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Società Italiana di Fisica
Springer-Verlag 2001

The glass transition of thin polymer films: some questions,
and a possible answer

S. Herminghausa, K. Jacobs, and R. Seemann

Department of Applied Physics, University of Ulm, 89069 Ulm, Germany

Received 23 April 2001

Abstract. A simple and predictive model is put forward explaining the experimentally observed substantial
shift of the glass transition temperature, Tg, of sufficiently thin polymer films. It focuses on the limit of
small molecular weight, where geometrical ‘finite size’ effects on the chain conformation can be ruled
out. The model is based on the idea that the polymer freezes due to memory effects in the viscoelastic
eigenmodes of the film, which are affected by the proximity of the boundaries. The elastic modulus of
the polymer at the glass transition turns out to be the only fitting parameter. Quantitative agreement
is obtained with our experimental results on short chain polystyrene (MW = 2 kg/mol), as well as with
earlier results obtained with larger molecules. Furthermore, the model naturally accounts for the weak
dependence of the shift of Tg upon the molecular weight. It explains why supported films must be thinner
than free standing ones to yield the same shift, and why the latter depends upon the chemical properties
of the substrate. Generalizations for arbitrary experimental geometries are straightforward.

PACS. 64.70.Pf Glass transitions – 68.60.Bs Mechanical and acoustical properties – 81.05.Kf Glasses
(including metallic glasses) – 83.10.Bb Kinematics of deformation and flow

1 Introduction

To explain the experimental observation that thin polymer
films melt at temperatures strongly different from (usually
below) the glass transition temperature of the bulk poly-
mer, T 0

g [1–4], is one of the major current challenges in
the theory of homopolymers. At first glance, one might
expect such a behavior, due to the impact of the finite
size geometry of a thin film upon objects as large as poly-
mer molecules. In fact, for molecular weights larger than
about MW = 300 kg/mol, geometry effects have been re-
cently shown to play a dominant role, resulting in a lin-
ear dependence of Tg upon the film thickness, h [4–6].
For smaller molecules, however, the problem is concep-
tually more intricate, since a noticeable reduction of Tg

can be observed at film thicknesses orders of magnitude
larger than the radius of gyration of the molecules. Fur-
thermore, the shift T 0

g −Tg(h) becomes strongly nonlinear
and largely independent of molecular weight [3,7], indi-
cating that this regime must be governed by a different
mechanism. A fundamental understanding of this effect
would be of great interest not only for polymer physics,
but potentially also elucidate the physics of the glass tran-
sition in a larger class of systems, since it comes into play
at small molecular weight.

Many attempts have been undertaken to explain these
observations, mostly by considering microscopic models of
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the inner structure of the films. Long and Lequeux have
envisaged the freezing of the film as a percolation of rigid
domains [8], mediated by thermal fluctuations [9]. Other
models assume a layered structure of the film, with a par-
ticularly mobile region close to the free surface of the film
[1]. Within this framework, Forrest and Mattsson [7] have
recently been able to achieve quite impressive accordance
with the experimental data [2,7]. Their model makes use
of the so-called cooperativity length, ξ(T ), which plays a
mayor role in a whole class of theoretical concepts of the
glass transition. The only drawback is that there is yet no
well established theory of ξ(T ). Furthermore, as a conse-
quence of the two-layer structure of the film inherent in
the model, it is not completely clear why there should not
be two glass transitions, rather than a single one shifted
in temperature.

As a complementary approach, computer simulations
of polymer films with free surfaces have recently been car-
ried out, and most of the experimental findings were re-
produced qualitatively [10]. However, the polymer chains
in these simulations were shorter than those used in the
experiments up to now. Before attempting to explain the
effect theoretically, it is therefore worthwile to study ex-
perimentally the behavior of polymers with short chain
length, both to ease comparison with simulation and to
explore the range of validity of the apparent independence
of the shift of Tg on molecular weight.

Before going into the details of our study, let us take a
break and summarize the main questions to be answered.
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1. What is the principal mechanism responsible for the
reduction of Tg in thin films of low molecular weight
(MW < 300 kg/mol) polymers?

