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Abstract
We analyze issues related to estimation and inference for the constrained sum of 
squares estimator (CSS) of the k-factor Gegenbauer autoregressive moving average 
(GARMA) model. We present theoretical results for the estimator and show that the 
parameters that determine the cycle lengths are asymptotically independent, con-
verging at rate T, the sample size, for finite cycles. The remaining parameters lack 
independence and converge at the standard rate. Analogous with existing literature, 
some challenges exist for testing the hypothesis of non-cyclical long memory, since 
the associated parameter lies on the boundary of the parameter space. We present 
simulation results to explore small sample properties of the estimator, which sup-
port most distributional results, while also highlighting areas that merit additional 
exploration. We demonstrate the applicability of the theory and estimator with an 
application to IBM trading volume.
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1 Introduction

The k-factor Gegenbauer autoregressive moving average (GARMA) model nests 
ARIMA, fractionally integrated ARMA (ARFIMA), seasonal ARFIMA, and single-
factor GARMA models as special cases and may simultaneously include features of 
each. The k-factor GARMA(p,q) model is defined as

Here |�i| ≤ 1 , di are memory parameters, and �(L) and �(L) are p and q order pol-
ynomials in the lag operator L such that �(z) = 0 and �(z) = 0 have all roots out-
side the unit circle and no common zeros. Further, 

{
�t
}
 is a white noise disturbance 

sequence.
These long-memory models are especially useful because they can capture 

complex but commonly observed patterns in the spectral density and autocorrela-
tion functions (ACF) of a stochastic process using only a few parameters. Excel-
lent recent reviews of the estimation methods for GARMA processes were provided 
by Dissanayake et  al. (2018) and Hunt et  al. (2022), who discuss difficulties with 
obtaining theoretical distribution results for estimators of the model parameters. Of 
particular note, there appears to be little existing distribution theory for maximum 
likelihood-based estimation methods in the time domain when k > 1 . In this paper, 
we address this void by presenting a conditional sum of squares (CSS) estimator 
along with proposed joint asymptotic distributions for all parameters in the k-factor 
model. Simulation experiments generally validate the theoretical distributions. As 
an application, we model the trading volume of IBM equities, finding evidence of 
complex long-memory dynamics.

Long-memory models were popularized by Granger and Joyeux (1980), Hosking 
(1981) and Granger (1980, 1981) who introduced fractional differencing as a means 
of capturing complicated stochastic properties of data in the time and frequency 
domains. These models have proven especially useful by bridging the gap between 
infinite variance unit root processes and finite variance short memory processes. 
One shortcoming of the original fractionally differenced models, however, is that 
they are incapable of capturing long-memory processes with persistent cycles in the 
ACF. Gray et al. (1989), along with the correction in Gray et al. (1994), addressed 
this issue with the GARMA model, which was generalized by Woodward et  al. 
(1998) to allow for multiple sources of cyclic long memory. The general model is 
capable of generating many complex patterns in the ACF that have previously been 
very difficult to capture. One particularly interesting case is a process that contains 
both ARFIMA(0,0) and GARMA(0,0) components, such that the ACF decays non-
monotonically at a hyperbolic rate and is asymmetric about zero, such as shown in 
Fig. 1.

Due to its flexibility, the k-factor GARMA approach has proven very useful for 
modeling many physical, economic, and financial time series that exhibit complex 
long-memory features. For solar activity, Gray et  al. (1989) and Chung (1996b) 
estimate a single-factor model for sunspots, while Maddanu and Proietti (2022) 

(1)�(L)

k∏
i=1

(
1 − 2�iL + L2

)di(xt − �) = �(L) �t.
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considered a model with k = 4 , ultimately isolating a single long-memory cycle of 
about 11 years. Woodward et al. (1998) and Diongue and Ndongo (2016) provide 
evidence supporting the existence of multiple sources of long memory in atmos-
pheric CO2 and river flows. In economics and finance, these methods have been 
used to study interest rates (Ramachandran and Beaumont 2001; Gil-Alana 2007; 
Asai et al. 2020), exchange rates (Smallwood and Norrbin 2006), inflation (Caporale 
and Gil-Alana 2011; Peiris and Asai 2016), equity prices (Lu and Guegan 2011; 
Caporale and Gil-Alana 2014) and unemployment (Gil-Alana 2007; Beaumont and 
Smallwood 2022). The possibility of many sources of long memory was illustrated 
recently by Leschinski and Sibbertsen (2019), who modeled California electricity 
load data using 14 independent long-memory components.

Despite the increasing interest in the k-factor GARMA model, a unifying esti-
mation approach does not appear to exist. Almost all studies assume the posi-
tions of the singularities are known (for example, Caporale and Gil-Alana (2011) 
and Arteche (2020)), or employ two-step procedures where the Gegenbauer fre-
quencies are typically first estimated by inspection of the periodogram (for exam-
ple, Hidalgo and Soulier (2004), Lu and Guegan (2011) and Asai et  al. (2020), 
amongst others). Only a handful of studies have attempted to simultaneously 
estimate all model parameters, including memory parameters and the positions 
of the spectral poles, known as Gegenbauer frequencies. In this context, wavelet 
procedures have been used by Lu and Guegan (2011), Alomari et al. (2020), and 
Ayache et al. (2022) and offer a promising semi-parametric alternative to estima-
tion of spectral poles. However, these methods have only generally been used to 
estimate models with k = 1 . Specifically, Alomari et al. (2020) and Ayache et al. 
(2022) consider time series processes having spectra encompassing the 1-factor 
GARMA model as a special case. Alomari et al. (2020) do establish consistency 

Fig. 1  ACF of a process with both an ARFIMA and a GARMA component
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for the frequency parameter using the wavelet-based method of Bardet and Ber-
trand (2010) who introduced a nonparametric approach to spectral density esti-
mation. The result was extended by Ayache et al. (2022) to establish asymptotic 
normality for the estimators. In the time domain, Dissanayake et al. (2016) pro-
vided distributional results using a state-space approach based on associated 
Gegenbauer polynomials and the Kalman filter to obtain likelihood-based esti-
mates for the 1-factor GARMA(0,0) model with |𝜂| < 1 . Kouamé and Hili (2008, 
2012) use minimum distance estimators and show consistency and asymptotic 
normality for estimators of differencing parameters, although specific knowledge 
of �i is generally required.

A major difficulty in generalizing distribution theory for the full k-factor model 
lies in the fact that estimators of the parameters dictating the positions of the spec-
tral poles appears to be non-standard, with rates of convergence that may differ 
relative to those of other parameters. Additionally, the relevant parameter space is 
closed, whereas successful attempts to establish distributional results for estimators 
in the time domain generally exclude the zero-frequency as an admissible value (see, 
Kouamé and Hili (2008) and Dissanayake et al. (2016), for example). Further, maxi-
mum likelihood-based estimators in the frequency domain typically use a discrete 
set of frequencies for the associated singularities. For these estimators, as argued by 
Giraitis et al. (2001), a full set of distributional results may not exist.

For inference in the models considered here, we are unaware of any study propos-
ing a full set of distributional findings for any estimator. The strongest results appear 
to have been offered by Hidalgo (2005), who considers a semiparametric estima-
tor of the memory parameter and position of the spectral pole for processes having 
spectra consistent with the GARMA process. Hidalgo (2005) rigorously establishes 
theoretical results for estimation of the underlying model parameters, even when 
the singularity occurs at the origin. For a single-factor model, Giraitis et al. (2001) 
establish consistency for the Whittle estimator of the Gegenbauer frequency and 
provide normality results for the differencing parameter. In the time domain, with 
a known spectral pole at the origin, Robinson (2006) establishes consistency and 
asymptotic normality for the CSS estimator of the parameters for a general model 
that includes stationary ARFIMA processes as a special case. As referenced above, 
for spectral poles that do not include the origin, partial results are available from 
Kouamé and Hili (2008) and Dissanayake et al. (2016).

With k = 1 , promising results for the CSS method were proposed by Chung 
(1996a, 1996b), who attempted to establish complete distributional results for all 
parameters. The method of proof of Chung relied on the observation that, for the 
true parameter values, the expectation of the approximate likelihood function is zero. 
The results of Chung are seen as somewhat controversial, as there were no attempts 
to constrain the position of the unknown spectral pole. In fact, Chung (1996a) argues 
that there is a discontinuity in the distribution at the zero frequency. Perhaps more 
remarkably, with T denoting the sample size, Chung (1996a) argues that the associ-
ated estimate of the Gegenbauer frequency achieves a T2-rate of convergence when 
the spectral pole occurs at 0 or � , while it is otherwise Op(T

−1) . Most importantly, 
as initially pointed out by Giraitis et al. (2001), Chung (1996a) was unable to pro-
vide a rigorous initial proof establishing consistency. Additionally, Beaumont and 
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Smallwood (2022) provide extensive simulation evidence yielding some support for 
theoretical concerns when the position of the spectral pole occurs at the origin.

Although the results of Chung (1996a) may appear tenuous, the CSS estimator 
provides a feasible and relatively simple method to obtain joint estimation results for 
the GARMA model parameters. Additionally, the consistency proof established by 
Robinson (2006) for the CSS estimator likely extends to the k-factor GARMA pro-
cess. Notwithstanding the concerns when the Gegenbauer frequency is 0, the simu-
lation evidence of Beaumont and Smallwood (2022) otherwise generally supports 
the results of Chung (1996a). Beaumont and Smallwood (2022) also demonstrate 
that the CSS method generally obtains a smaller bias for estimation of the spec-
tral pole relative to the Whittle counterpart. Diongue and Ndongo (2016) provide 
similar evidence, demonstrating that, compared to a Whittle-based estimator, the 
CSS method is relatively efficient in estimating differencing parameters for k-factor 
GARMA processes with infinite variance disturbances. Given these promising simu-
lation results, it is worthwhile to consider the properties of the CSS estimator when 
applied to models with multiple Gegenbauer frequencies.

Here, for the k-factor GARMA model, we study the CSS estimator described 
by Chung and Baillie (1993) for ARFIMA models and by Chung (1996a, 1996b) 
for single-factor GARMA models. All parameters are simultaneously estimated, 
including the ARMA components. Furthermore, we propose an asymptotic dis-
tribution for all parameters in the model, where, to our knowledge, only partial 
results are currently available. The results show that the estimates of each Gegen-
bauer frequency are asymptotically independent of all other model parameters. We 
provide simulation evidence to help validate the results. The simulation evidence, 
including additional results in Beaumont and Smallwood (2022), demonstrates 
that the theory can typically be reliably used to provide inference for the estimated 
parameters. To the extent that there are concerns with testing for models with a 
spectral pole at the origin, we provide a simple parametric bootstrap procedure 
based on our estimator.

The rest of the paper is organized as follows. In the next section, we present the 
details of the multi-factor GARMA model. We introduce the CSS estimator and 
derive its properties in Sect. 3. In Sect. 4, we provide Monte Carlo evidence for the 
finite sample precision of the iterative CSS estimation method that we propose. In 
Sect. 5, we show that the weekly trading volume of IBM stocks is best modeled with 
a six-factor GARMA process. We summarize and draw conclusions in Sect. 6, and 
an appendix contains technical details.

2  k‑Factor GARMA processes

The k-factor GARMA model, defined in Eq. (1), was originally discussed by Gray 
et al. (1989) and presented in greater detail by Woodward et al. (1998). More spe-
cifically, with i = 1,… , k , the di are memory parameters, and �i dictate the peri-
odic features of the process. Each Gegenbauer polynomial, (1 − 2�iL + L2)di , has 
a pair of complex roots with modulus one and expands to an infinite order poly-
nomial in L. When k = 1 , we get the single frequency GARMA model (Hosking 
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1981; Gray et al. 1989), and when, in addition, � = 1 , the model further reduces 
to an ARFIMA(p,  2d,  q) model (Granger and Joyeux 1980; Hosking 1981). 
Finally, we get an ARIMA model when � = 1 and d = 0.5 , and an ARMA process 
when d = 0.

Assuming that each �i is distinct, the k-factor GARMA model is stationary 
if for all i, di < 0.5 whenever |𝜂i| < 1 , and di < 0.25 when |�i| = 1 . The model is 
invertible if di > − 0.5 when |𝜂i| < 1 , and di > − 0.25 when |�i| = 1 . Proofs for 
these results are available in Woodward et al. (1998).

For stationary cases, the moving average representation is,

from which the spectral density function is obtained as

where �j = cos−1(�j) are the Gegenbauer frequencies. The spectral density function 
is unbounded at �j if dj > 0 and vanishes there if dj < 0. The autoregressive repre-
sentation is most relevant for estimation of the CSS function considered here and is 
given as follows:

The autocovariances for a k-factor GARMA model can be computed as

where special attention must be given to the singularities in f (�) as discussed by 
McElroy and Holan (2016). Convenient approximations for �j are only available for 
single frequency models. For example, when � = 1 and d < 0.25 , the autocorrela-
tions exhibit hyperbolic decay as demonstrated by Granger and Joyeux (1980) for 
fractional processes. For GARMA(0,0) models, Chung (1996a) shows that for large 
j, the autocorrelation function with |𝜂| < 1 and d < 0.5 , d ≠ 0 , can be approximated 
as �j ≈ J cos(j �) j2d−1 , where the constant J does not depend upon j. This expres-
sion makes clear the hyperbolically damped sinusoidal pattern of the autocorrelation 
function of a stationary GARMA process with |𝜂| < 1.

