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Abstract
The receiver operating characteristic (ROC) curve is a graphical method commonly 
used to study the capacity of continuous variables (markers) to properly classify 
subjects into one of two groups. The decision made is ultimately endorsed by a clas-
sification subset on the space where the marker is defined. In this paper, we study 
graphical representations and propose visual forms to reflect those classification 
rules giving rise to the construction of the ROC curve. On the one hand, we use 
static pictures for displaying the classification regions for univariate markers, which 
are specially convenient when there is not a monotone relationship between the 
marker and the likelihood of belonging to one group. In those cases, there are two 
options to improve the classification accuracy: to allow for more flexibility in the 
classification rules (for example considering two cutoff points instead of one) or to 
transform the marker by using a function whose resulting ROC curve is optimal. On 
the other hand, we propose to build videos for visualizing the collection of subsets 
when several markers are considered simultaneously. A compilation of techniques 
for finding a rule that maximizes the area under the ROC curve is included, with a 
focus on linear combinations. We present a tool for the R software which generates 
those graphics, and we apply it to one real dataset. The R code is provided as Sup-
plementary Material.
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1  Introduction

As a supervised learning technique, classification is a statistical method whose final 
objective is to build a grouping rule based on one or various markers collected in a 
training dataset where the response variable is also known. With that rule, classifica-
tions of new subjects can be done on the basis of their marker values (Nielsen et al. 
2009). Going into good classifications is important in many fields such as medical 
diagnosis, machine learning, data mining or business intelligence.

This paper covers binary classifications. The goal is to discriminate between 
positive and negative populations based on a continuous variable making the error 
probabilities as small as possible. There are two potential errors: classifying a posi-
tive subject as negative (false negative) and classifying a negative subject as positive 
(false positive). The trade-off between those error probabilities is reflected in the 
trace of the Receiver Operating Characteristic (ROC) curve (McClish and Powell 
1989).

The decision rules which determine the classification of the subjects depend 
on the allocation of their marker values inside—classed as positive—or outside—
classed as negative—a region called classification subset (Martínez-Camblor and 
Pardo-Fernández 2019). The ROC curve displays the probability of correctly clas-
sifying positive subjects (sensitivity or true-positive rate) versus the probability 
of incorrectly classifying negative subjects (1-specificity or false-positive rate) for 
every classification subset of the form (c,∞) with c ∈ ℝ . For each threshold or cut-
off point c of the marker, the sensitivity is Se(c) = P{𝜉 > c} and the specificity is 
Sp(c) = P{� ≤ c} , where � and � denote the variables modeling the marker values 
in the negative and positive population, respectively. The substitution t = 1 − Sp(c) 
yields the definition of the standard ROC curve as a function of t. For each t ∈ [0, 1] , 
there is a subset, st ∈ Ir(t) , where

reporting the maximum sensitivity, i.e., st = arg sup s∈Ir(t)
P{� ∈ s} . The supre-

mum of the sensitivity reported by st defines the value of the ROC curve in t, R(t) . 
Ir(t) is referred to as a particular family of eligible classification subsets and its 
form comes from assuming that higher values of the marker are associated with a 
higher likelihood of being a positive subject.

This procedure can be generalized and mathematically formulated as follows:

where BX denotes the Borel subsets of the space where the marker X is defined, t 
denotes the false-positive rate, I(t) is a particular family of eligible classification 
subsets and R(t) is the value of the ROC curve in t. By definition, the regions s in 
a family of eligible classification subsets I(t) should have a fixed shape and fulfill 
P{� ∈ s} ≤ t , i.e., their specificity is, at least, 1 − t.

(1)Ir(t) = {s = (c,∞) ⊂ ℝ such that P{𝜒 ∈ s} ≤ t},

(2)
[0, 1] ⟶ BX ⟶ [0, 1]

t ⇝ I(t) ⇝ R(t) ∶= sup
s∈I(t)

P{� ∈ s}
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The Area Under the Curve (AUC) is a measure of the global classification accu-
racy of a marker (Bamber 1975). It takes values in the interval [0.5,  1], and the 
closer to 1 the better the accuracy. The AUC is a standard for measuring the global 
precision to the extent that some authors such as Kauppi (2016) and Chen et  al. 
(2016) seek to find the transformation of the marker which maximizes it. In such 
sense, McIntosh and Pepe (2002) proved that the transformation which maximizes 
the sensitivity for any fixed specificity t is the likelihood ratio. From here on, we 
will refer to the ROC curve resulting from the latter transformation as the efficient 
ROC curve, eROC curve, following the notation used by Kauppi (2016). It should 
be noted that transforming the marker has an effect on the classification subsets. 
They are of the form s∗

t
= (ct,∞) over the transformed marker, but the correspond-

ing regions st over the original marker may be difficult to interpret and even useless 
for the practitioner.

