
Vol.:(0123456789)

AStA Advances in Statistical Analysis (2024) 108:351–373
https://doi.org/10.1007/s10182-023-00486-8

1 3

ORIGINAL PAPER

Mixture of experts distributional regression:
implementation using robust estimation with adaptive
first‑order methods

David Rügamer1,2,3 · Florian Pfisterer1,3 · Bernd Bischl1,3 · Bettina Grün4

Received: 17 November 2022 / Accepted: 24 October 2023 / Published online: 15 November 2023
© The Author(s) 2023

Abstract
In this work, we propose an efficient implementation of mixtures of experts dis-
tributional regression models which exploits robust estimation by using stochastic
first-order optimization techniques with adaptive learning rate schedulers. We take
advantage of the flexibility and scalability of neural network software and imple-
ment the proposed framework in mixdistreg, an R software package that allows for
the definition of mixtures of many different families, estimation in high-dimen-
sional and large sample size settings and robust optimization based on TensorFlow.
Numerical experiments with simulated and real-world data applications show that
optimization is as reliable as estimation via classical approaches in many different
settings and that results may be obtained for complicated scenarios where classical
approaches consistently fail.

Keywords Mixture models · Deep learning · Structured additive regression · Neural
networks

 * David Rügamer
 david.ruegamer@stat.uni-muenchen.de

 Florian Pfisterer
 florian.pfisterer@stat.uni-muenchen.de

 Bernd Bischl
 bernd.bischl@stat.uni-muenchen.de

 Bettina Grün
 bettina.gruen@wu.ac.at

1 Department of Statistics, LMU Munich, Munich, Germany
2 Department of Statistics, TU Dortmund, Dortmund, Germany
3 Munich Center for Machine Learning, Munich, Germany
4 Institute for Statistics and Mathematics, WU Vienna, Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10182-023-00486-8&domain=pdf
http://orcid.org/0000-0002-8772-9202

352 D. Rügamer et al.

1 3

1 Introduction

Mixture models are a common choice to model the joint distribution of several sub-
populations or subclasses on the basis of data from the pooled population where the
subclass memberships are not observed (for an introduction see McLachlan and Peel
2004). Each subclass is assumed to follow a parametric probability distribution such
that the pooled observations are from a mixture of these distributions. Many appli-
cations of mixture models aim at estimating the distributions of the latent subclasses
and identifying subclass memberships of the observations (McLachlan et al. 2019).
Mixture models have also been used in machine learning, e.g., for clustering (Viroli
and McLachlan 2019), to build generative models for images (Van den Oord and
Schrauwen 2014) or as a hybrid approach for unsupervised outlier detection (Zong
et al. 2018).

Different kinds of mixture models are used depending on the available data struc-
ture and the parametric model which is assumed for each subpopulation or subclass.
In the following, we assume a supervised learning task and that regression mod-
els are used to model the subpopulations. This leads to mixture regression models
which define a mixture of (conditional) models for the outcome of interest, where
the mixture components are still unknown and thus considered latent variables. This
model class is also referred to as mixtures of experts (Gormley and Frühwirth-Schn-
atter 2019). Mixtures of experts allow for the inclusion of covariates when mod-
eling the mixture components as well as for the mixture weights. In the following,
we consider a mixture of experts model where the regression models do not only
include the mean parameter but also other distributional parameters that may depend
on the covariates or features. In addition, we assume that the subpopulation sizes
vary with covariates (or features). This leads to the class of mixture of experts distri-
butional regression models.

1.1 Mixture models and their estimation

As for classical statistical regression models, the goal of mixtures of regressions or
mixture regression models is to describe the conditional distribution of a response
(or outcome), conditional on a set of covariates (or features). Mixtures of regres-
sions have been first introduced by Quandt (1958) under the term switching regimes
where only two-component mixtures of linear regression models were considered,
i.e., the number of subclasses was fixed to two. This was extended to general mix-
tures of linear regression models by DeSarbo and Cron (1988) who referred to this
approach as a model-based version of clusterwise regression (Späth 1979). The
extension to mixtures of generalized linear regression models was proposed in
Wedel and DeSarbo (1995). Aiming for a setting beyond mean regression (Kneib
2013), a distributional regression setting can be used such as generalized additive
models for location, scale and shape (GAMLSS; Rigby and Stasinopoulos 2005)
which also allow for nonlinear smooth relationships between covariates and the dis-
tributional parameter of interest (Stasinopoulos et al. 2018).

353

1 3

Mixture of experts distributional regression: implementation…

Mixture models can be estimated using various techniques, with the expecta-
tion–maximization (EM) algorithm based on the maximum-likelihood principle
being the most prominent one. Other approaches include Bayesian methods such as
MCMC algorithms with data augmentation (Diebolt and Robert 1994). An alterna-
tive way of model specification and estimation was proposed by Bishop (1994) who
introduced mixture density networks (MDNs). MDNs use a mixture of experts dis-
tributional regression model specification. But the relationship between the covari-
ates (or features) and the mixture weights or the distributional regression models is
learned using a neural network. The training of MDNs is done using highly opti-
mized stochastic gradient descent (SGD) routines with adaptive learning rates and
momentum. These procedures have proven to be very effective in the optimization
of large neural networks with millions of parameters and complex model structures.
While often MDNs are advantageous in terms of prediction performance, they lack
interpretability as the relationship between inputs (features) and distribution param-
eters is modeled by a deep neural network.

1.2 Our contribution

1.2.1 Novel modeling approach

In this work, we combine the ideas of interpretable mixtures of regression models
and MDNs to allow for a mixture of experts distributional regression models in a
very general setup. In particular, this approach enables modeling mixtures of sub-
populations where the distribution of every subpopulation is modeled using a distri-
butional regression. Predictors of every distribution parameter in every subpopula-
tion can be defined by linear effects or (tensor product) splines and thereby allow not
only for complex relationships between the features and the distributions’ mean but
also for other distribution characteristics such as scale or skewness. Furthermore,
the subpopulation sizes may vary with features in a flexible way using again a com-
bination of linear effects as well as (tensor product) splines.

1.2.2 Robust estimation

Estimating mixture regression models within a maximum-likelihood framework on
the basis of the EM algorithm works well for smaller problems. However, higher-
dimensional settings where the number of parameters is similar to or exceeds the
number of observations are often infeasible to estimate. In fact, the convergence and
stability of classical algorithms are more and more adversely affected by an increase
in model complexity. Maximum-likelihood estimation of distributional regression
models itself induces a non-convex optimization problem in all but special cases.
Thus, extending mixtures of mean regression models to mixtures of distributional
regression models further complicates the optimization.

In this work, inspired by MDNs, we suggest and analyze the usage of sto-
chastic first-order optimization techniques using adaptive learning rate schedul-
ers for (regularized) maximum-likelihood estimation. Our results show that this

354 D. Rügamer et al.

1 3

approach is as reliable as estimation via classical approaches in many different
settings and even provides estimation results in complex cases where classical
approaches consistently fail.

