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Abstract. A general phenomenological reaction-diffusion model for flow-induced phase transitions in com-
plex fluids is presented. The model consists of an equation of motion for a nonconserved composition
variable, coupled to a Newtonian stress relation for the reactant and product species. Multivalued reaction
terms allow for different homogeneous phases to coexist with each other, resulting in banded composition
and shear rate profiles. The one-dimensional equation of motion is evolved from a random initial state to
its final steady state. We find that the system chooses banded states over homogeneous states, depending
on the shape of the stress constitutive curve and the magnitude of the diffusion coefficient. Banding in the
flow gradient direction under shear rate control is observed for shear-thinning transitions, while banding
in the vorticity direction under stress control is observed for shear-thickening transitions.

PACS. 47.20.Ft Instability of shear flows – 47.20.Hw Fluid dynamics: Morphological instability; phase
changes – 05.45.-a Nonlinear dynamics and nonlinear dynamic systems – 05.70.Ln Nonequilibrium and
irreversible thermodynamics

1 Introduction

There is a significant body of experimental evidence doc-
umenting the existence of sharp, stable interfaces sepa-
rating two or more phases or “bands”, in shear flow in
complex fluids. This phenomenon has been reported in
various types of surfactant solutions [1,2], polymers [3],
liquid crystals [4] and colloidal suspensions [5]. There ap-
pears to be a compelling generality between these “phase
transitions” in different complex fluids:

i) The onset of banding or phase separation manifests
itself as a discontinuity in the “flow curve” of the sys-
tem. The flow curve is the unique relationship between
the measured shear stress and the applied shear rate
(or vice versa) at steady state. An experimental flow
curve typically contains segments that correspond to
homogeneous flow, as well as segments corresponding
to inhomogeneous flow. The individual homogeneous
bands that make up the inhomogeneous state each
have their own homogeneous flow curve, which we shall
refer to as a “constitutive curve”. The inhomogeneous
flow curve then represents the response of the system,
averaged over different spatial regions that occupy dif-
ferent homogeneous flow branches, in proportions to
maintain the externally controlled shear stress or shear
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rate. (Henceforth we will use the terms stress and shear
stress interchangeably, unless otherwise specified.)

ii) The transition only occurs above a unique and repro-
ducible critical stress or shear rate.

iii) The flow curve can be qualitatively different depend-
ing on whether the average stress or the average shear
rate in the system is held fixed. (In a typical rheo-
logical experiment this is achieved by controlling the
torque or angular velocity, respectively.) For interme-
diate stresses or shear rates, the flow curve usually has
multiple branches that are not equally accessible under
both stress and shear rate control. For weak and strong
flows, the flow curve is single-valued, and the same lo-
cus of points is traced out under stress or shear rate
control.

iv) The flow-induced bands have different shear rates or
shear stresses, and are generally also distinguished by
some combination of different degrees of order and dif-
ferent microstructures.

v) The interfaces between the bands may be aligned in
the direction of the flow gradient or the flow vortic-
ity. Each banding orientation has its own rheological
signature. In shear-thinning systems, for example, a
stress plateau in the flow curve usually indicates gradi-
ent banding, while extrema in the stress (as a function
of shear rate) usually indicate vorticity banding. One
of us [6] has constructed possible flow curves based
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on the banding orientation and the character of phase
coexistence (shear thinning vs. shear thickening).

Gradient banding has been unambiguously observed in
solutions of wormlike micelles. In strain-controlled exper-
iments on shear-thinning solutions, a stress plateau coin-
cides with shear banding in the gradient direction [7]. In
shear-thickening solutions [1], a gel-like phase can be in-
duced by flow. Under shear rate control the induced phase
fills the system at steady state, resulting in a discontinuous
stress jump in the flow curve. Under stress control phase
coexistence between solution and gel is observed, the gel
fraction being an increasing function of stress. In the cor-
responding flow curve the shear rate shows a minimum
and maximum. In bcc cubic crystals of triblock copoly-
mers [3], Eiser et al. observed two stress plateaus in the
flow curve under controlled shear rate. X-ray diffraction
shows that each plateau corresponds to different orienta-
tions (relative to the flow direction) of dense planes in the
crystal.

Vorticity banding has been reported in dense colloidal
suspensions [5] and surfactant solutions of multilamellar
vesicles [2]. When the shear rate is held fixed, the flow
curve shows a maximum and minimum in the stress. Un-
der controlled stress, there is a jump up in shear rate
upon increasing stress, and a jump down in shear rate
upon decreasing stress. The same qualitative curves have
also been observed in surfactant hexagonal phases [8], al-
though in that case vorticity banding has not yet been ex-
plicitly verified. Such behavior is analogous to that of the
shear-thickening wormlike micelles, if the roles of stress
and shear rate are interchanged.

In steady state there can be no acceleration, so the to-
tal stress must be divergence free. In planar shear flow, this
implies that the shear rate in the vorticity direction and
the shear stress in the gradient direction are uniform. Vor-
ticity banding thus corresponds to a scenario where bands
share a common shear rate but can have different shear
stresses (see Fig. 1). Similarly, when bands lie in the gra-
dient direction the stress is uniform across the bands and
the shear rate can vary. Most experiments where banding
has been observed have been carried out in the curved
geometries of cone-and-plate or Couette rheometers. The
gaps in these rheometers are usually very thin, and in this
limit the flow is approximately a planar shear flow. (We
also note that we consider flows in the Stokes’ flow limit.)