2. Down to how small molecular weight is this mechanism
valid?

3. Why is there no significant dependence of this effect
on molecular weight [3]?

4. Why is the effect stronger in free standing films than
in supported ones [3]?

5. Why does the effect depend upon the chemical com-
position of the substrate for supported films [11–13]?

6. Why is there sometimes an increase of Tg in thin films,
instead of a reduction [11–13]?

We will try in the present paper to give answers to these
questions, or at least show in which direction answers
might be found, on the basis of a novel, quite simple model
which rests mainly on the viscoelastic eigenmodes of the
films. We restrict the discussion to the case of polystyrene
(PS), since this is the most thoroughly studied polymer in
this context. Furthermore, it is particularly well suited
for comparison with theoretical models, since (atactic)
polystyrene does not show any propensity to crystalliza-
tion. In other polymers, which might crystallize at least
in part of the film, modelling would be exceedingly diffi-
cult, and the main mechanism could well be obscured in
experiments.

2 Experiment

Let us first explore the range of validity of the afore-
mentioned effect of reduction of Tg, as to the molecular
weight of the polymer. We have investigated the glass
transition in thin supported films of atactic PS with a
molecular weight as small as 2 kg/mol (≈ 20 monomer
units). It was purchased from Polymer Labs (UK) with
a polydispersity index MW/MN = 1.05, the radius of
gyration is 1.3 nm. Effects from the molecular geome-
try are thus expected only for films of few nanometers
thickness. The films were spin cast from toluene solution
onto silicon wafers (Silchem GmbH, Freiberg/Germany),
which were previously cleaned by ultrasonication in ace-
tone, ethanol, and toluene, subsequently. Residual organ-
ics were removed with a 1:1 mixture of H2SO4 with H2O2,
and the substrates were thoroughly rinsed with hot milli-
pore water afterwards. Films were investigated with thick-
nesses ranging from 4 to 160 nm. The roughness of the free
surface of the films was less than 0.2 nm, as revealed by
scanning force microscopy (SFM).

The glass transition temperature was determined in
two different ways, depending on film thickness. The stan-
dard procedure of monitoring the thermal expansion of
the film via ellipsometry, as introduced by Keddy and
Jones [1], was used for film thicknesses down to 9.6 nm.
Figure 1a shows a typical run. The data were repro-
ducible, irrespective of being taken during heating or cool-
ing. Typical heating or cooling rates were 2 K/min. We
plotted the changes in refractive index and thickness of the
film in Figure 1b. The solid line represents the Clausius

Fig. 1. (a) Ellipsometric dilation measurement of a thin PS
film. Typical heating/cooling rates were 2 K/min. (b) The
change in film thickness vs. the change in the optical dielectric
constant, as measured by ellipsometry for various temperatures
during a heating/cooling cycle. The good agreement obtained
with the Clausius-Mosotti relation represented by the solid line
demonstrates the absence of significant loss or degradation of
material.

Mosotti relation. Obviously, there is good agreement, sug-
gesting the absence of any loss or degradation of material.
This was found invariably for all samples.

In Figure 2 we plotted the thermal expansion coeffi-
cients found above and below Tg(h), which corresponds to
the kink in Figure 1a. At large film thickness, Tg obtained
in this way approached 327 ± 1 K, which is consistent
with the temperature at which macroscopic melting is ob-
served in the bulk (T 0

g ) for PS with this chain length. The
shaded areas represent published data of the expansion
coefficients [14]. Good agreement is found both above and
below Tg. Small deviations at very small film thickness,
as might be concluded from our data, have been reported
before [1].
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Fig. 2. Thermal expansion coefficients obtained above and
below Tg. The shaded areas represent values taken from the
literature [14].

Fig. 3. Temporal evolution of the power spectrum of spinodal
dewetting undulations on a PS film exhibiting unstable capil-
lary waves at its free surface. Curves of equidistant times are
superimposed to show the gradual increase of the main peak.
The inset shows the exponential growth of the latter, from
which the viscosity of the film can be inferred.

