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Abstract
We introduce a selection model-based imputation approach to be used within the 
Fully Conditional Specification (FCS) framework for the Multiple Imputation (MI) 
of incomplete ordinal variables that are supposed to be Missing Not at Random 
(MNAR). Thereby, we generalise previous work on this topic which involved binary 
single-level and multilevel data to ordinal variables. We apply an ordered probit 
model with sample selection as base of our imputation algorithm. The applied model 
involves two equations that are modelled jointly where the first one describes the 
missing-data mechanism and the second one specifies the variable to be imputed. In 
addition, we develop a version for hierarchical data by incorporating random inter-
cept terms in both equations. To fit this multilevel imputation model we use quad-
rature techniques. Two simulation studies validate the overall good performance of 
our single-level and multilevel imputation methods. In addition, we show its appli-
cability to empirical data by applying it to a common research topic in educational 
science using data of the National Educational Panel Study (NEPS) and conducting 
a short sensitivity analysis. Our approach is designed to be used within the R soft-
ware package mice which makes it easy to access and apply.

Keywords  Fully conditional specification · Missingness not at random · Multilevel 
data · Multiple imputation · Selection model · Ordinal data

1  Introduction

Missing values are a typical occurence in statistical analyses of survey data. When 
dealing with missing data, it is usually assumed that the data are Missing at Ran-
dom (MAR), i.e., the misssing data are only related to observed information in 
the data (Rubin 1976). However, in many situations it seems very realistic that the 
missing values depend on the incomplete variable Y itself, even after conditioning 
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on all available information in the data, and thus follow a Missing Not at Random 
(MNAR) mechanism. A famous example for MNAR in social science applications 
are income-related questions where individuals with very low and very high-income 
values have a higher chance to not reporting it. If this is not considered, biased esti-
mates and misleading inferences might result.

In social sciences, most currently existing MNAR approaches cannot be applied, 
since they usually only target continuous variables. However, social sciences data 
sets mostly involve binary or categorical data. In addition, hierarchical structured 
data are very common. Since survey data usually offer a lot of potential auxiliary 
information which may be helpful for predicting missing values, the method of 
multiple imputation (MI) (Rubin 1987) is very well suited for handling incomplete 
survey variables in social sciences. Especially the framework of Fully Conditional 
Specification (FCS) (Raghunathan et al. 2001; Van Buuren et al. 2006) mostly pre-
sents the ideal MI approach since it allows to specify an appropriate imputation 
model for each incomplete variable. This is very beneficial for survey data, since 
they usually involve various variable types on different scales that require distinct 
model specifications. In addition, FCS allows to incorporate straightforwardly multi-
level structures during imputation.

For MAR data, there exists nowadays a great number of imputation meth-
ods for all kind of different data situations and also the field of multilevel impu-
tation techniques has grown immensely in the last years [see e.g.,  Audigier et  al. 
(2017); Lüdtke et  al. (2017); Enders et  al. (2017)]. However, for MNAR data the 
current available implementations are very sparse. In the context of FCS,  Galimard 
et al. (2016) use a two-stage selection model for imputing continuous MNAR data 
and Galimard et al. (2018) and Galimard et al. (2015) apply a bivariate probit model 
with sample selection as imputation model for binary MNAR data. Hammon and 
Zinn (2020) extend their idea by adding random intercepts to both equations to be 
able to deal with binary clustered data that are supposed to be MNAR. However, to 
the author’s knowledge, there is currently no appropriate method available to handle 
ordinal-scaled data under the MNAR assumption in the context of MI.

In this paper, we want to close this gap by extending the approach of Hammon 
and Zinn (2020) for imputing binary clustered data to ordinal single-level and mul-
tilevel variables. For this purpose, we apply an ordered probit model with sample 
selection and additionally incorporate random intercept terms in both equations to 
be able to consider multilevel structures in the data.

The remainder of this article is structured as follows. First, we describe the impu-
tation method and how parameters of the impuation model are estimated. We show 
the feasibilty of our method by two meaningful simulation studies. Thereafter, we 
apply the method to empirical survey data by analyzing the impact of social back-
ground factors on the educational aspirations of ninth grade students in Germany. 
We conclude with a short summary of the results, a discussion of some critical 
issues, and tasks for future work.
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2 � Method

The basic idea of FCS is to specify separate imputation models for each incomplete 
variable and to impute the missing data on a variable-by-variable basis. That is, for an 
ordinal variable with missing values a model describing this variable appropriately is 
required. If data are additionally MNAR, then the mechanism that caused the missing 
values also has to be modelled. For this purpose, alike Galimard et al. (2015, 2016); 
Galimard et al. (2018) & Hammon and Zinn (2020) we use a selection model-based 
approach consisting of a two-equation system: one equation for the selection process 
and one equation describing Y. Since the focal variable is ordinal, we use an ordered 
probit model with sample selection (Greene 2012) to specify this two-equation system. 
Adding a random intercept term to the two equations of the purposed selection model 
allows accounting for hierarchical structures in the data, which expands the model to 
multilevel ordinal data.

Models for ordinal variables are computationally very intensive and can rapidly 
run into estimation difficulties in the presence of many categories or predictors. 
Thus, to impute ordinal variables with many categories it can be more beneficial to 
use nearest-neighbor approaches such as predictive mean matching to prevent poten-
tial issues such as unstable estimates, empty cells, and poor and unreasonably slow 
performance. For a more detailed discussion of these potential difficulties in practice 
refer to Van Buuren (2018).

Below, we describe the single and multilevel models in detail and present an 
efficient way to estimate them. This is followed by the presentation of the related 
imputation algorithms which can be incorporated into the FCS imputation scheme. 
R describes the missing-data indicator of Y that takes on the value 1 if Y is observed 
and 0 otherwise. Observations of Y and R are denoted by y and r.