1.2.3 Flexible and scalable implementation

Common implementations of EM optimization routines are limited in their flexi-
bility to specify a mixture of (many) potentially different distributions but in gen-
eral focus on the case where all components have a parametric distribution from
the same distributional family. Another (computational) limitation of existing
approaches is faced for large amounts of data (observations) as methods usually
scale at least quadratic in the number of observations. On the other hand, SGD
optimizers from the field of deep learning are trained on mini-batches of data
allowing large dataset applications and the use in a generic fashion for all model
classes. We take advantage of this flexibility and scalability and implement the
fitting of the proposed model class using mixdistreg, an R (R Core Team 2022)
software package based on the R package deepregression (Rügamer et al. 2023)
that allows for the definition of mixtures with components from many different
distributional families, estimation in high-dimensional and large sample size set-
tings and robust optimization based on the deep learning platform TensorFlow
(Abadi et al. 2015). In order to use TensorFlow within R, the package reticulate
(Ushey et al. 2022) is used to connect R to Python (Van Rossum and Drake Jr
1995).

1.2.4 Summary of our approach and overview on the paper structure

Our framework unites neural density networks (Magdon-Ismail and Atiya 1998)
with (distributional) regression approaches, extends MDNs by incorporating
penalized smooth effects and comprises various frameworks proposed in the sta-
tistical community such as Leisch (2004); Grün and Leisch (2007); Stasinopou-
los and Rigby (2007) to estimate mixtures of linear, generalized linear, gener-
alized additive or distributional regression models. In contrast to many existing
approaches, our framework further allows to estimate the mixture weights them-
selves on the basis of an additive structured predictor. We refer to this combina-
tion of the model class of mixtures of experts distributional regression with struc-
tured additive predictors and the estimation using neural network software as the
neural mixture of experts distributional regression (NMDR) approach.

The remainder of this paper is structured as follows. In Sect. 2, we present our
model definition. In Sect. 3, we introduce the architecture for SGD-based opti-
mization in neural networks and discuss penalized estimation approaches includ-
ing mixture sparsification. We then demonstrate the framework’s properties using
extensive numerical experiments in Sect. 4 and its application to real-world data
in Sect. 5. We conclude with a discussion in Sect. 6.

355

1 3

Mixture of experts distributional regression: implementation…

2 Methodology

Our goal is to model the conditional distribution of Y ∣ x where Y is the univariate
outcome (or response) of interest. We assume that Y ∣ x ∼ F , where F is a mix-
ture of parametric distributions Fm,m ∈ {1,… ,M} =∶ M . These distributions, in
turn, depend on unknown parameters �m(x) ∈ ℝ

km that are influenced by a set of
features (or covariates) x ∈ ℝ

p . Furthermore, the nonnegative mixture weights are
also allowed to depend on features (or covariates) x ∈ ℝ

p such that �m(x) for all
m = 1,… ,M with

∑M

m=1
�m(x) = 1.

2.1 Model definition

For an observation y in (a suitable subset of) ℝ constituting the support from the
conditional distribution of Y ∣ x , we define the conditional density by

i.e., by a mixture of density functions fm of the distributions Fm . Each component
density fm has its own km distribution parameters �m = (𝜃m,1,… , 𝜃m,km)

⊤ . �m ∈ [0, 1]
are the mixture weights with

∑M

m=1
�m = 1 . The vector � = (�⊤,�⊤)⊤ ∈ ℝ

K+M with
K =

∑M

m=1
km comprises all distribution parameters � = (�1,… ,�M)

⊤ and all mix-
ture weights � = (𝜋1,… ,𝜋M)

⊤.
Each of the parameters �j in � is assumed to depend on the features x through

an additive predictor �j, j = 1,… ,K +M . For the distribution parameters �, a
monotonic and differentiable function hj, j = 1,… ,K, is assumed to provide a
map between the additive structured predictor and the distribution parameter, i.e.,
�j = hj(�j(x)) . The parameter-free transformation function hj ensures the correct
domain of each �j . For example, if �j represents a scale parameter the function, hj
ensures that �j is positive while the additive predictor �j may take arbitrary values in
ℝ.

For the mixture weights, � a single monotonic and differentiable function hK+1 is
assumed to map the M additive predictors to the (M − 1)-dimensional simplex, i.e.,
hK+1 maps ℝM

→ [0, 1]M under the condition that the sum of the weights is 1. This
links the last M additive predictors �𝜋 ∶= (𝜂K+1,… , 𝜂K+M)

⊤ to the set of mixture
weights � . The most common choice in this respect for hK+1 is the softmax function

with

(1)fY∣x(y ∣ �(x)) =

M
∑

m=1

�m(x)fm(y ∣ �m(x)),

hK+1(��) = (softmax1(��),… , softmaxM(��))

softmaxj(�) =
exp(�j)

∑M

l=1
exp(�l)

.

356 D. Rügamer et al.

1 3

This implies

Effects in the additive predictors �K+l, l = 1,… ,M , in (2) are not identifiable with-
out further constraints. We do not enforce any constraints during model training.
Model interpretation is still possible in relative terms (e.g., using a log-odds inter-
pretation). However, some constraints would need to be imposed if identifiable
regression coefficients for the additive predictors are to be obtained.

For all parameters in � , the additive structured predictors �j(x) ensure interpret-
ability of the relationship between the parameter �j and the covariates. For example,
if �K+M is a linear model, i.e., 𝜂K+M(x) = x⊤� , the regression coefficients � can be
interpreted as linear contributions of each of the features to the logits of the mixture
weight for the last mixture component M.

2.2 Additive predictor structure

The model (1) relates all model parameters � to features x through additive predic-
tors �j, j = 1,… ,K +M . As different densities fm and also different parameters �m
have potentially different influences on the conditional distribution of Y ∣ x , every
parameter in � is defined by its own additive structured predictor �j . Here we assume
the additive predictors to have the following structure:

where �0,j corresponds to the model intercept, � j are the linear effects for pre-defined
covariates xL(j) with L(j) ⊆ {1,… , p} ∪ � being a subset of all possible predictors
and �l,j are nonlinear smooth functions for one or more covariates in x with S(j)
being a (potentially empty) set of indices indicating the covariates with nonlinear
predictor effects. We assume that every �l,j(x) can be represented by (tensor product)
basis functions Bl,j,o, o = 1,… ,O , taking one or several columns of x as input and
mapping these onto the space spanned by the basis functions. Denoting
zl,j ∶= Bl,j(x) = (Bl,j,1(x),… ,Bl,j,O(x))

⊤ ∈ ℝ
O , the nonlinear smooth terms can be

written as 𝜙l,j(x) = z⊤
l,j
�l,j where �l,j ∈ ℝ

O are the corresponding basis coefficients for
zl,j.

