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Abstract
Non-response is a major problem for anyone collecting and processing data. A com-
monly used technique to deal with missing data is imputation, where missing values 
are estimated and filled in into the dataset. Imputation can become challenging if the 
variable to be imputed has to comply with a known total. Even more challenging is 
the case where several variables in the same dataset need to be imputed and, in addi-
tion to known totals, logical restrictions between variables have to be satisfied. In 
our paper, we develop an approach for a broad class of imputation methods for mul-
tivariate categorical data such that previously published totals are preserved while 
logical restrictions on the data are satisfied. The developed approach can be used in 
combination with any imputation model that estimates imputation probabilities, i.e. 
the probability that imputation of a certain category for a variable in a certain unit 
leads to the correct value for this variable and unit.

Keywords  Non-response · Edit rules · Fully conditional specification · Mass 
imputation

1  Introduction

Non-response is a major problem for anyone collecting and processing data, such 
as National Statistical Institutes (NSIs). When left untreated, non-response can lead 
to biased estimates or invalid results from statistical analyses. Non-response can be 
subdivided into item non-response, where some values from otherwise observed 
units are missing, and unit non-response, where entire units are not observed.

A commonly used technique to deal with missing data is imputation (see, e.g., 
Rubin 1987, Schafer 1997, Little and Rubin 2002, De Waal et  al. 2011 and Van 
Buuren 2012). In imputation, missing values are estimated and filled in into the 
dataset. Imputation is particularly used often for item non-response. It is sometimes 
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also used for unit non-response, although weighting is a more common technique for 
correcting for unit-nonresponse.

Imputation can become challenging if the variable to be imputed has to comply 
with a known total. This situation occurs often if the total has been published before. 
Deviation from an earlier published total is deemed undesirable by many NSIs as 
this may lead to possible confusion among users due to conflicting results for the 
same phenomena. Even more challenging is the case when several variables in the 
same dataset need to be imputed. In addition to the known totals there can be so-
called edit rules (or edits for short) that have to be satisfied by the data. An example 
of an edit is that a baby cannot have completed primary school.

We illustrate the problem with an example. Statistics Netherlands publishes 
information on the highest educational level attained. In the Netherlands, the first 
results on the highest educational level attained are based on weighting the so-
called Education Attainment File (EAF). Later, information based on the high-
est educational level attained is combined with other data sources to construct a 
virtual population census, i.e. a population census that is mainly based on admin-
istrative data covering the entire population. In the case of the Dutch Population 
Census, all variables except highest educational level attained and occupation are 
based on integral administrative data. After construction of the virtual population 
census, we can break down information on the highest educational level attained 
into detailed groups of the population by using the background information avail-
able in the population census. To facilitate the estimation process for the vir-
tual population census, highest educational level attained is mass imputed in the 
virtual population census, i.e. highest educational level attained is imputed for 
all population units for which no value has been observed. In that way, a com-
plete dataset for the entire Dutch population is constructed, which can be used 
for multiple estimation purposes. Daalmans (2017) proposes a method for mass 
imputation of highest educational level attained based on logistic regression that 
can be used for the Dutch Population Census. However, the results for highest 
educational level attained based on the population census will deviate from the 
earlier published results based on weighting the EAF if standard imputation tech-
niques, such as logistic regression, are used. Besides highest educational level 
attained, other variables, in particular occupation, have missing values and need 
to be imputed.

As far as we are aware, only one method has thus far been proposed in the lit-
erature that allows one to impute categorical data with missing values for multiple 
variables such that previously published totals are preserved and specified edits are 
satisfied (De Waal et al. 2017). However, that method is very time-consuming, and 
can only be applied to relatively small problem instances. In some cases, the method 
also has to “backtrack”, i.e. a previously imputed variable may need to be imputed in 
a different way. As noted by De Waal et al. (2017), this would lead to an even more 
time-consuming and extremely complicated process.

In the current paper, we propose an imputation approach that can be used for a 
broad class of imputation methods for multivariate categorical data such that previ-
ously published totals are preserved by the imputed data while edits are satisfied, 
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and that can handle much larger problem instances than the approach by De Waal 
et  al. (2017). This imputation approach is based on adding a calibration step to 
standard imputation techniques. It can be used in combination with any imputation 
model that estimates imputation probabilities, i.e. the probability that imputation 
of a certain category for a variable in a certain unit leads to the correct value for 
this variable and unit. Examples of imputation models that estimate such imputation 
probabilities are multinomial models and logistic regression models.

Our proposed imputation approach generalizes an approach by Favre et al. (2005). 
In their approach, only one categorical variable is to be imputed subject to edits and 
known totals. We generalize this to the multivariate case where multiple categori-
cal variables have to be imputed subject to edits and known totals. We achieve this 
by adopting a fully conditional specification approach (see Subsect. 3.2) that takes 
the previously published totals into account in combination with a Fellegi–Holt 
approach to satisfy all edits (see Fellegi and Holt 1976 and the Subsect. 3.1 of the 
current paper). Whereas Favre et  al. (2005) approximate imputation probabilities 
given that known totals have to be preserved in only one way, we also examine two 
alternative approximations (see Sect. 3.3). In this paper, we will assume that all pop-
ulation units will be imputed, i.e. that mass imputation is used, and that therefore no 
weighting is necessary to obtain estimates for population totals.

Section  2 of this paper first discusses the approach developed by Favre et  al. 
(2005) for a single categorical variable with missing data. Section 3 discusses our 
proposed generalization to multivariate categorical missing data. Section 4 describes 
the evaluation study that we carried out to assess the proposed generalization, while 
Sect.  5 examines the results of this study. Section  6 examines the estimation of 
imputation variance by means of a pseudo-population bootstrap approach. Section 7 
concludes the paper with a short discussion.

2 � Approach by Favre, Matei and Tillé for univariate missing data

The approach of Favre et al. (2005) for imputation of univariate missing categori-
cal data subject to edits and known totals consists of four steps. In the first step, 
user-specified edits are used to find structural zeroes for the variable to be imputed, 
i.e. for each record in the dataset the categories that are not allowed according to 
the observed values in combination with the specified edits are determined. In the 
second step, for each record the imputation probabilities of the categories that are 
allowed are estimated. In the implementation of Favre et al. (2005) this is done by 
assuming a multinomial logistic model, taking the structural zeroes into account. In 
the third step, these probabilities are calibrated so that, for each category, they sum 
up to the corresponding known total and, for each record, to one. This is achieved by 
using iterative proportional fitting (IPF). In the fourth step, Cox’ controlled round-
ing algorithm (see Cox 1987) is used to fix one of the probabilities for the allowed 
categories per record to one and the probabilities of the other allowed categories 
to zero. The category for which the probability is set to one for a certain record is 
imputed in that record.
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We illustrate the basic ideas of the approach by Favre et al. (2005) by means of 
an example. In this example one variable with three categories is to be imputed 
in eight units. In the first step of the approach, the observed values for the other 
variables are filled in into the edits to find the structural zeroes for the variable to 
be imputed. For convenience, we assume that this step has already been carried 
out for all units in the dataset.

The units to be imputed are given in Table 1. The known totals are given in the 
last row.

The cells with a “*” are allowed to be imputed. The zeroes in units one, three, 
five, six and eight in Table 1 denote values that are not allowed to be imputed due 
to the specified edits, i.e. the structural zeroes. As explained above, imputation 
means that in each unit one of the “*” is replaced by a one, and the other “*” by 
zeroes.

The value to be imputed in a certain unit is essentially found by randomly draw-
ing one of the allowed values using the imputation probabilities obtained from the 
imputation model. We assume that, taking into account that certain categories are 
not allowed in certain units, the imputation probabilities obtained by the imputation 
model are as in Table 2 (Step 2).

In Table  2, we see, for instance, that, according to the assumed imputation 
model, the probability that the actual value of the variable to be imputed in unit 

Table 1   Units to be imputed and 
totals per category

Category c1 Category c2 Category c3

Unit 1 0 * *
Unit 2 * * *
Unit 3 0 * *
Unit 4 * * *
Unit 5 * 0 *
Unit 6 * * 0
Unit 7 * * *
Unit 8 0 * *
Total 4 1 3

Table 2   Imputation probabilities Category c1 Category c2 Category c3

Unit 1 0.0 0.4 0.6
Unit 2 0.6 0.2 0.2
Unit 3 0.0 0.3 0.7
Unit 4 0.5 0.2 0.3
Unit 5 0.8 0.0 0.2
Unit 6 0.7 0.3 0.0
Unit 7 0.5 0.1 0.4
Unit 8 0.0 0.2 0.8
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one equals c2 is 0.4. In Step 3 of their approach, Favre et al. (2005) apply IPF to 
the imputation probabilities in Table 2 so that each row sums up to one and each 
column to the corresponding total. This step is needed to take the known totals 
into account. The adjusted probabilities are given in Table  3, together with the 
totals per category in the last row.

Using IPF to adjust the imputation probabilities actually only leads to an 
approximation for the exact imputation probabilities that take known totals and 
edits into account. In general, it is very complicated and/or time-consuming to 
compute the exact probabilities. We will return to this point in Subsect. 3.3.