2.1 � Ordered probit model with sample selection

Using the standard probit specification based on latent variable formulation, 
an ordered probit model with sample selection can be specified as follows for 
i = 1,… , n individuals:

with

where h = 1,… ,H denote the observed, ordered categories of the outcome variable 
Y. �h are strictly increasing threshold parameters, with �0 = −∞ and �H = +∞ , that 
partition y∗

i
 into H exhaustive and mutually exclusive intervals. The first equation 

describes the non-random selection process, that is, for the missing-data mechanism 

(2.1)
r∗
i
= �R

⊤xR,i + 𝜖R,i

y∗
i
= �Y

⊤xY,i + 𝜖Y ,i

ri = �(r∗
i
> 0),

yi =

{
h if 𝜅h−1 < y∗

i
≤ 𝜅h & ri = 1

NA if ri = 0.
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in our case. The second equation models the focal variable Y and defines the out-
come equation. The asterisk marks the latent variables r∗

i
 and y∗

i
 , whose observed 

equivalents are ri and yi . The covariates of the two regression equations are given 
by the vectors xR and xY , and �R⊤ and �Y⊤ are the vectors of the related coefficients. 
Due to the utilized parametrization of the thresholdparameters �h , �Y⊤ does not con-
tain an intercept term. This is a standard identifiability restriction used for ordinal 
models since it is not possible to separately identify the intercept term from the 
threshold parameters (Greene 2012).

The function � denotes the indicator function and “NA” marks a missing value. 
To assure model identifiability, xY has to be a subset of xR and xe

R
= xR ⧵ xY to be 

highly correlated with r and hardly connected to y  (Rendtel 1992). The set xe
R
 is 

called the exclusion restriction.
The selection and the outcome equation are linked through correlated error terms 

�R,i and �Y ,i:

where � describes the correlation of the bivariate distribution of R∗ and Y∗ , and 
therefore models the relation between the selection and outcome equation. This two-
equation system only specifies the dependence of the missing-data mechanism on 
the outcome variable appropriately if the normality assumptions hold.

The log likelihood function of the two-equation model (2.1) can be expressed as

with mih = 1 if yi = h and mih = 0 otherwise. Here, Φ2(…) denotes the cumulative 
distribution function (cdf) of the bivariate standard normal distribution and Φ(…) is 
the cdf of the univariate standard normal.

For fitting the parameters of the log-likelihood function (2.3) standard ML esti-
mation can be used. For the numerical optimization required in this context, we sug-
gest applying the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [e.g., Gold-
farb (1970)]—a very powerful and efficient optimization algorithm that belongs 
to the group of Quasi-Newton methods. The BGFS algorithm does not require the 
computation of the Hessian matrix, but approximates it in each iteration using the 
gradients which makes it computationally very attractive [e.g., Nocedal and Wright 
(2006)]. The provision of the analytic gradients of the paramaters of Eq. (2.3) speed 
up the maximization process of parameter estimation. Their calculation is given in 
the supplementary material of this article.

(2.2)
(
�R
�Y

)
∼ N

((
0

0

)
,

(
1 �

� 1

))

(2.3)

lnL =

n∑

i=1

[
(1 − ri) ln

{
Φ
(
−�R

⊤xR,i
)}

+ ri

H∑

h=1

mih ln
{
Φ2

(
�R

⊤xR,i, 𝜅h − �Y
⊤xY,i,−𝜌

)

− Φ2

(
�R

⊤xR,i, 𝜅h−1 − �Y
⊤xY,i,−𝜌

)}]
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2.2 � Ordered probit model with sample selection and random intercept

Given the data at hand contain j = 1,… , J clusters each consisting of i = 1,… , nj 
individuals, extending model (2.1) by random intercepts to account for this yields:

with

Here, �R,j and �Y ,j are the random intercepts for describing cluster effects. Again, �Y⊤ 
does not involve an overall fixed intercept term as identifiying constraint.

The selection and the outcome equation are linked through correlated error 
terms and random intercepts:

where � denotes the correlation parameter of the bivariate normal distribution of 
�R and �Y , and � their variance-covariance matrix. The additional consideration of 
� allows to capture potential dependencies of the missing-data mechanism on the 
cluster structure of the data. This model describes a two-level hierarchy. However, 
an extension to further levels is straightforward.

The log likelihood function of the two-equation model (2.4) can be expressed 
as

with mjih = 1 if yji = h and mjih = 0 otherwise. The function �2(… |0,�) is the prob-
ability density function (pdf) of a bivariate normal distribution with mean zero and 
variance-covariance matrix � . As usual in multilevel modelling, the two random 
intercepts �R and �Y are treated as nuisance parameters. Thus, they can be integrated 

(2.4)
r∗
ji
= �R

⊤xR,ji + 𝛼R,j + 𝜖R,ji

y∗
ji
= �Y

⊤xY,ji + 𝛼Y ,j + 𝜖Y ,ji

rji = �(r∗
ji
> 0),

yji =

{
h if 𝜅h−1 < y∗

ji
≤ 𝜅h & rji = 1

NA if rji = 0.

(2.5)

(
�R
�Y

)
∼ N

((
0

0

)
,

(
1 �

� 1

))
,

(
�R
�Y

)
∼ N

((
0

0

)
,

(
�2
R

��R�Y
��R�Y �2

Y

))
.

(2.6)

lnL =

J∑

j=1

ln∫
+∞

−∞ ∫
+∞

−∞

nj∏

i=1

[
(1 − rji)Φ

(
−(�R

⊤xR,ji + 𝛼R,j)
)

+ rji

H∑

h=1

mjih

(
Φ2

(
�R

⊤xR,ji + 𝛼R,j, 𝜅h − (�Y
⊤xY,ji + 𝛼Y ,j),−𝜌

)

− Φ2

(
�R

⊤xR,ji + 𝛼R,j, 𝜅h−1 − (�Y
⊤xY,ji + 𝛼Y ,j),−𝜌

))]

⋅ 𝜙2(𝛼R,j, 𝛼Y ,j ∣ 0,�) d𝛼R,j d𝛼Y ,j.



676	 A. Hammon 

1 3

out. The double integral of the log likelihood function  (2.6) has no closed-form 
solution. One way to solve the integral nevertheless is to approximate the area under 
the integrand. There exist different approaches for achieving this. As in Hammon 
and Zinn (2020), we will use quadrature techniques for solving the double integral.