The microscopic mechanisms causing the transitions
in all these complex fluids are likely to be highly system
specific, and govern the critical shear rate or shear stress,
the structure of the flow-induced phases, and the detailed
shape of the flow curves. At a macroscopic level, however,
there appears to be a high degree of universality between
systems. As we have discussed, different complex fluids
can produce qualitatively similar flow curves. By simply
analysing the shape of these flow curves, we have extracted
information about the banding orientation of the transi-
tion [6], as well as the stability of the system [9].

The obvious analog to this way of thinking is the
well-known Landau-Ginzburg theory of equilibrium phase
transitions. A free-energy functional consisting of a
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Fig. 1. a) Gradient banding: flow-induced phases lie in the
direction of the velocity gradient (arrow shows flow direction).
The bands share the same shear stress, but can have different
shear rates. b) Vorticity banding: bands lie in the flow vorticity
direction. Here, the shear rate is uniform across the bands, but
the shear stress can vary from one band to the other.

double-well local free energy and a square gradient term
reproduces all the phenomenology of a phase transition
in the region of the critical temperature, for many differ-
ent systems. However, a microscopic theory is required to
calculate the Landau coefficients. In this work, we use a
multivalued reaction diffusion scheme to construct a gen-
eral phenomenological theory to describe phase transitions
in flow; in the spirit of Landau-Ginzburg theory, such a
model could in principle be derived from microscopic the-
ories.

The most difficult step in devising such a nonequilib-
rium theory is determining the important variables. Typ-
ically there are three significant quantities: i) a species
concentration, which is a conserved scalar, ii) the momen-
tum density, which is a conserved vector and iii) the stress,
which is a nonconserved tensor. The momentum density is
described by the Navier-Stokes equation, and its current
is the stress. In addition, nonconserved “microstructural”
order parameters exist that contribute to the stress. These
may be scalars such as chain length in wormlike micelle
solutions, or tensors such as molecule orientation. Since all
of these variables have different relative relaxation times,
one must distinguish between slow variables, which require
their own equations of motion, and fast variables, which
relax quickly to a steady-state value.

The choice of slow variables affects the structure of the
equations of motion and the couplings between them, and
therefore the dynamics of the system. In models of hydro-
dynamic instabilities, for example, the momentum is con-
sidered to be a slow variable. A phenomenological stress
constitutive equation is often used: if the stress is taken
to be a fast variable, this relation is simply an algebraic
function of the rate of strain tensor, such as the Newto-
nian relation for simple fluids; if the stress is taken to be
a slow variable, this relation takes the form of a differ-
ential equation, such as the Upper Convected/Oldroyd-B
Maxwell model for polymer melts. The hallmark of com-
plex fluid rheology, however, is the coupling between the
velocity and/or the stress and the microstructure of the
fluid. In microscopic theories, generally an equation of mo-
tion is not written for the total stress, but for another slow
variable that makes an important contribution to it, such
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as the director in nematic liquid crystals or the second
moment of the configuration tensor in polymer melts.

Schmitt, Marques and Lequeux [10] have classified flow
instabilities in complex fluids as “mechanical” or “spin-
odal” instabilities, using a model where concentration and
momentum are the slow variables. If a perturbation to the
shear rate first makes the system go unstable, the instabil-
ity is mechanical, while it is spinodal if the concentration
becomes unstable first. Note that “instability” as is used
here refers to a linear instability. Any instability, linear
or nonlinear (we return to this issue at the end of the
paper), can lead to a macroscopically shear-banded state
that resolves the instability.

Shear banding associated with momentum instabilities
have been analyzed in detail at a high (macroscopic) level,
using the phenomenological Johnson-Segalman model [11–
13]. Here a nonconserved “polymer” stress tensor, play-
ing the role of the slow variable, is included in the total
stress, resulting in a multi-valued stress constitutive re-
lation. This model produces gradient banding and a flow
curve with a stress plateau, and is considered a reason-
able mimic of shear-thinning wormlike micelles. Micro-
scopically derived theories for wormlike micelles [14] and
nematic liquid crystalline melts [15] yield a nonmonotonic
relation similar to the Johnson-Segalman model, but with
the benefit of a molecular interpretation.

An alternative caricature to these models has been de-
veloped in phenomenological theories for shear thickening.
Originally, Ajdari [16] proposed an equation of motion for
the position of an interface that separates high- and low-
viscosity phases under shear. By coupling this equation
with conservation laws and a Newtonian stress constitu-
tive equation for the micellar solution, a nonmonotonic
flow curve was produced. Goveas and Pine adopted this
approach to describe shear-thickening wormlike micelles
and were able to successfully reproduce much of the ex-
perimental phenomenology. The flow curve was then used
to explain the differences in stress vs. shear rate control,
based on a linear-stability analysis of the interfacial height
equation. In this case, the momentum and micellar solu-
tion stress were taken to be fast variables, while an equa-
tion of motion was written for a scalar variable, which
is the macroscopic manifestation of changes in the fluid
microstructure.

However, the formulation of Goveas and Pine did not
contain any mechanism for the formation of the shear-
induced state, so that the existence of the new phase was
simply postulated by the presence of an interface with its
own dynamics. In this paper we present a generic phe-
nomenological model that admits a flow-induced phase,
and incorporates spatial gradients. The interface structure
and its stability emerge naturally from the steady-state
conditions of this model. The inclusion of spatial gradients
(or interface stability) is a necessary condition to resolve
the coexistence criteria of shear-induced phases [17].