In principle, such a flexible specification may also be used for �K+1,… , �K+M , i.e.,
for the additive structured predictors related to � . While this is technically possible
(using a different subnetwork for every �m), these predictors are usually assumed to
share one and the same additive structure, i.e., xL(j) and zl,j with l ∈ S(j) are the same
for all j related to the M mixture weights. This further enables a straightforward
interpretation of the predictor–mixture weight relationship, as sharing one addi-
tive predictor across all �m s resembles a multinomial logistic regression model. We
will thus assume the same specification for all these predictors. We summarize all

(2)�m(xi) =
exp(�K+m(xi))

∑M

l=1
exp(�K+l(xi))

, for m ∈ M.

(3)𝜂j = 𝛽0,j + x⊤
L(j)

� j +
∑

l∈S(j)

𝜙l,j(x),

357

1 3

Mixture of experts distributional regression: implementation…

model coefficients of the linear terms by � = (𝛽0,1, �
⊤

1
, 𝛽0,2, �

⊤

2
,… , 𝛽0,K+M , �

⊤

K+M
)⊤

and all model coefficients for representing the nonlinear smooth functions by
� = (𝛾0,1, �

⊤
1
, 𝛾0,2, �

⊤
2
,… , 𝛾0,K+M , �

⊤
K+M

)⊤ . In the following, we summarize these two
parameter vectors as � = (�⊤, �⊤)⊤.

2.3 Model log likelihood

Based on model (1) and the structures imposed on the predictors in (3), the
negative log likelihood of the model parameters � for n independent observa-
tions y = (y1,… , yn)

⊤ ∈ ℝ
n and their corresponding n observed feature vectors

x ∶= (x⊤
1
,… , x⊤

n
)⊤ ∈ ℝ

n×p is given by the sum of the negative log-likelihood contri-
butions �i(�) of each observation i = 1,… , n:

The negative log likelihood can be rewritten as the negative sum of the exponenti-
ated log likelihoods of both the mixture weights �m and the component densities fm
using the log-sum-exp (LSE) function:

In practice, formulation (5) is often preferred over (4) as it is less affected by under-
or overflow problems.

2.4 Identifiability

Identifiability is of concern for the mixture of experts distributional regression
model because of the identifiability problems which could occur due to the mixture
specification, due to the additive structured predictors and due to the softmax map-
ping to the mixture weights.

2.4.1 Mixture models

For any mixture model, trivial identifiability problems may arise due to label switch-
ing and overfitting with either empty or duplicated components. In addition, also
generic identifiability problems may occur for mixtures of distributions but also for
mixtures of regressions. A detailed overview of identifiability problems in the finite
mixture case is given in Frühwirth-Schnatter (2006).

(4)�(�) ∶=

n
∑

i=1

�i(�) = −

n
∑

i=1

log

{

M
∑

m=1

�m(xi)fm(yi ∣ �m(xi))

}

.

(5)−

n
∑

i=1

log

{

M
∑

m=1

exp
[

log�m(xi) + log fm(yi ∣ �m(xi))
]

}

.

358 D. Rügamer et al.

1 3

2.4.2 Additive structured predictors

The components of the additive model with predictor structures of the form (3) are in
general only identifiable up to a constant and also require further restrictions if both
linear and nonlinear smooth effects are defined for one and the same covariate. For
example, �j = �0,j + �1,j(x1) can be equally represented by 𝛽0,j + �̃�1,j(x1) by defining
𝛽0,j = 𝛽0,j + c and �̃�1,j(x1) = 𝜙1,j(x1) − c with c ∈ ℝ , i.e., by adding and subtracting a
constant c in both terms. We ensure the identifiability of nonlinear smooth terms �l,j
by using sum-to-zero constraints for all nonlinear additive functions such as splines
or tensor product splines. The identifiability of linear effects x� in the presence of a
univariate nonlinear effect �(x) must also be ensured. In this case, several different
options exist (see, e.g., Rügamer et al. 2023b). The most straightforward way is to
use a nonlinear effect �(x) with a basis representation that includes the linear effect
as null space (and hence, for enough penalization as discussed in Sect. 3.3, results
in a linear effect). In this case, L(j) only consists of variables that are only modeled
using a linear component (e.g., categorical effects) and L(j) ∩ S(j) = �.

3 Model representation and robust estimation

The observed data log likelihood is, in general, not concave and thus difficult to opti-
mize. We suggest to use optimizers from the field of deep learning by framing our
model as a neural network. This enables the fitting of the full model class of mixture
of experts distributional regression models with additive structure predictors in a
straightforward way. Numerical experiments confirm that this choice—when prop-
erly trained—is not only more flexible and robust than EM-based optimization but
also makes large dataset applications feasible due to mini-batch training.

3.1 Neural network representation

Models described in (1) and (3) can be represented as neural networks in the fol-
lowing way. An exemplary architecture is depicted in Fig. 1. The network architec-
ture implementing model (1) defines at most K subnetworks, where each subnetwork
models one or more additive structured predictors �j of a distribution parameter �j .
Using an appropriate parameter-free transformation function, these additive struc-
tured predictors are mapped to the distribution parameters and passed to a distribu-
tion layer (Dillon et al. 2017). Each distribution layer corresponds to a mixture com-
ponent fm that is further passed to a multinomial or categorical distribution layer,
modeling the mixture of all defined distributions. The mixture weights can either be
directly estimated or also learned on the basis of input features using additive struc-
tured predictors in another subnetwork. A classical linear mixture regression com-
bining M linear regressions would, e.g., be given by M subnetworks, each learning
the expectation of a normal distribution and a mixture subnetwork that only takes
a constant input (a bias) and learns the M mixture weights. The individual additive
predictors for each subnetwork are, in most cases, fully connected layers with only

359

1 3

Mixture of experts distributional regression: implementation…

one neuron. Such a layer describes a weighted linear combination of inputs x with
weights (here the regression coefficients �). The same representation can also be
used for basis function evaluations z for nonlinear functions � . For more details,
we refer to Rügamer et al. (2023). Due to the unifying network structure of our
approach, the use of other layers or deep neural networks as subnetworks is also pos-
sible, but not further discussed in this article (see Rügamer et al. 2023b, for details).