We apply Adaptive Gauss-Hermite quadrature (AGHQ) (Naylor and Smith 1982; 
Liu and Donald 1994) an improved version of the standard Gauss-Hermite quad-
rature (GHQ). Here, in contrast to the traditional GHQ, the quadrature points are 
set symmetrically around the maximum value of the integrand and not around 0. In 
other words, AGHQ shifts and scales the quadrature locations to place them under 
the peak of the integrand, so that the function is evaluated where the area is expected 
to be largest. Applying the AGHQ rule on the log likelihood Eq. (2.6) gives the fol-
lowing approximation:

The related bivariate quadrature nodes ãjp = (ãjp1 ãjp2 )
⊤ with p = (p1, p2)

⊤ , are 
defined as:

where p1 = 1,… ,P and p2 = 1,… ,P are the quadrature points for the selection and 
outcome equation, respectively. ap = (ap1 , ap2)

⊤ and �p = (𝜔p1
𝜔p2

)⊤ are the stand-
ard Gauss-Hermite nodes and weights which can be found in tables of Abramow-
itz and Stegun (1964) or can be computed using an algorithm proposed by Golub 
and Welsch (1969). Here, the matrix �j scales ap and the vector �j centres them. 
The function |�j| denotes the determinant of �j . The square root of �j , �j

1∕2 , can 
be properly described by the lower triangular matrix T of the Cholesky decomposi-
tion of �j = T T⊤ . To specify �j we use the mode, i.e., the most likely value for the 
random effects given the observed data and the current estimates of all of the other 
model parameters. To estimate �j the curvature matrix, the negative inverse Hessian 
matrix, at the modes is used (Liu and Donald 1994). For the exact calculation of 
mode �̂j and curvature �̂j see Hammon and Zinn (2020). For more detailed informa-
tion about the applied quadrature technique see also Hammon and Zinn (2020) and 
the respective supplementary material of the article.

As for the single-level model, we rely on standard ML estimation to fit the 
parameters of the approximated log-likelihood functions in Eq. (2.7) and use the 

(2.7)

lnLAGHQ ≃

J∑

j=1

ln

{
|�j|1∕2 2

P∑

p1=1

P∑

p2=1

𝜔p1
𝜔p2

nj∏

i=1

[
(1 − rji)Φ

(
−(�R

⊤xR,ji + ãjp1)
)

+ rji

H∑

h=1

mjih

(
Φ2

(
�R

⊤xR,ji + ãjp1 , 𝜅h − (�Y
⊤xY,ji + ãjp2 ),−𝜌

)

− Φ2

(
�R

⊤xR,ji + ãjp1 , 𝜅h−1 − (�Y
⊤xY,ji + ãjp2 ),−𝜌

))]

⋅ 𝜙2(ãjp|0,�) exp(ap⊤ap)
}
,

ãjp = �j +
√
2�̂

1∕2

j
ap

⊤,
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BFGS method for numerical optimization. To speed up the maximization process of 
parameter estimation, we calculated the analytic gradients of Eq. (2.7) and use them 
during optimization. These gradients can be found in the supplementary material of 
this article.

2.3 � Imputation algorithm

With the two introduced models, we can impute missing values in single-level or 
multilevel ordinal data. In FCS, plausible replacements are drawn variable-by-vari-
able from the related conditional densities. FCS has the theoretical weakness that it 
is usually not possible to verify if the conditional distributions are compatible, why 
we never know if the theoretical joint distribution we want to approximate really 
exists. However, Van Buuren et al. (2006) could show that FCS performs very well, 
even under strong incompatible models. It seems that incompatibility is usually not 
a big issue in practice and has only minor influence on the quality of imputed values. 
For a comprehensive discussion about FCS, its general performance and theoreti-
cal limitations refer to Van Buuren et al. (2006); Zhu and Raghunathan (2015); Van 
Buuren (2018).

For single-level ordinal variables we use model  (2.1) as univariate impu-
tation model to reflect a possible MNAR mechanism during imputation. Let 
� = (�Y , �R, r, �l) with l = 1,… ,H − 1 be the unknown parameters of the 
ordered probit model with sample selection, where r = atanh � , �1 = �1 , and 
�l = ln(�l − �l−1) for l > 1 are common transformations to preserve range constraints 
of the parameters during maximization. At each iteration of the FCS procedure, the 
following four steps are conducted to impute the missing values of a single-level 
ordinal variable Y. We consider parameter uncertainty by drawing parameter candi-
dates 𝜃̇ using a normal approximation to the posterior distribution of 𝜃̂ [e.g., Gelman 
et al. (2013), Ch. 4]. 

1.	 Estimate model parameters of (2.1) by ML using equation (2.3), which yields 

(a)	 𝜃̂ = (𝛽Y , 𝛽R, r̂, 𝛿l),
(b)	 𝜓̂ , the variance-covariance matrix of 𝜃̂.

2.	 Draw 𝜃̇ = (𝛽̇Y , 𝛽̇R, ṙ, 𝛿̇l) from N(𝜃̂, 𝜓̂) , and re-transform 𝜌̇ = tanh ṙ , 𝜅̇1 = 𝛿̇1 , and 
𝜅̇l = exp(𝛿̇l) + 𝜅̇l−1 for l > 1.

3.	 Calculate for each unit with missing Y the probability ṗh that Y falls into category 
h = 1,… ,H : 

ṗh = P(Ẏ = h|XY ,XR,R = 0) =
Φ2(−(XR𝛽̇R, 𝜅̇h − (XY 𝛽̇Y ), 𝜌̇)

Φ(−(XR𝛽̇R))
−

Φ2(−(XR𝛽̇R), 𝜅̇h−1 − (XY 𝛽̇Y ), 𝜌̇)

Φ(−(XR𝛽̇R))
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4.	 Draw for each missing value Ymis a replacement from the Multinomial distribution 
Multinom(ṗ1,… , ṗH).

To generate M imputed data sets, these steps are repeated M times.
In the multilevel case, the ordered probit model with sample selec-

tion and random intercepts  (2.4) determines the conditional density of Y. Let 
� = (�Y , �R, r, �

2
Y
, �2

R
, z, �l) with l = 1,… ,H − 1 be the unknown parameters of the 

ordered probit model, where �2
Y
= ln �2

Y
 , �2

R
= ln �2

R
 and z = atanh � are additional 

transformations to preserve further range constraints of the parameters during maxi-
mization. At each iteration the following five steps are conducted to impute the miss-
ing values of a clustered ordinal variable Y. Note that at each FCS iteration step the 
approximated log-likelihood (2.7) has to be maximised to obtain updated estimates 
𝜃̂ for � . We again consider parameter uncertainty by drawing new parameter values 𝜃̇ 
from their approximate normal posterior distribution. 