The model consists of a reaction-diffusion equation of
motion for the volume fraction of a reacting species, i.e.
a scalar nonconserved order parameter representing mi-
crostructural change in a complex fluid. There are fast

stress variables associated with the reactant and product
species, which contribute additively to the total stress. We
have continuously evolved the model from a homogeneous
to a phase-separated state, and examined how thinning
and thickening flow curves, as well as the size of the gra-
dient terms, affect phase transitions, and in particular the
banding orientation (vorticity vs. gradient banding). Most
significantly, we are able to probe the nonlinear dynamic
behavior of the system.

2 Minimal model

Our phenomenological theory consists of a general
reaction-diffusion scheme. The reaction terms represent
the creation and destruction of a variable under flow, and
are analogous to the local free-energy terms in a Landau-
Ginzburg theory. This variable may embody a species
concentration, or a structural parameter such as aggre-
gate size or molecule orientation. While this scheme is
meant to be quite general and is a vehicle for capturing
the general physics for many complex fluids, a reaction
diffusion scheme has a literal basis for wormlike micelles
and onion solutions. In the wormlike micelle case, such
“reaction” terms correspond to the constant breaking and
recombination of the “living” polymers; while in onion
solutions, the reaction terms might correspond to the for-
mation of onions. The steady-state onion size scales as the
inverse square root of the shear rate [18] and is a reversible
function of the shear rate; i.e. the size is independent of
whether smaller onions are created by increasing the shear
rate applied to larger onions, or larger onions are created
by decreasing the shear rate applied to smaller onions.
This indicates that onion combination and fracture pro-
cesses compete to attain steady state, and these processes
have different dependences on shear rate.

Consider a system that is one-phase at equilibrium,
and consists solely of a species, A. Planar shear flow is then
applied to this system: the coordinate system is shown in
Figure 1, where x, y and z denote the flow, gradient and
vorticity directions, respectively. We consider only varia-
tions in y and z in this work. Suppose that a new phase,
B, can be induced by flow, such that at a given shear
rate (or stress) a dynamic equilibrium between A and B
is established. We write this schematically as

A ⇀↽ B . (2.1)

Let us define an order parameter, φB ≡ φ, which corre-
sponds to the volume fraction of the B-species (although
allowing φ to correspond to a structural variable is also vi-
able). The system is constrained to have constant density
such that

φA + φB = 1 . (2.2)

Notice that φA and φB are nonconserved variables, al-
though the total density is conserved. We write the fol-
lowing equation of motion for φ as

∂φ

∂t
= R(φ, γ̇) + D∇2φ , (2.3)
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where R(φ, γ̇) represents the forward and backward “re-
actions” that create and destroy the new phase, γ̇(y, z) =
dvx/dy is the local shear rate (where vx is the component
of the velocity in the flow direction), and D is an effective
diffusion coefficient (taken to be a constant).

The dynamics modelled by equation (2.3) are equiv-
alent to the relaxational dynamics of a nonconserved or-
der parameter, φ, for an equilibrium phase transition. The
right-hand side of equation (2.3) corresponds to −δF/δφ,
where F (φ) =

∫
dx[f(φ) + 1

2D(∇φ)2] is the free-energy
functional (within a square-gradient theory). R(φ, γ̇) is
analogous to the derivative −∂f(φ)/∂φ. In the same way
that a double well potential in the free energy signals the
possibility of equilibrium phase coexistence, a multivalued
reaction term can allow for flow-induced banding.

The diffusion terms in equation (2.3) are the analog of
the nonlocal terms in the free energy and provide gradients
that can support inhomogeneities and describe interfaces
between states. The diffusion coefficient is thus a measure
of the interfacial tension in the system, and its magnitude
is proportional to the square of the interfacial width. How-
ever, unlike at equilibrium, where a global minimization
principle applies, the diffusion terms are necessary for de-
termining the conditions for phase coexistence in flow [17]
(see next section).

3 Constitutive curves

To compute flow curves for the system, stress constitu-
tive equations for the different components must also be
specified. The simplest possible scheme involves additive
Newtonian relations for each species

σ = σA + σB , σα = ηαφαγ̇ , (3.1)

where σ is the total shear stress, and σα and ηα are the
shear stress and viscosity, respectively, of species α =
A,B. Stress and composition are thus effectively coupled
in the system. Applying the density constraint, equation
(2.2), gives an expression for the constitutive curve of the
system,

σ = [φ(c − 1) + 1]γ̇ , (3.2)

where φ = φ(γ̇) is the solution to equation (3.3), c =
ηB/ηA is the ratio of the viscosities of the two components,
and we have set ηA = 1 for simplicity.

The homogeneous steady-state solutions to equa-
tion (2.3), where ∇2φ = 0, are given by

R(φ, γ̇) = 0 . (3.3)

A multivalued R(φ, γ̇) thus leads to more than one ho-
mogeneous steady state for equation (2.3.) This in turn
produces a constitutive curve with multiple branches, via
equation (3.2). In this paper, we choose the following form
for R(φ, γ̇):

R(φ, γ̇) = |γ̇|φAφ2
B − kφB , (3.4)

φ 1 φ 2 φ 3

Volume fraction φ

-0.2

-0.1

0

0.1

0.2

R
ea

ct
io

n
 R

at
e 

R
 (

φ)

Fig. 2. Multivalued reaction scheme (see Eq. (2.3)) which pro-
duces three possible roots, φ1, φ2 and φ3, corresponding to sta-
ble, unstable and stable homogeneous states, respectively, for
a fixed value of the shear rate.

which yields the curve shown in Figure 2, for an im-
posed γ̇. In equation (3.4) k represents a rate constant
for a backward reaction, which has dimensions of inverse
time and is henceforth set to unity. This scheme might
be given the physical interpretation of a reaction path-
way where both A and B molecules participate to form B
molecules, but B molecules can disintegrate on their own
to form A molecules. We stress, however, that our model
is purely phenomenological and does not as such apply
to any specific system. Certainly, other multi-valued func-
tional forms could be chosen for R(φ, γ̇), which would also
result in a multi-valued constitutive curve.