3.2 Optimization routines

Representing the model (1) and (3) as a neural network makes a plethora of optimi-
zation routines from deep learning readily available for model estimation. Various
first-order stochastic optimization routines exist for neural networks. Most of these
optimizers work with mini-batches J1,… , JB ⊂ {1,… , n} of data and hence perform
stochastic gradient descent (SGD). The update of parameters � [t] in iteration t ∈ ℕ
and mini-batch Jb is

where � [0] is some starting value, ∇��i(�
[t−1]) are the individual gradients of the

negative log-likelihood contributions of the observations in the batch evaluated at the
parameters of the previous iteration and �[t] is a learning rate updated using a learning

(6)� [t] = � [t−1] − �[t]
1

∣ Jb ∣

∑

i∈Jb

∇��i(�
[t−1]),

Fig. 1 Example of an architecture. Smaller subnetworks (subnet) learn one or more parameters of a dis-
tribution which is defined in the respective distribution layer. For the first distribution in this example,
each distribution parameter in �1 is learned through a separate network while the second distribution is
learned by a network that outputs all parameters �2 together (e.g., used when �2 are constrained param-
eters such as probabilities). Each distribution layer thus corresponds to a distributional regression model.
The mixture model is then defined by an additional subnetwork that learns the mixture weights � as well
as by the M learned distributions f1,… , fK

360 D. Rügamer et al.

1 3

rate scheduler. We determine the starting value � [0] with the Xavier uniform initiali-
zation scheme (Glorot and Bengio 2010). For the update of �[t] , we found the follow-
ing learning rate schedulers useful for the optimization of mixture of experts distri-
butional regression models: RMSprop (Hinton et al. 2012), Adadelta (Zeiler 2012),
Adam (Kingma and Ba 2014) and Ranger (Wright 2019). These optimizers in turn
often come with hyperparameters such as their initial learning rate which need to be
adjusted. We will investigate their influence in our numerical experiments section.

3.3 Penalized estimation

Estimating the model class of mixtures of experts distributional regressions with
additive structured predictors can benefit from a penalized log-likelihood specifica-
tion. Such a penalization allows to control the smoothness or wiggliness of the non-
linear smooth functions in the additive structured predictors and to induce sparsity
in the estimation of the additive structured predictors as well as the mixture weights.

3.3.1 Additive structured predictors

In order to estimate suitable nonlinear smooth additive structured predictors based
on splines within the neural network, the respective coefficients in each layer may
require regularization using appropriate penalties or penalty matrices. The smooth-
ness or wiggliness of the nonlinear additive structured predictor can be calibrated
by either selecting a suitable dimension of the basis representation or imposing a
penalization on the respective coefficients in combination with a generous basis rep-
resentation. Using the later approach, the penalized version of (4) is given by

with sets of index sets Λ defining the weights that are penalized using a quadratic
penalty with individual smoothing parameters �l and individual quadratic penalty
matrices Pl (see, e.g., Wood 2017). While estimating the tuning parameters is pos-
sible by including a more elaborated optimization routine in the neural network
such as the Fellner–Schall method (Wood and Fasiolo 2017), we use the approach
suggested by Rügamer et al. (2023b) to tune the different smooth effects by relat-
ing �l to their respective degrees of freedom dfl . This has the advantage of training
the network in a simple backpropagation procedure with only little to no tuning, by,
e.g., setting the dfl equal to a pre-specified value for all l ∈ Λ . More specifically,
while setting the same �l value for all smooth terms would result in (very) different
penalization strengths for every term, choosing their �l value through one shared
df value, i.e., dfl ≡ df , yields equally penalized smooth terms for all l ∈ Λ . Setting
this shared df value to a moderate number, e.g., df = 9 , proved to be a well-working
prior assumption for each smooth term and circumvents expensive tuning schemes
by fixing all �l values a priori.

(7)�pen(�) = �(�) +
∑

l∈Λ

𝜆l�
⊤
l
Pl�l,

361

1 3

Mixture of experts distributional regression: implementation…

3.3.2 Entropy‑based penalization of mixtures

In order to penalize an excessive amount of nonzero mixture weights, we further
introduce an entropy-based penalty for the mixture weights that can be simply added
to the objective function in (7):

The second part of (8) is controlled by a tuning parameter � ∈ ℝ
+
0
 and corresponds

to the entropy induced by the (estimated) marginal mixture weights � , i.e., in case
the mixture weights depend on covariates x the mixture weights obtained when
averaging over the observed x . A large value of � enforces the weight distribution to
be sparse in the amount of nonzero elements in � , while smaller values will result in
an (almost) uniform distribution of � . As the entropy is permutation-invariant w.r.t.
the ordering of the components in � , this penalty is particularly suitable for mixtures
that are only identified up to a permutation of the component labels. We investigate
the effects of this tuning parameter � in Sect. 4.5. While it is technically possible to
allow feature dependency of the conditional mixture weights which depend on x in
(8), further research is required to investigate the effect of the entropy-based penalty
in this case.

4 Numerical experiments

We now investigate our framework in terms of predictive and estimation perfor-
mance. To this end, we first compare our neural mixture of experts distributional
regression (NMDR) approach with EM-based optimization routines to demonstrate
competitiveness with state-of-the-art procedures. For this comparison, the model
class considered is restricted to only contain constant mixture weights and linear
predictors for the distributional parameters. We then evaluate our approach con-
sidering a mixture of generalized additive regression models with additional noise
variables to demonstrate the framework’s efficacy when including additive predictor
structures. Finally, we investigate an overfitting mixture setting, in which we simu-
late situations where EM-based optimization fails and NMDR with entropy-based
penalty leads to superior performance. In Appendix, we also perform an empirical
investigation of different optimization routines in the neural network context to pro-
vide a practical guideline for users of our framework. Results show that adaptive
methods are more robust compared to a vanilla stochastic gradient descent optimiza-
tion. A second simulation study in Appendix further investigates the model perfor-
mance of different approaches when using concomitant variables.

4.1 Evaluation metrics

We measure the estimation performance of both the regression coefficients and
the mixture weights � using the root mean squared error (RMSE), the prediction

(8)�ent(�) = �pen(�) − �
∑

m

�m log�m.

362 D. Rügamer et al.

1 3

performance using the predictive log scores (PLS; Gelfand and Dey 1994) on an
independent test dataset of the same size as the training dataset and the differences
between the true and estimated class memberships using the adjusted Rand index
(ARI; Hubert and Arabie 1985) as well as the accuracy (ACC) by deriving the esti-
mated class memberships based on the maximum a posteriori probabilities for each
of the mixture components. In order to deal with the problem of label switching for
the non-label-invariant performance measures, we first determine the labeling which
induces the accuracy-optimal assignment and then calculate these performance met-
rics using this labeling. The accuracy-optimal labeling is computed using the true
class memberships (known in this case as data is simulated) and the estimated class
memberships as induced by the mixture posterior probabilities estimated by each
model.

4.2 Initialization and optimization

The weights in all our experiments are initialized using a Xavier uniform initializa-
tion (Glorot and Bengio 2010). If not specified otherwise, we use RMSprop as opti-
mizer with a learning rate of 0.001, a maximum of 10,000 iterations, early stopping
with a patience of 250 epochs, an additional reduction of the learning rate when
reaching a plateau for 150 epochs, a train validation split of 0.1 and a batch size of
32.