1.	 Estimate model parameters of (2.4) by ML and AGHQ using Eq. (2.7), which 
yields 

(a)	 𝜃̂ = (𝛽Y , 𝛽R, r̂, 𝜉
2
Y
, 𝜉2

R
, ẑ, 𝛿l),

(b)	 𝜓̂ , the variance-covariance matrix of 𝜃̂.

2.	 Draw 𝜃̇ = (𝛽̇Y , 𝛽̇R, ṙ, 𝜉̇
2
Y
, 𝜉̇2

R
, ż, 𝛿̇l) from N(𝜃̂, 𝜓̂) , and re-transform 𝜌̇ = tanh ṙ , 

𝜏̇ = tanh ż , 𝜎̇2
Y
= exp 𝜉̇2

Y
 , 𝜎̇2

R
= exp 𝜉̇2

R
 , 𝜅̇1 = 𝛿̇1 , and 𝜅̇l = exp(𝛿̇l) + 𝜅̇l−1 for l > 1.

3.	 Draw random intercept candidates (𝛼̇R,j, 𝛼̇Y ,j)⊤ for each cluster j from N
(
�̂j, �̂j

)
.1

4.	 Calculate for each unit with missing Y the probability ṗh that Y falls into category 
h = 1,… ,H : 

5.	 Draw for each missing value Ymis a replacement from the Multinomial distribution 
Multinom(ṗ1,… , ṗH).

To generate M imputed data sets, these steps are repeated M times.
This imputation algorithm extends the work of  Hammon and Zinn (2020) to 

ordinal data. For handling multivariate missing data, the two algorithms can sim-
ply be implemented in a FCS scheme (Raghunathan et al. 2001; Van Buuren 2007, 
2018) and serve as univariate imputation model for an incomplete variable which is 
suspected to be MNAR. We have implemented both algortihms in a way that they 
can be used within the mice() function of the R software (R Core Team 2020)2 

ṗh = P(Ẏ = h|XY ,XR,R = 0) =
Φ2(−(XR𝛽̇R + 𝛼̇R), 𝜅̇h − (XY 𝛽̇Y + 𝛼̇Y ), 𝜌̇)

Φ(−(XR𝛽̇R + 𝛼̇R))
−

Φ2(−(XR𝛽̇R + 𝛼̇R), 𝜅̇h−1 − (XY 𝛽̇Y + 𝛼̇Y ), 𝜌̇)

Φ(−(XR𝛽̇R + 𝛼̇R))

1  �̂j is the mode of the random effects and �̂j is the curvature matrix at the modes.
2  We used the R software version 4.0.2 for our analyses and implementations.
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package mice (version 3.13.0, see Van Buuren and Groothuis-Oudshoorn (2011)).3 
In case of multivariate missing data, it is necessary to include R as predictor in the 
imputation models of all the other incomplete variables that are part of XY , other-
wise biased imputations may arise; see also Galimard et al. (2016).

3 � Simulation study

To evaluate the performance of the novel imputation procedures introduced in this 
paper, we conduct a set of Monte-Carlo simulation studies using different data gen-
erating processes to represent possible real-world scenarios. For reasons of clarity, 
we concentrate on the univariate imputation model of Y, and assume that all of the 
covariates considered are observed completely. An application of the algorithm to 
multivariate missing data is straightforward. The number of replications is set to 
1000 for the simulation study with single-level data and for the one dealing with 
multilevel data we use 500 iterations due to high computational times.4 In sum, we 
consider ten different simulation scenarios, five scenarios for Y being ordinal, sin-
gle-level data and five scenarios for Y being ordinal, two-level data. The complete 
code for data generation and analysis of our simulation studies is available at http://​
github.​com/​Angel​inaHa​mmon/​Paper​Order​edMNAR. In addition to the scenarios 
that are introduced below, we also considered more complex settings with further 
complexities in covariates and response categories which however did not influence 
the performance of our imputation methods and are therefore not presented here. 
However, the detailed results are available upon request from the corresponding 
author.

3.1 � Single‑level data

3.1.1 � Data generation

In any simulation scenario, we initially create complete data sets with an ordinal out-
come variable yi , with i = 1,… , n and h = 1,… ,H where H = 3 is the number of 
ordered categories into which yi may fall. We set the total sample size to n = 2000 , 
and generate three different normally distributed covariates x1,i, x2,i , and x3,i accord-
ing to

and

x1,i ∼ N(0, 0.32), x2,i ∼ N(0, 0.82), x3,i ∼ N(0, 42)

3  The corresponding source code is available at http://​github.​com/​Angel​inaHa​mmon/​Paper​Order​edM-
NAR.
4  The computational time for one iteration without parallel execution is around 35 minutes.

http://github.com/AngelinaHammon/PaperOrderedMNAR
http://github.com/AngelinaHammon/PaperOrderedMNAR
http://github.com/AngelinaHammon/PaperOrderedMNAR
http://github.com/AngelinaHammon/PaperOrderedMNAR
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with �1 = −0.75 and �2 = 0.5 . Missing values are imposed on yi by specifying a 
model for the response indicator ri , where ri equals 1 if yi is observed and is 0 oth-
erwise. To assess the performance of our imputation method under distinct (real-
istic) missing data situations, we implement models for five different missing-data 
mechanisms. We specify four models for MNAR and one model for MAR. Depend-
ing on the mechanism considered the parameters � of Eq. (2.2) take on varying val-
ues expressing different relations between the response indicator r and the outcome 
variable y. We include different types of MNAR missing data, where we assume that 
the probability of observing yi increases with the value of y∗

i
 . Under the first three 

MNAR scenarios (MNAR sel.), missing data are produced using the following para-
metrisation of the selection equation:

To take into account different magnitudes of correlation between yi and ri , we 
assume three different values for � , namely � ∈ {0.3, 0.6, 0.9} , reflecting weak, 
medium, and strong correlation. The variable x3 represents the exclusion criterion. 
To evaluate the performance of our method in an MNAR situation, where the miss-
ing-data mechanism does not strictly follow the selection model specification of the 
imputation model introduced (MNAR non-sel.), we consider

as a further MNAR scenario. Here, Ber(…) denotes the Bernoulli distribution and � 
of Eq. (2.2) is set to zero.