For films thinner than 9 nm, we determined the melt-
ing behaviour of the films by observing the buildup of am-
plified thermal fluctuations (spinodal dewetting) [15–17].
These processes were monitored by SFM with in situ heat-
ing. In order to speed up the experiments to a feasible time
scale, dewetting was observed at temperatures close to T 0

g .
As an example, we show in Figure 3 the temporal evolu-
tion of the Fourier transform (spatial power spectrum)
of the surface topography. The hallmark feature is the
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Fig. 4. The glass transition of thin films of 2 kg/mol
polystyrene, as determined from thermal expansion (circles)
and from the growth of spinodal waves (squares). The solid
curve represents our model, which has the elastic modulus gov-
erning the dominant modes as its only fitting parameter. It fur-
thermore corresponds to what was found for larger molecular
weight PS before [19]. Top: linear scale. Bottom: logarithmic
scale, showing more details at small film thickness.

clear peak representing the fastest growing mode. The in-
set shows the peak intensity as a function of time on log-
arithmic scale. Exponential growth is clearly observed up
to a rather well defined time at which coalescence of holes
sets in.

From the slope of the straight line in the inset, and the
known effective interface potential [17,18], the viscosity η
of the polymer can be determined exploiting well-known
theory on thin film dynamics [15]. Measuring the vis-
cosity as a function of temperature, we found that this
obeyed a Vogel-Fulcher law, with the Vogel-Fulcher tem-
perature shifted by a certain amount ∆TVF, which de-
pended on the film thickness. We identified ∆TVF(h) with
the shift in glass temperature. In this way, the apparent
glass transition temperature of particularly thin films was
inferred from the spinodal dewetting experiments by set-
ting Tg(h) = T 0

g −∆TVF(h).
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Our experimental results are shown in Figure 4 as the
full symbols. The circles represent the thermal expansion
measurements, the squares were obtained from the spin-
odal dewetting experiments. As one can clearly see, the
glass transition temperature is substantially reduced for
all films thinner than about 50 nm. The solid line repre-
sents the function

Tg = T 0
g (1 + h0/h)−1 (1)

This form has been shown before to account well for the
data obtained by others for larger molecular weight films,
if h0 = 0.68 nm was assumed for PS [19]. Within ex-
perimental scattering, our data exhibit indeed the same
dependence of Tg(h) in the full range of film thickness
explored. It is remarkable that the data from both the
thermal expansion and spinodal dewetting measurements
are well fitted by the same curve. This tentatively corrob-
orates the procedure of obtaining Tg for very thin films
(squares) as discussed above.

Although our polymer chains are roughly by a fac-
tor of 50 shorter than those investigated before, we obtain
h0 = 0.82 nm from the fit, which is quite close to the above
value. This confirms the weak dependence (if there is a
significant one at all) of the reduction of the glass transi-
tion temperature on the molecular weight of the polymer,
down to a molecular weight as small as 2 kg/mol.

We can thus state that the reduction of Tg in thin films,
as described phenomenologically by equation (1), is ob-
served in a huge range of molecular weight, from molecules
as small as 2 kg/mol up to a few hundred kg/mol. This is
in accordance with molecular dynamics simulations [10],
and rules out mere finite size effects on the individual coils
as the main cause of the reduction of Tg in this regime.
Note that the radius of gyration of our polymer is only
1.3 nm, while Tg is significantly reduced at a film thick-
ness of 50 nm already. The fitting parameter used in equa-
tion (1), h0, changes only by about 20% in this range,
confirming that the dominant mechanism which is respon-
sible for this effect cannot depend strongly on the molec-
ular weight of the polymer.

3 Eigenmode spectrum of the films

Since it is clear that the behaviour displayed in Figure 4
can in no way be attributed to the geometrical impact of
the finite film thickness upon the microscopic conforma-
tion of the individual chains, we present here an approach
to the problem which intentionally makes as few reference
as possible to the molecular structure of the film. The lat-
ter is accounted for merely by the strain in the polymer,
i.e., the deviation of the local average gyration ellipsoids of
the molecules from a sphere. By ‘local’ we mean a volume
much larger than the volume of the backbone of a single
molecule, but with a lateral dimension much smaller than
the film thickness.