4.3 Comparison with EM‑based optimization

We first compare the NMDR framework to an EM-based algorithm implemented
in the R package gamlss.mx (Stasinopoulos and Rigby 2016) allowing for mix-
tures of various distributional regressions. We use n ∈ {300, 2500} observations,
M ∈ {2, 3, 5, 10} identically distributed mixture components, either following a
Gaussian, a Laplace or a logistic distribution, each defined by location and scale
parameter, and mixture weights are randomly drawn such that the smallest weight
is not less than 3%. We use pm ∈ {2, 10} features for each distribution and distri-
bution parameter in the mixture, and uniformly sampled regression coefficients
from a U(−2, 2)-distribution. While we test gamlss.mx with a fixed budget of 20
restarts, we compare these results to NMDR using 1 and 3 random initializations to
assess the effect of multiple restarts. Each experimental configuration is replicated
10 times. All fitted models in this simulation are correctly specified, i.e., they cor-
respond to the data generating process.

4.3.1 Results

Results are visualized in Fig. 2 and yield four important findings. First, the EM-
based approach only provides results in case pm = 2 . The EM-based approach is not
able to converge to any meaningful solution in all settings with pm = 10 , whereas
NMDR’s performance is affected by the increased number of predictors, but still
yields reasonable results for n = 2500 , also without restarts. Second, in the case

363

1 3

Mixture of experts distributional regression: implementation…

pm = 2 , the EM-based approach provides in general a better classification perfor-
mance than NMDR (as indicated by ACC Prob. and ARI Prob.). Third, the dif-
ference in estimation performance in case pm = 2 between the EM-based and
the NMDR approach is often negligible in terms of the RMSE between the esti-
mated parameters. Fourth, while the induced regularization of the SGD-based rou-
tine induces a bias in the estimation and hence typically larger estimation errors,
the predictive performance of NMDR is always better compared to the EM-based
approach. Note that the best model for NMDR with multiple restarts is chosen based

Laplace Logistic Normal

AC
C

 P
rob.

A
R

I P
rob.

P
LS

R
M

S
E

 C
oef.

R
M

S
E

 P
rob.

30
0/

2

25
00

/2

30
0/

10

25
00

/1
0

30
0/

2

25
00

/2

30
0/

10

25
00

/1
0

30
0/

2

25
00

/2

30
0/

10

25
00

/1
0

0.00

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.8

−50
−40
−30
−20
−10

0

0

1

2

3

0.0

0.1

0.2

0.3

n / p

Va
lu

e
Method EM NMDR NMDR_3

Fig. 2 Comparison of EM-based optimization (EM), NMDR with one (NMDR) or three (NMDR_3)
optimization runs for different distributions (columns), measures (rows) and combinations of n and
p = pm . Boxplots contain all 10 runs and the four different settings for M (i.e., in total 40 data points per
boxplot). Missing boxplots for EM are due to missing solutions caused by missing values when compar-
ing current results to a convergence threshold. RMSEs for coefficients > 3 and PLS values < −50 are
omitted to improve readability

364 D. Rügamer et al.

1 3

on the in-sample log score which does not necessarily imply better out-of-sample
performance compared to a single optimization run.

4.4 Mixture of additive regression models

Next, we investigate mixtures of mean regression models with nonlin-
ear smooth effects in the additive predictors of the mean distribution param-
eter. We generate n = 2500 data points from M = 3 mixtures of Pois-
son or normal distributions with the additive structured predictor of the
means defined by �1(x) = �0 + �1(x1) + �2(x2) , �2(x) = �0 + �2(x1) + x2 and
�3(x) = �0 + x1 + �3(x2) with �0 = 0.5 , �1(x) = 2 sin(3x) , �2(x) = exp(2x) and
�3(x) = 0.2x11(10(1 − x))6 + 10(10x)3(1 − x)10) . All covariates are independently
drawn from a uniform distribution U(0, 1) . We model all nonlinear effects using thin-
plate regression splines from Wood (2017) for all methods. Note that for large data
sets, other basis functions are preferred as the preprocessing step for setting up thin-
plate regression spline bases scales quadratically with the number of observations
(Wood 2003). Since the preprocessing is done prior to setting up the neural network,
our proposed approach can be flexibly combined with any of the existing spline basis
function approaches. For Poisson data, we use h(⋅) = exp(⋅) and the identity for the
Gaussian case. We vary � to be either (1/3, 1/3, 1/3) or (1/10, 3/10, 6/10) and add 3
or 10 noise variables that are also included in the model as nonlinear smooth predic-
tors for the expectation parameter. We use two different scale values 2 or 4, which
either define the Gaussian variance in each mixture component or a multiplicative
offset effect in the Poisson case. Our method is compared with a state-of-the-art
implementation of mixtures of additive models using the R package flexmix (Leisch
2004) and, as an oracle, a generalized additive model with varying coefficients for
all smooth effects, where the class label (unknown to the other two approaches) is
used as the varying parameter. These two methods determine the smoothing param-
eters via an outer optimization loop as implemented in mgcv (see Wood 2017,
for details). For NMDR, the smoothing parameters are determined as described in
Sect. 3.3 via the respective degrees of freedom which are set equally for all smooths
to 10 for normal and 6 for Poisson distribution. This process results in “equally
smooth” nonlinear effects a priori. The combination of gradient descent updates and
early stopping introduces additional regularization. This process favors parameters
that result in a low prediction error, akin to other out-of-sample or model selection
information criteria commonly employed to determine smoothing parameters (Wood
and Fasiolo 2017). The adaptive learning rates designated for individual parameters
can further lead to variable penalization across different additive components.

4.4.1 Results

The comparison for all settings is depicted in Fig. 3 showing the average log score
(LS; calculated on the training dataset using the estimated model parameters) and
PLS, as well as the ARI and ACC. The boxplots summarize all 10 simulation

365

1 3

Mixture of experts distributional regression: implementation…

replications for the two different mixture weights and the two number of noise vari-
ables settings. Results suggest that our approach leads to better predictions measured
by the PLS, but is inferior in terms of LS. The smaller LS values are possibly due
to fewer data points to fit the model because of the need for a validation set and due
to the shrinkage induced by early stopping the procedure. The median performance
of the clustering induced based on the estimated posterior probabilities is in general
on par with the EM-based approach in terms of ARI and ACC with flexmix, while
showing even slightly better performance in the Gaussian case.

4.5 Misspecified mixtures and sparsity

In this simulation, we use a normal mixture with pm = 10 fixed linear predictors
for each distribution and distribution parameter (mean and variance), where all
features are again drawn from a standard normal distribution and regression coef-
ficients from a uniform U(−2, 2)-distribution. The data are then generated using
M = 2 actual mixture components with �1 drawn (independently of features) from
a uniform distribution on the interval (0.06, 0.094) and �2 = 1 − �1 to ensure that
the minimum value of both probabilities is at least 6%. We then evaluate the esti-
mation of mixture probabilities by NMDR for n ∈ {300, 2500} when increasing
the number of specified distributions M† ∈ {3, 5, 10} . To allow for sparsity in � ,
we use the objective function �ent introduced in Sect. 3.3. For each scenario, 10
replications are performed.