Since there is no way testing MAR against MNAR, each MAR or MNAR analy-
sis should be accompanied by a feasible sensitivity analysis (Molenberghs and Fitz-
maurice 2008). To conduct effective sensitivity analyses with imputed data it is cru-
cial that the alternative imputation models are not only able to handle MNAR data, 
but also yield valid inferences under MAR. Therefore, we additionally consider an 
MAR scenario where the missingness does not depend on yi to evaluate how our 
new method performs under MAR. For this purpose, we specify the latent response 
indicator r∗

i
 by using Eq.  (3.1) with � = 0 . All examined missing-data scenarios 

yield approximately 35% missing values in y.

3.1.2 � Data analysis

To evaluate the performance of the new imputation method (referred to in the fol-
lowing as MNAR), we compare it to the currently available method in the R pack-
age mice for ordinal variables which uses an ordinal logit model for impuation, 
but assumes MAR missing data (MAR)  (Van Buuren and Groothuis-Oudshoorn 
2011). We also present the results of a complete case analysis (CCA​), i.e., esti-
mates based on an ordered probit model, which in the case considered, i.e. only 
missing values in y, is also valid under MAR (Von Hippel 2007). As benchmark 
we also include the Before deletion result to show that there is no issue with the 

y∗
i
= x1,i + 0.5x2,i + 𝜖Y ,i with yi = h if 𝜅h−1 < y∗

i
≤ 𝜅h

(3.1)r∗
i
= 0.5 + 1.5x1,i − 0.25x2,i + 0.1x3,i + 𝜖R,i with ri = �(r∗

i
> 0).

P(ri = 1) = Φ
(
1.25 + 1.75y∗

i
+ 1.5x1,i − 2.5x2,i

)
with ri ∼ Ber(P(ri = 1))
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data generation process. We used M = 10 multiple imputations for each scenario 
and imputation procedure. Since we only focus on univariate missing data, which 
are a special case of monotone missingness, there is no need to iterate the MICE 
algorithm  (Van Buuren 2018). Each completed data set is analysed by estimat-
ing an ordered probit regression on y with covariates x1 and x2 . After estimation, 
all estimates are pooled using Rubin’s combining rules  (Rubin 1987). Since the 

Table 1   Single-level simulation results for �
1
= 1 estimates (with � = 0.6 for MNAR sel.) in 1000 simu-

lation runs

Emp.mean denotes the empirical mean of the estimates, Rel.bias the relative bias in %, and CR the nomi-
nal coverage rate in %

Methods Mechanism Emp.mean Rel.bias (%) CR (%)

Before deletion MAR 1.0007 -0.17 95.4
MNAR sel. 1.0056 0.27 95.1
MNAR non-sel. 1.0062 0.43 94.5

MNAR MAR 0.9912 -1.11 94.6
MNAR sel. 1.0004 -0.26 93.7
MNAR non-sel. 1.0051 0.32 95.2

CCA​ MAR 1.0012 -0.12 94.9
MNAR sel. 0.6686 -33.34 17.0
MNAR non-sel. 0.5190 -48.20 1.2

MAR MAR 1.0006 -0.18 92.7
MNAR sel. 0.6404 -36.14 8.8
MNAR non-sel. 0.5275 -47.35 1.1

Table 2   Single-level simulation results for �
2
= 0.5 estimates (with � = 0.6 for MNAR sel.) in 1000 sim-

ulation runs

Emp.mean denotes the empirical mean of the estimates, Rel.bias the relative bias in %, and CR the nomi-
nal coverage rate in %

Methods Mechanism Emp.mean Rel.bias (%) CR (%)

Before deletion MAR 0.5021 0.60 94.1
MNAR sel. 0.5009 0.26 95.6
MNAR non-sel. 0.5000 -0.10 95.2

MNAR MAR 0.4982 -0.17 95.6
MNAR sel. 0.4993 -0.06 95.0
MNAR non-sel. 0.5033 0.54 94.6

CCA​ MAR 0.5026 0.71 95.1
MNAR sel. 0.6190 23.90 20.2
MNAR non-sel. 0.9593 91.64 00.0

MAR MAR 0.5013 0.45 93.3
MNAR sel. 0.6208 24.26 16.7
MNAR non-sel. 0.9461 89.01 00.0
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regression parameters of x1 and x2 constitute the quantities of interest, we do not 
further examine the estimates of the threshold values � . We assess the perfor-
mance of each imputation method using the empirical means of the parameter 
estimates, their relative bias and the coverage rates (CR) of the nominal 95% con-
fidence intervals.

3.1.3 � Results

Table  1 shows the results for the regression parameter �1 of the first covariate x1 
for the different imputation strategies and simulation scenarios including the MNAR 
scenario based on a selection model with medium correlation, i.e., for � = 0.6 . 
Table 2 gives the respective estimates for the slope parameter �2 of variable x2 . The 
results for the selection model-based scenarios with low and high correlation, that 
is, � ∈ {0.3, 0.9} , are not reported here since they are similar in terms of relative 
bias and coverage rates.

In the considered MNAR scenarios, our MNAR imputation method clearly out-
performs all competing approaches. For �1 , it yields, under both MNAR conditions, 
a relative absolute bias of lower than 0.5% and coverage rates near the nominal cov-
erage probability of 95%. The two MAR methods underestimate �1 up to 48.20% in 
both MNAR scenarios.

If the true missing-data mechanism is MAR, the CCA and the mice imputation 
model based on the ordered logit model (MAR), which are both designed for this 
type of missing data, perform—as expected—very well in terms of bias. The cover-
age of the MAR imputation method is slightly lower than the expected nominal cov-
erage rate of 95%, which could indicate that not all sources of variances are consid-
ered properly during the imputation process. Our novel approach MNAR performs 
well under the MAR scenario, with an average relative downwards bias of 1.11% 
and a reasonable coverage rate of 94.6% for �1 . Of course, the bias is slightly higher 
than for CCA​ or MAR. Nevertheless, these results confirm that our novel approach 
also works well for missing data that are MAR - which is a crucial property for con-
ducting adequate sensitivity analyses.

In principle, the results for parameter �2 are very similar to those of parameter �1 . 
The MAR approaches show a high upward bias in all considered MNAR scenarios 
along with very low coverage rates, especially in the non-selection model scenario. 
The MAR methods overestimate �2 up to 91.64% under MNAR. Our new approach 
MNAR again shows a good performance in terms of bias and coverage in all of the 
scenarios considered.