In Step 4 of their approach Favre et al. (2005) apply Cox’s controlled round-
ing algorithm (Cox 1987) to ensure that each record with a missing value for the 
target variable is imputed and the known totals are preserved. Cox’ controlled 
rounding algorithm is a stochastic procedure. In the rounding algorithm, a round-
ing base b is specified. All entries in the table, including the marginal totals, are 
rounded to integer multiples of b . In the approach by Favre et  al. (2005), the 
rounding base b equals 1. Since all internal entries are (adjusted) imputation 
probabilities that lie between zero and one, all internal entries are rounded to 
either zero or one. Entries that already are multiples of b are not changed by Cox’ 
algorithm. This implies that the marginal totals, which are non-negative inte-
gers, are not changed by Cox’ method. An appealing property of Cox’s controlled 
rounding algorithm is that it preserves additivity of the table. That is, the rounded 
internal entries sum up to the rounded marginal totals. This implies that, since 
the entries in each row sum up to one, exactly one entry per row will be rounded 
to one, and will hence be imputed. All other entries in a row will be set to zero. 
Another appealing property of Cox’ controlled rounding algorithm is that it is 
unbiased. That is, if we were to repeat the rounding algorithm an infinite number 
of times, the averages of the rounded cell values over the repetitions would be 
equal to the original unrounded cell values, i.e. the adjusted imputation probabili-
ties given in Table 3. In other words, the categories that are imputing are drawn 
according to the adjusted imputation probabilities in Table 3. If we apply Cox’ 
controlled algorithm to Table 3, we may, for instance, obtain Table 4.

Table 3   Adjusted imputation probabilities and totals per category

Category c1 Category c2 Category c3

Unit 1 0.000 0.308 0.692
Unit 2 0.798 0.081 0.121
Unit 3 0.000 0.223 0.777
Unit 4 0.717 0.087 0.196
Unit 5 0.898 0.000 0.102
Unit 6 0.885 0.115 0.000
Unit 7 0.702 0.043 0.255
Unit 8 0.000 0.143 0.857
Total 4 1 3
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3 � Generalization to multiple variables with missing data

Our generalization of the approach of Favre et al. (2005) to multiple categorical var-
iables with missing data consists of two different phases:

•	 A start-up phase where we impute all variables for the first time. This phase 
serves two different purposes. First, it gives us “rough” imputations, which are 
later improved upon in the second phase. Second, and more importantly, the 
imputed dataset after this phase satisfies all edits. A dataset that satisfies all edits 
is a prerequisite for the method in the second phase, which achieves consistency 
with the totals. In the start-up phase we do not preserve known totals yet.

•	 The actual imputation phase where we iteratively re-impute all data that were 
originally missing. This phase also serves two purposes. First, in this phase we 
improve the imputations after the first phase. Second, in this phase we preserve 
known totals by calibrating the imputations to these totals.

3.1 � The start‑up phase

In the start-up phase we use sequential imputation, i.e. we impute each record in 
turn and within each record we impute each variable in turn. For each record with 
missing values, we apply the following steps for each variable to be imputed.

1S. For the current variable to be imputed, we use a – usually rather simple 
– imputation model, for instance, a multinomial imputation model involving only a 
few auxiliary variables, to estimate imputation probabilities for its categories.

2S. For the current variable to be imputed, we derive all allowable categories, 
given the observed and already imputed variables in the record under consideration 
and the edits.

3S. We impute the current variable to be imputed by drawing categories using the 
imputation probabilities from Step 1S until we draw an allowable category.

Step 2S is a fundamental step as it ensures that after the start-up phase we will 
have a fully imputed dataset satisfying all specified edits, which we need as a 

Table 4   Imputed units Category c1 Category c2 Category c3

Unit 1 0 0 1
Unit 2 1 0 0
Unit 3 0 0 1
Unit 4 0 1 0
Unit 5 1 0 0
Unit 6 1 0 0
Unit 7 1 0 0
Unit 8 0 0 1
Totals 4 1 3
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starting point for the actual imputation phase. It is also a non-trivial step, and may in 
fact be the most complicated step of our entire imputation approach from a technical 
point of view.

We first illustrate the problem with sequentially imputing data having to satisfy 
edits. Suppose we have a dataset with three variables: Marital status, Age and Rela-
tion to head of household. The possible values of Marital status are “Married”, 
“Unmarried”, “Divorced” and “Widowed”, of Age “ < 16 years” and “ ≥ 16 years", 
and of Relation to head of household “Spouse”, “Child” and “Other”. Suppose we 
have two user-specified edits: the first edit saying that someone who is less than 
16 years cannot be married, and the second one that someone who is not married 
cannot be the spouse of the head of household. The first edit involves variables Age 
and Marital status, and the second edit variables Marital status and Relation to head 
of household. Now suppose that both Marital status and Age are missing in a cer-
tain record, the observed value of Relation to head of household in that record is 
“Spouse”, and that Age is the current variable to be imputed. Neither of the two 
user-specified edits involves both the observed variable, Relation to head of house-
hold, and the current variable to be imputed, Age. That is, neither of these two edits 
prevents us from imputing the value “ < 16 years” for Age. However, if we were to 
do that, we would later notice – while trying to impute Marital status – that there is 
no value for Marital status that will satisfy both edits, since a person younger than 
16 years cannot be married while someone who is a spouse of the head of household 
has to be married. So, the problem is that we have to take into accounts edits involv-
ing variables to be imputed later while imputing the current variable.

We will now sketch the procedure in Step 2S to overcome this problem and then 
illustrate this procedure by means of the above example. First of all, we fill in the 
values of the observed and already imputed variables (if any) in the record under 
consideration into the user-specified edits. This leads to a set of edits for the remain-
ing variables to be imputed. The main idea of the approach in Step 2S is to eliminate 
all remaining variables to be imputed except the current variable to be imputed from 
this set of edits by means of the Fellegi–Holt elimination method (see Appendix A). 
When a variable is eliminated by means of the Fellegi–Holt elimination method, a 
new set of edits is obtained that has to be satisfied by all remaining variables to be 
imputed. By repeated elimination, we obtain a set of edits that only involves the cur-
rent variable to be imputed. A set of edits for a single categorical variable simply 
defines a set of allowed values for that variable. So, from the derived set of edits for 
the current variable to be imputed we can immediately see the allowable values for 
that variable.

The Fellegi–Holt elimination method has the nice and very important property 
that if and only if the new set of edits for the remaining variables to be imputed 
obtained after elimination of a variable can be satisfied, a value for the eliminated 
variable exists such that the set of edits before elimination can also be satisfied (for 
details and proofs see Fellegi and Holt 1976 and De Waal and Quere 2003). By 
repeated application of this property, we find that if and only if the current variable 
to be imputed is imputed such that the set of edits obtained after elimination of all 
other variables remaining to be imputed is satisfied, all eliminated variables can be 
imputed such that all user-specified edits can be satisfied (again see De Waal and 
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Quere 2003). In turn this implies that we can impute the variables with missing val-
ues in a record sequentially, i.e. one at the time, while still ensuring that all edits can 
be satisfied.

In mathematical logic, the Fellegi–Holt elimination method is known as (multi-
valent) resolution (see, e.g., Chandru and Hooker 1999 and Hooker 2000). Resolu-
tion can be used to check whether a set of propositions (the edits in our case) can be 
satisfied.

We now briefly illustrate the procedure in Step 2S by means of our example. We 
first introduce some notation. We denote the number of variables by n . In the case of 
categorical data, an edit k is usually written in so-called normal form, i.e. as a Carte-
sian product Fk

1
× Fk

2
×⋯ × Fk

n
 of non-empty sets Fk

s
 (s = 1, 2, ..., n), meaning that if 

for a record with values 
(
v1, v,… , vn

)
 we have vs ∈ Fk

s
 for all s = 1, 2, ..., n , then the 

record fails edit k , otherwise the record satisfies edit k.
In normal form the edit saying that someone who is less than 16 years cannot be 

married can be written as

and the edit saying that someone who is not married cannot be the spouse of the 
head of household as

We fill in the value “Spouse” for Relation to head of household into edits (1) and 
(2) and obtain the edits

and

for the variables to be imputed, Marital status and Age. (For notational convenience, 
in edits, we do not mention variables whose values have been substituted into a set 
of edits nor variables that have been eliminated).

Since Age is the current variable to be imputed in our example, we have to elimi-
nate variable Marital status from (3) and (4). We obtain the edit

for variable Age (see Appendix A).
Edit (5) implies that only the value “ ≥ 16  years” is allowed to be imputed for 

variable Age. Indeed, if we later impute the value “Married” for Marital status, we 
obtain an imputed record satisfying both user-specified edits (1) and (2).