In Fig. 1, we illustrate a model that combines ARFIMA(0,0) and GARMA(0,0) 
models, which is of particular interest for economic and financial applica-
tions. This example used a model with parameters 

(
�1, d1

)
= (1, 0.15) and (

�2, d2
)
= (0.992, 0.25) . Note that the first frequency corresponds to an unbounded 

spike at the origin of the spectrum. The second frequency corresponds to an 
unbounded spike at the frequency �2 = cos−1 (0.992) = 0.1266 radians, or 

(2)(xt − �) =
�(L)

�(L)

k∏
i=1

(
1 − 2�iL + L2

)−di
�t,

(3)f (�) =
�2

2�

||||
�(e−i�)

�(e−i�)

||||
2 k∏
j=1

{
2 | cos(�) − cos(�j)|

}−2dj , � ∈ [0,�]

(4)
�(L)

�(L)

k∏
i=1

(
1 − 2�iL + L2

)di(xt − �) = �t.

(5)�j = 2∫
�

0

f (�) cos(�j) d�,
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0.0201Hz, which is very close to the origin, with a cycle length of 50 periods. 
The ACF clearly demonstrates long cycles about the hyperbolic decay character-
istic of fractional processes.

3  Estimation

As discussed above, several estimation procedures have been proposed for the k-fac-
tor model. In this section, we generalize the CSS estimator of Chung (1996a, 1996b) 
for single-factor GARMA models to models with k > 1.

3.1  The constrained sum of squares estimator

In this subsection, we define the CSS estimator we employ for the GARMA process 
and set preliminaries for the distribution theory proposed in the following subsec-
tion. In the case where a spectral pole exists at 0 or � , the CSS estimator of the 
k-factor GARMA model inherits the problems associated with time-domain estima-
tion of � for simple ARFIMA models as espoused by Cheung and Diebold (1994) 
and Chung (1996b). Therefore, in this section we impose that � is known, leaving 
the issue of an unknown mean for future research.1

To establish notation, let � = (d1,… , dk)
� , � = (�1,,… ,�p, �1,… , �q)

� , and 
� = (�1,… , �k)

� , where � = (��, ��, ��)� . We further have, � ∈ Ψ� , � ∈ Ψ� , and 
Ψ� =

∏k

i=1
[−1, 1] , where Ψ� and Ψ� are compact subsets of ℝk and ℝp+q , respec-

tively, and where Ψ = Ψ� × Ψ� × Ψ� . The sum of squares function considered here 
is used to estimate the true, unknown values given by the associated vector denoted 
�0 = (��

0
, ��

0
, ��

0
)� . If we assume that the initializing disturbances are zero, then the 

maximization of the CSS function is asymptotically equivalent to maximum likeli-
hood estimation. The following additional assumptions are imposed for the distribu-
tion theory presented in the next subsection.

Assumption 1 {�t} are martingale differences with respect to an increasing sequence 
of sigma-fields, Ft , such that, for some 𝛽 > 0 , supt E(|𝜀t|2+𝛽 |Ft−1) < ∞ , almost 
surely, and E(�2

t
|Ft−1) = �2 , almost surely.

Assumption 2 �0 lies in the interior of the set 
∏k

i=1
[0, d̄i] , where d̄i=0.25 if |�i,0| = 1 , 

whereas d̄i = 0.50 if |𝜂i,0| < 1 . Further, �0 is in the interior of Ψ�.

Assumption 3 The value of k is known, and �0 =
(
�1,0, �2,0,… , �k,0

)� has no com-
mon elements, where �i,0 ≠ �j,0,∀i ≠ j.

1 Below, we do consider estimation of � using both the CSS estimator and sample mean and provide 
discussion where relevant.
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The first assumption relaxes an unnecessarily strong normality condition, 
whereas, as illustrated below, estimation requires only the associated sum of squared 
errors. The second assumption is standard within the long-memory literature, spe-
cifically when developing consistency arguments (Robinson 2006), and the third 
condition is needed for identification. Below, we discuss methods that can be used to 
estimate the unknown value of k.

Under the assumptions above, we can use the AR representation from (4) to 
define the sum of squares function. Specifically, define �j(�) as the jth coefficient in 
the expansion of �(L)

�(L)

∏k

i=1
(1 − 2�iL + L2)di . We define the truncated disturbances 

and sum of squares function, sT (�) , as,

where

Under all above assumptions, the set of CSS estimates, �̂� = (𝛿�, 𝜏�, �̂��)�, is then 
defined as follows:

Conditions for consistency of the CSS estimators have been established by Robinson 
(2006). The following two assumptions establish consistency under the additional 
assumptions above and defining �(L;�) =

∑∞

j=0
�j(�)Lj.

Assumption 4 For the true parameter vector �0 , we have �0 ∈ Ψ , and for all 
� ∈ Ψ ⧵ �0 , �(L;�) ≠ �(L;�0).

Assumption 5 
∑∞

j=0
sup𝜓∈Ψ�𝛼j(𝜓)� < ∞.

The fourth assumption is also an identification condition, while the last assump-
tion requires absolute summability of the coefficients in the autoregressive repre-
sentation for xt . Under the assumptions above, absolute summability is established 
if di > 0 for all i ∈ {1,… , k} , as provided in the following lemma whose proof is 
given in Appendix.

Lemma 1 Under Assumptions 1–4, the coefficients in the AR(∞) representation of xt 
in Eq. (4) are absolutely summable provided di > 0 for all i ∈ {1,… , k}.

(6)sT (�) =

T∑
t=1

�t(�)2

(7)�t(�) =

t−1∑
j=0

�j(�)xt−j.

(8)�̂� = argmin
𝜓∈Ψ

sT (𝜓).
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3.2  Asymptotic distributions

Here, we extend the proofs of Chung (1996a, 1996b) to propose distributional the-
ory for the CSS estimator in (8). The proofs augment Chung (1996a, 1996b), and, as 
such, complications might be expected. Specifically, similar to Chung, the distribu-
tion for �̂�i is shown to be non-standard with a discontinuity occurring at |�i| = 1 . In 
this specific case, it is not possible to constrain all parameters to lie in the interior of 
the parameter space, an assumption that would typically be employed in establishing 
a limiting distribution (see, Andrews and Sun (2004), for example). Consequently, 
we use an extensive set of simulations to help validate results, especially for the 
cases when �i,0 = 1.

To extend Chung (1996a, 1996b), we consider four cases. The first case is for 
those models for which |𝜂i,0| < 1 , for all i = 1,… , k. The second case is for those 
models for which there exists a value �i,0 = 1 , where |𝜂j,0| < 1 for i ≠ j . The third 
case is for those models for which there exists a value �i,0 = −1 , and |𝜂j,0| < 1 , other-
wise. The final scenario is for those models for which there exists two values �i,0 and 
�j,0 , such that �i,0 = 1 and �j,0 = −1 . The first theorem establishes that the asymptotic 
information matrix for the k-factor GARMA model is block diagonal.

Theorem  1 (Asymptotic independence of   �̂� ) Let �̂�𝛿,𝜏 = (d̂1,… , d̂k, �̂�
�, �̂��)� and 

�̂� = (�̂�1,… , �̂�k)
� be the estimated parameters associated with (8) for the k-factor 

GARMA model. The asymptotic distribution of �̂�𝛿,𝜏 is independent of �̂�.

The proof of this theorem is given in “Appendix 1”. The essential idea is to estab-
lish the different rates of stochastic convergence for the elements of �̂�𝛿,𝜏 and �̂� . No 
conditions are placed on the value of �i,0 relative to �j,0, i ≠ j , so this theorem holds 
for all four cases described above. Consequently, the asymptotic distribution of �̂�𝛿,𝜏 
can be considered independently of �̂�.

Theorem  2 yields the asymptotic distribution of the estimator of ��,� , where, 
again, the proof is provided in Appendix.

Theorem 2 (Asymptotic distribution of   �̂�𝛿,𝜏 ) Let �̂�𝛿,𝜏 be the CSS estimator of the 
true value ��0,�0

 for the stationary and invertible k-factor GARMA model. Then, 
under Assumptions 1–5,

where ⇝ denotes the weak convergence of the random vector �̂�𝛿,𝜏 , and where

(9)
√
T(�̂�𝛿,𝜏 − 𝜓𝛿0,𝜏0

) ⇝ N
�
0, I−1

𝜓𝛿0,𝜏0

�
,

(10)I��0,�0

(k+p+q)×(k+p+q)

=

⎡
⎢⎢⎢⎢⎢⎣

Id1,0 ⋯ Id1,0dk,0 Id1,0,�0
Id1,0,�0

⋮ ⋱ ⋮ ⋮ ⋮

Id1,0dk,0 ⋯ Idk,0 Idk,0,�0
Idk,0,�0

Id1,0,�0
⋯ Idk,0,�0

I�0
I�0,�0

Id1,0,�0 ⋯ Idk,0,�0 I�0,�0
I�0

⎤
⎥⎥⎥⎥⎥⎦

.
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With �i,0 = cos−1(�i,0) , the elements of I��0,�0

are defined as follows: 

where �∗
l,0

 and �∗
l,0

 denote the lth coefficients in the infinite order expansions of 
�−1
0
(L) and �−1

0
(L), respectively. The submatrices I�0,

 I�0,�0
and I�0 consist of elements 

that are the same as the corresponding submatrices of the usual information matrix 
of an ARMA model.

To calculate the information matrix in Theorem 2, the coefficients of �∗
l,0

 and �∗
l,0

 
are easily calculated recursively using the method of equating coefficients. Equipped 
with these values, it is straightforward to calculate the information matrix to obtain 
standard errors used in inference. In the application below, given the large number 
of potential permutations, with different values of k, p, and q, we use a straightfor-
ward computation that truncates relevant infinite sums with 10 million terms.

Throughout, we abstract from the case where � is unknown, although a result is 
available if |𝜂i,0| < 1 , i = 1,… , k . With |𝜂i,0| < 1 for all i, the CSS estimator of the 
true mean �0 , denoted �̂�, has the following distribution, where f(0) denotes the spec-
tral density function evaluated at frequency � = 0,

The distributions of �̂� and the sample mean, x̄ , are equivalent. The proof is omitted 
as these results are a simple extension of Theorem 1 in Chung (1996b).

Theorem 3 is the central result and proposes the asymptotic distribution of �̂� for 
all of our four cases.

Theorem  3 (Asymptotic distribution of  �̂� ) Let �̂�1,… , �̂�k be the estimators of 
�1,0,… , �k,0, based on Eq. (8) for a stationary and invertible k-factor GARMA model 
for a sample {xt}, t = 1,… , T  . Without loss of generality, order the elements of �0 
from smallest to largest. Then let D�1,0

 denote a dummy variable that takes on the 
value 1 if �1,0 = −1 and 0 otherwise, and let D�k,0

 denote a dummy variable that takes 
on the value 1 if �k,0 = 1 and 0 otherwise. Under Assumptions 1–5,

(11a)Idi,0 =2

[
�2

3
− ��i,0 + �2

i,0

]
, i = 1,… , k

(11b)Idi,0dj,0 =2

[
𝜋2

3
− 𝜋𝜐i,0 +

𝜐2
i,0
+ 𝜐2

j,0

2

]
, 𝜐i,0 > 𝜐j,0,

(11c)Idi,0�j,0
=2

∞∑
l=0

�∗
l,0

cos[(l + j)�i,0]

(l + j)
, i = 1,… , k, j = 1,… , p

(11d)Idi,0�m,0 =2

∞∑
l=0

�∗
l,0

cos[(l + m)�i,0]

(l + m)
, i = 1,… , k, m = 1,… , q

(12)
√
T(�̂� − 𝜇0) ⇝ N(0, 2𝜋f (0)).
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with |𝜂i,0| < 1, where i = 1 + D�1,0
,… , k − D�k,0

 and,

where W1,W2,… ,W2k−D�1,0
−D�k,0

 , are 2k − D�1,0
− D�k,0

 independent Brownian 
motions.

The proof is given in “Appendix”. An important result of this theorem relates to 
the asymptotic independence of the values in the vector �̂�. In addition, for each �̂�i , 
di,0 and �i,0 enter the equation for the asymptotic distribution proportionally, so one 
only needs the values of the stochastic integrals depicted in Theorem  3 to calcu-
late asymptotic confidence intervals. The values for these integrals are reported in 
Chung (1996a).

3.3  Estimation algorithm

These theorems provide practical information for designing an efficient algorithm. 
We know that the asymptotic distributions of the memory parameters are not inde-
pendent of the ARMA parameters. Also, the asymptotic distribution of �̂�𝛿,𝜏 and �̂� are 
independent, but the elements of �̂�𝛿,𝜏 are Op(T

−1∕2), whereas �̂�i is Op(T
−1) if |𝜂i,0| < 1 

and Op(T
−2) if |�i,0| = 1. These results suggest that the algorithm of Woodward et al. 

(1998), which estimates ARMA parameters independently of 
(
�i, di

)
 , will produce 

inconsistent estimates. It might be preferable to use an extension of Chung’s method 
(Chung 1996a, b) by conducting a grid search over each element of � combined with 
a gradient method for ��,� . However, Monte Carlo simulations indicate that the grid 
over each value of �i must be very fine, since the objective function has many local 
minima. A k-dimensional line search for � coupled with a gradient-based search for 
��,� would be computationally infeasible, unless the parameter space is bounded in 
some way or a very coarse grid is used.