3.2 � Multilevel data

3.2.1 � Data generation

For all multilevel simulation scenarios, the total sample size is set to n = 2500 
and the number of clusters equals m = 20 leading to a cluster size of nj = 125 , 
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j = 1,… ,m . For simplicity, we assume that all clusters comprise the same number 
of units. However, the method can also be applied without any problems in case of 
different cluster sizes. Varying the number of clusters and cluster sizes is beyond the 
scope of this paper and is left for future work. Imputation methods for multilevel 
data, in general, may have their limitations if the number of clusters or cluster sizes 
become too small. For a comprehensive overview about potential difficulties that 
can arise when imputing multilevel data in the FCS context, refer to e.g., Audigier 
et al. (2017); Enders et al. (2017); Lüdtke et al. (2017); Van Buuren (2018).

In any simulation scenario, we initially generate complete data sets with an ordi-
nal outcome variable yji , with i = 1,… , nj and h = 1,… ,H where H = 3 is the num-
ber of ordered categories into which yji may fall. We introduce three different nor-
mally distributed covariates x1,ji, x2,ji , and x3,ji according to

and

using �1 = −0.75 and �2 = 0.5 as threshold values.
Here �Y ,j and �Y ,ji are drawn according to the model assumptions  (2.5) with 

�2
R
= 0.5 and �2

Y
= 0.9 . This yields an intraclass correlation of about 0.3 for the 

selection indicator r and of approximately 0.45 for the outcome variable y. To take 
into account different magnitudes of correlation between yji and rji , we use three dif-
ferent values for � , namely � ∈ {0.3, 0.6, 0.9} , reflecting weak, medium, and strong 
correlation. We set � = 0.5 to allow for a medium correlation between the random 
intercepts of both equations. Missing values are imposed on yji by specifying a 
model for the response indicator rji , where rji equals 1 if yji is observed and is 0 oth-
erwise. We again implement five different missing-data mechanisms to evaluate our 
imputation method under varying missing data scenarios. We specify four models 
for MNAR and one model for MAR. The different types of considered MNAR 
mechanisms assume that the probability of observing yji increases with the value of 
y∗
ji
 . Under the first three MNAR scenarios (MNAR sel.), missing data are produced 

using the following parametrization of the selection equation:

The variable x3 represents the exclusion criterion. To evaluate our method for imput-
ing clustered, ordered data in an MNAR situation, where the missing-data mecha-
nism does not strictly follow the selection model specification of the imputation pro-
cedure, we consider another MNAR scenario (MNAR non-sel.), where the missing 
data are imposed by

x1,ji ∼ N(0, 0.32), x2,ji ∼ N(0, 0.82), x3,ji ∼ N(0, 42)

y∗
ji
= x1,ji + 0.5x2,ji + 𝛼Y ,j + 𝜖Y ,ji with yji = h if 𝜅h−1 < y∗

ji
≤ 𝜅h.

(3.2)
r∗
ji
= 0.5 + 1.5x1,ji − 0.25x2,ji + 0.1x3,ji + 𝛼R,j + 𝜖R,ji with rji = �(r∗

ji
> 0).

P(rji = 1) = Φ
(
1.25 + 1.75y∗

ji
+ 1.5x1,ji − 2.5x2,ji + �R,j

)
with rji ∼ Ber(P(rji = 1)).
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Since this scenario is designed to not rely on the two-equation selection model (2.4), 
� and � of Eq. (2.5) are set to zero. To check whether our method is also suitable for 
sensitivity analyses, we additionally consider an MAR scenario where the missing-
ness does not depend on yji to evaluate how our new method performs under MAR. 
For this purpose, we specify the latent response indicator r∗

ji
 by using Eq. (3.2) with 

� = 0 and � = 0 . All examined missing-data scenarios yield again approximately 
35% missing values in y.

3.2.2 � Data analysis

To assess the adequacy of our imputation method (MNAR AGHQ), its perfor-
mance will be compared to an already existing multilevel MAR approach for 
ordered, clustered data available for the mice package in R via the package 
miceadds [version 3.11-6, see Robitzsch and Grund (2020)]. We use a multi-
level version of predictive mean matching (MAR 2l.pmm), since at the moment 
there does not exist an implementation of a special imputation model for ordinal 
multilevel data that is compatible with mice. We also present the results of a 
complete case analysis (CCA​) by estimating an ordered probit model with random 
intercept which is again valid under MAR since we only generated missing values 
in y  (Von Hippel 2007). We used M = 5 multiple imputations for each scenario 
and imputation procedure. As for the single-level case we only focus on univari-
ate missing data, why there is no need to iterate the MICE algorithm.

Each completed data set is analyzed by estimating a mixed effects ordered 
probit regression on y with covariates x1 and x2 . For this purpose, we use the 
clmm() function of the R package ordinal (version 2019.12-10, see  Chris-
tensen (2019)). After estimation, all of the estimates are pooled using Rubin’s 
combining rules (Rubin 1987). The regression parameters of x1 and x2 constitute 
the quantities of interest and the estimates of the treshold values � are considered 
as incidental. To evaluate the performance of each procedure we use the empiri-
cal means of the parameter estimates, their relative bias, and the coverage rates 
(CR) of the nominal 95% confidence intervals.

3.2.3 � Results

Table  3 shows the results for the regression parameter �1 of the first covariate x1 
for the different imputation strategies and simulation scenarios including the MNAR 
scenario based on a selection model with medium correlation, i.e., for � = 0.6 . 
The respective estimates for the slope parameter �2 of variable x2 can be found in 
Table 4. The results for the selection model-based scenarios with low and high cor-
relation, that is, � ∈ {0.3, 0.9} , are not reported here since they are similar to � = 0.6 
in terms of relative bias and coverage rates.