(1){Married} × {< 16 years} × {Spouse, Child, Other},

(2)
{Unmarried, Divorced, Widowed} × {< 16 years, ≥ 16 years} × {Spouse}

(3){Married} × {< 16 years}

(4){Unmarried, Divorced, Widowed} × {< 16 years, ≥ 16 years}

(5){< 16 years}
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3.2 � The actual imputation phase

In the actual imputation phase we iteratively (re-)impute all data that were originally 
missing, using the other (partly imputed) data as auxiliary data. We essentially apply 
a fully conditional specification (FCS) approach for imputation of multivariate miss-
ing data (see, e.g., Raghunathan et al. 2001, Van Buuren and Groothuis-Oudshoorn 
2011 and Rubin 2003). In FCS, one specifies a separate multivariate imputation 
model for each variable to be imputed. In principle, all other variables can be used 
as auxiliary variables in the imputation model for a certain variable. In the estima-
tion process of the model parameters, as well as in the actual imputation process, 
previously imputed values of the auxiliary variables are used.

FCS is usually applied for Bayesian versions of multiple imputation, where one 
specifies a prior distribution for each imputation model, derives the posterior distri-
bution given the prior distribution and the observed data, and then draws multiple 
imputations from the posterior distribution. In this paper, we will apply FCS in a fre-
quentist context, i.e. without specifying prior distributions for the imputation mod-
els. Our approach is similar to the approach by Siddique and Belin (2008). However, 
whereas Siddique and Belin (2008) use a hot-deck imputation method without an 
explicit imputation model for each variable to be imputed, we will use multinomial 
imputation models in our simulation study.

In the actual imputation phase we start with the fully imputed dataset obtained 
after the start-up phase. We iteratively (re-)impute the data that were originally 
missing, where we impute each variable in turn. For each variable to be imputed we 
apply the following steps.

1I. For the current variable to be imputed, we use an imputation model, for 
instance, a multinomial imputation model with in principle all other variables as 
auxiliary data, to estimate imputation probabilities for its categories.

2I. For each record in which the value of the current variable to be imputed 
was originally missing, we fill in the other data in that record (either observed or 
imputed) into the edits. This may lead to some structural zeroes, i.e. categories 
that are not allowed to be imputed, in some records for the current variable to be 
imputed.

3I. For the current variable to be imputed, we approximate the correct imputation 
probabilities per record, i.e. we use the probabilities from the imputation model of 
Step 1I and adjust them, taking structural zeroes and – if applicable – known totals 
into account. For each record to be imputed, taking structural zeroes into account 
simply amounts to setting imputation probabilities for those structural zeroes to 
zero and rescaling the other imputation probabilities so they sum up to one. Sub-
sect. 3.3 discusses how to adjust imputation probabilities so they take known totals 
into account.

4I. If the totals of the current variable to be imputed are not known, we use the 
adjusted imputation probabilities from Step 3I to draw imputations. If the totals 
of the current variable to be imputed are known, we use Cox’ controlled random 
rounding algorithm to find the imputations.

We keep on iterating the above steps 1I to 4I for all variables until the distribution 
of the imputed data has converged to a final distribution.
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Note that, in contrast to Step 2S of the start-up phase, Step 2I is quite simple. The 
reason why Step 2I is so simple from a technical point of view is that Step 2S of the 
start-up phase guarantees after the start-up phase we will have an imputed dataset 
satisfying all edits. Due to this, Step 2I in the actual imputation phase only has to 
ensure that we never impute a value for the current variable to imputed that is not 
allowed according to the other data in that record and the edits.

3.3 � Adjusting the imputation probabilities

As we already mentioned in Sect. 2, using IPF to adjust the imputation probabilities 
leads to an approximation for the exact imputation probabilities that take edits and 
known totals into account. In this section we discuss two other approximations. We 
assume that the imputation probabilities from the posited imputation model already 
take edits into account.

In principle, the exact imputation probabilities taking known totals in account 
can be found by enumerating all possibilities. To illustrate how, we consider Table 5 
below. We suppose that we want to impute a variable x with three categories ( c1 , c2 
and c3 ) in four units. We assume that there are no structural zeroes, we know the totals 
of the categories and we have estimated imputation probabilities for the four units.

The exact adjusted imputation probabilities are given by Pr
(
xi = k|known totals

)
 , 

where xi is the value of x in unit i (i = 1,… , 4) and k = c1 , c2 or c3 . If we were to dis-
regard the totals, there would be 3 × 3 × 3 × 3 = 81 possible outcomes, and the exact 
imputation probabilities would be given by the values in Table 5. However, if we do take 
the known totals into account, there are only 12 possible outcomes. These are given in 
Table 6 below, together with their corresponding probabilities according to Table 5.

For instance, Pr(outcome = 1) = Pr
(
x
1
= c

1

)
× Pr

(
x
2
= c

1

)
× Pr

(
x
3
= c

2

)
× Pr(

x4 = c3
)
≈ 0.0313 according to Table  5. Using Table  6 we can easily calculate 

Pr
(
xi = k|known totals

)
 for i = 1,… , 4 and k = c1 , c2 or c3 . For example,

where 0.1445 is the sum of all the probabilities over all 12 possible outcomes.

Pr
(
x1 = c1|known totals

)
=

0.0313 + 0.0078 + 0.0313 + 0.0156 + 0.0078 + 0.0156

0.1445
≈ 0.7568,

Table 5   Estimated imputation 
probabilities and known totals

Unit Category

c1 c2 c3

1 0.50 0.25 0.25
2 0.25 0.50 0.25
3 0.25 0.50 0.25
4 0.25 0.25 0.50
Totals 2 1 1
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In this very small example we can enumerate all possible outcomes. In general, 
enumeration is infeasible, and we have to resort to approximating the adjusted impu-
tation probabilities. Besides the IPF approach as used by Favre et  al. (2005), we 
have tested two alternative approximations in our simulation study.

The underlying idea of the alternative approximations is that in each unit in which 
the value of the current variable to be imputed is missing, we have to decide whether 
we are going to impute category c or not.

If we only consider a certain category c and assume that we can neglect the other 
categories, we would have to draw from a so-called Conditional Binomial ( CB ) 
distribution (see, e.g., Chen and Liu 1997 and Chen 1998). The CB distribution is 
closely related to a Poisson-Binomial ( PB ) distribution. Suppose we have a dataset S 
with |S| units and let Z =

(
Z1,… , Z|S|

)
 be the outcomes of |S| independent Bernouilli 

trials with probabilities p1,… , p|S| . The probability of a total of k successes in the 
|S| trials is then given by a PB distribution, which we denote as PB

(
k; pS

)
 where 

pS =
(
p1,… , p|S|

)
 is a vector of parameters of the PB distribution. The conditional 

distribution of Z given that 
∑

i∈S Zi = k is a CB distribution, with parameters k and 
pS.

We will approximate the CB distribution for our situation. Suppose there are mx 
units (numbered 1 to mx ) in which the value of the variable x under consideration is 
missing and we have to impute category c kc times. Together these mx units form a 
set Sx . We consider a unit i in which the value of the variable under consideration is 
missing. The exact adjusted probability for imputing category c in unit i is given by

if kc ≠ 0 , and p∗
ic
= 0 if kc = 0 , where the pic are the imputation probabilities with-

out taking the known totals into account and the p∗
ic
 are the adjusted imputation 

probabilities that do take the known totals into account, i.e. the p∗
ic
 are the probabili-

ties of our CB distribution. That is,

In this paper we use simple approximations for the PB distribution. As a reviewer 
pointed out, a PB distribution can quite efficiently be computed exactly by means of 
a Fast Fourier Transform (Hong 2013), which is implemented in the “poisbinom” 
package. We have not used this exact approach for two reasons. A pragmatic rea-
son is that even with an efficient approach to calculate a PB distribution exactly, our 
simulation study – where we had to calculate/approximate a PB distribution millions 
of times (see Sect. 4) – is likely to take much computing time. Even with our simple 

p∗
ic
=

p
��
× Pr

(
category c is selected (kc − 1

)
times in the remaining

(
mx − 1

)
units)

Pr(category c is s elected kc times in mx units)

(6)

p∗
ic
=

p
��
PB

(
(kc − 1

)
; pSx�{i})

p
��
PB

(
(kc − 1

)
; pSx�{i}) + (1 − pic)PB(kc; pSx�{i})

=
pic

pic + (1 − pic)
PB(kc; pSx�{i})

PB((kc−1); pSx�{i}})
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approximations our simulation study took several months. A more important theo-
retical reason is that using a CB distribution – and implicitly a PB distribution – is 
itself an approximation, since the assumption that we can neglect the other catego-
ries when drawing a category is not completely correct. The estimated imputation 
probabilities and known totals for the other categories affect the adjusted imputation 
probabilities for the category c under consideration. For instance, using the exact PB 
distribution in Eq. (6) gives Pr

(
x1 = c1|known totals

)
= 0.7596 for Table 5, which 

differs slightly from the correct value obtained by enumeration mentioned above.
Our first simple approximation of PB(kc; pSx�{i}) is by a Poisson distribution 

Pr(�Sx�{i}) , with �x�{i} =
∑

t∈Sx�{i}
ptc (see, e.g., Chen et al. 1994, Chen and Liu 1997, 

Chen 1998 and Chen 2000). Using this approximation when kc ≠ 0 , we get 
PB(kc; pSx�{i})

PB((kc−1); pSx�{i}})
≈

�Sx�{i}

kc
.