The computational complexity of the CSS estimator for a k-factor GARMA 
model can be better appreciated if we consider the step of recursively computing 

(13)

T(�̂�i − 𝜂i,0) ⇝
sin(𝜐i,0)

di,0

[∫ 1

0
W2i−1−D𝜂1,0

dW2i−D𝜂1,0

− ∫ 1

0
W2i−D𝜂1,0

dW2i−1−D𝜂1,0

]
[
∫ 1

0
W2

2i−1−D𝜂1,0

(r) dr + ∫ 1

0
W2

2i−D𝜂1,0

(r) dr

]

(14)T2(�̂�1 + 1) ⇝ −
1

2d1,0

∫ 1

0

[∫ r

0
W1(s)ds

]
dW1(r)

∫ 1

0

[∫ r

0
W1(s) ds

]2
dr

, if 𝜂1,0 = −1,

(15)

T2(�̂�k − 1) ⇝
1

2dk,0

∫ 1

0

[∫ r

0
W2k−1−D𝜂1,0

(s)ds
]
dW2k−1−D𝜂1,0

(r)

∫ 1

0

[∫ r

0
W2k−1−D𝜂1,0

(s)ds
]2
dr

, if 𝜂k,0 = 1,
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the residuals. The inverse of the ith Gegenbauer polynomial in the k-factor GARMA 
model can be expanded as (Gray et al. 1989) 

where

and where 
[
j∕2

]
 is the integer part of j/2. As Chung (1996a) notes, the best way to 

calculate the coefficients C(−di)

j
 is via the recursion,

where C(−di)

0
(�i) = 1 and C(−di)

1
(�i) = −2 di �i. Under the assumption that �0=�−1

=⋯ = 0, �t can be calculated recursively from the expression

The combination of the k-dimensional product over the above sums creates most of 
the computational burden.

To overcome computational issues, coupled with different rates of convergence 
of various model parameters, we use an extension of the iterative multi-step gradi-
ent-based algorithm developed by Ramachandran and Beaumont (2001). First, for a 
given k, we obtain a grid of starting values for each element of � . We use each set of 
starting values in this grid to estimate ��,� . Conditional on the estimated value, �̂�𝛿,𝜏 , 
we then estimate the elements of � using an unconstrained gradient-based search.2 
Using the updated estimates of � , a new estimate of ��,� is obtained, which is then 
used to update the estimate of � . This procedure continues for all combinations of 
starting values for �i . The final model results from the set of parameters that jointly 
produce the smallest sum of squared errors. Although computationally intensive, the 
use of this multi-step gradient-based iterative algorithm provides large gains in com-
putational time relative to the full k-dimensional line search for �i.

Our theoretical results assume that the number of spectral poles, k, is known, 
although this may be unlikely in many applications. It is beyond the scope of this 
paper to settle how k should be determined for all applications. However, we provide 
here some guidance based on the existing literature and also propose an additional 

(16a)(1 − 2�iz + z2)di =

∞∑
j=0

C
(−di)
j

(
�i
)
zj,

(16b)C
(−di)
j

(
�i
)
=

[j∕2]∑
l=0

(−1)l
(
2�i

)j−2l
Γ
(
−di − l + j

)

l! (j − 2l)! Γ
(
−di

) ,

(17)C
(−di)

j
(�i) = 2�i

(
−di − 1

j
+ 1

)
C
(−di)

j−1
(�i) −

(
2
−di − 1

j
+ 1

)
C
(−di)

j−2
(�i),

(18)
�(L)

�(L)

k∏
i=1

[
t−1∑
j=0

C
−(di)

j
(�i)L

j

]
(xt − �) = �t.

2 The search occurs over all theoretically plausible values of �i , only imposing a constraint to ensure �i ≠ 
�j , i ≠ j . All elements of �i are estimated jointly, unless it is suspected that there exists a value |�i| = 1 , in 
which case this parameter is estimated separately at each iteration.
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method that shows promise. Within the literature, k is most commonly selected 
through ocular inspection of the periodogram of the data to locate the dominant fre-
quencies (Yajima 1991; Hidalgo and Soulier 2004; Arteche 2020). Although there 
is some theoretical support for this approach, the number of candidate frequencies 
could be low if the spectrum is dominated by behavior at the origin (Leschinski 
and Sibbertsen 2019). Hidalgo and Soulier (2004) introduce a procedure to deter-
mine the model order that sequentially identifies the largest periodogram frequency 
and then tests the significance of the persistence parameter at that frequency. If the 
parameter is found to be insignificant, the iterative procedure ends. Otherwise, the 
significant (�i, di)-pair is added to the Gegenbauer filter, some neighborhood around 
that pole is excluded, and the sequential search continues. Leschinski and Sibbert-
sen (2019) propose a related iterative procedure that tests for significant poles in the 
spectrum after sequentially applying a Gegenbauer filter based on estimated mem-
ory parameters obtained using a Whittle method. The procedure terminates when 
the test-statistic for a singularity is insignificant.

We propose a relatively simple method that selects k based on the minimum value 
of the Bayesian Information Criterion (BIC) for integer values of k ≤ K̄ , where K̄ is 
some sufficiently large upper bound.3 To test this procedure, we simulated various 
k-factor GARMA models, and present here results for a potentially interesting case 
with parameters (�i,0, di,0)2i=1 = (0.5, 0.2) and (− 0.5, 0.4) . The model also includes 
an AR(1) term with �0 = 0.8 . We simulate 1000 replications of the true model with 
sample sizes of T = 100, 200, 300, 500, 1000, and 2000. We select K̄ to be 4, which 
is large enough to explore the sensitivity of our results without placing undue burden 
on computational resources. In addition to recording the selected value of k based on 
the BIC, we also consider model selection based on the Hannan–Quinn (HQ) and 
Akaike (AIC) information criteria.

The results of these simulations are reported in Table 1, where the true value of 
k is 2. In the top panel, we report the proportion of times the AIC selects different 
values that range from 1 to 4. The correct value of k is selected a majority of times 
for all sample sizes. The success rate for choosing k = 2 increases slowly in sam-
ple sizes beginning with 52% for T = 100 , and reaches nearly 70% when T = 2000 . 
The second and third panels show the AIC only performs comparatively well when 
T = 100 , whereas it is strictly dominated by the BIC and HQ criteria for larger sam-
ples. Specifically, the BIC and HQ criteria are extremely accurate when T ≥ 500 , 
with the BIC outperforming the HQ. The final panel of Table 1 shows the bias of the 
estimated parameters when k is set to 4. For large sample sizes, the bias induced by 
selecting k > 2 is quite small.

Additional simulations (available upon request) show that the consequences of 
choosing k too large are relatively minor unless T is small. We also observe that 
the estimation errors, particularly the RMSEs, associated with overestimating k are 
greater for the ARMA parameters than for �i and di . Consequently, the more impor-
tant the short-term dynamics are, the more critical it is to accurately estimate k. In 

3 For our application below, we propose that K̄ be selected based on visual inspection of the perio-
dogram of the differenced data to mitigate the impact of non-cyclic long memory.
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many applications, until more definitive theoretical results for estimating k can be 
derived, we recommend that researchers use several methods to choose k and check 
the robustness of their estimation results.

4  Finite sample performance

In this section, we report simulation results that examine the finite sample properties 
of the CSS estimator. We are interested in examining the bias in the parameter esti-
mates and in comparing the finite sample standard errors of the estimates with their 
asymptotic counterparts. Ramachandran and Beaumont (2001) and Beaumont and 
Smallwood (2022) have done extensive simulations for the single-factor GARMA 
model, with the latter paying particular attention to the parametric region where � is 
close to one and d is close to one-half. Based on those results, we use sample sizes 
of 500, 1000, and 2000 and concentrate on two-factor models with parameter ranges 
that we believe are most relevant for economic and financial applications.

Table 1  Proportion of times k 
is chosen by both sample size T 
and information criterion for a 
2-factor GARMA(1,0) model

The true model is a 2-factor GARMA(1,0) model with �1,0 = 0.5 , 
d1,0 = 0.2 , �2,0 = −0.5 , d2,0 = 0.4 , and �0 = 0.8

k/T 100 200 300 500 1000 2000

AIC
1 0.1380 0.0220 0.0050 0.0000 0.0000 0.0000
2 0.5210 0.5570 0.5570 0.5600 0.6370 0.6980
3 0.2020 0.2690 0.2550 0.2460 0.2120 0.1780
4 0.1390 0.1520 0.1830 0.1940 0.1510 0.1240
BIC
1 0.5740 0.2640 0.1250 0.0080 0.0000 0.0000
2 0.4120 0.7170 0.8660 0.9870 0.9990 1.0000
3 0.0120 0.0180 0.0090 0.0050 0.0010 0.0000
4 0.0020 0.0010 0.0000 0.0000 0.0000 0.0000
HQ
1 0.3240 0.1090 0.0270 0.0020 0.0000 0.0000
2 0.5600 0.7950 0.8680 0.9140 0.9510 0.9620
3 0.0780 0.0810 0.0840 0.0690 0.0450 0.0350
4 0.0380 0.0150 0.0210 0.0150 0.0040 0.0030
Bias of parameters when k = 4

�1 − 0.2257 − 0.1116 − 0.0787 − 0.0503 − 0.0117 − 0.0042
d1 0.0062 0.0281 0.0285 0.0181 0.0026 0.0001

d2 0.0002 0.0129 0.0056 0.0006 − 0.0010 − 0.0007
d3 − 0.1112 − 0.0438 − 0.0259 − 0.0140 − 0.0055 − 0.0017
d4 − 0.0845 − 0.0017 0.0082 0.0061 0.0020 0.0010
�1 − 0.0317 − 0.0144 − 0.0086 − 0.0017 − 0.0006 0.0006
�2 − 0.0668 − 0.0096 0.0000 0.0002 0.0001 0.0001
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Table 2  Simulations for the 2-factor GARMA(0,0) processes

�1 �2 d1 d2 � N

True 0.5 0 0.2 0.4 0
Mean Bias − 0.0003 − 0.0001 − 0.0031 0.0068 0.0002 500
RMSE 0.0346 0.0082 0.0311 0.0397 0.0343
MNSE 0.0078 0.0047 0.0309 0.0357 N/A
Mean Bias − 0.00002 − 0.00001 − 0.0009 0.0018 − 0.0004 2000
RMSE 0.0081 0.0022 0.0149 0.0182 0.0173
MNSE 0.0020 0.0012 0.0153 0.0177 N/A
True 0.5 − 0.5 0.2 0.4 0
Mean Bias − 0.0009 0.0001 0.0011 0.0061 0.0000 500
RMSE 0.0364 0.0080 0.0345 0.0380 0.0295
MNSE 0.0079 0.0041 0.0352 0.0352 N/A
Mean Bias − 0.0004 − 0.0001 − 0.0001 0.0014 0.0003 2000
RMSE 0.0082 0.0020 0.0177 0.0177 0.0145
MNSE 0.0020 0.0011 0.0175 0.0175 N/A
True 0 0.5 0.2 0.4 0
Mean Bias 0.0015 − 0.0001 − 0.0030 0.0039 0.0015 500
RMSE 0.0435 0.0078 0.0344 0.0347 0.0408
MNSE 0.0091 0.0040 0.0356 0.0309 N/A
Mean Bias 0.0010 − 0.0001 − 0.0014 0.0004 0.0010 2000
RMSE 0.0079 0.0022 0.0172 0.0156 0.0196
MNSE 0.0022 0.0011 0.0177 0.0153 N/A
True 0 − 0.5 0.2 0.4 0
Mean Bias 0.0016 − 0.0001 − 0.0031 0.0048 0.0010 500
RMSE 0.0455 0.0079 0.0346 0.0346 0.0262
MNSE 0.0091 0.0040 0.0356 0.0310 N/A
Mean Bias − 0.0003 0.00001 − 0.0014 0.0002 0.0007 2000
RMSE 0.0083 0.0019 0.0172 0.0162 0.0126
MNSE 0.0022 0.0011 0.0177 0.0153 N/A
True − 0.5 0.5 0.2 0.4 0
Mean Bias − 0.0012 − 0.0002 0.0015 0.0063 0.0006 500
RMSE 0.0373 0.0073 0.0335 0.0365 0.0360
MNSE 0.0078 0.0040 0.0352 0.0351 N/A
Mean Bias 0.0001 − 0.00004 − 0.0001 0.0004 0.0001 2000
RMSE 0.0084 0.0022 0.0176 0.0178 0.0188
MNSE 0.0020 0.0011 0.0175 0.0175 N/A
True − 0.5 0 0.2 0.4 0
Mean Bias − 0.0020 0.00004 − 0.0023 0.0060 − 0.00002 500
RMSE 0.0371 0.0093 0.0321 0.0390 0.0279
MNSE 0.0079 0.0047 0.0309 0.0357 N/A
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The initial simulation results are presented in Tables 2, 3, 4 and 5.4 Each col-
umn lists the parameters of the simulated model and each block in the tables 
gives the results from 1000 replications for each specific parameterization. For 
computational purposes, we use an iterative procedure to generate a large amount 
of data before discarding all but the last 500 or 2000 observations. Throughout, 
we report the true parameter values (True), the mean bias, the root mean squared 
error (RMSE), the mean of the numerical standard errors calculated from the 
estimated Hessian matrix in the last iteration (MNSE), and the mean of the true 
asymptotic standard errors (MASE) based on Theorem 2. We use the estimated 
values of all parameters to compute the true asymptotic standard errors for each 
of the 1000 replications and then average them to get the MASE. Since the mean 
bias is small, there will be inconsequential differences between the MASE com-
puted this way and the true ASE computed using the true parameter values. Addi-
tionally, our MASE values will vary by sample size, since the standard errors are 
not multiplied by T−1∕2.

Table 2 presents the results for six different two frequency GARMA(0,0) mod-
els with values of �i,0 set to − 1

2
, 0,

1

2
 and values of di,0 equal to 0.2 and 0.4. The 

estimation biases are all quite small, especially for the values of �̂�1 and �̂�2 , which 
converge at a faster rate than the other parameters. Theoretically, �̂�i is Op(T

−1) 
whereas remaining parameters have standard rate-

√
T  convergence. It is therefore 

wholly consistent with the theoretical results to observe that the MNSE’s of �̂�i in 
Table 2 are about 4 times larger for T= 500 relative to T=2000. In contrast, the 
MNSE’s for d̂i are about 2 times larger for samples of 500 relative to samples of 
2000.