In the considered MNAR scenarios, the MNAR AGHQ method clearly outper-
forms all competing approaches. For �1 , it yield, under both MNAR conditions, rela-
tive biases lower than 1.2% and reasonable coverage rates. The two MAR methods 
(CCA​ and MAR 2l.pmm) underestimate �1 up to 50.01% in both MNAR scenarios 
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and result in very low coverage rates. If the true missing-data mechanism is MAR, 
the CCA​ and the two-level imputation model based on predictive mean matching 
(MAR 2l.pmm) show a very good performance in terms of bias. Nevertheless, MAR 
2l.pmm shows a slightly too low coverage rate of 91.4% which might indicate that 

Table 3   Mulitlevel simulation results for �
1
= 1 estimates (with � = 0.5 and � = 0.6 for MNAR sel.) in 

500 simulation runs

Emp.mean denotes the empirical mean of the estimates, Rel.bias the relative bias in %, and CR the nomi-
nal coverage rate in %

Methods Mechanism Emp.mean Rel.bias (%) CR (%)

Before deletion MAR 0.9987 -0.47 94.4
MNAR sel. 1.0055 0.87 95.8
MNAR non-sel. 1.0055 0.21 94.4

MNAR AGHQ MAR 1.0024 -0.10 94.6
MNAR sel. 0.9857 -1.12 97.2
MNAR non-sel. 1.0008 -0.26 97.0

CCA​ MAR 1.0002 -0.32 93.4
MNAR sel. 0.6981 -29.97 21.8
MNAR non-sel. 0.5016 -50.01 1.2

MAR 2l.pmm MAR 0.9808 -2.26 91.4
MNAR sel. 0.6607 -33.72 18.4
MNAR non-sel. 0.5085 -49.32 3.0

Table 4   Multilevel simulation results for �
2
= 0.5 estimates (with � = 0.5 and � = 0.6 for MNAR sel.) in 

500 simulation runs

Emp.mean denotes the empirical mean of the estimates, Rel.bias the relative bias in %, and CR the nomi-
nal coverage rate in %

Methods Mechanism Emp.mean Rel.bias (%) CR (%)

Before deletion MAR 0.5008 0.02 93.4
MNAR sel. 0.4983 -0.64 93.6
MNAR non-sel. 0.5030 0.48 96.0

MNAR AGHQ MAR 0.4958 -0.96 95.8
MNAR sel. 0.5055 0.78 97.6
MNAR non-sel. 0.5133 2.52 97.8

CCA​ MAR 0.5028 0.42 95.4
MNAR sel. 0.6050 20.64 31.2
MNAR non-sel. 0.9753 94.80 00.0

MAR 2l.pmm MAR 0.4943 -1.28 93.4
MNAR sel. 0.5948 18.59 46.4
MNAR non-sel. 0.9445 88.66 00.0
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not all sources of variance are reflected properly. The novel approach MNAR AGHQ 
performs very well under the MAR scenario, with an average relative downwards 
bias of only 0.1% and an optimal coverage rate of 94.6% for �1 . These results con-
firm that our novel approach also works for missing data that are MAR.

In principle, the results for parameter �2 are very similar to those of �1 . CCA​ and 
MAR 2l.pmm overestimate �2 up to 94.8% under MNAR and even yield a coverage 
rate of 0% for the MNAR non-sel. scenario. Our new approach MNAR AGHQ shows 
again reasonable performance in terms of bias and coverage in all of the scenarios 
considered. However, in a data situation where missing data are created under a non-
selection model, the estimate shows a higher bias than for the other scenarios. The 
bias is also higher than for the estimate of �1 in the same missing-data situation. 
Nevertheless, the average relative bias of 2.52% still lies within an acceptable range. 
In summary, our novel method is cleary superior to the other investigated methods 
when the missing-data mechanism deviates from MAR.

4 � Application to empirical data

To evaluate the applicability of our new approach to empirical data we use a clas-
sical research question from educational sciences and survey data from a large-
scale panel study in Germany: Wave 1 of Starting Cohort “School and Vocational 
Training: Educational Pathways of Students in Grade 9 and Higher” of the NEPS.5 
We investigate the impact of young people’s social background on their educa-
tional aspirations to graduate with a degree that is higher than the one offered by 
the school they are currently visiting. Our analysis focuses on ninth-grade students 
attending lower secondary school Hauptschule, the lowest track of secondary school 
in Germany, because they are particularly affected by social disadvantage  (Wöß-
mann 2007; Schneider 2018). For these students, a higher degree is either an inter-
mediate secondary degree or a degree allowing for university admission. Our data 
set comprises observations on 3291 ninth graders in 142 schools who were surveyed 
in 2011. The average number of ninth graders in a school is 23.2 (with a minimum 
of 10 students and a maximum of 48 students). The intra-class correlation (ICC) 
concerning higher aspirations of students is 22.15%. Hence, the multilevel structure 
of our data is obvious.

The students’ social background is reflected by their mothers’ highest educa-
tional qualification. This variable can take on four ordered categories based on 
the CASMIN classification [see e.g., Brauns et  al. (2003)]: “basic and interme-
diate general education”, “basic and intermediate vocational training”, “high 
secondary education” and “tertiary education”. The ICC of maternal education 
is 0.2882 which clearly indicates a multilevel structure in this variable. In addi-
tion, we consider personal attributes, namely the students’ grades in mathematics 
and German, their competencies in mathematics and reading, their sex, as well 
as their migration background (measured by generation status smaller than 3.5), 

5  For more information go to https://​www.​neps-​data.​de/.

https://www.neps-data.de/
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as potential influencing factors for their educational aspirations. Competency 
scores are estimated as weighted maximum likelihood estimates  (Warm 1989). 
Grades range from “1=very good” to “6=insufficient”. The variables on com-
petencies and sex exhibit very few missing values (at maximum 4%), whereas 
the variables on migration background, aspirations, and grades show a few more 
missing values (from 13 to 17%). We find a high percentage of missing values 
(more than 50%) for maternal education. From non-response analyses with simi-
lar NEPS data, we know that persons with lower educational attainment are less 
likely to take part in the survey [see  Zinn et  al. (2020)], why we suppose that 
maternal education might follow an MNAR mechanism. Thus, to reduce the risk 
of erroneous analysis it is advisable to conduct a sensitivity analysis with dif-
ferent assumptions about the missing-data mechanism of maternal education and 
compare the robustness of the resulting inferences (Molenberghs and Fitzmaurice 
2008). Sensitivity analyses are the only possibility to assess whether a potential 
plausible MNAR mechanism would make a difference in statistical inferences and 
conclusions.

FCS is used as imputation framework requiring an imputation method for each 
variable in the data set with missing values. The variables migration background, 
higher aspirations and maternal education are imputed using multilevel imputation 
approaches since they possess ICC values higher than 20% which speaks for a rel-
evant multilevel structure in these data. All other variables are imputed using a sin-
gle-level approach.