A second, alternative approximation of PB(kc; pSx�{i}) is by a binomial distribution 
with success probability given by pSx�{i}(c) =

∑
t∈Sx�{i}

ptc∕�Sx�{i}� =
∑

t∈Sx�{i}
ptc∕(mx − 1) for 

category c (see, e.g., Chen and Liu 1997). Using this approximation when kc ≠ 0 , we 
get PB(kc; pSx�{i})

PB((kc−1); pSx�{i}})
≈

mx−(kc−1)

kc

pSx�{i}

(1−pSx�{i})
.

4 � Evaluation study

4.1 � Implementation

We implemented our code in R (see R Core Team 2020). In the start-up phase, we 
simply used the observed fractions of the categories of each variable to be imputed 
as imputation probabilities, unadjusted for known totals. For instance, if 49% of the 
observed people are female and 51% male, then we impute “Female” with prob-
ability 0.49 and “Male” with probability 0.51 in variable Gender. In the imputation 
phase, we have used a more complicated multinomial model. For each variable we 
have used all other (partly imputed) variables as auxiliary variables while estimat-
ing the imputation probabilities according to this model. We have implemented the 
estimation of the imputation probabilities using the function “multinom” from the 
R package “nnet”. This function uses neural networks to fit multinomial models 
given a set of auxiliary variables to the available complete data, and thus obtains 
estimates for the imputation probabilities for a target variable (for more details, see 
Ripley 2020). In our imputation approach we need to handle edits. That is, we need 
to substitute values into edits and we need to derive implied edits by eliminating 
variables (see Sect. 3.2). For this we have used the R package “editrules” (see De 
Jonge and Van der Loo 2012). R code for Cox’s controlled rounding algorithm was 
kindly provided to us by our colleague Sander Scholtus (Statistics Netherlands). We 
have gratefully used this code in our implementation. Our R code is available on 
GitHub: https://​github.​com/​tonwa​al/​Calib​rated-​Imput​ation-​for-​Multi​varia​te-​Categ​
orical-​Data.

https://github.com/tonwaal/Calibrated-Imputation-for-Multivariate-Categorical-Data
https://github.com/tonwaal/Calibrated-Imputation-for-Multivariate-Categorical-Data
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4.2 � Dataset

The dataset used for our simulation study is a small part of the Dutch Population 
Census 2001 published by Statistics Netherlands. The dataset contains 3,784 ran-
domly drawn individuals with 12 categorical variables. The variables and the cor-
responding numbers of categories are: Gender (2 categories), Age (17 categories), 
Position in the household (8 categories), Size of the household (6 categories), Resi-
dential area last year (3 categories), Nationality (3 categories), Country of birth (3 
categories), Educational level (7 categories), Economic status (8 categories), Occu-
pation (10 categories), NACE code (13 categories) and Marital status (4 catego-
ries). Descriptions of the categories of these variables can be found in Appendix 
B. Appendix C contains a description of the user-specified edits. The dataset used 
is complete and does not contain any missing values for any of the units. We treated 
this dataset as our population. In our simulation study we introduced missingness 
into the data and mass imputed the missing values in the population.

In our study, we focused on the variables Educational level and Occupation, since 
these are the only variables in the Dutch Population Census that are (partly) based 
on surveys, rather than on administrative data covering (almost) the entire popula-
tion as is the case for the other variables. In the simulation study, we assumed that 
only the categories of variable Educational level have to sum up to known totals for 
our population. This mimics the situation for the Dutch Population Census, where 
estimated totals for Educational level are known from the Educational Attainment 
File and mass imputation is planned to be used. The true totals of Educational level, 
respectively Occupation, are given in Tables 7 and 8. 

4.3 � The simulation study

For our simulation study we introduced missingness in individual data items in the 
dataset described in Subsect.  4.2. In general, three kinds of missing data mecha-
nisms are distinguished in the literature: Missing Completely At Random (MCAR), 
Missing At Random (MAR) and Not Missing At Random (NMAR) (Rubin 1976). 
Roughly speaking, a missing data mechanism is MCAR, if the reason for a value 
being missing does not depend on the value itself, nor on values of background vari-
ables. A missing data mechanism is MAR, if the reason for a value being missing 

Table 7   True totals of 
Educational level

Category “0” “1” “2” “3” “4” “5” “9”

Total 254 578 807 1220 116 551 258

Table 8   True totals of 
Occupation

Category “1” “2” “3” “4” “5” “6” “7” “8” “9” “999”

Total 260 336 360 251 229 34 212 147 178 1777
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does not depend on the value itself, but does depend on values of background vari-
ables. A missing data mechanism is NMAR, if the reason for a value being miss-
ing depends on the value itself, even after correcting for the background variables. 
MCAR is the simplest case to deal with. Many imputation methods are able to cor-
rect for this situation. MAR is more complicated than MCAR. One can correct for 
a MAR mechanism by taking appropriate background variables into account in the 
imputation process. NMAR is the most difficult case by far. One can only correct for 
this case by relying on assumptions that cannot be tested from the dataset with miss-
ings itself.

In this paper we focus on MAR mechanisms, since these are the most impor-
tant missingness mechanisms in practice. Sometimes we will also refer to results for 
MCAR mechanisms. Those results are given in the Supplementary Material to this 
paper. For more results for MCAR and NMAR mechanisms we refer to De Waal and 
Daalmans (2019).

In our simulation study, we examined two different fractions of missingness 
(referred to as Low and High) and three approximation methods for the correct 
imputation probabilities (the binomial approximation, the Poisson approximation 
and the IPF approximation).

In a preliminary study we found that the number of iterations in the actual impu-
tation phase (see Sect. 3.2) affects the results as expected, and that after ten itera-
tions our imputation approach has converged to (near) optimal results (see also De 
Waal and Daalmans 2019). Setting the number of iterations to ten appears to be a 
good trade-off between quality of the obtained results and the required computing 
time for our data. In our simulation study we therefore set the number of iterations in 
the actual imputation phase to ten.

We took into account that in practice values for some variables will be miss-
ing (far) more often than for other variables. For instance, values for Educational 
level and Occupation will be missing quite often in the Dutch Population Census, 
whereas values of, for example, Gender will be missing only very rarely.

The stochastic process to create missingness in a variable is independent from the 
missingness process for any of the other variables. For the MAR mechanisms, we 
examined situations where the missingness of Educational level or the missingness 
of Occupation depends on the age class of the person. In particular, we assumed that 
Educational level or Occupation are observed more often for people in a younger 
age class than for people in an older age class. For Educational level this reflects the 
current situation in the Netherlands, where the Educational level of younger peo-
ple is more frequently available in administrative datasets than for older people. We 
defined a “young” class consisting of people up to 29 years (categories 1 to 6 of 
Age), a “middle” class consisting of people from 30 up to 54 years (categories 7 to 
11 of Age), and an “old” class consisting of people of 55 years and older (categories 
12 to 17 of Age). The “young” class consists of 1,285 persons, the “middle” class of 
1,714 persons, and the “old” class of 785 persons.

For the MAR mechanisms for Educational level, we assumed that the missing 
data mechanism for each of the other variables, including Occupation, is MCAR. 
Similarly, for the MAR mechanism for Occupation, we assumed that the miss-
ing data mechanisms for each of the other variables, including Educational level, 
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is MCAR. The numbers of missings that we created for the MAR mechanism for 
Educational level for each variable in all three age classes for the Low missing-
ness scenario are given in Table 9. For Educational level the missingness percent-
ages are: 12.5% for the “young” class, 27.5% for the “middle” class and 40% for the 
“old” class. For High missingness, the numbers of missings are twice as high as in 
Table 9.

The numbers of missings that we created for the MAR mechanism for Occupa-
tion are the same as in Table 9, except that the number of missings for Educational 
level and Occupation are interchanged, i.e. the numbers of missings for Educational 
level are 321 for the “young” class, 429 for the “middle” class and 196 for the “old” 
class, and for Occupation 161 (12.5%) for the “young” class, 471 (27.5%) for the 
“middle” class and 314 (40%) for the “old” class. Again, for High missingness, the 
numbers of missings are twice as high.

For all four MAR missingness mechanisms (MAR for Educational level with 
Low and High missingness and MAR for Occupation with Low and High missing-
ness) we generated 250 missing data patterns and deleted the corresponding values 
from our dataset.

As mentioned above, we will refer to some results for MCAR mechanisms in 
order to compare them to the results of the MAR missingness mechanisms. In our 
MCAR missingness mechanisms we created the number of missings given in the 
last column of Table 9 (“Total”) for the Low scenario and twice those numbers for 
the High scenario. The difference with the MAR missingness mechanisms is that for 
the MCAR missingness mechanisms missingness is not influenced by the value of 
Age.