The forward reaction term in equation (3.4) has a lin-
ear shear rate dependence, so we must take its absolute
value from symmetry considerations. In microscopic the-
ories for flow-induced reactions in wormlike micelles [19]
and polymers [20], such an effective reaction rate also has
a linear or nonanalytic form, resulting from the projection
of tensorial degrees of freedom onto a scalar order param-
eter. Reaction terms with nonlinear and nonanalytic flow
rate dependences are, of course, also conceivable.

For a given local shear rate, the reaction scheme of
equations (2.2, 3.3, 3.4) yields the following homogeneous
steady states:

φ1 = 0 , (3.5a)

φ2 =
1
2
− 1

2

√
1 − 4

γ̇
, (3.5b)

φ3 =
1
2

+
1
2

√
1 − 4

γ̇
. (3.5c)

Performing a linear-stability analysis on equation (2.3), at
fixed γ̇, shows that φ1 and φ3 are stable fixed points for
the system, while φ2 is an unstable fixed point. This is
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Fig. 3. Flow curves (from Eqs. (3.3, 3.2) and (3.4)) corre-
sponding to the minimal model. At low shear rates, the flow
curve is single-valued (branch 1). Above a certain shear rate (or
stress), an additional unstable branch, 2, and a stable branch,
3, exist. These branches correspond to the homogeneous roots
{φ1, φ2, φ3} from equations (3.5) for imposed shear rate, and
{φ1, φ

′
2, φ

′
3} from equations (3.8) for imposed stress. In the for-

mer case, branches 2 and 3 are separated by P , while they are
separated by Q in the latter. Thus, the line segment between
P and Q is stable under controlled shear rate, but unstable un-
der controlled stress. (a) Shear-thickening flow curve for c > 1,
illustrating the controlled shear rate case. At a fixed shear
rate, Γ , the system can choose between homogeneous states
on branches 1 and 3, or gradient band between these branches
at stress σ∗. (b) Shear-thinning flow curve for c < 1, illustrat-
ing the controlled stress case. At fixed stress Σ, the system
can vorticity-band at shear rate γ̇∗ between 1 and 3, or choose
between homogeneous states on these same branches.

evident from Figure 2, where the middle root has positive
slope dR/dφ > 0.

Substituting the homogeneous roots from equa-
tion (3.5) into equation (3.2) produces three branches of
the constitutive curve (labelled as 1, 2 and 3, respectively,
in Fig. 3). Notice that below a certain shear rate, γ̇ = 4,
only the φ1 root is real and the reaction curve is single-
valued. This is marked as point P in Figure 3, and has
coordinates

{γ̇P , σP } = {4, 2(c + 1)} . (3.6)

Physically, this means that only species A exists at low
(uniform) shear rates. From equation (3.2), we can see

that this one-phase system (φA = 1) is Newtonian, and the
corresponding flow curve has a slope of unity. The slope
of the stable flow-induced branch 3 depends on the value
of the parameter c. For c < 1, a transition from branch
1 to branch 3 is shear thinning, while for c > 1 such a
transition is shear thickening. The locus of flow-induced
roots (φ2, φ3) exhibits a minimum in the shear stress as
a function of shear rate, which is denoted as point Q in
Figure 3:

{γ̇Q, σQ} =
{

(1 +
√

c)2√
c

, (1 +
√

c)2
}

. (3.7)

For a given value of the local stress, the homogeneous
steady states are given by

φ1 = 0 , (3.8a)

φ2′ =
(σ − c + 1) − √

(σ − c + 1)2 − 4σ

2σ
, (3.8b)

φ3′ =
(σ − c + 1) +

√
(σ − c + 1)2 − 4σ

2σ
. (3.8c)

Note that these roots are found by recasting equation (3.4)
in terms of the stress, by using equation (3.2). This proce-
dure is not equivalent to substituting equation (3.2) into
equation (3.5). This is because while the locus of homoge-
neous states is the same under fixed local stress or shear
rate, the stability of these steady states is not; i.e. the por-
tion of the constitutive curve between P and Q is unstable
under fixed local stress, but stable under fixed local shear
rate. In Figure 3, point Q marks the stress above which
the constitutive curve is multivalued for controlled stress,
while P marks the strain rate above which the constitutive
curve is multivalued for controlled shear rate.

In an experiment, however, only the average stress and
shear rate can be controlled. If the average shear rate is
held fixed at Γ , for example, the system can choose be-
tween various options (illustrated in Fig. 3a):

i) A homogeneous low stress state, φ1.
ii) A homogeneous high stress state, φ3′ .
iii) A mixture of states i) and ii), where the interfaces

between phases lies in the vorticity direction (vortic-
ity banding). Note that i) and ii) cannot coexist with
each other in the y-direction, since the stress must be
homogeneous in the gradient direction.

iv) A mixture of high shear rate phase, φ3′ and a low shear
rate phase, φ1. Here the system attains an intermedi-
ate stress, σ∗, and the relative proportions of the two
phases are set such that the average shear rate is main-
tained at Γ . Since the bands have the same stress, but
different shear rates, this scenario corresponds to gra-
dient banding.

While it appears from Figure 3 that there is a multiplicity
of stresses σ∗ at which the system can gradient-band, in
fact the system selects a particular stress (see next sec-
tion).