Generally speaking, a larger value of di,0 mitigates the already small bias in 
�̂�i , which appears to be marginally more sensitive to estimation outliers. This is 
likely due to the fact that an estimate of di near zero can lead to poor estimates of 
the corresponding �i , because that Gegenbauer polynomial will have very little 
impact on the objective function no matter what the value of �i,0 is. In all cases, 
� is estimated with the sample mean, which is asymptotically equivalent to the 
CSS estimator of � provided |𝜂i,0| < 1, i = 1,… , k. As noted above, the estimator 

Table 2  (continued)

The means of the true asymptotic standard errors (MASE) for d̂1 with T = 500 and 2000 are 
{0.0306, 0.0349, 0.0353, 0.0353, 0.0348, 0.0305} and {0.0153, 0.0174, 0.0176, 0.0176, 0.0174, 0.0153} . 
The corresponding values for d̂2 are {0.0353, 0.0349, 0.0306, 0.0306, 0.0349, 0.0353} and 
{0.0176, 0.0174, 0.0153, 0.0153, 0.0174, 0.0174} , respectively

4 To conserve space, results with T = 1000 are omitted, but are available on request.

�1 �2 d1 d2 � N

Mean Bias 0.0008 − 0.00002 − 0.0010 0.0008 0.0003 2000
RMSE 0.0074 0.0025 0.0155 0.0189 0.0138
MNSE 0.0020 0.0012 0.0153 0.0177 N/A
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Table 3  Simulation results for 2-factor GARMA processes with p, q ≠ 0

�1 �2 d1 d2 � � � T

True 0.5 − 0.5 0.2 0.4 0.8 N/A 0
Mean Bias − 0.0005 0.0005 − 0.0022 0.0026 − 0.0075 – 0.0068 500
RMSE 0.0372 0.0079 0.0356 0.0432 0.0330 – 0.1441
MNSE 0.0081 0.0041 0.0358 0.0399 0.0313 – –
MASE – – 0.0354 0.0397 0.0311 – 0.1414
Mean Bias − 0.0004 0.000001 − 0.0012 − 0.0001 − 0.0020 – − 0.0008 2000
RMSE 0.0084 0.0020 0.0175 0.0205 0.0162 – 0.0717
MNSE 0.0020 0.0011 0.0178 0.0198 0.0154 – –
MASE – – 0.0177 0.0198 0.0154 – 0.0718
True 0.5 − 0.5 0.2 0.4 N/A 0.8 0
Mean Bias − 0.0034 0.0001 0.0008 0.0071 – − 0.0097 − 0.0010 500
RMSE 0.0346 0.0073 0.0391 0.0386 – 0.0350 0.0504
MNSE 0.0078 0.0040 0.0400 0.0356 – 0.0314 –
MASE – – 0.0397 0.0354 – 0.0313 0.0513
Mean Bias − 0.0003 – 0.000001 − 0.0004 0.0022 – − 0.0027 − 0.0002 2000
RMSE 0.0074 0.0021 0.0192 0.0180 – 0.0162 0.0260
MNSE 0.0019 0.0011 0.0199 0.0178 – 0.0154 –
MASE – – 0.0198 0.0177 – 0.0154 0.0259
True 0.5 − 0.5 0.2 0.4 − 0.8 N/A 0
Mean Bias − 0.0003 0.0002 − 0.0028 0.0024 0.0047 – − 0.00003 500
RMSE 0.0341 0.0079 0.0397 0.0376 0.0329 – 0.0160
MNSE 0.0079 0.0041 0.0399 0.0357 0.0310 – –
MASE – – 0.0396 0.0354 0.0309 – 0.0161
Mean Bias − 0.0004 − 0.00002 − 0.0018 − 0.0002 0.0011 – − 0.00003 2000
RMSE 0.0070 0.0019 0.0205 0.0180 0.0162 – 0.0082
MNSE 0.0019 0.0011 0.0198 0.0178 0.0153 – –
MASE – – 0.0198 0.0177 0.0153 – 0.0080
True 0.5 − 0.5 0.2 0.4 N/A − 0.8 0
Mean Bias 0.0008 − 0.0001 − 0.0014 0.0040 – 0.0111 0.0003 500
RMSE 0.0394 0.0078 0.0356 0.0440 – 0.0406 0.0066
MNSE 0.0079 0.0040 0.0357 0.0400 – 0.0316 –
MASE – – 0.0354 0.0397 – 0.0314 0.0061
Mean Bias − 0.0001 0.00003 − 0.0019 − 0.0003 – 0.0022 0.0002 2000
RMSE 0.0075 0.0021 0.0185 0.0203 – 0.0165 0.0029
MNSE 0.0020 0.0011 0.0178 0.0198 – 0.0154 –
MASE – – 0.0177 0.0198 – 0.0154 0.0029
True 0.5 − 0.5 0.2 0.4 0.8 0.8 0
Mean Bias 0.0012 − 0.0001 0.0021 0.0024 − 0.0049 − 0.0276 0.0016 500
RMSE 0.0448 0.0067 0.0420 0.0437 0.0402 0.0565 0.2517
MNSE 0.0078 0.0040 0.0428 0.0420 0.0334 0.0351 –
MASE – – 0.0424 0.0418 0.0331 0.0349 0.2585
Mean Bias − 0.0003 0.0001 − 0.0012 − 0.0003 − 0.0013 − 0.0063 0.0038 2000
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for the mean is Op(T
−1∕2) , the same rate of convergence as the parameters in �̂�𝛿,𝜏 , 

so its bias is also quite small. The true asymptotic standard errors of the cor-
responding values of d̂1 and d̂2 are quite comparable to their numerical counter-
parts. Finally, in light of the results of Theorem 3, it is not surprising to see that 
the MNSE and RMSE for �̂�1 and �̂�2 are quite different, since the RMSE assumes 
convergence at the rate T1∕2.

To examine the influence of ARMA parameters, � and � , we choose a particu-
lar parameterization (second case from Table  2) and estimate various two-fac-
tor GARMA(p, q) models with p and q being either zero or one. The results are 
reported in Table 3 and are similar to those in Table 2. Again, for all of the cases 
considered in Table 3, the median and mean biases are quite small. Again, we see 
that the mean asymptotic standard errors are virtually identical to the RMSE and 
MNSE for d̂i , �̂� , and �̂� , particularly with T = 2000 . These simulation results yield 
particularly strong evidence supporting the theoretical results in Theorem 2.

Table 4 examines the particularly interesting case where �1,0 =1 and |𝜂2,0| < 1, so 
that we get a combination ARFIMA and GARMA model. Compared to �̂�2 , �̂�1 has 
very little bias and extremely small RMSE and MNSE, reflecting that this parameter 
may be Op(T

−2) as reported in the theoretical results above. As expected, the MNSE 
for �̂�1 is about (2000∕500)2 = 16 times larger when the sample size is 500 compared 
to when the sample size is 2000. The results for �̂�2 when |𝜂2,0| < 1 are similar to 
those in Tables 2 and 3, as are the results for the d̂1 and d̂2 . When �i,0 = 1 , however, 
the sample mean and CSS estimate of � are no longer asymptotically equivalent. 
Thus, we use the CSS estimator for � in these cases. The computational difficulties 
of time domain estimators for ARFIMA models when the mean is unknown have 
been well documented (Yajima 1991; Chung and Baillie 1993; Cheung and Diebold 
1994). In spite of these difficulties, the mean is fairly unbiased, albeit with a wide 
distribution. Again, the remaining parameters suffer from very little distortion.

As noted above, the computational burden of the CSS estimator grows rapidly 
with the number of spectral poles due to the grid search over each �i . Thus, if we 
could narrow the range of the grid search, we could improve the efficiency of the 
algorithm. With i ≠ j , since �̂�i is independent of both �̂�j and �̂�𝛿,𝜏 , it may be possible 
to first estimate each value of �i sequentially to get good starting values. We could 
then re-estimate the entire model using fairly tight grids over each �i . In Table 5, we 
investigate this possibility. First, we estimate a 1-factor GARMA model and then fil-
ter the data with the resulting Gegenbauer polynomial before estimating the second 
frequency using a 1-factor model on these filtered data. This process should produce 
good starting values for � as long as the biases are not too large.

Table 3  (continued)

�1 �2 d1 d2 � � � T

RMSE 0.0070 0.0018 0.0206 0.0204 0.0166 0.0197 0.1314
MNSE 0.0020 0.0011 0.0210 0.0209 0.0163 0.0165 –
MASE – – 0.0209 0.0209 0.0163 0.0165 0.1296
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The first two models in Table 5 are cases from the previous simulations, and the 
third case represents a mixed ARFIMA/GARMA model in which the ARFIMA 
component is short memory ( di,0 < 0 ). The latter process, which is not covered by 
the theorems above, may result from differencing processes with a non-stationary 

Table 4  Estimation of simulated ARFIMA/GARMA processes

�1 �2 d1 d2 � T

True 1 0.75 0.2 0.3 0
Mean Bias − 0.0014 − 0.0005 − 0.0096 0.0055 − 0.0258 500
RMSE 0.0046 0.0120 0.0262 0.0331 0.8135
MNSE 0.0003 0.0042 0.0221 0.0316 0.2512
MASE – – 0.0218 0.0312 –
Mean Bias − 0.0001 0.0001 − 0.0034 0.0024 0.0011 2000
RMSE 0.0003 0.0027 0.0116 0.0157 0.6425
MNSE 0.00002 0.0011 0.0107 0.0156 0.2338
MASE – . – 0.0107 0.0155 –
True 1 0.5 0.2 0.3 0
Mean Bias − 0.0014 0.0013 − 0.0081 − 0.0027 − 0.0081 500
RMSE 0.0047 0.0149 0.0218 0.0325 0.6413
MNSE 0.0004 0.0054 0.0188 0.0319 0.2015
MASE – – 0.0186 0.0316 –
Mean Bias − 0.0001 0.0003 − 0.0026 0.0009 0.0016 500
RMSE 0.0003 0.0035 0.0098 0.0155 0.4913
MNSE 0.00002 0.0014 0.0092 0.0158 0.1871
MASE – – 0.0091 0.0158 –
True 1 0 0.2 0.3 0
Mean Bias − 0.0014 0.0006 − 0.0068 − 0.0015 − 0.0018 500
RMSE 0.0040 0.0154 0.0209 0.0372 0.5151
MNSE 0.0003 0.0063 0.0186 0.0363 0.1636
MASE – – 0.0183 0.0360 –
Mean Bias − 0.0001 0.0001 − 0.0022 − 0.0013 − 0.0046 2000
RMSE 0.0002 0.0042 0.0095 0.0190 0.4076
MNSE 0.00002 0.0016 0.0091 0.0181 0.1523
MASE – – 0.0090 0.0180 –
True 1 − 0.5 0.2 0.3 0
Mean Bias − 0.0012 − 0.0003 − 0.0089 − 0.0051 − 0.0035 500
RMSE 0.0037 0.0125 0.0262 0.0395 0.4530
MNSE 0.0003 0.0055 0.0222 0.0375 0.1457
MASE – – 0.0219 0.0373 –
Mean Bias − 0.0001 0.0001 − 0.0031 − 0.0036 − 0.0056 2000
RMSE 0.0002 0.0031 0.0115 0.0195 0.3595
MNSE 0.00002 0.0014 0.0108 0.0186 0.1379
MASE – – 0.0107 0.0185 –
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ARFIMA component. For each of the cases considered in Table 5, the sample mean 
is used to estimate � . We find that the method generally first selects the frequency 
with the largest corresponding value of di,0 , thus capturing the most dominate fea-
ture of the ACF. The results in Table 5 indicate that the small sample biases in �̂�1 and 
�̂�2 are reasonable, suggesting that the method of choosing a tight grid around these 
point estimates might work, at least when k is small. The relatively large biases in 
the values of the vector �̂�𝛿,𝜏 , however, confirm the results of Theorem 2 that a con-
sistent estimator is obtained only through joint estimation of all parameters.

For a fixed sample size, these results strongly support the use of the multi-step 
gradient estimation algorithm, while largely validating the proposed distribution 
theory. Notably, the distribution of �̂�i appears independent of �̂�j , i ≠ j , and the distri-
bution of these parameters is largely unaffected by the inclusion of ARMA dynam-
ics. Additionally, the proposed distribution theory for d̂i is confirmed. Finally, as 
shown below, and in numerous other simulations that are available upon request, the 
estimator appears to achieve the proposed rates of convergence, even when we esti-
mate multiple GARMA components.