Such a deviation from the equilibrium conformation
(i.e., from a Gaussian coil, if self-avoidingness is ne-
glected), which may be viewed as an entropy fluctua-
tion, can decay either by self diffusion of the individual

molecules, or by some center-of-mass rearrangement (i.e.,
flow) of the melt. It is clear that close to a surface, such
rearrangements are much easier to accomplish due to cou-
pling of the capillary waves on the free surface to the bulk
flow of the polymer. This coupling is effective down to
a depth comparable to the wavelength of the capillary
modes, which may be much larger than the coil size of the
molecules. Thus we are provided with a mechanism which
affects the motion of the polymer molecules, and natu-
rally can act over distances which are large as compared
to molecular dimensions. In order to explore the possible
relevance of this mechanism for the reduction of Tg in thin
films, we have to consider the eigenmode spectrum of the
(viscoelastic) polymer film. This can be discussed with all
possible boundary conditions at the substrate, such that
films with strong slip along the substrate, grafted films,
or free standing films, may as well be treated within the
same framework.

The spectrum of a viscoelastic thin film can be ob-
tained in a straightforward manner by combining stan-
dard theory of elasticity [20] and hydrodynamics [21] in
the limit of small Reynolds number (Stokes dynamics).
The equation of motion reads

{∂t + ω0 +
E

η
}∇2φ =

∇p
η

(2)

where E is Young’s modulus, η is the viscosity, and ω0

is the Rouse rate of relaxation of the individual chains
into their equilibrium configuration [22,23]. φ is a vector
field related to the strain tensor, S. For the sake of clarity,
we restrict our discussion to a simple model, taking into
account only a single intrinsic relaxation rate, ω0, as op-
posed to more general treatments [24]. Deviations of the
real polymer from this simple behaviour will be introduced
a posteriori farther below.

If we restrict the discussion to one lateral (x) and one
normal (z) coordinate, φ = (φx, φz) is defined via

S =

(
∂xφx

1
2 (∂xφz + ∂zφx)

1
2 (∂xφz + ∂zφx) ∂zφz

)
· (3)

Finally, p is the pressure field.
For harmonic excursions of the free surface, ζ(x) =

ζ0 exp{iqx− ωt}, equation (2) has solutions

φx ∝ [1 + (h+ q−1)α(q)] cosh qz − q−1α(q) sinh qz
φz ∝ [1 + hα(q)] sinh qz − zα(q) cosh qz (4)

where for the function α(q), we find

α(q) =
(q

2

) e2qh − 1
e2qh − 1 + qh

(5)

for free standing films (symmetric modes) as well as for
supported films with full slippage (zero friction). For
supported films with some friction at the substrate, the
expressions are of similar form, but considerably more
complicated, and will not be discussed here. At the free
surface, we used the standard boundary condition of zero
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tangential stress, and p = −σ∂xxζ, where σ is the surface
tension of the polymer. Note that for free standing films,
h is defined as half the film thickness.

For the relaxation rates of the modes, we get

2ω = (ω0 +
E

η
+

σq2

2ηα(q)
)

±

√(
ω0 +

E

η
+

σq2

2ηα(q)

)2

− ω0
2σq2

ηα(q)
· (6)

Since it is only the ‘fast’ modes which contribute appre-
ciably to the reduction of the glass transition temperature
(see below), we consider only the upper branch of equa-
tion (6). Observing that ω0 � E

η , this is given by

ω = ω0 +
E

η
+

σq2

2ηα(q)
, (7)

as a very good approximation. The dependence of the
wave number, q, stems solely form the coupling to the
capillary waves on the free film surface. The first major
assumption of our model is that Tg(h) is determined by
the spectrum of the viscoelastic eigenmodes of the film as
given by equation (7).

