Table 2 Estimates of EVPPI based on alternative formulations

Single

parameters

Method of estimation

Single

MCS

Difference Quadrature Two-

stage

MCS

UNLI

PIMPROVE 0.69 28.80 0.69 0.48 0.65

PPROGRESS 5.91 39.88 6.48 6.49 N/A

UMILD 3.18 44.07 2.64 2.49 2.68

USEVERE 2.87 43.56 2.65 2.28 2.68

CCONSM 0 3.54 <0.001 0 <0.001

CHOSPM 0 3.09 <0.001 0 <0.001

CADDM 0 0.46 <0.001 0 <0.001

CCONSS 0.42 33.70 0.23 0.31 0.23

CHOSPS 0.04 23.03 0.04 0.01 0.04

CADDS 0 0.22 <0.001 0 <0.001

Table 3 Estimates of EVPPI based on alternative formulations and

number of replications

Method of estimation

Single

MCS

Quadrature Two-stage

MCS

UNLI

PIMPROVE

r = 5,000 N/A 0.69 0.48 N/A

r = 5 million N/A 0.71 0.56 N/A

PPROGRESS

r = 5,000 5.91 6.48 6.49 N/A

r = 5 million 6.55 6.52 6.55 N/A

UMILD

r = 5,000 N/A 2.64 2.49 2.68

r = 5 million N/A 2.52 2.52 2.52

USEVERE

r = 5,000 N/A 2.65 2.28 2.68

r = 5 million N/A 2.52 2.55 2.52

Based on a threshold value for a QALY of $50,000
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required to provide precise estimates of EVPPI. The level

of precision can be estimated by the standard error of the

estimate of EVPPI, which will decrease as the number of

replications increases.

Results are presented as EVPPI per patient. For esti-

mation of the expected value of sample information and the

calculation of optimal sample size, population estimates of

EVPPI are required, which involves weighting EVPPI by

the potential patient population affected by the decision at

hand. EVPPI does however provide decision makers with a

measure of parameter importance, which can assist to some

degree in determining areas for further research and con-

sideration.

Of the methods previously proposed in the literature, the

difference method is clearly an inappropriate method for

estimating EVPPI. It is not rooted in the mathematical

definition of EVPPI. However, it had been argued that if

the relationship between a parameter and the outcome of

interest is not markedly non-linear then the difference

method would be a suitable means to estimate EVPPI [10].

The results from this study dispute this proposition as there

is a substantial difference in values obtained from this and

the other methods. Thus, this method is demonstrated

empirically to be an inappropriate measure of EVPPI.

The single MCS and UNLI methods are computationally

efficient methods of estimating EVPPI. However, they are

formally appropriate for estimating EVPPI in specific

limited circumstances relating to the mathematical rela-

tionship between input parameters and INB. However, both

methods are shown to work well in certain other situations.

The single MCS method is shown to work well when the

relationship between all parameters and INB is approxi-

mately linear. The UNLI method is shown to work well if

Xi is approximately normal. However, it is clear that in

more complex models these approaches will provide less

accurate proxies for EVPPI.

The quadrature and two-stage MCS methods can be

considered general methods for estimating partial EVPPI

as they can be applied in all circumstances. The methods

are comparable. By increasing the number of MCS used,

both methods would return similar values converging to the

true value of EVPPI. Both methods are, however, compu-

tationally complex.

Previous studies have explored the alternate methods for

estimating EVPPI (e.g., 13). However, studies have tended

to ignore both the quadrature method and the UNLI method

as outlined in this paper. Given that these methods are

shown here to be of use in many situations, a further

examination of methods as conducted in this paper is war-

ranted. In addition, although the difference method has been

shown elsewhere to be incorrect [13, 14], it is worth reit-

erating this point to avoid future use of the inappropriate

method.

Other methods for estimating EVPPI may be developed

that will have to be evaluated under similar criteria. For in-

stance an approach may be possible that uses a hybrid of the

quadrature and UNLI methods if INB was linear in a

parameter, though the parameter was strongly non-normal. In

addition, Oakley has used a combination of quadrature and

non-parametric regression to efficiently learn the relationship

between parameters and the expectation of INB [15].

The conclusion reached is that where appropriate EVPPI

should be estimated using either the single MCS or UNLI

method. When neither of these methods is appropriate, the

quadrature or two-stage MCS methods should be used.

However, given the computational complexity of these

methods, further work examining the appropriateness of

using either the single MCS or the UNLI methods as

approximations for EVPPI may be worthwhile. The

difference method should clearly not be used.
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