If, instead, the average stress is fixed at Σ (illustrated
in Figure 3b), the system can choose a high or low shear
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rate homogeneous phase, or it can gradient-band between
these. Alternatively, it can band in the vorticity direction
between high and low stress states, by adopting a shear
rate γ∗. There is also a selected shear rate for vorticity
banding. The essential question is: which of the many pos-
sible states available to it does the system actually choose
and why?

4 Calculating the banding stress and shear
rate

The inclusion of gradient terms in equation (2.3) causes
stress selection for gradient banding, and shear rate se-
lection for vorticity banding [17]. The selected stress and
shear rate are determined by mathematically connecting
two different homogeneous stable states to form an inho-
mogeneous profile. To find the banding shear rate γ̇∗ at
which vorticity banding can occur, equation (2.3) is in-
tegrated across the domain at steady state. A banding
solution (homogeneous phases separated by interfaces) is,
by definition, one that has no gradients in φ at the bound-
aries. We obtain the following condition:

∫ φ3(γ̇
∗)

φ1(γ̇∗)

dφR[φ, γ̇∗] = 0 , (4.1)

where φ1 and φ3 are given by equations (3.5). This
condition applies for any analytic R[φ, γ̇]. Other gradi-
ent terms could either lead to a different integral con-
dition, or to no simple integral condition at all. For ex-
ample, the gradient term g(φ)∇2φ leads to the condition∫ φ3

φ1
dφR[φ, γ̇]/g(φ) = 0, while the term (∇φ)2 is not in-

tegrable. Note that, by symmetry, only even powers of
gradients and a convective term such as v · ∇φ (which
drops out anyway) are allowed in planar shear flow.

Defining a new function, F [φ, γ̇] =
∫ φ

0
dφ′R[φ′, γ̇], we

can rewrite equation (4.1) as

F [φ1(γ̇∗), γ̇∗] = F [φ3(γ̇∗), γ̇∗] , (4.2)

which is analogous to the common tangent construction
from equilibrium thermodynamics. We note that the inter-
pretation of F as the free energy in an equilibrium phase
transition is purely formal and not physical, as this is a
dynamic system. Using equation (3.5) in equation (4.2)
gives

γ̇∗ = 4.5 . (4.3)

To calculate the banding stress σ∗ at which gradient-
banding can occur, equation (4.1) must be recast in terms
of the shear stress using the stress constitutive relation,
equation (3.2) to obtain a relation γ̇(σ, φ). The banding
stress in our minimal model is only a function of c and is
given by the solution of the following equation:

F [φ1′(σ∗), σ∗] = F [φ3′(σ∗), σ∗] , (4.4)

Table 1. Banding stress σ∗, points of instability P and Q,
and coexistence conditions for different values of c. In all cases
γ̇P = 4 and γ̇∗ = 4.5, while the stress and shear rate on branch
φ1 are related by σ1 = γ̇1.

c σ∗ φ3(σ
∗) γ̇(φ∗

3) σP γ̇Q σQ

0.3 2.815 0.810 6.504 2.6 4.374 2.395
0.6 3.606 0.732 5.100 3.2 4.066 3.149
1.2 4.910 0.642 4.352 2.4 4.008 4.391
2.7 7.625 0.529 4.014 5.4 4.252 6.986

where F [φ, σ∗] =
∫ φ

0
dφ′R[φ′, γ̇(σ, φ′)] yields

F [φ(σ∗), σ∗]=
σ∗

(c − 1)4
[
− 1

3 φ̃3 + 1
2 (c + 2)φ̃2 + 3

2c

− (2c + 1)φ̃ + 1
3 + c ln φ̃

]
− 1

2φ2(σ∗) , (4.5)

φ̃ = φ(σ∗)(c − 1) + 1, (4.6)

and φ1′ and φ3′ are given by equations (3.8). The selected
stress σ∗ and shear rate γ̇∗ are shown in Figure 3 for c =
0.3, 2.7, and given in Table 1.

5 Dynamical selection of steady states

In the preceding sections we have seen that certain ho-
mogeneous and banded states are available to the system,
based on a steady-state analysis and linear-stability con-
siderations. To determine which of these states is selected
in practice, equation (2.3) must be evolved in time; to
make contact with experiments we can only impose con-
straints of fixed average shear rate or stress. In this work
only one-dimensional calculations are performed, so that
the equation of motion is solved either in the y (gradient)
or z (vorticity) directions. If there are composition mod-
ulations in the y-direction, these can only cause modula-
tions in the shear rate (gradient banding), since the shear
stress must be uniform in y. If the average stress is con-
trolled, there is only one “interesting” stress σ∗ at which
the system can become inhomogeneous in the y-direction.
Due to the numerical difficulty of fixing a precise stress
in the system, we do not consider this case. By compari-
son, if the average shear rate is controlled, there is a wide
range of shear rates for which we can investigate whether
the system remains homogeneous or gradient-bands. Sim-
ilarly, when composition modulations in z are allowed, we
can only look for vorticity banding under controlled stress
within this calculation. Gradient banding can occur only
if the shear rate is set exactly at γ̇∗, which we do not study
here.

5.1 Controlled average shear rate

We first consider the system under shear rate control,
and only allow for spatial variations in y. Integrating the
stress relation, equation (3.2), across the domain (where
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Fig. 4. Time evolution of equation (5.1), for random initial
conditions, c = 0.3, D = 0.001 and an imposed shear rate
V = 4.1.

the shear stress is independent of y) gives the local shear
rate as a function of V , the velocity difference across the
system. Then equation (2.3) becomes

∂φ

∂t
=

V∫
dy {1/ [φ (c − 1) + 1]}

φ2(1 − φ)
φ(c − 1) + 1

− φ + D
∂2φ

∂y2
.