Table 5  Sequential estimation of 2-factor models with single-factor models

�1 �2 d1 d2 � � � T

True 0.5 0.0 0.2 0.4 N/A N/A 0
Mean Bias 0.0018 0.0132 − 0.0193 0.0487 – – 0.0033 500
RMSE 0.0467 0.0704 0.0420 0.0795 – – 0.0336
MNSE 0.0084 0.0064 0.0302 0.0366 – – N/A
True 0.5 0.0 0.2 0.4 N/A N/A 0
Mean Bias 0.0006 0.0053 − 0.0095 0.0362 – – 0.0010 2000
RMSE 0.0059 0.0121 0.0182 0.0417 – – 0.0168
MNSE 0.0020 0.0017 0.0152 0.0182 – – N/A
True 0.5 − 0.5 0.2 0.4 0.8 0.8 0
Mean Bias − 0.0089 − 0.0002 − 0.0945 − 0.1277 − 0.0742 0.0525 − 0.0038 500
RMSE 0.0876 0.0216 0.0979 0.1362 0.0838 0.0614 0.2580
MNSE 0.0115 0.0042 0.0288 0.0325 0.0366 0.0240 N/A
True 0.5 − 0.5 0.2 0.4 0.8 0.8 0
Mean Bias − 0.0006 0.0002 − 0.0941 − 0.1269 − 0.0670 0.0658 − 0.0031 2000
RMSE 0.0053 0.0021 0.0947 0.1284 0.0698 0.0671 0.1350
MNSE 0.0026 0.0009 0.0143 0.0160 0.0179 0.0114 N/A
True 1.0 0.75 − 0.2 0.3 N/A N/A 0
Mean Bias − 0.0002 − 0.0065 0.0608 − 0.1277 – – 0.0006 500
RMSE 0.0079 0.0287 0.0635 0.1306 – – 0.0080
MNSE 0.0001 0.0047 0.0186 0.0231 – – N/A
True 1.0 0.75 − 0.2 0.3 N/A N/A 0
Mean Bias 0.000001 − 0.0008 0.0601 − 0.1286 – – 0.0002 2000
RMSE 0.00001 0.0035 0.0608 0.0.1294 – – 0.0023
MNSE 0.00001 0.0010 0.0093 0.0114 – – N/A
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For the single frequency case, Chung (1996a) uses a line grid search to estimate 
� , along with a gradient-based method for ��,� . This implies that the parameter 
space being searched over is a countable finite set that requires the use of bound-
ary constraints, given that a fine grid would be needed to capture an estimate of � 
near the true value. Based on the limited algorithm, Chung (1996a) provides support 
for the proposed theory and associated confidence bands for �̂� for all cases except 
when �0 = 1 . Here, it would appear that the associated empirical test sizes for �0 = 1 
under the null are too large to be of practical use. Beaumont and Smallwood (2022) 
consider the consequences of using a two-dimensional grid search over both � and 
d without the use of boundary constraints for �, and show that the exact distribu-
tional results of Chung (1996a) are generally supported, with two exceptions. First, 
similar to Chung (1996a), Beaumont and Smallwood (2022) show that the theory 
under the hypothesis �0 = 1 is problematic for testing purposes, with empirical sizes 
that are often much higher than their associated theoretical counterparts. Secondly, 
when |𝜂i,0| < 1 , it is shown that with the use of the proposed algorithm, the resulting 
empirical distribution has slightly fatter tails and a more peaked density relative to 
the proposed theory. In terms of calculating confidence bands, the issue appears to 
be very minor and disappears as the sample size increases. Nonetheless, small biases 
in confidence bands can result, especially as d0 → 0 . We now consider more com-
plete simulation evidence to analyze the extent to which these previous results carry 
over when k > 1.

For varying sample sizes, we considered a variety of experiments, includ-
ing models where there exists a value of �i,0 = 1 . For brevity, the full set of results 
are not reported here, but are available upon request. Here, we report results for 
four fairly complicated 2-factor parameterizations. Model 1 is a GARMA(0,0) 
model with {�1,0, d1,0} = {0.5, 0.4} , and {�2,0, d2,0} = {0, 0.2} . Given the distri-
butional results above, this parameterization represents a case where the process 
is expected to be especially volatile.5 Model 2 is also a GARMA(0,0) model but 
with {�1,0, d1,0} = {0.98, 0.45} , and {�2,0, d2,0} = {−0.4, 0.3} . This parameterization 
approaches the region of the discontinuity in our theoretical distribution for �̂� and 
is also a strongly persistent process with d1,0 close to 0.50. Model 3 is the same 
as Model 1, except we add an AR(1) term with �0 = 0.80 . Finally, we consider a 
case with {�1,0, d1,0} = {1.00, 0.20} , and {�2,0, d2,0} = {−0.6, 0.45} . The theoretical 
results suggest that the estimates of �1 and �2 have different rates of convergence, and 
given the values of d1,0 and d2,0 , the process is again close to the non-stationary bor-
der. This parameterization will allow us to explore how theoretical concerns regard-
ing the CSS estimator when |�i,0| = 1 impact results for |𝜂j,0| < 1, i ≠ j.

First, we compare the theoretical and simulated distributions of �̂�i , i = 1, 2 . Fig-
ure 2 shows the empirical and theoretical normalized cumulative distribution func-
tions (cdf) for �̂�1 from Model 1 for sample sizes of 500 and 2000 . For the empirical 
distributions, we plot T(�̂�1 − 0.50) , where the elements of �̂� are computed using the 

5 Note that the scaling factor in Eq. (13) of Theorem 3 is sin(�i,0)
di,0

 . As such, with sin(�2,0) = 1 , the small 
value for d2,0 is expected to generate estimated values of �2 that are quite volatile.



 P. M. Beaumont, A. D. Smallwood 

1 3

estimation algorithm described above, and the theoretical quantities have been cal-
culated using Eq. (13) from Theorem 3. The vertical differences between the theo-
retical and empirical curves show the disagreements between the theoretically and 
empirically derived critical values for each percentile. The two shaded regions show 
areas below the 0.025 and above the 0.975 percentiles, which would be relevant for 
the construction of a 95% confidence interval.

The first observation is that the empirical and theoretical distributions are in fairly 
close agreement, and this agreement is consistent as the sample size increases. This 
suggests that the proposed rate-T convergence in Theorem 3 is strongly supported. 
Second, there is some evidence that the empirical tails are larger than implied by the 
theory, so we will now explore the consequences of any such differences.

When estimating a k-factor GARMA model, the calculation of confidence bands 
for �̂�i is likely the most important application of the theory. To get a sense of how 
applicable our proposed distribution theory and algorithm are, Table 6 provides the 

Fig. 2  Percentiles of theoretical/empirical CDFs of �̂�1 in model 1 with {�1,0, d1,0} = {0.5, 0.4}
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estimated biases in calculating the upper and lower 68, 90, 95, and 99% confidence 
bands for the four models described above. As a reference point, the theoretical 
bands for each value of �̂�i with T=500 are provided in italic font. Below the theoreti-
cal bands, we show the bias associated with the empirical bands for �̂�1 , followed by 
those of �̂�2, for each sample size.

For Model 1, and with relatively small samples of 500 observations, the 99% con-
fidence bands are quite unreliable for �2,0 = 0 . From the last two columns in the sec-
ond block of Model 1 in Table 6, the theoretical confidence band for �̂�2 with �2,0 = 0 
when T = 500 is [− 0.0423, 0.0423] . In contrast, among the 5050 simulations, 99% 
of the estimated values of �̂�2 were within a range of [−0.0910, 0.0683] , thus produc-
ing a bias of the lower 99% band of − 0.0487 (e.g., − 0.0910 + 0.0423) . In general, 
with small sample sizes, there are small but potentially non-negligible biases when 
using the 99% confidence bands. Otherwise, the results in Table 6 support the use 
of the proposed distribution theory in calculating these intervals. First, we note that 
the differences between the theoretical and estimated bands decrease sharply as T 
increases and become negligible in most cases when T = 2000 . Throughout, 68% 
and 90% bands are surprisingly accurate, such that multiple confidence bands could 
be presented for researchers wishing to take a conservative approach. Finally, we 
observe that there are no qualitative differences between the estimated bands from 
the GARMA(0,0) and GARMA(1,0) models, represented as Model 2 and Model 3, 
suggesting that the values of �̂�i are independent of ARMA components as implied by 
the proposed theory.

The simulations for the case with �1,0 = 1 merit additional discussion. First, we 
see that any potential concerns regarding estimation of �1 likely do not to impact 
estimation of �2 . For example, with �2,0 = −0.60 and with T = 500 , 99.5% of all val-
ues of �̂�2 were less than − 0.5793, which is quite close to the theoretical upper 99% 
confidence band given by − 0.5850. Similar to other experiments, the biases in esti-
mating theoretical percentiles decline with the sample size and become negligible 
for T = 2000 . For estimates of �1 , we see that the biases in calculating confidence 
bands are negligible, likely reflecting the proposed rate of convergence given by T2 . 
Nonetheless, it is important to note that the T2 factor also affects the test-statistic 
for the hypothesis �1,0 = 1 . More specifically, using the distribution theory outlined 
in Theorem 3, we obtained the empirical sizes for the null hypothesis H0 ∶ �1,0 = 1 
vs. the alternative 𝜂1,0 < 1 based on the test statistic T2(�̂�1 − 1) . The results show 
that substantial size distortion results. More specifically, the empirical sizes for 
T = 500, 1000, and 2000 observations were equal to 16.89, 18.48, and 18.75%, 
respectively, based on a 5% test size. This result matches the findings in Beaumont 
and Smallwood (2022), who show that the distribution theory under the null �1,0 = 1 
can be unreliable. Computational methods likely offer resolution for researchers 
interested in determining if cycles are potentially infinite. In the next section, we 
briefly outline how to extend Beaumont and Smallwood (2022) to implement a sim-
ple parametric bootstrap in order to conduct tests of the hypothesis |�i,0| = 1 in the 
multi-factor GARMA model.
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Table 6  Empirical and theoretical confidence intervals of the �’s

The true model is depicted in the header of each panel, with the sample size displayed in the first col-
umn. Quantities in italic font are theoretical confidence bands for T = 500 calculated using Theorem 3. 
Remaining values denote the difference between the percentiles from the simulations and the associated 
theoretical quantity for a given confidence band from Models 1-4

OBS 68%L 68%U 90%L 90%U 95%L 95%U 99%L 99%U

Model 1: �1,0 = 0.50 , d1,0 = 0.40 ; �2,0 = 0.00 , d2,0 = 0.20

�
1

.4950 .5050 .4906 .5094 .4879 .5120 .4817 .5183
500 0.0011 − 0.0011 − 0.0013 0.0017 − 0.0030 0.0037 − 0.0069 0.0110
1000 0.0004 − 0.0007 − 0.0007 0.0003 − 0.0017 0.0013 − 0.0054 0.0030
2000 0.0003 − 0.0002 − 0.0001 0.0003 − 0.0005 0.0008 − 0.0017 0.0016
�2 − 0.0116 0.0116 − 0.0217 0.0217 − 0.0279 0.0279 − 0.0423 0.0423
500 − 0.0044 0.0030 − 0.0157 0.0111 − 0.0224 0.0150 − 0.0487 0.0260
1000 − 0.0020 0.0015 − 0.0069 0.0053 − 0.0113 0.0077 − 0.0203 0.0128
2000 −0.0010 0.0009 −0.0034 0.0030 −0.0049 0.0045 −0.0103 0.0076
Model 2: �1,0 = 0.98 , d1,0 = 0.45 ; �2,0 = −0.40 , d2,0 = 0.30

�
1

0.9790 0.9810 0.9781 0.9819 0.9775 0.9825 0.9763 0.9837
500 0.0003 − 0.0004 − 1.7e − 5 − 0.0003 − 0.0003 − 0.0001 − 0.0011 0.0004
1000 0.0001 − 0.0001 − 1.1e − 6 − 4.2e − 5 − 0.0001 0.0001 − 0.0007 0.0003
2000 4.2e − 5 − 4.5e − 5 − 0.0001 8.6e − 6 − 0.0001 0.0001 − 0.0005 0.0002
�
2

− 0.4071 − 0.3929 − 0.4133 − 0.3867 − 0.4170 − 0.3830 − 0.4258 − 0.3742
500 0.0004 0.0002 − 0.0039 0.0059 − 0.0072 0.0092 − 0.0165 0.0175
1000 − 0.0001 0.0002 − 0.0025 0.0024 − 0.0047 0.0042 − 0.0079 0.0086
2000 0.0001 − 4.5e − 5 − 0.0008 0.0010 − 0.0019 0.0018 0.0048 0.0042
Model 3: �1,0 = 0.98 , d1,0 = 0.45 ; �2,0 = − 0.40 , d2,0 = 0.30 , �0 = 0.80

�
1

0.9790 0.9810 0.9781 0.9819 0.9775 0.9825 0.9763 0.9837
500 0.0002 − 0.0004 − 0.0003 − 0.0002 − 0.0009 0.0001 − 0.0026 0.0008
1000 0.0001 − 0.0001 − 0.0001 − 0.0001 − 0.0002 0.0001 − 0.0010 0.0004
2000 0.0001 − 0.0001 − 0.0001 1.5e − 5 − 0.0002 0.0001 − 0.0004 0.0004
�
2

− 0.4071 − 0.3929 − 0.4133 − 0.3867 − 0.4170 − 0.3830 − 0.4258 − 0.3742
500 − 0.0008 − 0.0008 − 0.0060 0.0045 − 0.0104 0.0081 − 0.0250 0.0158
1000 − 0.0004 − 0.0001 − 0.0028 0.0020 − 0.0049 0.0032 − 0.0108 0.0075
2000 − 0.0002 − 0.0001 − 0.0013 0.0010 − 0.0023 0.0017 − 0.0048 0.0038
Model 4: �1,0 = 1.00 , d1,0 = 0.20 ; �2,0 = − 0.60 , d2,0 = 0.45

�
1

0.9997 1.0001 0.9994 1.0001 0.9990 1.0002 0.9980 1.0003
500 − 0.0001 − 3.5e − 5 − 0.0005 − 0.0001 − 0.0009 − 0.0001 − 0.0019 − 0.0002
1000 − 3.4e − 5 − 1.4e − 5 − 0.0002 − 3.1e − 5 − 0.0003 − 4.3e − 5 − 0.0012 − 0.0001
2000 − 8.6e − 6 − 2.2e − 6 − 3.7e − 5 − 5.2e − 6 − 0.0001 − 7.4e − 6 − 0.0001 − 1.2e − 5
�
2

− 0.6041 − 0.5959 − 0.6077 − 0.5923 − 0.6099 − 0.5901 − 0.6150 − 0.5850
500 0.0012 − 0.0012 0.0004 0.0003 − 0.0007 0.0018 − 0.0034 0.0057
1000 0.0005 − 0.0005 − 1.6e − 5 0.0002 − 0.0007 0.0009 − 0.0026 0.0018
2000 0.0001 − 0.0003 − 0.0002 0.0001 − 0.0007 0.0005 − 0.0019 0.0009
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5  Application

Emerging research has demonstrated that cyclical long memory is an important 
characteristic of many financial time series.6 To demonstrate the applicability of the 
CSS estimator and the proposed theory, we consider the weekly trading volume of 
IBM equities from January 1, 1962, through March 28, 2022. Without loss of gen-
erality, the data have been rescaled by dividing by the maximum value for volume. 
The periodogram of the difference of the resulting series is depicted in Fig. 3.