ACC ARI

PLS LS

normal (2) normal (4) poisson (2) poisson (4) normal (2) normal (4) poisson (2) poisson (4)

normal (2) normal (4) poisson (2) poisson (4) normal (2) normal (4) poisson (2) poisson (4)
−10

−8

−6

−4

0.00

0.25

0.50

0.75

1.00

−8

−6

−4

−2

0.5

0.7

0.9

Va
lu

e
Method Oracle EM NMDR

Fig. 3 Comparison of average PLS and LS as well as ACC and ARI of a state-of-the-art implementation
(EM), an oracle varying coefficient model with known class memberships and our approach (NMDR) in
different colors for the two distributions and two scales (x-axis). The boxplots contain the results for 10
replications over two settings for the mixture weights and two settings for the number of noise variables

366 D. Rügamer et al.

1 3

4.5.1 Results

Results for various settings of the entropy penalty parameter � are depicted in
Fig. 4. While setting � to small values larger than zero can improve the predic-
tive performance and even outperform the correctly specified model without

1 3 8

P
LS

R
M

S
E

 C
oef.

R
M

S
E

 P
rob.

30
0/

10

25
00

/1
0

30
0/

10

25
00

/1
0

30
0/

10

25
00

/1
0

−50
−40
−30
−20
−10

0

2

4

6

0.0

0.1

0.2

0.3

n / p

Va
lu

e
Entropy Penalty 0

1e−05
0.001
0.01

0.1
0.3

correct model

Fig. 4 Model quality for misspecified models with specified mixtures M† ∈ {3, 5, 10} (columns, count-
ing the additional components) instead of actual M = 2 mixtures and different goodness of fit measures
(rows) for 10 replications (boxes). Colors correspond to different settings of � or represent estimation
results of the correct model (black)

True Prob.:0.3923

True Prob.:0.6077

0.00

0.25

0.50

0.75

1.00

1e−05 1e−03 1e−01

Entropy Penalty

E
st

. P
ro

b.

Fig. 5 Coefficient path (estimated mixture probabilities) for different entropy penalties. A value of
around 1e-02 yields the best trade-off between sparsity and estimation performance

367

1 3

Mixture of experts distributional regression: implementation…

additional distribution components, the bias induced by the penalty generally
decreases the estimation performance. In practice, an appropriate amount of
penalization can be found by running cross-validation along a grid of different �
values as, e.g., done for the Lasso (Tibshirani 1996).

We additionally investigate the coefficient path obtained from varying val-
ues of the penalty parameter � for one simulated example. Results for the
n = 2500,M† = 5 setting are depicted in Fig. 5. � is varied between 0 and 1 on
a logarithmic scale. The true model has two nonzero probabilities 0.6077 and
0.3923 while the other 3 entries in � are 0.

5 Cell cycle‑regulated genes of yeast

In order to demonstrate the flexibility of our approach, we investigate its application
to the yeast cell cycle dataset from Spellman et al. (1998). In this study, genome-
wide mRNA levels were measured for 6178 yeast open reading frames (ORFs) for
119 min at 7-min intervals. We here analyze the subset of data where all 18 time
points for the alpha factor arrest are available. The resulting longitudinal dataset
consists of 80,802 observations of the standardized expression levels. A subset of
this dataset was also analyzed using mixture models in Grün et al. (2011).

5.1 Distributional mixture regression

As both the mean and standard deviation of the standardized expression levels of
genes change over time, we apply a mixture of distributional regressions model
where the mean � and the standard deviation � of the normally distributed mixture
components depend on time, i.e., Yt ∼

∑M

m=1
�mN(�m,t, �

2
m,t
) for t ∈ [0, 119] . The

additive structured predictors for these distribution parameters are defined as

where the nonlinear smooth functions � are modeled by thin-plate regression splines
(Wood 2003). Previous approaches for modeling this dataset investigated the use of
a mixture of mixed models, i.e., the inclusion of gene-specific random effects (Luan
and Li 2003; Grün et al. 2011). We investigate here an alternative option for mod-
eling this additional heterogeneity by allowing for time-varying standard deviations.
We use M = 6 which corresponds to the number of mixture components identified
by Spellman et al. (1998).

5.2 Results

In order to plot the estimated smooth effects together with the true observations,
we first derive the component membership of every gene. As done in the E-step of
mixture model approaches (see, e.g., Grün et al. 2011), we calculate the a posteriori

h−1(�m,t) = �0,m,1 + �m,1(t) and h−1(�m,t) = �0,m,2 + �m,2(t),

368 D. Rügamer et al.

1 3

probability for every gene to belong to component m and then take the maximum of
all components 1,… ,M = 6 . For this application, observations were only assigned
to 5 of the 6 assumed components. Note that due to the nature of our optimization
routine, not all components necessarily contain at least one observation.

Comparing the number of genes assigned to each cluster, one sees that the most
common component in our results is cluster 6 with 39,078 observations. Cluster
4 contains 25,722 observations, cluster 1 9306 and cluster 5 6552 observations.
Least number of observations is assigned to cluster 2 which contains only 144
observations.

Figure 6 visualizes the results obtained in a panel plot where in each panel the
trajectories of the ORFs for all genes assigned to this cluster are shown together
with the component-specific estimates of the time-varying means and stand-
ard deviations. The identified clusters clearly vary in showing either an initial
decrease or increase in their means. In addition, one also sees that the standard
deviations of the clusters vary over time with some clusters exhibiting a particu-
larly large amount of heterogeneity at later time points.

6 Outlook

We have introduced the class of mixtures of experts distributional regression with
additive structural predictors and investigated its embedding into neural networks
for robust model estimation. Overall this leads to the neural mixture of experts
distributional regression (NMDR) approach. We show that popular first-order
adaptive update routines are well suited for learning these mixture of experts
(distributional) regression models and also highlight that the embedding into a
neural network estimation framework allows for straightforward extensions of the

5 6

1 2 4

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100

−4

0

4

−4

0

4

Time

S
ta

nd
ar

di
ze

d
ex

pr
es

si
on

 le
ve

l

Fig. 6 Trajectories of ORFs (y-axis) for all 4489 genes (black lines) over the course of the 18 time points
(x-axis) with the estimated mean trend (red solid line) per component (facets) and uncertainty visualized
by two times the estimated (time-varying) standard deviation (shaded red area)

369

1 3

Mixture of experts distributional regression: implementation…

general mixture model class and (regularized) maximum-likelihood estimation
using optimization routines suitable also for big data applications due to mini-
batch training. Using the proposed architecture for mixture of experts distribu-
tional regression, a possible extension of our approach is therefore the combina-
tion with other (deep) neural networks. This allows learning both the distribution
components and the mixture weights either by (a) a structured model, such as a
linear or additive model, (b) a custom (deep) neural network or (c) a combination
thereof. A similar approach has been investigated by Fritz et al. (2022) using a
zero-inflated Poisson model (i.e., a mixture including a point mass distribution)
which includes both additive effects and a graph neural network in the additive
predictor.