4 The freezing mechanism: memory effects

The second major assumption is that the physical cause
for the melting or freezing of the film, respectively, are
memory effects in the polymer material. These are of
course not included in the linear theory discussed above,
and may be formulated in a generic way by means of a
suitable memory kernel, as used in a class of theoreti-
cal models of the glass transition, called mode coupling
models [26,27]. Within this framework, memory effects
are taken into account by inserting a convolution integral
with the memory kernel m{φ(t)} = a1φ+a2φ

2 +a3φ
3 + ...

in the otherwise linear differential equation of motion of
the modes considered [28]. In these models, φ usually
describes density fluctuations. In contrast, we consider
the material to be essentially incompressible, and φ de-
notes here the strain in the polymer material, as defined
above. It thus describes the local state of the material,
similar to what the density does for simple glass forming
liquids [26,27,29].

In our case, the equation of motion (2) is of first order
in time, hence we have

φ′ + ω(q)φ+
∫ t

0

m{φ(τ)}φ′(t− τ)dτ = 0 (8)

as the mode coupling equation. This type of equations has
been thoroughly analysed [25–27,30] in relation to the mi-
croscopic physics of the glass transition (to which we do
not refer here), as well as to large scale degrees of freedom
[31]. For density fluctuations in glass forming simple liq-
uids, it was found that the coefficients ai of the memory
kernel vary concurrently with temperature, and that upon

crossing a certain border in the space spanned by the ai,
the system freezes into a nonergodic state [27]. The exis-
tence of such a freezing transition has been found to be
largely independent of the precise form of the memory
kernel. In fact, most of the features of a glass transition
may be well represented by what has become known as
schematic models, which are simple mode coupling equa-
tions not referring in their memory kernels to the micro-
scopic physics of the system under study.

It is now worthwhile to contemplate on possible mem-
ory effects in a polymer melt, as to their scaling with tem-
perature. Let us first consider a polymer molecule in equi-
librium, forming a more or less Gaussian coil. If this is
elongated by straining the polymer melt, to what extent
will it memorize this process after the strain is released? In
the strained state, the molecule will relax to some extent.
However, this relaxation will not proceed homogeneously
along the molecule, since the activation energy, U , for lo-
cal rearrangements will depend upon the local topological
environment.

In order to discuss the relaxation behaviour of the
local molecular geometry, let us define a local geometric
exponent of the coil, µ, by the relation

〈 |∆r| 〉 = (∆s)µ (9)

where 〈 |∆r | 〉 is the typical distance travelled in space
upon moving alongside the polymer chain by a distance
∆s. In completely stretched parts of the chain, µ = 1,
whereas in equilibrated domains, µ = µequilib. ≈ 0.5. The
variation ∆U of U(s) determines the variation of the re-
laxation rate of µ towards µequilib.. When the strain is
released, remnants of this variation will remain, and thus
represent a memory of the strain. This holds as long as
the strain/release process is fast as compared to the equi-
libration time, ω−1

0 . For the modes to be considered here,
this is well fulfilled. When ∆U � kT , as we may assume,
these remnant variations in µ(s) scale as ∆U/kT , thus we
can conclude that memory effects in the polymer scale as
1/T . As a direct consequence, we can replace the mem-
ory kernel m{φ(t)} of equation (8), the coefficients ai of
which are temperature dependent, with M{φ}/T , where
M is now independent of temperature.

By proper normalizaton of time, equation (8) can now
be rewritten as

φ′ + φ+
1

Tω(q)

∫ t

0

M{φ(τ)}φ′(t− τ)dτ = 0. (10)

From this equation, we see directly that the modes with
the largest relaxation rate freeze at the lowest tempera-
ture. Furthermore, the precise form of M , which might
be derived from a detailed analysis of the non-equilibrium
dynamics of the polymer molecules, does not need to be
considered here any further. It is only required that M
belongs to the class of kernels which yield a freezing tran-
sition for φ at all, i.e., it must be a strictly monotonous
function of φ for all q [25].
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Let us now turn back to the eigenmodes of the
film. The relaxation rates, as given by equation (7), are
monotonously increasing with q. However, modes with q
much larger than the inverse film thickness, h−1, do not
penetrate appreciably into the film, such that only a small
fraction of the material takes part in these modes. Hence
we are led to considering chiefly the modes with q ≈ h−1,
since these are the highest frequency modes comprising all
of the film material.