From the visual inspection of Fig.  3, we identified as many as 9 frequencies 
as candidates for spectral poles, including the origin, which dominates the perio-
dogram for the raw series. Based on the discussion above, we then used the BIC 
to select k and the number of autoregressive and moving average parameters. For 
each k, we considered all combinations of models with p, q ≤ 3 . Among the 144 
estimated models, the BIC selected the 6-frequency GARMA(2,3) model, while 
the Hannan–Quinn marginally selected k=8 vs. k = 6 when considering p = 2 and 
q = 3 . We therefore selected the 6-frequency GARMA(2,3) model whose estimation 
results appear in Table 7. Results for k > 6 produce similar findings that are avail-
able on request.

For the 6-factor model, one isolated frequency is at the origin and the other 5 
estimated frequencies are depicted in Fig. 3 by the vertical dotted lines.7 Based on 
the simulation results as discussed above, we show 68% confidence bands under 
the assumption that |𝜂i,0| < 1 . Additionally, for estimates of ��,� , we present both 
numerical and asymptotic standard errors that are very similar and, thus, provide 
strong support for the proposed distribution theory.8

Because the estimated value of �1 is only marginally less than 1, there is strong 
evidence of a spectral pole at the origin. As discussed above, however, the distribu-
tion theory building on Chung (1996a) is suspect when �i,0=1. Consequently, we 
suggest that a bootstrap method may be a reliable alternative. Although the con-
struction of a fully validated bootstrap test statistic is outside the scope of this paper, 
the existing literature provides guidance that we exploit here. First, note that under 
the null, H0 ∶ �1,0 = 1 , the parameter �1 lies on the boundary of the parameter space. 
In such cases, it has been established that bootstrap samples generated from unre-
stricted CSS estimation may yield invalid test statistics, failing to mimic the target 
distribution under the null (Andrews 2000; Cavaliere et  al. 2017; Cavaliere and 
Rahbek 2021). A resolution to this problem is to use a restricted bootstrap, where 

6 See Lu and Guegan (2011) and Caporale and Gil-Alana (2014) for applications to the Nikkei-based 
forward premia and price dividend ratios in the USA. Also, see Asai et al. (2020) who provide evidence 
of multiple sources of cyclical long memory in differenced interest rates for the USA and Australia at 
various maturities.
7 We selected � = 0.4818 as a potential candidate for a pole given the magnitude of the periodogram at 
this frequency relative to nearby ordinates. The remaining candidates were associated with the largest 
values of the periodogram of the differenced data.
8 As a robustness check, given potential non-stationarity when �1,0 = 1 , we also estimated a model 
applied to the first difference of volume. The estimated value of d1 is equal to − 0.1923, which implies a 
value of 0.3077 for the series in levels when �1,0 = 1 . All other parameter estimates, which are available 
upon request, indicate no tangible disparities, including, most notably, the position of the spectral poles.



 P. M. Beaumont, A. D. Smallwood 

1 3

samples are formed from residuals and parameters estimated under the null (Cava-
liere et al. 2017). Recently, for the single-frequency GARMA model, Beaumont and 
Smallwood (2022) propose a restricted bootstrap method to compute critical values 
and demonstrate that bootstrapped test statistics for the null H0 ∶ �0 = 1 have correct 
nominal size, even under potential non-stationarity.

Following Beaumont and Smallwood (2022), we generate a test statistic for the 
null, H0 ∶ �1,0 = 1 , through re-estimation of the selected 6-factor GARMA(2,3) 
model with �1,0 = 1 imposed. We sample with replacement from the estimated 
residuals to construct 1000 samples under the null hypothesis. We then estimate the 
unrestricted 6-factor model for each of the 1000 samples to obtain T2(�̂�

(j)

1
− 1) , for 

j ∈ (1, 1000) . The test-statistics are sorted to obtain bootstrapped critical values that 
are presented in Table 7 along with the critical values obtained using Theorem 3. As 
seen in the table, even with 3144 observations, the theoretical critical values appear 
to be far too small in absolute value when compared to the bootstrapped critical 

Fig. 3  Periodogram of the first difference of IBM trading volume
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values. In this example, the discrepancy does not alter the conclusion given an esti-
mated value so close to unity.

It should be noted that more research is needed to determine the conditions under 
which the proposed bootstrap test is consistent. The main task would be an analysis 
of the distributional properties of the bootstrapped test statistic under the alterna-
tive. In general, as pointed out by Cavaliere and Rahbek (2021), this is a very diffi-
cult problem, and there is reason to believe the current environment presents unique 
challenges. In particular, the procedure above uses bootstrapped residuals obtained 
under the null. If the alternative hypothesis is true, the resulting disturbances are 

Table 7  Estimation of 6-frequency GARMA(2,3) model for IBM volume

Confidence bands for �̂�
i
 are constructed assuming |𝜂

i,0| < 1 . Values in brackets are standard errors based 
on the estimated model. Asymptotic standard errors (“Asy. SE") are calculated using Theorem 2 assum-
ing |𝜂

i,0| < 1 , for all i. Numerical standard errors (“Num. SE") are based on the outer product of the esti-
mated score. In the panel “Tests for �1 = 1 ", we report test results for the hypothesis �1,0 = 1 using both a 
parametric bootstrap procedure and theoretical results based on Chung (1996a). For ARIMA estimation 
results, DFG t  and DFGc denote the DF-GLS test of Elliott et al. (1996) allowing for time trend and drift 
only, respectively. The 95% critical values for the test are given by − 2.890 and − 1.941, and lag lengths 
are selected by minimization of the BIC for up to 16 lags

d1 d2 d3 d4 d5 d6

Estimates 0.3319 0.1871 0.2217 0.4973 0.1585 0.1312
Asy. SE [0.0206] [0.0273] [0.0234] [0.0841] [0.0228] [0.0200]
Num. SE [0.0197] [0.0244] [0.0212] [0.0838] [0.0228] [0.0194]

�1 �2 �1 �2 �3 � BIC
Estimates 0.0225 − 0.6747 − 0.5517 0.9689 − 0.3091 0.0212 − 9467.3
Asy. SE [0.0361] [0.0506] [0.1036] [0.0342] [0.0906] [0.1021]
Num. SE [0.0352] [0.0507] [0.0977] [0.0332] [0.0851] [0.0237]

Estimation results for �
i

�1 �2 �3 �4 �5 �6

Estimates 1.0000 0.8863 0.5708 0.1258 − 0.7428 − 0.9684
L-68% Band 0.9999997 0.8854 0.5694 0.1251 − 0.7442 − 0.9691
U-68% Band 1.0000 0.8872 0.5721 0.1266 − 0.7411 − 0.9677

Tests for �1 = 1

Bootstrapped critical value Chung-based critical value

Statistic 90% 95% 99% 90% 95% 99%

T
2(�̂�1 − 1) − 0.3799 − 54.49 − 121.96 − 335.52 − 30.29 − 48.94 − 111.94

ARIMA estimation results

Estimates and statistics

�1 �1 c BIC DFGt DFGc

Variable 0.3251 − 0.9288 0.00002 − 9123.3 − 3.3835 − 1.7951
ΔIBM

t
[0.0126] [0.0052] [0.0001]
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expected to possess long memory of a potentially complicated form, since the cor-
rect filter, (1 − 2�1,0L + L2)d1,0 , has not been applied to the data. Further, as our the-
ory above shows, d̂i is not independent of d̂j , so that there are additional complica-
tions that arise under misspecification.9 The behavior of the residuals in this context 
will be important in future research exploring formal proofs for consistency.

To the extent that there is concern with the proposed bootstrap when the null 
is false, Cavaliere and Rahbek (2021) propose a hybrid approach to obtain boot-
strapped samples using parameters estimated under the null, while using distur-
bances obtained from unrestricted estimation. This avoids the issue of sampling with 
long-memory residuals. Specifically, let �∗

t
 denote the set of residuals obtained from 

the unconstrained model in Table 7. Then, resampling of �∗
t
 with replacement is used 

along with parameter estimates with �1 = 1 imposed to bootstrap samples consist-
ent with the null under investigation. The remaining steps are the same as for the 
restricted bootstrap. As discussed extensively by Cavaliere and Rahbek (2021), the 
use of a hybrid bootstrap of this sort can be useful in instances where boundary con-
ditions are met for a given parameter, but concerns also exist about the properties 
of residuals under the alternative. As a robustness check to the findings above, we 
conducted the hybrid bootstrap, and the results continue to yield a failure to reject 
the null �1,0 = 1 for any conventional test-size.

Finally, to put our findings into context relative to traditional time series methods, 
we provide estimation results associated with ARIMA models in the bottom panel 
of Table 7. First, unit root tests present somewhat contradictory results. Specifically, 
the DF-GLS test of Elliott et al. (1996) yields a rejection of the unit root null at the 
5% level when a linear time trend is considered, where a failure to reject otherwise 
results. Further, coefficients on linear time trends are insignificant for ARIMA mod-
els estimated in levels, where the sum of autoregressive coefficients is quite close to 
one. We therefore proceed by estimating an ARIMA(1,1,1) model, which yielded 
the lowest BIC for all model combinations with p and q less than or equal to 3. The 
estimated moving average coefficient is large and negative, potentially contributing 
to the confusion rendered from standard unit root tests.

As evidenced by a much lower BIC value ( − 9467.3 vs. − 9123.3), the estimated 
6-factor GARMA model yields a superior in-sample fit relative to ARIMA meth-
ods. The GARMA estimation results further yield evidence against a unit root. Per-
haps most importantly, the GARMA model can capture very diverse dynamics in 
the data and provides additional insights for researchers analyzing long-memory 
cycles in financial time series. In our example of IBM trading volume, the estimated 
values of the Gegenbauer frequencies, �̂�i , range from 0.0003 to 2.8897, indicating 
cycle lengths of 13.05, 6.52, 4.35, 2.61 and 2.17 weeks. In addition, we detect an 

9 Results from Cavaliere et  al. (2022) imply that additional modifications might be needed for testing 
when nuisance parameters also lie on the boundary of the parameter space. For the k-factor GARMA 
model, �k,0 could theoretically equal − 1 , although it is not clear how empirically relevant this is. More 
importantly, our distributional theory indicates �̂�i is independent of �̂�j ∀i ≠ j , so it seems unlikely that the 
concern of Cavaliere et al. (2022) is relevant here. It does highlight, however, the difficulty with estab-
lishing bootstrap consistency in the current environment.
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extremely long, potentially infinite, cycle associated with the value of �̂�1 that can-
not be distinguished from unity. To our knowledge, we are the first to document the 
potential for multiple sources of long memory in equity trading volumes, a finding 
that may improve our understanding of stock market behavior.

6  Conclusions

In this paper, we review the properties of a model that captures very diverse patterns 
in the autocorrelation functions of data. The k-factor GARMA model generalizes 
existing long-memory models and has the particular advantage that the ACF can 
decay at a non-monotonic rate that is not necessarily symmetric about zero. In addi-
tion, the k-factor GARMA model can accommodate multiple poles in the spectral 
density function.

As noted by Hunt et al. (2022), providing a full set of distributional results for 
estimators of k-factor GARMA models has proven elusive. Building on the results 
in Chung (1996a, 1996b), we study a conditional sum of squares estimator and pro-
pose its asymptotic properties. The key feature of our results is that, for all possi-
ble values, the asymptotic distribution of �̂�i is independent of all other parameters, 
including �̂�j , whenever i ≠ j . It is important to note, however, that remaining param-
eters, notably memory parameters, are not asymptotically independent of each other, 
and therefore methods that sequentially estimate these values will likely suffer from 
severe bias. Finally, the model parameters are shown to converge at differing rates. 
This greatly complicates attempts to establish rigorous initial consistency proofs, 
especially given potential discontinuities in the distribution theory for �̂�i . We attempt 
to overcome this shortcoming by conducting extensive simulations and drawing on 
the recent work of Beaumont and Smallwood (2022) to show that the estimator per-
forms in precisely the way our theory predicts in nearly all cases.

The simulation results show that the estimator performs well and that the finite 
sample standard errors are close to the asymptotic calculations. Further, the pro-
posed theory can be used to accurately obtain confidence bands for �̂�i . Finally, an 
application demonstrates the practical value of the k-factor GARMA model. The 
trading volume of IBM is shown to be well modeled by a six-factor GARMA model 
with a spectral singularity at the origin.

Given the early success of k-factor GARMA models, as discussed in Introduction, 
our proposed estimator should find a number of important applications in a myriad of 
fields. Further, the proposed distribution theory will likely be useful in a number of 
contexts where specific interest lies in uncertainty regarding the periodicity of long-
memory cycles. Nonetheless, challenges still remain. More work is likely needed to 
determine the appropriate number of spectral poles, although we are able to provide 
recommendations potentially complementing the recent breakthrough by Leschinski 
and Sibbertsen (2019). Perhaps more importantly, the proposed distribution theory for 
�̂�i directly follows Chung (1996a) in allowing the true value, �i,0 , to potentially lie on 
the boundary of the associated parameter space. Additionally, the theoretical results 
suggest that a discontinuity in the distribution of �̂�i occurs as |�i,0| → 1 , where standard 
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rate-T convergence gives way to a T2 rate when |�i,0| = 1 . While extensive simulation 
evidence provides strong support for the proposed theory when |𝜂i,0| < 1 , the findings 
also suggest there are concerns when �i,0 = 1 . A proposed bootstrap test offers one 
potential remedy for researchers interested in testing �i,0 = 1 , although additional the-
ory will be required to confirm consistency of the test.