(5.1)

This is an integro-differential equation, instead of the dif-
ferential equation that yielded the analysis of Section 3.
Notice, however, that the same homogeneous steady states
are obtained. Equation (5.1) is solved using random ini-
tial conditions with φ uniformly chosen within the range
[0 − 1], and no flux boundary conditions, keeping V at
a fixed value. The domain size is normalized to unity, so
that V is synonymous with the average shear rate.

To solve equations (5.1), we use a fully implicit finite-
difference scheme, using a central difference approxima-
tion for first and second spatial derivatives, and a forward
difference approximation for the time derivative. Nonlin-
ear terms are linearized in time as follows:

W [φ(x, t + ∆t)] = W [φ(t)] + [φ(t + ∆t) − φ(t)]
∂ W [φ, t]

∂φ
.

(5.2)

The integral in equation (5.1) is evaluated explictly, i.e. at
the previous time step. In general, 300 spatial mesh points
are used with a time step of 1/10000 [21].

For some initial conditions the resulting steady states
are homogeneous, while for others they are banded. (Fig. 4
shows the evolution of the system to a banded state,
for one such set of initial conditions.) This implies that
there is a basin of attraction for attaining a banded state.
Our results can be categorized according to the shape of
the constitutive curve and the magnitude of the diffu-
sion coefficient, and whether the system is shear thinning
or thickening. We find that decreasing the diffusion co-
efficient increases the basin of attraction of the banded
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Fig. 5. Basins of attraction for different states, for c = 0.3
and imposed mean shear rates V ≡ ¯̇γ. In I the system usually
attains the homogeneous flow branch φ = φ1 = 0. In II the
system usually bands at stress σ∗, and in III the system usually
attains the homogeneous state φ = φ3. For V < Vc � 3.3 the
system always attains the branch φ = φ1 = 0. The behavior is
smooth as V is increased through these regimes (see data in
Tab. 2).

state and destabilizes the homogeneous state. That is,
the system is more likely to band for narrow interfaces.
Intuitively, this makes sense since the banded state rep-
resents a mathematical connection between two homoge-
neous states: the wider the interface, the more difficult it
is for gradients to be nonzero near the boundaries of the
system. For c < 1, the system crosses over from a homo-
geneous state on branch 1 to a banded state much before
V = γ̇P . Notice that banding is first allowed, in principle,
when the imposed shear rate is larger than that of the low
shear rate band at the selected stress σ∗. The “critical”
mean shear rate Vc, where the system actually first starts
to band, is generally somewhat higher than this: hence, Vc

is the low shear rate limit of the stress plateau that would
be measured experimentally. Below Vc the system always
chooses the homogeneous state, and the exact value of
Vc depends on the diffusion coefficient D, with a smaller
Vc for smaller values of D. Increasing the diffusion coef-
ficient widens the interface, affecting where the interface
first “touches” the wall [13] and the ability of a banded
system to satisfy the boundary conditions, as discussed
above.

For a window of applied mean shear rates V roughly
in the region γ̇P < V < γ̇Q, the system is more inclined
to band than to remain homogeneous (see Fig. 5). The
crossover to a situation where homogeneous states are
preferred to banded states occurs for V ≥ γ̇Q, with the
crossover at a higher V for smaller values of the diffu-
sion coefficient. The chosen homogeneous states always
lie on branch 3 of the constitutive curve. This shows that
the system has made a transition under flow, so that for
c < 1 a shear-thinning transition is seen, as discussed in
section 3. These findings are illustrated in Table 2, for
49 runs with different initial conditions with c = 0.3. The
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Table 2. Summary of results for c = 0.3, for 49 runs with
random initial conditions and controlled mean shear rate V .
In this case, γ̇P corresponds to V = 4.0, and γ̇Q corresponds
to V = 4.374. Banding is first allowed at V = 2.815.

Result
V D φ1 banded φ3

3.3 0.01 49 0 0
0.005 49 0 0
0.001 48 1 0

3.6 0.01 45 5 0
0.005 34 15 0
0.001 6 43 0

3.8 0.01 15 34 0
0.005 8 41 0
0.001 0 49 0

3.9 0.01 0 49 0
0.005 0 49 0
0.001 0 49 0

4.0 0.01 0 49 0
0.005 0 49 0
0.001 0 49 0

4.05 0.01 0 49 0
0.005 0 49 0
0.001 0 49 0

4.1 0.01 0 49 0
0.005 0 49 0
0.001 0 49 0

4.25 0.01 0 39 10
0.005 0 47 2
0.001 0 49 0

4.37 0.01 0 10 39
0.005 0 33 16
0.001 0 49 0

4.4 0.01 0 10 39
0.005 0 21 28
0.001 0 49 0

4.55 0.01 0 2 47
0.005 0 8 41
0.001 0 13 36

4.6 0.01 0 1 48
0.005 0 7 42
0.001 0 20 29

4.7 0.01 0 0 49
0.005 0 4 45
0.001 0 19 30

“critical” shear rate in this case is Vc � 3.3. Figures 6 and
7 show a similar behavior for c = 0.6.

Gradient banding is never observed in our numerical
experiments when c > 1. Here, the chosen final steady
state, above the critical shear rate, is always the stable
high stress homogeneous state on branch 3, which makes
this a shear-thickening transition.