Table 9   Numbers of missings 
for the MAR mechanism for 
educational level and Low 
missingness

Variable Young Middle Old Total

Gender 6 9 4 19
Age 64 86 39 189
Position in the household 64 86 39 189
Size of the household 64 86 39 189
Residential area last year 6 9 4 19
Nationality 6 9 4 19
Country of birth 6 9 4 19
Educational level 161 471 314 946
Economic status 64 86 39 189
Occupation 321 429 196 946
NACE code 64 86 39 189
Marital status 64 86 39 189
Total 890 1452 760 3102
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4.4 � Quality measures

Since we introduced missingness in a dataset with known values ourselves, we are 
able to compare the imputed values to the actual values. The main interest of NSIs 
is the production of high-quality descriptive statistics, such as totals and means. To 
measure the quality of our imputation approach, we therefore examine to which 
extent totals for Occupation are preserved. We also examine to which extent cell 
totals are preserved for the cross-table of Educational level and Occupation.

We denote the categories of a variable x by 1, 2,… ,Cx , where Cx is the number 
of categories of variable x . For each category c (c = 1, 2,… ,Cx) of variable x , we 
calculate two quality measures, Bx(c) and Mx(c) , which are defined by

and

where S is the number of generated missing data patterns (250 in our case), 
Ts, imp(c; x) is the total of category c of variable x in the s-th imputed dataset 
(s = 1,… , S) , and Ttrue(c; x) is the corresponding total in the original, complete data-
set. Bx(c) is the empirical bias of the imputed total of category c of variable x , and 
Mx(c) its empirical mean squared error.

Similarly, for each combination of categories c (c = 1, 2,… ,Cx) and c′ 
(c� = 1, 2,… ,Cy with Cy the number of categories of a variable y) of variables 
x , respectively y , we calculate two measures, Bx,y(c, c

�) and Mx,y(c, c
�) , which are 

defined by

and

where Ts,imp

(
c, c′; x, y

)
 is the number of times that the combination of category c 

of variable x and category c′ of variable y occurs in the s-th imputed dataset, and 
Ttrue

(
c, c′; x, y

)
 is the number of times that the combination of category c of variable 

x and category c′ of variable y occurs in the original, complete dataset. We summa-
rize Bx,y

(
c, c′

)
 and Mx,y

(
c, c′

)
 into two quality measures B+

x,y
 and M+

x,y
 defined by

Bx(c) =

∑S

s=1

�
Ts,imp(c;x) − Ttrue(c;x)

�

S

Mx(c) =

∑S

s=1

�
Ts,imp(c;x) − Ttrue(c;x)

�2

S
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�
c, c�

�
=

∑S

s=1

�
Ts,imp

�
c, c�; x, y

�
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�
c, c�; x, y
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S
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�
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and

In the summation for B+
x,y

 , we take the absolute values of Bx,y

(
c, c′

)
 , since we 

do not want positive and negative values to cancel out. B+
x,y

 is the average absolute 
empirical bias over all cells in the cross-table of x and y , and M+

x,y
 is the average 

empirical mean squared error over these cells.
Although generally considered to be less important by NSIs, we also look at how 

often the correct category is imputed for the missing values, i.e. the prediction accu-
racy of individual values. That is, for variable x , we calculate

where xi,s,imp is the value of variable x in unit i in the s-th imputed dataset, xi,true is 
the corresponding value in the original, complete dataset, Missx; s is the set of units 
for which the value of variable x is missing in the s-th sample, and I is the indicator 
function, i.e. I

(
xi,s,imp = xi,true

)
= 1 if xi,s,imp = xi,true and I

(
xi,s,imp = xi,true

)
= 0 other-

wise. We will summarize the results for Dx into a single number D+ defined by

where the summation runs over all 12 variables. For D+ , the higher its value, the 
better the quality of the imputations. For the other quality measures, the smaller 
their values, the better the quality of the imputations.

If using the binomial or the Poisson approximation for the exact imputation prob-
abilities taking known totals has any effect on the quality of the imputations, this 
should most clearly be reflected in the D+ measure, since the better the approxima-
tions of the imputation probabilities, the more missing values should be imputed 
correctly.

We have also compared estimated standard errors of the estimated totals for the 
categories of Occupation obtained by a bootstrap approach to their corresponding 
(approximate) true standard deviations. The bootstrap approach used to do this and 
the results thereof are described in Sect. 6.

5 � Results

By design, our proposed imputation approach preserves totals for the categories of 
Educational level in all scenarios. Likewise, by design, our proposed imputation 
approach also satisfies specified edits.

M+
x,y

=

∑Cx

c=1

∑Cy

c�=1
Mx,y

�
c, c�

�

CxCy

Dx =

∑S

s=1

∑
i∈Missx; s

I(xi,s,imp = xi,true)

S

D+ =
∑

x

Dx
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5.1 � Univariate results

We give univariate results for Occupation for the two MAR mechanisms – a MAR 
mechanism for Educational level and a MAR mechanism for Occupation – with 
Low missingness. The conclusions that we can draw for High missingness are simi-
lar to those for Low missingness. For other variables, the results are similar to those 
of Occupation (see De Waal and Daalmans 2019).

Table  10 presents univariate results for Occupation for the MAR mechanism 
in Educational level as well as for the MAR mechanism in Occupation for Low 
missingness.

In Table 10, we see that Bx(c) is quite low compared to the totals of the categories 
of Occupation in the complete dataset (see Table  8). Also, standard deviations 
sdx(c) , computed as sdx(c) =

√
Mx(c) − B2

x
(c) , are quite low for Table 10, i.e. close 

to zero and much smaller than the totals of the categories of Occupation. So, uni-
variate results for Occupation are preserved quite well for both MAR mechanisms.

5.2 � Cross‑tables

Table 11 gives the results for B+
x,y

 and M+
x,y

 for the cross-table of Educational level 
and Occupation for all four MAR mechanisms. In Appendix D we give results 
for Bx,y

(
c, c′

)
 and Mx,y

(
c, c′

)
 for the case of Low Missingness for each cell in the 

cross-table of Educational level and Occupation for our MCAR missingness 

Table 10   Bx(c) and Mx(c) for Occupation for MAR mechanisms with Low missingness

MAR mechanism in Educational level

“1” “2” “3” “4” “5” “6” “7” “8” “9” “999”

Binomial Bx(c)  − 0.24 0.07  − 0.12 0.06 0.52 0.52 0.42 0.12 0.00  − 1.34
Mx(c) 109.04 116.03 180.08 96.94 93.45 20.41 74.33 73.16 85.89 17.58

Poisson Bx(c)  − 0.94 0.04  − 0.06 0.64 0.54 0.16 0.07 0.43 0.10  − 0.98
Mx(c) 118.16 107.32 155.95 95.84 112.55 18.92 91.27 73.63 102.92 15.57

IPF Bx(c)  − 0.50 0.52  − 1.03 0.62 0.00 0.67  − 0.10 0.60 0.43  − 1.22
Mx(c) 110.89 100.33 174.47 98.15 92.14 19.93 86.99 75.25 89.14 17.50

MAR mechanism in Occupation

“1” “2” “3” “4” “5” “6” “7” “8” “9” “999”

Binomial Bx(c)  − 0.84 0.92  − 0.02  − 0.19 1.06 0.57  − 0.38 0.20 0.76  − 2.08
Mx(c) 148.32 120.28 171.68 104.18 90.27 19.02 82.84 74.518 81.318 17.92

Poisson Bx(c)  − 1.65 1.19 0.66  − 0.00 0.30 0.57 0.61  − 0.06 0.70  − 2.33
Mx(c) 141.82 105.25 159.88 113.84 89.60 18.23 83.70 70.60 67.95 21.75

IPF Bx(c)  − 1.01 0.82 0.52  − 0.79 1.30 0.56 0.47 -0.40 0.88  − 2.35
Mx(c) 142.24 122.04 186.55 115.24 92.33 20.34 74.04 73.40 81.16 20.80
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mechanism and for the MAR missingness mechanisms for both Educational level 
and Occupation.

In Table 11 we might see some effects of using the binomial or Poisson approxi-
mation instead of the IPF approximation for the exact imputation probabilities tak-
ing known totals into account. However, we do not see such an effect in Table 11, 
suggesting that the all three approximations work about equally well.

The results for B+
x,y

 and M+
x,y

 in Table 11 for the MAR mechanisms are clearly 
higher than for MCAR mechanisms with the same number of missing values (see 
the Supplementary Material to this paper). This shows that cross-tables are clearly 
less well estimated for MAR mechanisms than for MCAR mechanisms. The results 
in Table 11 show that estimates for the cross-table of Educational level and Occu-
pation are biased for our MAR mechanisms (see also Appendix D).