Setting thus Tg(h)ω(h−1) = const. as suggested by
equation (10), we directly arrive at a simple formula for
the glass transition temperature:

Tg(h) = T 0
g

(
1 +

1.16 σ
h(E + ηω0)

)−1

· (11)

This is precisely the form of equation (1), and Figure 4
shows that it describes our data very well.

5 Discussion

The quantity ηω0 is on the order of a few kPa and can in
general be safely neglected against E. The characteristic
length scale which appears here, and which was called h0

in equation (1), is thus the ratio σ/E, with the surface
tension σ = 31 mN/m for PS. It follows that the elastic
modulus determining the dynamics of the relevant modes,
E, is the only physical fitting parameter in the model. From
h0 = 0.82 nm, as obtained from the fit of our model,
we find for the elastic modulus E ≈ 44 MPa, which is,
on logarithmic scale, right in between the modulus of the
frozen material (a few GPa) and the modulus just above
Tg (about 300 kPa). On the basis of the model discussed
above, let us now try to formulate answers to the questions
asked in the introduction, one after the other.

1. What is the main mechanism responsible for the
reduction of Tg in thin films of low molecular weight
(MW < 300 kg/mol) polymers? The physical picture
which emerges from our model is that as the temperature
is increased, melting proceeds as the fastest mode involv-
ing all of the film material escapes from its frozen state
and fluctuates. This proceeds with the help of the capillary
waves on the free film surface, which ease entropy fluctu-
ations in the polymer melt. The concomitantly increased
motion of polymer chains reduces the effective viscosity
also for modes with smaller q, which, as a consequence,
are sped up (η appears in the denominator in Eq. (7)!)
and melt in turn. In this way, the film finally melts at all
length scales. It is illustrative to note that the softness of
the spinodal modes, as used for the determination of Tg at
small film thickness, does not contradict our model: these
are modes with q � 1/h, and are thus not the fastest
modes, as considered in the melting mechanism.

2. Down to how small molecular weight is this mech-
anism valid? We found that in agreement with simulation
results [10], the effect is present even for molecules as short
as about 20 monomer units. This is well below the limit
of entanglement. It thus spans a wide range in molecular

weight, over more than two orders of magnitude. It is pre-
cluded, or obscured, by other effects at molecular weights
in excess of about 300 kg/mol [3].

3. Why is there no significant dependence of the effect
on molecular weight? The physical property which solely
determines the thin film behaviour according to our model
is the elastic modulus, E. As it is well known, E displays
no marked dependence on the molecular weight [22,32],
such that on the basis of our model, Tg(h) is expected as
well to be largely independent of molecular weight. To be
precise, E is slightly less for smaller molecular weight than
for larger [14,32], such that according to equation (11),
h0 should be larger for smaller molecular weight. In fact,
we obtained h0 = 0.82 nm for our very short molecules,
whereas for larger molecules, h0 = 0.68 nm was found
[19]. The observation that the relevant length scale, h0,
decreases with increasing molecular weight is another ev-
idence against geometrical effects on individual chains to
be relevant in the regime discussed here. The exact phys-
ical significance of the somewhat arbitrary ‘choice’ of E,
which may be viewed as E at Tg, is to be investigated in
further studies.

4. Why is the effect stronger in free standing films than
in supported ones? We have mentioned that the eigen-
modes of supported films of thickness h with no friction
are identical to those (the symmetric ones) of free stand-
ing films of thickness 2h. Thus our model predicts that
the effect in a supported film is just as large as in a free
standing film of twice the thickness. This is indeed in ac-
cordance with experimental observation [3].