The preceding results are for the case where the shear
rate is held at a steady value, and might apply to a sys-
tem where the mean shear rate is applied to an initially
noisy system. However, most experiments are conducted
by starting up the system from zero shear rate, and then

Volume Fraction as a function of Spatial Position

V=4.05, C=0.6, D=0.005

Volume Fraction as a function of Spatial Position

V=4.05, C=0.6, D=0.01

Fig. 6. Steady-state composition profiles for 49 runs with ran-
dom initial conditions, for c = 0.6 and imposed shear rate
V = 4.05. Here, γ̇P corresponds to V = 4.0, and γ̇Q = 4.066.

discontinuously ramping the shear rate to higher values.
We have tried to mimic this scenario, by bringing the sys-
tem to steady state for V < γ̇P , and then suddenly in-
creasing the value of V to beyond γ̇P . In order to dislodge
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Volume Fraction as a function of Spatial Position

V=4.1, C=0.6, D=0.001

Volume Fraction as a function of Spatial Position

V=4.1, C=0.6, D=0.01

Fig. 7. Steady-state composition profiles for 49 runs with ran-
dom initial conditions, for c = 0.6 and imposed shear rate
V = 4.1

the system from branch 1 to the banded state, however,
we need to add noise of amplitude order unity. Such a
large amount of noise essentially obliterates any memory
of the initial steady state, suggesting that a nucleation

Table 3. Summary of results for c = 2.7, for 49 runs with
random initial conditions and controlled stress Σ. In this case,
σP = 5.4 and σQ = 6.896.

Result
Σ D φ1 banded φ3

5.0 0.01 49 0 0
0.005 49 0 0
0.001 49 0 0

5.4 0.01 49 0 0
0.005 49 0 0
0.001 49 0 0

6.0 0.01 49 0 0
0.005 48 1 0
0.001 36 13 0

7.1 0.01 28 21 0
0.005 0 49 0
0.001 0 49 0

7.2 0.01 0 4 45
0.005 0 40 9
0.001 0 49 0

7.3 0.01 0 0 49
0.005 0 9 40
0.001 0 43 6

7.4 0.01 0 0 49
0.005 0 2 47
0.001 0 23 26

7.5 0.01 0 0 49
0.005 0 0 49
0.001 0 13 36

8.5 0.01 0 0 49
0.005 0 0 49
0.001 0 0 49

event is required for an experimental system to band from
start-up, as was found previously in reference [13].

In general, the banded state consists of two bands, cor-
responding to branches 1 and 3 on the constitutive curve.
For some initial conditions, multiple bands are found. The
runs denoted as “banded” in Table 2 do not differentiate
between these banding configurations. We do not attach
much significance to multiple banding, because it is known
that several interfaces are allowed for planar flow, and the
number of allowed interfaces in such one-dimensional sys-
tems is known to increase as the diffusion coefficient de-
creases [22]. Britton and Callaghan have reported multiple
gradient bands for wormlike micelles in Couette flow [7].
However, it has been shown [13] that simple constitutive
relations (like the one derived here) do not permit multiple
interfaces in Couette flow. This implies that the current
model cannot describe these experimental observations.

5.2 Controlled average stress

Next we fix the average shear stress and solve the model
in the z-direction, hence allowing for vorticity banding at
different stresses. Following a procedure analogous to that
of the previous section, the observation that the shear rate
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is uniform in z allows us to convert equation (2.3) into the
following integro-differential equation:

∂φ

∂t
=

Σ φ2(1 − φ)∫
dz[φ(c − 1) + 1]

− φ + D
∂2φ

∂z2
, (5.3)

where Σ is the imposed average shear stress across the
domain.

Note that interchanging the stress and shear rate vari-
ables in the phenomenological model would “reverse” all
the results of Section 5.1. Thus, branch 3 would be thicken-
ing for c < 1, and the system would be inclined to vorticity
band under stress control, around σP < Σ < σQ. Simi-
larly, the system would remain homogeneous for c < 1.
This reasoning implies that the shape of the flow curve
sets the attractors for the system. If this is true, then
when stress and shear rate are not interchanged, the sys-
tem should be predisposed to vorticity band for c > 1
when the stress is fixed between σP and σQ, but should
remain homogeneous for all stresses when c < 1.

This is indeed what we find from numerical solution
of equation (5.3). Table 3 shows results for c = 2.7 and
various values of Σ. Decreasing the diffusion coefficient
destabilizes the homogeneous state, as in the controlled
shear rate case.

We sometimes observe multiple bands under stress
control, as with the fixed shear rate cases. Bonn et al. [2]
and Chen et al. have seen multiple bands in the vorticity
direction in Couette flow which is probably due to a combi-
nation of the slow coarsening expected in one-dimensional
systems [23] and multiple allowed interfaces [22]. The
stress is nonuniform and monotonic in the flow gradient
direction of a cylindrical Couette device, which implies a
single stable interface. The cylindrical geometry does not,
however, impose such an inhomogeneity along the vortic-
ity direction.

6 Conclusions

We have shown that a simple phenomenological reaction-
diffusion scheme can produce a flow-induced phase transi-
tion, as a consequence of a multi-valued reaction term. The
model consists of an equation of motion for a nonconserved
composition variable, while the stresses induced in the re-
actants and products are assumed to be fast variables.
The character of the model depends on a single parame-
ter c, that controls whether or not the transition is shear
thinning or shear thickening. Above a critical shear rate
(or shear stress), the system may band or remain homo-
geneous. The steady states that are selected from random
initial conditions depend on the shape of the constitutive
curves and the magnitude of the diffusion coefficient:

1. Imposed shear rates: For c < 1 (shear-thinning tran-
sition), the system chooses a low-stress homogeneous
state at low shear rates. Above a critical shear rate,
gradient banding tends to occur for imposed shear
rates around the region of the constitutive curve with
negative slope dσ/dγ̇ < 0 (see Fig. 3a). At shear rates

higher than this, the system is predisposed towards
the high stress homogeneous state. For c > 1 (shear-
thickening transition), the system always chooses this
homogeneous state above the critical shear rate and
gradient banding is never observed.