Appendix A: Optimization routines

In order to provide insights into the various optimizers’ performance, we conduct
a small benchmark study to assess the influence of the choice of an optimizer and
to find a good default. Figure 7 visualizes the comparison based on the ranks for
each optimizer across all 48 settings from Sect. 4.3. In all our experiments, we
use the Glorot initializer to initialize weights (Glorot and Bengio 2010) (initial-
ized differently for every optimizer and restart) a batch size of 50 and a maximum
of 1500 epochs.

Results

Figure 7 indicates that convergence problems are primarily encountered for SGD
with a substantial amount of runs diverging during optimization. An overall perfor-
mance assessment based on ranks indicates that the RMSprop optimizer achieves the
lowest overall rank. However, the figure highlights that in fact, no clear best opti-
mizer emerges across all scenarios. The ranks obtained for the different optimizers
also vary considerably with the performance criterion.

Overall one might conclude that both the RMSprop optimizer and the Adam opti-
mizer perform in general well, also when used with their default settings. We note,
however, that tuning the optimizer and its learning rate would in general also be
beneficial in terms of both predictive performance and estimation quality. A further
speed-up for some of these routines can be achieved by additionally incorporating
momentum, which also proved to be effective in the optimization of additive models
using boosting (Schalk et al. 2022).

Appendix B: Concomitant variables

Finally, we compare our approach with flexmix in terms of estimation quality when
the model includes concomitant variables.

370 D. Rügamer et al.

1 3

Data generating process

We simulate a mixture regression model with M ∈ {2, 3} mixture components, each
following a normal distribution with fixed variance, �2 = 1 , and mean defined by
p = 10 covariates that are drawn from a standard normal distribution and multiplied
by fixed coefficient also generated from a standard normal distribution. In contrast
to previous simulations, this numerical experiment is based on a data generating
process that uses additional 2, 4 or 8 covariates to define the additive predictors

R
M

S
E

 C
oef.

R
M

S
E

 P
rob.

P
LS

A
R

I P
rob.

AC
C

 P
rob.

A
da

de
lta

 (0
.0

1)

A
da

de
lta

 (0
.0

1)
 w

/ C
LR

A
da

de
lta

 (0
.1

)

A
da

de
lta

 (0
.1

) w
/ C

LR

A
da

de
lta

 (1
)

A
da

m
 (0

.0
1)

A
da

m
 (0

.0
1)

 w
/ C

LR

A
da

m
 (0

.1
)

A
da

m
 (0

.1
) w

/ C
LR

R
an

ge
r (

0.
01

)

R
an

ge
r (

0.
01

) w
/ C

LR

R
an

ge
r (

0.
1)

R
an

ge
r (

0.
1)

 w
/ C

LR

R
M

S
pr

op
 (0

.0
1)

R
M

S
pr

op
 (0

.0
1)

 w
/ C

LR

R
M

S
pr

op
 (0

.1
)

R
M

S
pr

op
 (0

.1
) w

/ C
LR

S
G

D
 (0

.0
1)

S
G

D
 (0

.0
1)

 w
/ C

LR

S
G

D
 (0

.1
)

S
G

D
 (0

.1
) w

/ C
LR

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge

Rank 1 2 3 4 or higher

Fig. 7 Comparison of various optimizers (x-axis; with learning rate in brackets) ranked by performance
for different metrics (different rows), potentially with additional cyclic learning rate schedule (CLR),
across simulation settings studied in Sect. 4.3. Ranks are computed on performance averaged over 3 rep-
etitions. Bars from SGD runs do not sum up to 100% as some models diverged during optimization

371

1 3

Mixture of experts distributional regression: implementation…

�K+1,… , �K+M . In other words, we do not set the mixture probabilities to a fixed
constant but make them covariate-dependent. The predictors �K+1,… , �K+M are gen-
erated independently from predictors �1,… , �K by drawing covariates and effects
from a standard normal distribution and defining their effect to be linear.

Experiment

We set n = 5000 and run the experiment 10 times to investigate the estimation
performance of the two methods for all regression coefficients using the RMSE.
mixdistreg is optimized using Adam with a learning rate 1e-3, batch size of 32,
early stopping on a 10% validation data set and a patience of 250 epochs.

Results

Figure 8 shows the resulting RMSE values for different values of M and the two
additive predictor types (means and probabilities). Both approaches perform well
with RMSE values in the range 0.01 to 0.02, which is comparably small compared
to the true coefficient values which range from −2 to 1.5. As in previous studies, the
estimation performance of the EM-based approach is slightly better than the one
using SGD.

2 mixture components 3 mixture components

M
ean predictor

P
robability predictor

2 4 8 2 4 8

0.02

0.03

0.04

0.01

0.02

0.03

Number of covariates (in mixture probability predictor)

R
M

S
E

flexmix
mixdistreg

Fig. 8 Comparison of flexmix and mixdistreg estimation performance using the RMSE (visualized
by boxplots summarizing the 10 different runs) for coefficients in the mean predictors of distribution
members (top row) as well as additive predictor of mixture probabilities (bottom row) for a mixture of
M ∈ {2, 3} distributions (columns)

372 D. Rügamer et al.

1 3

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Competing financial interests The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous
systems (2015). https:// www. tenso rflow. org/

Bishop, C.M.: Mixture density networks. Aston University (1994)
DeSarbo, W.S., Cron, W.L.: A maximum likelihood methodology for clusterwise linear regression. J.

Classif. 5(2), 249–282 (1988)
Diebolt, J., Robert, C.P.: Estimation of finite mixture distributions through Bayesian sampling. J. R. Stat.