5. Why does the effect depend upon the chemical com-
position of the substrate for supported films? It is clear
that the amount of friction of the film material at the
substrate changes the eigenmode spectrum of the film,
such that a dependence on the chemical composition of
the substrate is indeed expected on the basis of our model.
When there is few or no friction with the substrate, even a
film between two walls (i.e., without a free surface) might
exhibit features in its eigenmode spectrum which are to
change the glass transition. It will be interesting to study
this case in detail along the lines of the above model, since
there are numerous simulation results on this geometry
[33–35]. For a quantitative comparison with experimental
data, however, the friction coefficients would have to be
determined for the systems investigated. One should be
aware of the fact that this also induces some uncertainty
in the numerical value of E derived from our fit (cf. Fig. 4),
since we have not characterized the friction of the films on
the substrate.

6. Why is there sometimes an increase of Tg in thin
films [11–13]? We can try to give a rough idea to what
extent effects like this may be accounted for within our
model, by including the interaction of the free surface with
the substrate via long range forces. This is described most
conveniently by replacing σq2 by σq2 + d2V

dh2 , where V (h)
is the effective interface potential of the film due to long
range forces [36,37]. For unretarded van der Waals forces,
V (h) = −A/12πh2, where A is the Hamaker constant. If
A > 0, d2V

dh2 is negative, such that the van der Waals forces
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tend to destabilize film, giving rise to spinodal dewetting
for sufficiently thin films. In any case, a positive A will
reduce the relaxation rate of all of the modes, including
the one at q = 1/h, and thereby tend to increase the
glass transition temperature. Quantitatively, this effect is
obtained by accordingly replacing σ in equation (11) by
σ− A

2πh2 . As it turns out, Tg attains a minimum at hmin =
3
√
A/2πσ, and increases sharply for smaller thickness. For

A = 2.2 × 10−20 J, representing PS on silicon oxide [18],
this is at hmin ≈ 1 nm. An increase of Tg above T 0

g at a film
thickness significantly larger than 1 nm can be explained
only with an unphysically large Hamaker constant.

However, one should anyway be cautious with trying
to interpret an increase of Tg in thin films in the frame-
work of our model if working with polymers other than
PS [10–13]. It is not at all clear what impact a possible
crystallization (which is not present in atactic PS) can
have on Tg(h). Consequently, possible model systems for
studying the mechanism discussed in the present paper
have to be carefully chosen to ensure the absence of any
pronounced inner texture of the film. Our model can be
appropriate only for ‘structureless’ films, and might break
down for films with a pronounced layered texture like,
e.g., a Langmuir-Blodgett film [38], or for other polymers
which may crystallize at least in some part of the film.

6 Outlook

It is tempting to apply the view developed here also to
the surface of a bulk polymer sample, for which the spec-
trum is obtained setting α = q/2. As it is readily seen,
one should expect surface melting at the polymer surface,
down to a thickness of hsm = h0T

0
g (T 0

g − T )−1 [39]. This
is very much along the lines of first ideas which had been
put forward to explain the observed reduction of Tg in
thin films [1]. To the best of our knowledge, there is yet
no conclusive evidence in favor or in disfavor of polymer
surface melting.

To confirm the theoretical concept put forward here,
an ab initio derivation of the memory kernel, m{φ}, from
the statistics and microscopic transport properties of the
individual molecule would be desirable. Furthermore, it
is important to elaborate on the significance of Young’s
elastic modulus, E, at the glass transition. This was deter-
mined experimentally using our model to be E = 44 MPa,
but it is not yet clear what physical principle distinguishes
this value. A complete theory of the glass transition on the
basis of the proposed model would be rather cumbersome,
since it involves two strongly nonlinear mechanisms mu-
tually affecting each other: freezing by the mode coupling
mechanism, and non-Newtonian effects on the viscosity.
Our model furthermore suggests that the glass transition
in a homopolymer may be viewed as a mode-coupling-
model freezing of its viscoelastic bulk modes. This needs
not to contradict more classical views of the glass transi-
tion in homopolymers, but might serve as an interesting,
and potentially useful, alternative approach.

The authors owe many very helpful hints to J.A. Forrest
and K. Dalnoki-Veress. We are furthermore indebted to D.
Johannsmann, J. Baschnagel and R. Blossey for stimulating
discussions. Funding from the Deutsche Forschungsgemein-
schaft within the Priority Program ‘Wetting and Structure
Formation at Interfaces’ is gratefully acknowledged.
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