5.3 � Number of correct imputations

As already mentioned, any effects of using the binomial or Poisson approxima-
tion instead of the IPF approximation should most clearly be reflected in the D+ 
measure. However, we see no such an effect in Table 12. This confirms the earlier 

Table 11   Cross-table 
of educational level and 
occupation: B+

x,y
 and M+

x,y
 for 

MAR mechanisms

Low missingness High missing-
ness

B+

x,y
M+

x,y
B+

x,y
M+

x,y

MAR mechanism in educational level
Binomial 22.32 1678.14 22.16 1657.88
Poisson 22.29 1671.99 22.20 1659.15
IPF 22.37 1680.57 22.23 1662.77

MAR mechanism in occupation
Binomial 22.32 1676.48 22.17 1645.60
Poisson 22.37 1680.33 22.21 1648.69
IPF 22.34 1676.66 22.27 1657.29

Table 12   Results for D+ for 
MAR mechanisms; in brackets 
the percentage of correct 
imputations for the total number 
of missings

Low missingness High missingness

MAR mechanism in educational level
Binomial 1044.97 (33.69%) 2076.28 (33.47%)
Poisson 1045.60 (33.71%) 2079.04 (33.51%)
IPF 1044.09 (33.66%) 2076.89 (33.48%)

MAR mechanism in occupation
Binomial 1047.83 (33.78%) 2056.11 (33.14%)
Poisson 1045.58 (33.71%) 2056.92 (33.15%)
IPF 1046.22 (33.73%) 2057.28 (33.16%)
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finding that the IPF approximation works just as well as the binomial or Poisson 
approximation for our dataset.

The results for D+ in Table 12 for the MAR mechanisms are clearly worse than for 
MCAR mechanisms with the same number of missing values (see the Supplemen-
tary Material to this paper). This shows that prediction accuracy for individual values 
decreases substantially for a MAR mechanism in comparison to an MCAR mechanism.

6 � Variance estimation

Often an estimate – or at least a good indicator – for the variance of an estimator is 
considered very important, and that certainly holds true for estimates for a popula-
tion census. In this section we therefore compare estimated standard errors for the 
estimated totals of the categories of Occupation obtained by a bootstrap approach to 
their (approximate) true standard deviations. Since we are dealing with a finite pop-
ulation that we mass impute we have used a pseudo-population bootstrap approach 
to estimate the standard errors.

As in the rest of this paper, in our pseudo-population bootstrap approach we 
assume that all units in the population are (at least partly) observed, so the inclusion 
probability of each population unit is one. However, in each record the values of 
some variables may be missing. That missingness is caused by a random missing-
ness process, which – for computational reasons – is based on the MCAR mecha-
nism for the Low missingness scenario in this section rather than on MAR mecha-
nisms as in the rest of this paper.

Our situation differs from the usual situation considered in the literature on esti-
mating the variance of estimators based on imputed data in the sense that missing-
ness occurs in all our variables, whereas in the literature missingness is usually 
assumed to occur in only one variable. Little seems to be known about applying a 
pseudo-population bootstrap approach when several variables contain missingness. 
This means that (the application of) our pseudo-population bootstrap approach is 
somewhat experimental.

Our pseudo-population bootstrap approach is similar to the approach in Scholtus 
and Daalmans (2021), and is as follows:

•	 The starting point is our complete population dataset without any missing values.
•	 For s = 1,… ,Nmis we do the following

1.	 Introduce missingness in our population dataset by means of the MCAR 
missingness procedure for the Low missingness scenario, and thus create a 
version, Popmis,s , of our population dataset that contains missing values.

2.	 Impute the missing values by means of our mass imputation approach. This 
leads to estimated total Ts,imp(c; Occupation) for each category c of Occupation.

3.	 Select the set of completely observed units Popmis,com,s in Popmis,s.
4.	 Create one complete pseudo-population of the same size (3,784 units) as our 

original population. Suppose that Popmis,com,s consists of ns completely 
observed values. Since we have used an MCAR missingness mechanism, each 
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unit is equally likely to be completely observed. We therefore start by creating ⌊
3784

ns

⌋
 copies of each unit in Popmis,com,s , where ⌊q⌋ denotes the largest integer 

value less than q . The total number of units created in this way is very likely 
to be less than 3,784. If so, we then randomly draw some extra units from 
Popmis,com,s , where each unit may be drawn extra only once, until we have 
created a pseudo-population Pseudos with 3,784 complete units.

5.	 For b = 1,… ,B we do the following

a.	 Introduce missingness in Pseudos by means of our MCAR missingness 
procedure, so we obtain a pseudo-population Pseudomis,s with missing 
values.

b.	 Impute Pseudomis,s by means of our mass imputation approach.
c.	 Calculate the total Ts,pseudo(c; Occupation) for each category c of Occupa-

tion in the imputed version of Pseudomis,s.

6.	 For each category c of Occupation, calculate the bootstrap variance 
vars,boot(c) = (B − 1)−1

∑B

b=1

�
Ts,pseudo(c; Occupation) − Ts,pseudo(c; Occupation)

�2
 with 

Ts,pseudo(c; Occupation) = B−1
∑B

b=1
Ts,pseudo(c; Occupation).

7.	 For each category c of Occupation, estimate the standard error of the esti-
mated total of category c of Occupation by ses,boot(c) =

√
vars,boot(c).

In our simulation study we have used Nmis = 250 and B = 200 . As noted in the 
literature, for variance estimation, B = 200 bootstrap replicates are often considered 
sufficient (see Efron and Tibshirani 1993, Sect. 6.4).

In Step 3 we create only one pseudo-population. In principle, it may be better to 
construct several pseudo-populations. However, previous results in Chauvet (2007) 
and Kuijvenhoven and Scholtus (2011) suggest that creating several pseudo-popu-
lations instead of only one hardly affects the estimated variances. In other words, 
creating a single pseudo-population as we did, often leads to variance estimates of 
similar accuracy as creating several pseudo-populations.

We approximated true standard deviations for the categories of Occupation by 
introducing missingness into our original population by means of our MCAR pro-
cedure for the Low missingness scenario 2,500 times. To each of these 2,500 data-
sets with missing values we applied our mass imputation approach, calculated the 
totals for the categories of Occupation in the imputed datasets, and estimated the 
true standard deviations over the 2,500 datasets.

Our pseudo-population bootstrap approach to estimate the standard errors of the 
totals of Occupation is very time-consuming since we applied our iterative impu-
tation method Nmis × B = 250 × 200 = 50, 000 times. Since we use ten iterations 
in our imputation method, we had to apply our imputation method 500, 000 times 
in total. For this reason we have used a MCAR missingness mechanism, instead 
of MAR missingness mechanisms as we did in the rest of our paper. Even with a 
MCAR missingness procedure and using parallelized R code on a PC with four 
computing cores, it took more than two months to run this simulation study.
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We note that even with a Low missingness scenario the expected percentage of 
units with one or more missing values is about 48.66%, so only about 51.33% of the 
units, i.e. 51.33% × 3784 ≈ 1942 units, are expected to be completely observed and 
can be used to construct a pseudo-population.

Table 13 gives the averages of estimated standard errors over Nmis populations with 
missing values divided by true (approximate) standard deviations for the estimated 
totals of the categories of Occupation. We see that in most cases the average of the esti-
mated standard error divided by the corresponding true (approximate) standard devia-
tion is close to, but a bit less than, one. This shows that for most cases the estimates for 
the variances based on our pseudo-population bootstrap approach are close to the true 
variances of the imputation approach. Exceptions are category “6”– the category with 
the smallest true total – which is clearly less than one, and “999”– the category with the 
highest true total – which is a bit larger than one.

Table 14 gives coverage rates of the estimated 95%-confidence intervals for the cat-
egories of Occupation. These 95%-confidence intervals are computed as

Note that the estimated 95%-confidence intervals are centered around 
Ts,imp(c; Occupation) , i.e. around totals obtained by applying our mass imputation pro-
cedure directly to Popmis,s 

(
s = 1,… ,Nmis

)
 and before constructing a pseudo-popula-

tion. This way of computing the confidence intervals was suggested by a reviewer.
The coverage rates of the estimated 95%-confidence intervals should be close to the 

nominal rate of 95%, which is indeed the case for all categories except category “6” as 
can been seen in Table 14

7 � Discussion

In this paper we have generalized the imputation approach of Favre et al. (2005) to mul-
tiple variables to be imputed. We have also tested three approximations for the impu-
tation probabilities taking known totals into account. We have carried out a simula-
tion study to examine the properties of our proposed methodology in several different 
situations.

(
Ts,imp(c; Occupation) − 1.96 × ses,boot(c), Ts,imp(c; Occupation) + 1.96 × ses,boot(c)

)
.

Table 13   Averages of the estimated standard errors over the Nmis = 250 populations with missing values 
divided by true (approximate) standard deviations of the categories of Occupation

“1” “2” “3” “4” “5” “6” “7” “8” “9” “999”

0.95 0.97 0.96 0.95 0.96 0.89 0.94 0.96 0.96 1.06

Table 14   Coverage rates of the estimated confidence intervals of the categories of Occupation

“1” “2” “3” “4” “5” “6” “7” “8” “9” “999”

95,2% 96,0% 92,4% 93,2% 97,6% 90,0% 93,6% 91,6% 92,4% 95,2%
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The first conclusion that we can draw is that our proposed methodology does work 
in the sense that it allows us to impute multivariate missing data such that edits are sat-
isfied and known totals are exactly preserved.