2. Imposed stress: For c > 1 (shear-thickening transition),
the system chooses a low shear rate homogeneous at
low stresses. Above a critical stress, vorticity band-
ing tends to occur for imposed stresses around the re-
gion of the constitutive curve with negative slope. For
higher stresses, the system is predisposed towards the
high shear rate homogeneous state. For c < 1, the sys-
tem always chooses this homogeneous state above the
critical stress and vorticity banding is never observed.

3. In the regions of the flow curve where banding is ob-
served, we find that the apparent basin of attraction
for banding increases upon decreasing the value of the
diffusion coefficient.

While banding is more pronounced in the vicinity of the
flow curve with a negative slope (where the system is lin-
early unstable for controlled stress), it is also observed in
regions of the flow curve with positive slope. In particu-
lar, the critical shear rate or stress (where banding is first
initiated), lies in the latter section of the flow curve. Here,
the system is nonlinearly unstable to perturbations. Such
behavior has been seen in experiments on shear-thinning
wormlike micelles [24], where the onset of banding occurs
at a lower stress (and shear rate) if the system is given
enough time to explore all fluctuations, as compared to
where banding is induced upon rapidly varying the con-
trol parameters. Porte et al. [25] have discussed various
flow curves that can contain both linearly and nonlinearly
unstable regions: the equilibrium analog of the former is
the spinodal curve, and that of the latter is the metastable
region, where an instability must be nucleated.

Our results are significant because they show that a
minimal model can exhibit a rich phenomenology, and that
the selection rules for phase coexistence are simple. To un-
derstand why the system chooses certain states over oth-
ers in some regions of the flow curve, a nonlinear dynamics
analysis of the model must be performed. We believe that
our scheme represents a new class of reaction-diffusion
equations, because the constraint of fixed average stress
or shear rate turns the governing partial differential equa-
tions into integro-differential equations, which represents
a general class of dynamical equations that, to our knowl-
edge, has not been studied. This system exhibits fascinat-
ing and complex nonlinear dynamics that we will discuss
in a future publication.

Since the shape of the constitutive curve impacts the
choice of banded states, examination of the generality
of the reaction terms is warranted. For example, it is
known [22,26] that the slopes of the crossings and the
steepness of the extrema of the reaction curve can change
the interfacial profile and velocity, which can affect the
system dynamics.

Our current scheme is missing much physics: a com-
plete model would involve coupled equations of motion for
conserved variables (concentration of the various species)
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and nonconserved, tensorial variables (structural vari-
ables, stress), as well as the Navier-Stokes dynamics for
the fluid velocity (momentum). The momentum degrees
of freedom are particularly important, and would qual-
itatively change the nature of the basin of attraction we
have found. Regions of the composite flow curve with neg-
ative slope (between points P and Q in Fig. 3) would have
unstable homogeneous states, so that the homogeneous
states in Table 2, for V = 4.25 and V = 4.37, would not be
found. Also, we have assumed that the individual species
obey Newtonian stress constitutive relations. Typically,
these species are themselves complex fluids, and are either
shear thinning or exhibit a yield stress. In future work, by
systematic exclusion of certain dynamic variables, we will
be able to investigate the individual roles played by the
stress, concentration, etc., in order to determine which
variables are essential to the problem formulation.

One of us [15] has already considered a theory with
stress, momentum and concentration variables in the con-
text of rigid rod suspensions. Separate phase diagrams for
shear-induced phase separation in both the vorticity and
gradient directions were calculated, but the model was
too prohibitively complicated to study which of these ori-
entations would in fact be selected by the system. In this
work, we have used a much simpler scheme to demonstrate
the neccessary analysis (albeit within a one-dimensional
model—see next paragraph) to unambiguously determine
whether banding actually occurs in a system, as well as
the banding orientation. While Schmitt et al. [10] have
also presented quite a simple phenomenological model (in-
cluding both concentration and momentum as dynamical
variables), they did not go beyond a linear-stability anal-
ysis. They also did not consider the case (as we have here)
of a nonconserved variable initiating an instability in the
system.

Our calculations have been carried out only for the
case of planar flow. It has been shown for the Johnson-
Segalman model [13] that the nonuniformity of stress in a
curved geometry has significant effects on banding. In ad-
dition, we have examined the issue of gradient vs. vorticity
banding using a one-dimensional model. Realistically, the
model should be solved considering both vorticity and gra-
dient directions simultaneously. The band orientation may
be influenced by anisotropy in the diffusion coefficient. A
convective term of the form v ·∇φ should also be included
in the equation of motion. Such a term does not appear
in a one-dimensional shear flow, but it can qualitatively
affect transients in phase separation in two dimensions. Fi-
nally, noise has been incorporated into our model through
the initial conditions. While Gaussian noise is present in
the equation of motion through the diffusion term, in a
driven system there may be other noise terms that should
be added.

We stress that our phenomenological theory only
aims to describe the general macroscopic physics of flow-
induced phase transitions. Details concerning the under-
lying structural transformations can only be probed by
more specific microscopic models.
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