Appendix: Lemma and Theorem Proofs

Proof of Lemma 1

Consider the AR representation of xt in Eq.  (4), where, without loss of generality, 
� = 0 . Define the power series a(L) and b(L) as follows, recalling that all roots to 
�(z) = 0 and �(z) = 0 lie outside the unit circle:

With �(L)xt = �t , we have �(L) = a(L)b(L) . Here, the product represents a Cauchy 
product, where,

and

Clearly, 
∑∞

n=0
�cn� < ∞ if both 

∑∞

n=0
an and 

∑∞

n=0
bn are absolutely convergent (see 

page 80 of Rudin (1976) for a discussion). Additionally, 
∑∞

n=0
an is known to be 

absolutely convergent (see, for example, Hassler (2018),  Equation  3.11). Thus, if ∑∞

n=0
�bn� < ∞ , then the k-factor GARMA process has an AR(∞) representation 

with absolutely summable coefficients. A useful form of the coefficients in the 
AR(∞) representation can be obtained by setting di = −di in the MA(∞) represen-
tation of the k-factor GARMA(0,0) model provided on page 3255 of Kouamé and 
Hili (2008). We can start by assuming that |𝜂i| < 1 , for all i. Let bn denote the nth 

coefficient in the expansion of 
∏k

i=1

�
1 − 2�iL + L2

�di . Then, from Kouamé and Hili 
(2008), as n → ∞,

a(L) =
�(L)

�(L)
=

∞∑
n=0

anL
n

b(L) =

k∏
i=1

(
1 − 2�iL + L2

)di =
∞∑
n=0

bnL
n

(A.1)�(L) =

(
∞∑
n=0

anL
n

)(
∞∑
n=0

bnL
n

)
=

(
∞∑
n=0

cnL
n

)
,

(A.2)cn =

n∑
i=0

aibn−i.
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where the final term is asymptotically negligible since di > 0 . For the remaining 
terms, with �i = cos−1(�i),

It is important to note Di and mi are constants that do not depend on n. Ignoring the 
final term in A.3, define b̃n , accordingly. We have,

If two series are absolutely convergent, then their sum is also absolutely convergent. 
Thus, we can consider each term in parentheses individually. Applying Stirling’s 
formula, we have,

To prove absolute convergence, we apply this result and use the comparison test. We 
have, for individual i and fixed n

We further have, ���
Di

Γ(−di)

���
∑∞

n=0
n−di−1 is a convergent p-series, provided di + 1 > 1 , or 

di > 0 . This assumption is in place for all i, and therefore, by the comparison test, 
∑∞

n=0
b̃n is absolutely convergent.

Now, assume that there does actually exist a value of �i , where |�i| = 1 . We 
then have that the ith term in parentheses from Eq. A.4 becomes:

where Di =
∏

j≠i�2(cos(�i) − cos(�j)�dj . A proof that the affiliated sum is absolutely 
convergent is obvious in light of the above.

(A.3)bn = 2

k∑
i=1

Di

Γ(n − di)

Γ(n + 1)Γ(−di)
cos(�in + mi) + o(n−2+max(−d1,−d2,…,−dk)),

Di =|2 sin �i|di
∏
j≠i

|2(cos(�i) − cos(�j)|dj , and

mi = − �i

k∑
j=1

dj + �

i−1∑
j=1

dj +
�

2
di.

(A.4)
∞∑
n=0

|b̃n| ≤ 2

∞∑
n=0

(
k∑

i=1

||||i
Γ(n − di)

Γ(n + 1)Γ(−di)
cos(𝜐in + mi)

||||

)
.

(A.5)
Γ(n − di)

Γ(n + 1)Γ(−di)
∼

n−di−1

Γ(−di)
.

(A.6)
||||

Di

Γ(−di)

cos(�in + mi)

ndi+1

|||| ≤
||||

Di

Γ(−di)

||||
1

ndi+1
.

(A.7)
||||Di

Γ(n − 2di)

Γ(n + 1)Γ(−2di)
cos(�in)

||||,
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Proof of Theorem 1

From (6), with � = (� �
�,�
,� �

�
)� , we have sT (�) = sT ((�

�
�,�
,� �

�
)�) , which is denoted 

below as sT for simplicity. Consider the first-order Taylor series expansion of sT 
of the invertible and stationary k-factor GARMA model for the process 

{
xt
}T

t=1
 , 

about the true parameter values ��0,�0
=
(
d1,0,… , dk,0,�1,0,… ,�p,0, �1,0,… , �q,0

)� 
and �0 =

(
�1,0,… , �k,0

)� . We have,

where ⊙ denotes element by element multiplication, fT and 1

fT
 denote k × 1 vectors 

whose jth elements are T and 1
T
 when |𝜂j,0| < 1 and T2 and 1

T2
 when |�j,0| = 1 . 1

FT

 

denotes the matrix formed by stacking the vector, 1

fT

′
 , on top of itself k times, and 

1

fT f
�
T

=
(

1

fT

)(
1

fT

)�

.

We will show below that 1
T

�2sT

���,� ��
�
�,�

||||��,�=��0,�0

 and 
(

1

fT f
�
T

)
⊙

𝜕2sT

𝜕𝜂𝜕𝜂�

||||𝜂=𝜂0
 are Op(1), 

while 1√
T

1

FT

⊙
𝜕2sT

𝜕𝜓𝛿,𝜏 𝜕𝜂
�

����𝜓𝛿,𝜏=𝜓𝛿0,𝜏0
,𝜂=𝜂0

 possesses elements that are all op(1) . We also 

show that all remaining elements are bounded. To facilitate, let I(�) denote the 
Fisher information matrix, which ultimately contains elements given by 
E

1

T�2

∑T

t=1

��t

��

��t

�� �
 . I(�) is partitioned as,

Given the assumptions as discussed above that all terms are Op(1) or op(1) , for large 
T,  we have,

(A.8)

� 1√
T

𝜕sT

𝜕𝜓𝛿,𝜏

1

fT
⊙

𝜕sT

𝜕𝜂

�����𝜓=𝜓0

+

⎡
⎢⎢⎣

1

T

𝜕2sT

𝜕𝜓𝛿,𝜏 𝜕𝜓
�
𝛿,𝜏

1√
T

1

FT

⊙
𝜕2sT

𝜕𝜓𝛿,𝜏 𝜕𝜂
�

1√
T

1

FT

⊙
𝜕2sT

𝜕𝜓𝛿,𝜏 𝜕𝜂
�

1

fT f
�
T

⊙
𝜕2sT

𝜕𝜂𝜕𝜂�

⎤
⎥⎥⎦
����𝜓=𝜓0

×

�√
T
�
�̂�𝛿,𝜏 − 𝜓𝛿0,𝜏0

�
fT ⊙

�
�̂� − 𝜂0

�
�
= op(1)

(A.9)I(�) =

[
I��,�

I��,�×�

I��,�×�
I�

]

(A.10)

�√
T
�
�̂�𝛿,𝜏 − 𝜓𝛿0,𝜏0

�
fT ⊙

�
�̂� − 𝜂0

�
�
= −

⎡⎢⎢⎢⎣

I𝜓𝛿0,𝜏0

√
T

FT

⊙ I𝜓𝛿0,𝜏0×𝜂0√
T

FT

⊙ I𝜓𝛿0,𝜏0×𝜂0

1

𝜎2

1

fT f
�
T

⊙
T∑
t=1

𝜕𝜀t

𝜕𝜂

𝜕𝜀t

𝜕𝜂�

�����𝜂=𝜂0

⎤⎥⎥⎥⎦

−1

×

⎡⎢⎢⎢⎢⎣

1√
T 𝜎2

T∑
t=1

𝜀t
𝜕𝜀t

𝜕𝜓𝛿,𝜏

1

𝜎2

1

fT
⊙

T∑
t=1

𝜀t
𝜕𝜀t

𝜕𝜂

⎤⎥⎥⎥⎥⎦

�����𝜓=𝜓0

+ op(1)
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For the individual information numbers in I��0,�0×�0
 , consider Idi,0,�j,0 , i = 1,… , k , with 

|𝜂j,0| < 1 . Using Gradshteyn and Ryzhik (1980) Eqs. 1.514 and 8.937.1, we find that 
the information matrix elements of Idi,0,�j,0 are

Under the assumptions governing �t , if 𝜐j,0 > 𝜐i,0, and �i,0 ≠ �j,0, Gradshteyn and 
Ryzhik (1980) Equation 1.441.1 yields

Thus, Idi,0 𝜂j,0 < ∞. If 𝜐j,0 < 𝜐i,0, then the infinite sums in (A.12) are equal to 
∑∞

l=1

sin[l(�j,0−�i,0)+2�l]

l
. From Gradshteyn and Ryzhik (1980) Equation 1.444.1, we see 

that the infinite sum converges. The same is true if �i,0 = �j,0. Chung (1996a, 1996b) 
has established that all remaining information numbers in I��0,�0×�0

 are finite. Thus, √
T

FT

⊙ I𝜓𝛿0,𝜏0×𝜂0
= op(1).

If the remaining terms of all of the elements in (A.8) are Op(1) or op(1) , as shown 
below, then the second matrix in the top line of (A.8) is asymptotically block diagonal, 
and the distribution of 

√
T(�̂�𝛿,𝜏 − 𝜓𝛿0,𝜏0

) can be considered independently of fT (�̂� − 𝜂0) 
as claimed.

Proof of Theorem 2

From (A.10), the assumption that the remaining elements involving � in (A.10) are 
bounded, and the central limit theorem of Chan and Wei (1988),

Given, A.13, we have

Information numbers for the diagonal terms of I��0,�0

 are given on page 251 in Chung 
(1996a). The off diagonal terms, Idi,0 dj,0 , which for large T and i ≠ j are,

(A.11)Idi,0,�j,0 = E

[
4dj,0

�2T

T∑
t=1

(
∞∑
l=1

cos(l�i,0)

l
�t−l

)(
∞∑
l=1

sin(l�j,0)

sin(�j,0)
�t−l

)]
.

(A.12)
Idi,0 �j,0 =

2dj,0

sin(�j,0)

(
∞∑
l=1

sin[l(�i,0 + �j,0)] + sin[l(�j,0 − �i,0)]

l

)

=
2dj,0(� − �j,0)

sin(�j,0)
.

(A.13)
√
T(�̂�𝛿,𝜏 − 𝜓𝛿0,𝜏0

) = −I−1
𝜓𝛿0,𝜏0

�
1√
T𝜎2

T�
t=1

𝜀t
𝜕𝜀t

𝜕𝜓𝛿,𝜏

����𝜓𝛿,𝜏=𝜓𝛿0,𝜏0

�
+ op(1).

(A.14)
√
T(�̂�𝛿,𝜏 − 𝜓𝛿0,𝜏0

) → N(0, I−1
𝜓𝛿0,𝜏0

).

(A.15)Idi,0 dj,0 = E
1

T�2

T∑
t=1

[
log(1 − 2�i,0L + L2)�t log(1 − 2�j,0L + L2)�t

]
.
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Using Gradshteyn and Ryzhik (1980) Eqs. 1.514 and 1.443.3 yields,

For i = 1,… , k , j = 1,… , p , and m = 1,… , q , the proofs of the results for Idi,0�j,0
 

and Idi,0�m,0 follow directly from Chung (1996b) in the single frequency case.

Proof of Theorem 3:

Before proving Theorem 3, we state and prove the following useful lemma applied to 
any arbitrary values of �i and �j.

Lemma 2 Consider any stationary and invertible k-factor GARMA model defined in 
Eq. (1). Then, with i ≠ j,

where � = 2 if |𝜂i|, |𝜂j| < 1, {i, j ∈ [1, k] ∶ i ≠ j} (case 1), � = 3 if �i = ±1 and 

|𝜂j| < 1 (cases 2 and 3), and � = 4 if �i = −1 and �j = 1 (case 4).

Proof of the Lemma:

Case 1: |𝜂i|, |𝜂j| < 1, {i, j ∈ [1, k] ∶ i ≠ j} . Without loss of generality, and for ease of 

notation, rearrange the terms in � such that �i = �1, �j = �2. Let,

Applying Gradshteyn and Ryzhik (1980) Equation 8.937.1,

which follows if �0 = �−1 = ⋯ = 0. Now, define the random elements 

(A.16)

Idi,0dj,0 = 2

∞∑
l=1

cos(l(�i,0 + �j,0)) + cos(l(�i,0 − �j,0))

l2

= 2

(
�2

3
− ��i,0 +

�2
i,0
+ �2

j,0

2

)
.

−
1

�2T�

T∑
t=1

�2�t

��i��j
= op(1),

(A.17)Zat = −
1

2da

��t+1

��a
=

�t

(1 − 2�aL + L2)
, a = 1, 2.