For MCAR missing data mechanisms (see the Supplementary Material to this 
paper), the univariate results for individual variables and results for two-dimensional 
cross-tables are (nearly) unbiased. For MAR missing data mechanisms, univariate 
results are also (nearly) unbiased. However, whereas results for cross-tables are (nearly) 
unbiased for MCAR data mechanisms, they are biased for MAR mechanisms. Also, the 
prediction accuracy for individual values is much lower for MAR mechanisms than for 
MCAR mechanisms. In order to preserve cross-tables better for MAR mechanisms one 
should use imputation models that capture statistical relations between variables bet-
ter than our relatively simple multinomial imputation models do. For instance, for our 
MAR mechanisms we could build different multinomial imputation models for each of 
our three age classes (see Sect. 4.3). Testing such more advanced imputation models 
that better capture statistical relations between variables is a point for future research.

In Sect. 6 we examined the use of a pseudo-population bootstrap approach to esti-
mate the standard errors of the totals of Occupation. For most categories of Occupa-
tion, the averages of estimated standard errors obtained by the bootstrap approach 
were quite close to the corresponding (approximate) true standard deviations. Also, 
coverage rates of the estimated confidence intervals of the estimated totals for the 
categories of Occupation were for most categories quite close to the nominal rate of 
95%. This suggests that using our pseudo-population bootstrap approach generally 
gives reasonably estimates for the imputation variance.

In this paper, we focused on mass imputation as this is the most relevant situa-
tion for the Dutch Population Census. However, a modified version of the proposed 
imputation approach also seems useful for cases where a sample of the population is 
imputed, and weighted sums of the imputed values have to sum up to known popula-
tion totals for some variables. Favre et al. (2004 and 2005) developed a variant of 
Cox’s controlled rounding algorithm that is able to handle this situation. This vari-
ant can be included into our imputation approach by replacing the original version 
of Cox’ controlled rounding algorithm with the variant developed by Favre et  al. 
(2004). We leave this extension of our imputation approach to potential future work.

Appendix A: Technical details Fellegi–Holt elimination approach

In this appendix, we describe the Fellegi–Holt elimination method itself. As 
in Sect. 3.1 we denote the number of variables by n and write each edit k in nor-
mal form. We denote the domain, i.e. the set of all possible values, of a variable s 
(s = 1,… , n) by Doms . When Fk

s
 is not the domain of a variable (s = 1,… , n) , vari-

able s is said to be involved in edit k . To eliminate a variable t from a current set of 
edits by means of the Fellegi–Holt elimination method, we start by determining all 
index sets U such that
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and

From these index sets we select the minimal ones, i.e. the index sets U that obey 
(A.1) and (A.2), but none of their proper subsets obey (A.1). Given such a minimal 
index set U we construct the implied edit

By adding the implied edits resulting from all minimal sets U to the current set 
of edits, and then removing all edits involving the variable t to be eliminated, we 
obtain a set of edits for the remaining variables.

In the example in Sect. 3.1 we have the edits

and

for Marital status and Age after filling in the observed value “Spouse” for Rela-
tion to head of household into the two user-specified edits (1) and (2). So, we have 
F1
1
= {Married} , F1

2
= {< 16years} , F2

1
= {Unmarried, Divorced, Widowed} and 

F2
2
= {< 16years,≥ 16years} , where superscript “1” refers to (A.4) and superscript 

“2” to (A.5). By taking U = {1, 2} and using (A.3), we obtain the implied edit

for variable Age.

Appendix B: Categories of the variables

Age: “1“ (0–4  years), “2“ (5–9  years), “3“ (10–14  years), “4“ (15–19  years), 
“5“ (20–24  years), “6“ (25–29), “7“ (30–34  years), “8“ (35–39  years), “9“ 
(40–44 years), “10“ (45–49 years), “11“ (50–54 years), “12“ (55–59 years), “13“ 
(60–64 years), “14“ (65–69 years), “15“ (70–74 years), “16“ (75–79 years), “17“ 
(80 years or older).

Position in the household: “1110“ (Child), “1121“ (Married without children), 
“1122“ (Married with children), “1131“ (Living together without children), “1132“ 
(Living together with children), “1140“ (Alone living elderly person), “1210“ (Liv-
ing alone), “1220“ (Different household).

(A.1)
⋃

k∈U

Fk
t
= Domt

(A.2)
⋂

k∈U

Fk
s
≠ � for s ≠ t

(A.3)
⋂

k∈U

Fk
1
×⋯ ×

⋂

k∈U

Fk
t−1

× Domt ×
⋂

k∈U

Fk
t+1

×⋯ ×
⋂

k∈U

Fk
n
.

(A.4){Married} × {< 16 years}

(A.5){Unmarried, Divorced, Widowed} × {< 16 years, ≥ 16 years}

(A.8){< 16 years}
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Size of the household: “111“ (1 person), “112“ (2 persons), “113“ (3 persons), 
“114“ (4 persons), “125“ (5 persons), “126“ (6 or more persons).

Educational level: “0“ (Pre-primary), “1“ (Primary), “2“ (Lower secondary), 
“3“ (Upper secondary), “4“ (Post-secondary), “5“ (Tertiary), “9“ (Without any 
education).

Economic status: “111“ (Employee, other), “112“ (Student with job), “120“ 
(Independent worker), “210“ (Unemployed), “221“ (Education-related), “222“ 
(Retired), “223“ (Houseman/housewife), “224“ (Other inactive)”.

Occupation:”1″ (ISCO 1: legislators, senior officials and managers),”2″ (ISCO 
2: professionals),”3″ (ISCO 3: technicians and assistant professionals),”4″ (ISCO 
4: clerks),”5″ (ISCO 5: service, shop, market sales workers),”6″ (Other),”7″ (ISCO 
7: craft and relative workers),”8″ (ISCO 8: plant and machine operators and assis-
tants),”9″ (ISCO 9: elementary occupations),”999″ (Not working).

NACE code:”111″ (NACE A + B: agriculture, hunting, forestry and fish-
ing),”122″ (NACE C + D + E: mining, manufacturing and electricity),”124″ (NACE 
F: construction),”131″ (NACE G: wholesale, retail trade, repair),”132″ (NACE H: 
hotels and restaurants),”133″ (NACE I: transport, storage, communication),”134″ 
(NACE J: financial intermediation),”135″ (NACE K: real estate, renting and busi-
ness activities),”136″ (NACE L: public administration, defense),”137″ (NACE M: 
education),”138″ (NACE N: health, social work),”139″ (NACE O: other commu-
nity, social personal service activities),”200″ (Not working).

Marital status:”1″ (Unmarried),”2″ (Married),”3″ (Widowed),”4″ (Divorced).
Gender:”1″ (Male),”2″ (Female).
Residential area last year:”1″ (Same COROP area),”2″ (Other COROP area, or 

outside the Netherlands),”9″ (Not applicable (person less than 1 year old).
Nationality:”1″ (Dutch),”2″ (From other countries in Europe),”3″ (Other).
Country of birth:”1″ (The Netherlands),”2″ (From other countries in 

Europe),”3″ (Other).

Appendix C: User‑specified edit rules

The user-specified edit rules that have to hold for our dataset are given below. These 
edits indicate impossible combinations. Variables that are not mentioned in an edit 
can take any value within its domain. For example, the first edit below says that if 
the value of Age is category “1”, “2”or “3”, i.e. if a person is 14 years or less, then 
the value of Marital status cannot be category “2” (married), “3” (widowed), or “4” 
(divorced), irrespective of the values on any of the other variables.

•	 (Age ∈ {“1”, “2”, “3”}) × (Marital status ∈ {“2”, “3”, “4”})
•	 (Position in the household ∈ {“1121”, “1122”}) × (Marital status ∈ {“1”, “3”, 

“4”})
•	 (Age ∈ {“1”, “2”}) × (Educational level ∈ {“1”, “2”, “3”, “4”, “5”})
•	 (Age ∈ {“1”, “2”, “3”}) × (Educational level ∈ {“2”, “3”, “4”, “5”})
•	 (Age ∈ {“1”, “2”, “3”, “4”}) × (Educational level ∈ {“5”})
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•	 (Age ∈ {“1”, “2”, “3”}) × (Position in the household ∈ {“1121”, “1122”, “1131”, 
“1132”, “1140”, “1210”})

•	 (Age ∈ {“1”, “2”, “3”}) × (Economic status ∈ {“111”, “120”, “210”, “222”, 
“223”})

•	 (Age ∈ {“1”, “2”, “3”}) × (Occupation ∈ {“1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, 
“9”})

•	 (Age ∈ {“1”, “2”, “3”}) × (NACE ∈ {“111”, “122”, “124”, “131”, “132”, “133”, 
“134”, “135”, “136”, “137”, “138”, “139”})

•	 (Size of the household ∈ {“111”}) × (Position in the household ∈ {“1110”, 
“1121”, “1122”, “1131”, “1132”, “1140”, “1220”})

•	 (Size of the household ∈ {“112”}) × (Position in the household ∈ {“1122”, 
“1132”, “1220”})

•	 (Size of the household ∈ {“113”, “114”, “125”, “126”}) × (Position in the house-
hold ∈ {“1110”, “1121”, “1122”, “1131”, “1132”, “1140”, “1220”})

Appendix D: Cross‑table of educational level and occupation: 
Bx,y

(
c, c

′
)
 and Mx,y

(
c, c

′
)

In this appendix we give results for Bx,y

(
c, c′

)
 and Mx,y

(
c, c′

)
 for the cells in the 

cross-table of Education level and Occupation. For comparison, in Table 15 we first 
give the true cross-table for Education level and Occupation.