Maternal education is imputed under two assumptions: MAR and MNAR. For the 
latter our novel method is used and we apply 2l.pmm from the R package mice-
adds as multilevel MAR method. As exclusion criterion in the respective selection 
model, we use the information on whether students were ever surveyed individually 
at home, online, or by phone - that is, not at school - within nine waves (i.e., within 
five years). All other variables are imputed using an MAR approach. Grades are 
imputed using predictive mean matching, competence categories by a polytomous 
regression approach, sex is imputed using a single-level logistic regression model, 
whereas migration background and aspirations are imputed using a two-level logistic 
regression model. As a benchmark, we also conduct a complete case analysis (CCA) 
though Little’s MCAR test (Little 1988) rejects MCAR in the considered case.

Table 5 shows the results of our MNAR analysis, contrasted with the results of 
the CCA, and the MAR multiple imputation approach for maternal education. The 
number of imputed data sets is 10 with 15 iterations per imputed data set. For a gen-
eral discussion about the optimal choice of the number of imputations refer to Van 
Buuren (2018).

Under all three missing-data schemes, we find stable significant effects (i.e., with 
a p-value<0.05) for higher grades in German, sex, and migration background. Stu-
dents with better grades in German show higher aspirations than students with lower 
grades. Female students and those with migration background also have higher edu-
cational aspirations than the respective reference categories. The results under CCA 
are quite different to those of the other two approaches. The under CCA significant 
effect of competencies in reading disappears under MAR or MNAR. Furthermore, 
we do not find any significant effect of mathematics grades under CCA. However, 
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the impact of the mathematics grades is significant at the 0.1 level under MAR or 
MNAR. Thus, there is slight evidence that grades in mathematics are important for 
students’ aspirations. Under MAR, competencies in mathematics do not show any 
significant influence, however, under MNAR their effect is significant again. In addi-
tion, “high secondary” maternal education yields a smaller p-value under MNAR 
compared to MAR. Under MNAR, the effect size of this variable category is also 
notably larger than under MAR. Thus, under MNAR “high secondary” maternal 
education has a positive significant impact on higher aspirations compared to the 
lowest level of maternal education at the 0.1 level.

Our sensitivity analysis shows that a CCA can provide very different and mis-
leading results, if the respective underlying assumptions do not hold. Comparing the 
MAR and MNAR imputation, the picture is less obvious, but there are small dif-
ferences in estimators and standard errors, which might indicate the plausibility of 
the MNAR assumption concerning maternal education. Even if the inferences are 
shown to be fairly robust at the end, we would not have been able to know that with-
out conducting a sensitivity analysis.

5 � Conclusion

In this paper, we introduced an extension of the work of Galimard et  al. (2018); 
Galimard et al. (2015) and Hammon and Zinn (2020) on imputing binary MNAR 
data to ordered single-level and multilevel data. In doing so, we closed an important 
gap in the field of survey statistics. The two univariate imputation methods, we have 
developed, can easily be incorporated into the FCS framework to deal with multi-
variate missingness which makes them very versatile. Both methods are designed to 
directly be used in the R software package mice which makes them easy to access 
and apply.6 Our simulation studies show that the two methods outperform com-
peting techniques in terms of bias and coverage when data are affected by distinct 
MNAR mechanisms. They were able to produce unbiased and accurate estimates 
of the quantities of interest in case of MNAR and they also demonstrated to yield 
valid estimates if the missing data were produced by an MAR mechanism. Thus, 
our two novel imputation methods are well suited for conducting sensible sensitivity 
analyses.

We proved our approach to be applicable to real data problems as well by study-
ing the impact of maternal education on the educational aspirations of students in 
lower secondary education. However, we have to point out that analysing large data 
sets with many clusters and incomplete predictors may result in long computing 
times of possibly several hours. Therefore, we highly recommend executing the mul-
tiple imputations of mice in parallel on multiple cores to run our approach. In our 
application, the complete imputation of our empirical data set lasted around eight 
hours since it was computationally very intensive involving multivariate missing 
data and a high number of cases and clusters.

6  The source code is freely available at http://​github.​com/​Angel​inaHa​mmon/​Paper​Order​edMNAR.

http://github.com/AngelinaHammon/PaperOrderedMNAR
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Of course, our research has not yet ended. For example, one limitation of the con-
ducted multilevel simulation study is that we kept the number of clusters and cluster 
sizes constant. Thus, one of our future tasks will be to find out whether varying clus-
ter conditions affect our method’s performance. A further future project is to extend 
the procedure to deal not only with ordinal variables, but with unordered categorical 
data, too, using a multinomial probit model with sample selection. Such an exten-
sion is very useful for practice, since survey data, especially in the social sciences, 
often include categorical variables.

Inferences on the missing-data mechanism heavily depend on the distributional 
model assumptions. De facto, there is not only one way of specifying MNAR mod-
els but many. Selection models are often criticised due to several reasons. They are 
completely identified by their distributional parametric assumptions and do not pro-
vide obvious sensitivity parameters. This makes the underlying untestable assump-
tions less clear and more difficult to communicate. For conducting a meaningful 
sensitivity analysis it is crucial to not only use one alternative MNAR model, but 
to compare inferences of various plausible MNAR models with different assump-
tions about the missing-data mechanism. For this purpose, an alternative modelling 
strategy based on pattern-mixture modelling could be used such as the the proxy 
pattern-mixture approach of Andridge and Little (2009, 2011, 2020) which includes 
one sensitivity parameter to assess the robustness of inferences and does not require 
the explicit specification of a parametric model for the missing-data mechanism. 
This will be a further aspect to look at in future work. Another frequently mentioned 
point of criticism of selection models is the identification of an appropriate exclu-
sion criterion. It is true that the choice of the exclusion criterion plays a crucial role 
in the successful application of our method. However, when working with survey 
data, there usually exists meta-information such as the survey mode or access cor-
ridors, which is suspected to be strongly correlated with the respondents’ willing-
ness to provide information, but not with the outcome variable to be imputed and 
therefore forms an optimal exclusion criterion. Nevertheless, it might be advisable 
to carry out sensitivity analyses with regard to the exclusion criterion as well.

If baring these points in mind and not missunderstanding the selection model-
based MNAR imputation model as the one and only model to describe a potential 
MNAR mechanism, our presented approach is a good choice for providing a speci-
fication of an alternative MNAR model that can be used within a broader sensitvity 
analysis.
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