(A.18)Zat =
1

sin(�a)

t∑
j=1

sin[(t + 1)�a − j�a]�j, a = 1, 2

(A.19a)ST (�a, r) =

√
2√

T�2

[Tr]�
j=1

cos(j�a)�j, a = 1, 2
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where r ∈ [0, 1] and [Tr] is the integer part. Finally, from the expressions in (A.19) 
and using �1 = �1 + �2, �2 = �1 − �2, �3 = �2 − �1 along with a few rules of trigo-
nometry, we get the following expression,

Consider the random elements

and similarly for S∗
n
(�2) and T∗

n
(�2). Let {Xn} = {S∗

n
(�1) S

∗
n
(�2)} , and consider the 

first term in (A.20). It is clear from the definition of ST (�1,
t

T
) and ST (�2,

t

T
) that 

1

T

∑T−1

t=1
cos[(t + 1)�2]ST (�1, t∕T)ST (�2, t∕T) = op(1) if

First, observe that

so that E|S∗
n
(�1)S

∗
n
(�2)| = O(n). Now let n ≥ m and consider

Noting that

(A.19b)TT (�a, r) =

√
2√

T�2

[Tr]�
j=1

sin(j�a)�j, a = 1, 2

(A.20)

4 sin(�1) sin(�2)

�2

1

T2

T−1∑
t=1

Z1t Z2t

=
1

T

T−1∑
t=1

(cos[(t + 1)�2] − cos[(t + 1)�1])ST (�1, t∕T)ST (�2, t∕T)

−
1

T

T−1∑
t=1

(sin[(t + 1)�1] + sin[(t + 1)�3])ST (�2, t∕T)TT (�1, t∕T)

−
1

T

T−1∑
t=1

(sin[(t + 1)�1] + sin[(t + 1)�2])ST (�1, t∕T)TT (�2, t∕T)

+
1

T

T−1∑
t=1

(cos[(t + 1)�1] + cos[(t + 1)�2])TT (�1, t∕T)TT (�2, t∕T).

(A.21)S∗
n
(�1) =

n∑
j=1

cos(j�1) �j and T
∗
n
(�1) =

n∑
j=1

sin(j�1) �j,

(A.22)sup
1≤j≤T

|
j∑

n=1

ein�Xn| = op(T
2).

(A.23)E|S∗
n
(�1)S

∗
n
(�2)| ≤ {ES∗2

n
(�1)}

1∕2{ES∗2
n
(�2)}

1∕2 ≤ �2n

(A.24)|Xn − Xm| ≤ |S∗
n
(�1)||S∗n(�2) − S∗

m
(�2)| + |S∗

m
(�2)||S∗n(�1) − S∗

m
(�1)|.
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yields E|S∗
n
(�1)|2 = O(n). Given m ≤ n, this also implies E|S∗

m
(�2)|2 ≤ �2n.

Next consider the expression

Thus, E|S∗
n
(�2) − S∗

m
(�2)|2 = O(n − m). Similar reasoning implies that 

E|S∗
n
(�1) − S∗

m
(�1)|2 = O(n − m). If �1 ≠ �2 , by Theorem  2.1 in Chan and Wei 

(1988), we see that the first term in (A.20) is op(1). By similar reasoning, the remain-
ing terms in (A.20) are also seen to be op(1). Thus, we have established that

This expression is asymptotically equivalent to

which is op(1) . This completes the proof of Case 1 in the lemma.
Case 2: Without loss of generality, let 𝜂k = 1, |𝜂j| < 1, and j ≠ k. Rearrange 

the polynomials in � such that �j = �1, and define the following elements:

Define the auxiliary process and its associated truncation.

This gives the following truncated series for Zkt,

For ease of exposition, define the random process

and define ST (�1, t∕T) and TT (�1, t∕T) precisely as in (A.19). We then get,

(A.25)E|S∗
n
(�1)|2 = E(S∗

n
(�1))

2 = �2

(
n∑
j=1

cos(j�1)

)2

≤ �2n

(A.26)E|S∗
n
(�2) − S∗

m
(�2)|2 = �2

(
n∑

j=m+1

cos2(j�2)

)
≤ �2(n − m).

(A.27)
4 sin(�1) sin(�2)

�2

1

T2

T−1∑
t=1

Z1tZ2t = op(1).

(A.28)−
4d1d2

4 sin(�1) sin(�2)

4 sin(�1) sin(�2)

�2

1

T2

T−1∑
t=1

Z1tZ2t,

(A.29)Z1t = −
1

2d1

��t+1

��1
=

�t

(1 − 2�1L + L2)
, Zkt = −

1

2dk

��t+1

��k
=

�t

(1 − L)2
.

(A.30)Yt = (1 − L)Zkt =

t∑
j=1

�j.

(A.31)Zkt =

t∑
j=1

Yt =

t∑
j=1

j �t−j+1.

(A.32)XT (r) =
1

T

1√
T�

[Tr]�
j=1

Yj,
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Note that the expression

is asymptotically equivalent to − 1

�2

1

T3

∑T

t=1

��t

��1

��t

��k
 . Define the processes

to facilitate the analysis. It is easy to verify that

if

The same is true for the second term in (A.33). From (A.25) ES∗
n
(�1)

2 ≤ �2n. From 
Gradshteyn and Ryzhik (1980) Equation 0.121.2, we have

Given, E|S∗
n
(�1)X

∗
n
| ≤ {ES∗

n
(�1)

2}1∕2{EX∗2
n
}1∕2, we see that E|S∗

n
(�1)X

∗
n
| is O(n2). 

Now let n ≥ m and consider

Clearly, E|S∗
n
(�1)|2 ≤ �2n, and from (A.26), E|S∗

n
(�1) − S∗

m
(�1)|2 ≤ �2(n − m). From 

(A.38) we have, E|X∗
m
|2 ≤ �3m3 ≤ �2n3. Finally, given Yj from (A.30),

(A.33)

√
2 sin(�1)

�2

1

T3

T−1�
t=1

Z1tZkt =
1

T

T−1�
t=1

sin[(t + 1)�1] ST (�1, t∕T)XT (t∕T)

−
1

T

T−1�
t=1

cos[(t + 1)�1]TT (�1, t∕T)XT (t∕T).

(A.34)−
4d1dk√
2 sin(�1)

√
2 sin(�1)

�2

1

T3

T−1�
t=1

Z1tZkt,

(A.35)S∗
n
(�1) =

n∑
j=1

cos(j�1)�j, T∗
n
(�1) =

n∑
j=1

sin(j�1)�j, and X
∗
n
=

n∑
j=1

Yj,

(A.36)1

T

T−1∑
t=1

sin[(t + 1)�1] ST (�1, t∕T)XT (t∕T) = op(1)

(A.37)
T−1∑
n=1

sin[(n + 1)�1] S
∗
n
(�1)X

∗
n
= op(n

3).

(A.38)EX∗2
n

= E

[
n∑
j=1

j �t−j+1

]2

= �2

n∑
j=1

j2 = �2 2n
3 + 3n2 + n

6
≤ �2n3.

(A.39)|S∗
n
(�1)X

∗
n
− S∗

m
(�1)X

∗
m
| ≤ |S∗

n
(�1)||X∗

n
− X∗

m
| + |X∗

m
||S∗

n
(�1) − S∗

m
(�1)|.
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Thus, from Theorem 2.1 in Chan and Wei (1988),

which implies that the first term in (A.33) is op(1) . Following the same reasoning, 
the second term in (A.33) is also op(1) , and this proves Case 2 of the lemma.

Case 3: Without loss of generality, let �1 = −1 and |𝜂j| < 1, j ≠ 1. Rearrange the 
polynomials in � such that �2 = �j. Then,

Define the process

Let �1 = (�2 + �) and �2 = (�2 − �). Noting that T3∕2� XT (t∕T) cos[(t + 1)�] = Z1t , 
and defining Z2t as in (A.17), we get

Construct the variable S∗
n
(�2) as above and the auxiliary variable X∗

n
 as

(A.40)

E|X∗
n
− X∗

m
|2 = E

(
n∑

j=m+1

Yj

)2

= (n − m)2
m∑
j=1

�2 + �2

n−m∑
j=1

j2 ≤ �2(n3 − 2n2m + n2m)

= �2{n2(n − m)}.

(A.41)sup
1≤j≤n

|
j∑

t=1

eit�S∗
t
X∗
t
| = op(n

3)

(A.42)Z1t = −
1

2d1

��t+1

��1
=

�t

(1 + L)2
=

t∑
j=1

(−1)j+1j �t−j+1.

(A.43)XT (t∕T) =

⎧
⎪⎪⎨⎪⎪⎩

1

T

1√
T�

t∑
j=1

(−1)j+1j �t−j+1 if t is odd

1

T

1√
T�

t∑
j=1

(−1)jj �t−j+1 if t is even

.

(A.44)

2
√
2 sin(�2)

�2

1

T3

T−1�
t=1

Z1tZ2t

=
1

T

T−1�
t=1

(sin[(t + 1)�1] + sin[(t + 1)�2])ST (�2, t∕T)XT (t∕T)

−
1

T

T−1�
t=1

(cos[(t + 1)�1] + sin[(t + 1)�2])ST (�2, t∕T)XT (t∕T)
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Using these definitions, we get

if 
∑T−1

n=1
sin[(n + 1)�1] S

∗
n
(�2)X

∗
n
= op(n

3). Again, {ES∗
n
(�2)

2}1∕2 ≤ �
√
n and 

E|S∗
n
(�2)X

∗
n
| ≤ {ES∗

n
(�2)

2}1∕2{EX∗
n
2}1∕2. Now, if n is odd, we have

and precisely the same reasoning holds if n is even. This implies that E|S∗
n
(�2)X

∗
n
| is 

O(n2) . We know that

where the bounds on |S∗
n
(�2)| and |S∗

n
(�2) − S∗

m
(�2)| were established in (A.25) and 

(A.26), respectively, and the bound on |X∗
m
| was established in the discussion above 

(A.40). Now, choosing n ≥ m for n odd and m even, gives

The result holds for any values of n and m. By Theorem 2.1 of Chan and Wei (1988), 
the first term in (A.44) is op(1) and, by exactly the same reasoning, the remaining 
terms are also op(1). This completes the proof of Case 3.

Case 4: Without loss of generality, let �1 = −1, �k = 1, with |𝜂j| < 1, for j ≠ 1 , 
j ≠ k. Define the following elements:

(A.45)X∗
n
=

⎧
⎪⎪⎨⎪⎪⎩

n∑
j=1

(−1)j+1j�n−j+1 if n is odd

n∑
j=1

(−1)jj�n−j+1 if n is even.

.

(A.46)1

T

T−1∑
t=1

sin[(t + 1)�1] ST (�2, t∕T)XT (t∕T) = op(1)

(A.47)E
(
X∗
n

)2
= E

(
n∑
j=1

(−1)j+1j �t−j+1

)2

= �2

n∑
j=1

j2 ≤ �2n3,

(A.48)|S∗
n
(�2)X

∗
n
− S∗

m
(�2)X

∗
m
| ≤ |S∗

n
(�2)||X∗

n
− X∗

m
| + |X∗

m
||S∗

n
(�2) − S∗

m
(�2)|,

(A.49)

E|X∗
n
− X∗

m
|2 = E[(n − m)

m∑
j=1

(−1)j+1�j

+

n−m∑
j=1

(−1)j+1j�n−j+1]
2 ≤ �2[n2(n − m)].

(A.50)Z1t = −
1

2d1

��t+1

��1
=

�t

(1 + L)2
=

t∑
j=1

(−1)j+1j �t−j+1

(A.51)Zkt = −
1

2dk

��t+1

��k
=

�t

(1 − L)2
=

t∑
j=1

j �t−j+1
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Then,

where X∗
kt

 is defined similarly to X∗
n
 in (A.35). This allows us to apply Theorem 2.1 

in Chan and Wei (1988) to show that the last expression is op(1) if

Now let X∗
1n

 and X∗
kn

 be defined equivalently to X∗
1t

 and X∗
kt

 with the sequence of par-
tial sums running to n rather than t. From the definition of X∗

1n
 we have

From (A.38)

Choose n and m as integers greater than 0 with n ≥ m. Then,

From (A.38) and (A.55), we know that E|X∗
km
|2 and E|X∗

1n
|2 are both O(n3), while 

from (A.40) and (A.49), E|X∗
kn
− X∗

km
|2 and E|X∗

1n
− X∗

1m
|2 are O(n2(n − m)). By 

Theorem 2.1 in Chan and Wei (1988), the sequence in (A.54) is op(n4) and thus the 
sequence in (A.53) is op(1). This completes the proof of the lemma.

From the lemma, replace �i and �j with �i,0 and �j,0 . Theorem 3 then follows from 
the lemma, Theorem 2.2 in Chan and Wei (1988), and Theorem 1 in Chung (1996a). 
Specifically, we have

(A.52)X∗
1t
=

⎧
⎪⎪⎨⎪⎪⎩

t∑
j=1

(−1)j+1j�t−j+1 if t is odd

t∑
j=1

(−1)jj�t−j+1 if t is even

.

(A.53)
4d1dk

T4

T−1∑
t=1

Z1t Zkt =
4d1dk

T4

T−1∑
t=1

cos[(t + 1)�]X∗
1t
X∗
kt

(A.54)sup
1≤j≤n

||||||

j∑
t=1

eit�X∗
1t
X∗
kt

||||||
= op(n

4).

(A.55)EX∗2
1n

= �2

n∑
j=1

j2 ≤ �2n3.

(A.56)E|X∗
1n
X∗
kn
| ≤ {EX∗2

1n
}1∕2{EX∗2

kn
}1∕2 ≤ �2{n3∕2}{n3∕2}.

(A.57)|X∗
1n
X∗
kn
− X∗

1m
X∗
km
| ≤ |X∗

1n
||X∗

kn
− X∗

km
| + |X∗

km
||X∗

1n
− X∗

1m
|.

(A.58)Tb(�̂�j − 𝜂j,0) = −

⎡
⎢⎢⎢⎢⎣

1

Tb

T∑
t=1

𝜀t
𝜕𝜀t

𝜕𝜂j

1

T2b

T∑
t=1

(
𝜕𝜀t

𝜕𝜂j
)2

⎤
⎥⎥⎥⎥⎦

����𝜂j=𝜂j,0
+ op(1),
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where b = 1 if |𝜂j,0| < 1, and b = 2 if |�j,0| = 1. The theorem is complete as this is 
precisely the k-factor version of Equation (A.5) in Chung (1996a).
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