In Tables  16 and 17 we give results for Bx,y

(
c, c′

)
 , respectively Mx,y

(
c, c′

)
 for 

our MCAR missingness mechanism, in Tables 18 and 19 the results for Bx,y

(
c, c′

)
 , 

respectively Mx,y

(
c, c′

)
 for the MAR mechanism for Educational level, and in 

Tables  20 and 21 the results for Bx,y

(
c, c′

)
 , respectively Mx,y

(
c, c′

)
 for the MAR 

mechanism for Occupation. We only give results for the IPF approximation and Low 
missingness. Results for the binomial approximation and the Poisson approximation 
are similar to the results for the IPF approximation.

Table 15   True cross-table 
for Educational level and 
Occupation

Occupation Educational level

“0” “1” “2” “3” “4” “5” “9”

“1” 0 14 44 112 14 76 0
“2” 0 1 9 60 16 250 0
“3” 0 13 28 228 24 67 0
“4” 0 17 71 124 18 21 0
“5” 1 24 82 111 5 6 0
“6” 0 2 9 16 3 4 0
“7” 1 28 65 109 3 6 0
“8” 1 33 45 63 0 5 0
“9” 3 42 75 52 1 5 0
“999” 248 404 379 345 32 111 258
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Comparing Tables  18 and 21 to Table  15, we see that bias is quite substantial 
for both the MAR mechanism for Educational level as well as for the MAR mecha-
nism for Occupation. The results in Tables 18, 19, 20 and 21 for MAR mechanisms 
are clearly worse than the corresponding results in Tables 15 and 16 for the MCAR 
mechanism. This supports the conclusion in Sects. 5.2 and 7 that results for cross-
tables are biased for MAR mechanisms, whereas they are (nearly) unbiased for the 
MCAR mechanism.

Table 16   Cross-table for Educational level and Occupation for MCAR mechanism, IPF and Low miss-
ingness: Bx,y

(
c, c′

)

Occupation Educational level

“0” “1” “2” “3” “4” “5” “9”

“1” 0.08 0.58 0.72 0.25  − 0.40  − 1.44 0.20
“2” 0.08 0.97 1.72 4.28 0.28  − 7.55 0.21
“3” 0.11 0.80 2.22  − 4.00  − 0.49 1.12 0.24
“4” 0.06 0.27  − 1.28  − 0.64  − 0.40 1.79 0.19
“5” 0.04  − 0.61  − 0.71  − 0.74 0.27 1.55 0.20
“6” 0.02 0.07  − 0.19  − 0.08  − 0.10 0.21 0.08
“7” 0.08  − 0.19  − 0.92  − 0.54 0.22 1.20 0.15
“8” 0.08  − 0.55  − 0.79  − 0.46 0.22 1.41 0.10
“9”  − 0.14  − 1.22  − 1.80 1.32 0.32 1.34 0.17
“999”  − 0.42  − 0.12 1.02 0.62 0.06 0.37  − 1.53

Table 17   Cross-table for 
educational level and occupation 
for MCAR mechanism, IPF and 
low missingness: Mx,y

(
c, c′

)

Educational level

“0” “1” “2” “3” “4” “5” “9”

“1” 0.09 8.33 17.86 28.67 6.52 21.22 0.27
“2” 0.09 2.30 9.42 44.24 6.94 85.65 0.26
“3” 0.12 9.11 20.41 58.82 10.90 29.68 0.33
“4” 0.07 8.58 27.02 32.08 7.95 14.62 0.24
“5” 0.81 13.11 26.05 31.48 2.51 6.91 0.25
“6” 0.02 1.18 4.36 4.84 1.22 2.19 0.10
“7” 0.65 15.15 25.64 29.18 2.02 5.94 0.18
“8” 0.57 12.60 13.97 17.20 0.28 5.88 0.13
“9” 1.45 15.24 22.84 20.51 0.84 5.27 0.25
“999” 3.95 52.99 77.91 88.17 13.55 36.00 3.64
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Table 18   Cross-table for educational level and occupation for MAR mechanism for educational level, the 
IPF approach and low missingness: Bx,y

(
c, c′

)

Occupation Educational level

“0” “1” “2” “3” “4” “5” “9”

“1” 5.20 22.08 27.88  − 21.14  − 4.61  − 29.58 0.17
“2” 1.80 39.47 68.80 89.17  − 3.56  − 195.90 0.22
“3” 5.99 30.74 67.71  − 91.10  − 9.46  − 4.10 0.22
“4” 3.14 21.54  − 11.27  − 25.26  − 6.23 17.98 0.09
“5” 2.76 8.16  − 21.22  − 24.66 1.66 33.14 0.16
“6” 0.98 4.63 0.04  − 5.97  − 2.73 3.03 0.02
“7” 2.07 3.92  − 12.52  − 28.07 7.37 27.09 0.13
“8” 0.24  − 17.54 1.79  − 9.88 6.21 19.12 0.06
“9” 0.75  − 11.31  − 37.29 16.34 5.13 26.32 0.07
“999”  − 22.93  − 101.68  − 83.92 100.56 6.20 102.89  − 1.12

Table 19   Cross-table for educational level and occupation for MAR mechanism for educational level, the 
IPF approach and low missingness: Mx,y

(
c, c′

)

Occupation Educational level

“0” “1” “2” “3” “4” “5” “9”

“1” 28.84 498.88 795.08 473.07 24.65 886.97 0.20
“2” 4.12 1575.26 4757.07 7982.04 17.16 38,390.34 0.29
“3” 37.62 960.38 4615.61 8330.27 94.58 31.81 0.25
“4” 10.88 477.96 142.66 662.10 42.44 333.85 0.12
“5” 8.97 77.71 468.14 626.82 6.16 1108.69 0.20
“6” 1.13 23.41 2.50 38.50 7.69 10.49 0.02
“7” 5.24 24.33 171.27 808.77 58.04 742.52 0.14
“8” 0.69 313.55 12.45 109.96 40.57 372.69 0.06
“9” 1.84 137.71 1402.83 284.78 28.72 700.08 0.08
“999” 531.48 10,388.4 7098.97 10,170.66 50.66 10,626.34 2.44
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Table 20   Cross-table for educational level and occupation for MAR mechanism for occupation, the IPF 
approach and low missingness: Bx,y

(
c, c′

)

Occupation Educational level

“0” “1” “2” “3” “4” “5” “9”

“1” 5.52 21.62 27.15  − 19.85  − 4.75  − 29.92 0.22
“2” 1.60 39.84 68.62 88.57  − 3.39  − 195.46 0.22
“3” 5.84 30.49 69.31  − 93.13  − 9.30  − 3.44 0.24
“4” 3.22 21.46  − 11.96  − 25.26  − 6.39 18.76 0.17
“5” 2.88 7.54  − 21.16  − 24.03 1.36 33.22 0.19
“6” 0.90 5.16  − 0.03  − 6.03  − 2.83 2.82 0.02
“7” 1.86 3.71  − 13.02  − 27.47 7.52 27.27 0.14
“8” 0.56  − 18.03 1.29  − 9.69 6.72 19.02 0.13
“9” 0.79  − 10.87  − 36.96 15.56 5.04 26.24 0.21
“999”  − 23.14  − 100.91  − 83.24 101.33 6.02 101.50  − 1.55

Table 21   Cross-table for educational level and occupation for MAR mechanism for occupation, the IPF 
approach and Low missingness: Mx,y

(
c, c′

)

Occupation Educational level

“0” “1” “2” “3” “4” “5” “9”

“1” 32.26 479.64 755.90 417.13 25.56 904.82 0.24
“2” 3.51 1597.40 4728.70 7875.74 16.50 38,217.13 0.30
“3” 36.16 942.27 4827.96 8702.65 91.70 26.52 0.26
“4” 11.74 471.53 161.31 659.62 45.26 360.87 0.20
“5” 9.80 67.14 465.88 599.47 4.53 1112.73 0.21
“6” 1.11 28.46 2.26 39.20 8.18 9.62 0.02
“7” 4.59 24.42 184.49 774.79 60.29 752.78 0.15
“8” 1.28 330.20 11.54 105.93 47.22 368.63 0.16
“9” 1.87 127.30 1378.78 259.12 27.50 695.04 0.27
“999” 543.98 10,224.72 6984.86 10,332.61 45.96 10,332.23 3.75

https://doi.org/10.1007/s10182-023-00481-z
https://doi.org/10.1007/s10182-023-00481-z
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