Soc.: Ser. B (Methodol.) 56(2), 363–375 (1994)
Dillon, J.V., Langmore, I., Tran, D., et al.: TensorFlow distributions. (2017). https:// doi. org/ 10. 48550/

arXiv. 1711. 10604
Fritz, C., Dorigatti, E., Rügamer, D.: Combining graph neural networks and spatio-temporal disease mod-

els to improve the prediction of weekly covid-19 cases in Germany. Sci. Rep. 12(1), 1–18 (2022)
Frühwirth-Schnatter, S.: Finite Mixture and Markov Switching Models. Springer, Berlin (2006)
Gelfand, A.E., Dey, D.K.: Bayesian model choice: asymptotics and exact calculations. J. R. Stat. Soc.:

Ser. B (Methodol.) 56(3), 501–514 (1994)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In:

Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Pro-
ceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR (2010)

Gormley, I.C., Frühwirth-Schnatter, S.: Mixture of experts models. In: Frühwirth-Schnatter, S., Celeux,
G., Robert, C.P. (eds.) Handbook of Mixture Analysis, pp. 271–307. Chapman & Hall/CRC Hand-
books of Modern Statistical Methods, Chapman and Hall/CRC (2019)

Grün, B., Leisch, F.: Fitting finite mixtures of generalized linear regressions in R. Comput. Stat. Data
Anal. 51(11), 5247–5252 (2007)

Grün, B., Scharl, T., Leisch, F.: Modelling time course gene expression data with finite mixtures of linear
additive models. Bioinformatics 28(2), 222–228 (2011)

Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning. Coursera, video lectures
264(1) (2012)

Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). https:// doi. org/ 10. 48550/ arXiv.

1412. 6980
Kneib, T.: Beyond mean regression. Stat. Model. 13(4), 275–303 (2013)
Leisch, F.: FlexMix: A general framework for finite mixture models and latent class regression in R. J.

Stat. Softw. 11(8), 1–18 (2004). https:// doi. org/ 10. 18637/ jss. v011. i08
Luan, Y., Li, H.: Clustering of time-course gene expression data using a mixed-effects model with

B-splines. Bioinformatics 19(4), 474–482 (2003)
Magdon-Ismail, M., Atiya, A.: Neural networks for density estimation. In: Advances in Neural Informa-

tion Processing Systems (1998)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/
https://doi.org/10.48550/arXiv.1711.10604
https://doi.org/10.48550/arXiv.1711.10604
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.18637/jss.v011.i08

373

1 3

Mixture of experts distributional regression: implementation…

McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley & Sons, London (2004)
McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite mixture models. Annu. Rev. Stat. Appl. 6(1), 355–

378 (2019)
Quandt, R.E.: The estimation of the parameters of a linear regression system obeying two separate

regimes. J. Am. Stat. Assoc. 53(284), 873–880 (1958)
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria (2022). https:// www.R- proje ct. org/
Rigby, R.A., Stasinopoulos, M.D.: GAMLSS: a distributional regression approach. J. R. Stat. Soc.: Ser. C

(Appl. Stat.) 54(3), 507–554 (2005)
Rügamer, D., Kolb, C., Fritz, C., et al.: deepregression: A flexible neural network framework for semi-

structured deep distributional regression. J. Stat. Softw. 105(1), 1–31 (2023a)
Rügamer, D., Kolb, C., Klein, N.: Semi-structured distributional regression. Am. Stat. 1–12 (2023b)
Schalk, D., Bischl, B., Rügamer, D.: Accelerated componentwise gradient boosting using efficient data

representation and momentum-based optimization. J. Comput. Graph. Stat. 1–11 (2022)
Späth, H.: Algorithm 39 clusterwise linear regression. Computing 22(4), 367–373 (1979)
Spellman, P.T., Sherlock, G., Zhang, M.Q., et al.: Comprehensive identification of cell cycle-regulated

genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12),
3273–3297 (1998)

Stasinopoulos, D.M., Rigby, R.A.: Generalized additive models for location scale and shape (GAMLSS)
in R. J. Stat. Softw. 23(7), 1–46 (2007)

Stasinopoulos, M., Rigby, B.: gamlss.mx: Fitting Mixture Distributions with GAMLSS. R package ver-
sion 4.3-5 (2016)

Stasinopoulos, M.D., Rigby, R.A., Bastiani, F.D.: GAMLSS: a distributional regression approach. Stat.
Model. 18(3–4), 248–273 (2018)

Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B (Methodol.)
58(1), 267–288 (1996)

Ushey, K., Allaire, J., Tang, Y.: reticulate: Interface to ‘Python’. https:// CRAN.R- proje ct. org/ packa ge=
retic ulate, r package version 1.26 (2022)

Van den Oord, A., Schrauwen, B.: Factoring variations in natural images with deep Gaussian mixture
models. In: Advances in Neural Information Processing Systems, pp. 3518–3526 (2014)

Van Rossum, G., Drake Jr, F.L.: Python reference manual. Centrum voor Wiskunde en Informatica
Amsterdam (1995)

Viroli, C., McLachlan, G.J.: Deep Gaussian mixture models. Stat. Comput. 29(1), 43–51 (2019)
Wedel, M., DeSarbo, W.S.: A mixture likelihood approach for generalized linear models. J. Classif.

12(1), 21–55 (1995)
Wood, S.N.: Thin plate regression splines. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 65(1), 95–114 (2003)
Wood, S.N.: Generalized Additive Models: An Introduction with R. CRC Press (2017)
Wood, S.N., Fasiolo, M.: A generalized Fellner–Schall method for smoothing parameter optimization

with application to Tweedie location, scale and shape models. Biometrics 73(4), 1071–1081 (2017).
https:// doi. org/ 10. 1111/ biom. 12666

Wright, L.: New deep learning optimizer, ranger: Synergistic combination of radam lookahead for the
best of... Medium (2019)

Zeiler, M.D.: ADADELTA: An adaptive learning rate method (2012). https:// doi. org/ 10. 48550/ arXiv.
1212. 5701

Zong, B., Song, Q., Min, M.R., et al.: Deep autoencoding Gaussian mixture model for unsupervised
anomaly detection. In: International Conference on Learning Representations (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://www.R-project.org/
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://doi.org/10.1111/biom.12666
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701

	Mixture of experts distributional regression: implementation using robust estimation with adaptive first-order methods
	Abstract
	1 Introduction
	1.1 Mixture models and their estimation
	1.2 Our contribution
	1.2.1 Novel modeling approach
	1.2.2 Robust estimation
	1.2.3 Flexible and scalable implementation
	1.2.4 Summary of our approach and overview on the paper structure

	2 Methodology
	2.1 Model definition
	2.2 Additive predictor structure
	2.3 Model log likelihood
	2.4 Identifiability
	2.4.1 Mixture models
	2.4.2 Additive structured predictors

	3 Model representation and robust estimation
	3.1 Neural network representation
	3.2 Optimization routines
	3.3 Penalized estimation
	3.3.1 Additive structured predictors
	3.3.2 Entropy-based penalization of mixtures

	4 Numerical experiments
	4.1 Evaluation metrics
	4.2 Initialization and optimization
	4.3 Comparison with EM-based optimization
	4.3.1 Results

	4.4 Mixture of additive regression models
	4.4.1 Results

	4.5 Misspecified mixtures and sparsity
	4.5.1 Results

	5 Cell cycle-regulated genes of yeast
	5.1 Distributional mixture regression
	5.2 Results

	6 Outlook
	Appendix A: Optimization routines
	Results

	Appendix B: Concomitant variables
	Data generating process
	Experiment
	Results

	References