With the goal of achieving a better classification accuracy, an approach different 
from finding a transformation can be considered: allowing the classification subsets 
to be more flexible. As an example, Martínez-Camblor et  al. (2017) proposed the 
general ROC curve, gROC curve, considering subsets of the form 
(−∞, xL] ∪ (xU ,∞) , with xL ≤ xU ∈ ℝ , to accommodate those situations where not 
only higher values of the marker are associated with a higher likelihood of being a 
positive but both extremes, lower and higher, are. It should be highlighted that in the 
standard ROC curve, for any t ∈ [0, 1] , the classification region is univocally defined 
by st = (F−1

� (1 − t),∞) . However, in the gROC curve, there is not a direct and 
explicit expression of the classification rule st giving rise to the corresponding point 
(t,R(t)) of the curve because there are infinite subsets of the form 
s = (−∞, xL] ∪ (xU ,∞) with specificity 1 − t (i.e., P{� ∈ s} = t ). Hence, the corre-
sponding st involves the search for the subset fulfilling the previous conditions which 
reports the maximum sensitivity, i.e., st = arg sups∈Ig(t)

P{� ∈ s} with 
Ig(t) = {s = (−∞, xL] ∪ (xU ,∞) ⊂ ℝ such that P{𝜒 ∈ s} ≤ t} . Therefore, in the 
construction of the gROC curve, illustrating the underlying decision rules is essen-
tial not to lose the sight of the problem under study. The area under the gROC curve, 
gAUC, is also a global index of accuracy of the marker for the family of classifica-
tion rules of the form (−∞, xL] ∪ (xU ,∞).

Due to the relevance of visualizing the decision rules behind each point of the 
ROC curve, in this paper we study and propose procedures for including them in the 
graphical representation of the outcomes of classification analysis. With the aim of 
displaying the classification accuracy of a marker, it is common to build the ROC 
curve, but not to see the underlying rules, suggesting that the classification prob-
lem is blurred. A key strength of the proposed graphical solution is the visualiza-
tion of the curve, (t,R(t)) , and the underlying classification subsets, st , on a single 
figure. With this goal, we have developed a tool compressed as an R package called 
movieROC.

In practice, it is common to collect several markers for improving the performance 
of a binary classification based on them, giving rise to a new problem: defining the 
ROC curve of a multivariate marker to evaluate its classification accuracy. To cope 
with it, what is mostly done in the literature is to find a transformation from the original 
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space ℝp ( p ≥ 2 ) to ℝ such that the final marker reports a large AUC. In this multivari-
ate scenario, we study how to monitor the change of those regions, which appear to be 
omitted in the transformation process, generating the ROC curve. Since it is no longer 
feasible to display the regions st for every t ∈ [0, 1] in one simple 2D graphic, we pro-
pose to use dynamic graphical representations.

In order to introduce the background of the graphical procedures studied and the dif-
ferent functionalities of the new R package (provided as Supplementary Material), this 
article is organized as follows. In Sect. 2, we provide some remarks about the gROC 
and eROC curves and propose a computational algorithm to ensure a rational assump-
tion over the decision rules. In Sect.  3, we review some techniques to deal with the 
ROC curves for multidimensional markers and we propose two ways of visualizing dif-
ferent classification regions. In Sect.  4, we apply our new tool to a real dataset, dis-
playing the classification subsets and the ROC curve construction resulting from the 
methods addressed previously. Finally, Sect.  5 provides some concluding remarks and 
feedback.

2 � ROC curve for univariate markers

The standard ROC curve, generally defined in (2) considering Ir(t) in (1) as the fam-
ily of eligible classification subsets, has been deeply studied and popularized since it 
was first developed for radar signal detection (Green and Swets 1966). Several theo-
retical and practical aspects have been addressed regarding its standard definition; the 
interested reader is referred to Pepe (2003). Some techniques for non-standard analy-
ses related to the ROC curve have been implemented in the nsROC package (Pérez-
Fernández et al. 2018).

With the goal of improving the classification accuracy of a marker when the differ-
ences between the two populations are not directly in location but also in dispersion, 
specially when the relationship between the marker and the likelihood of being a posi-
tive subject is not monotone but U-shape, the family of eligible classification subsets is 
extended to

resulting in the so-called general ROC curve (gROC curve). The gROC curve has 
been clearly motivated in the existing literature (Martínez-Camblor et  al. 2017; 
Floege et al. 2011; Gardner et al. 2016).

Nevertheless, the vast majority of literature does not address the underlying regions, 
but tackles the construction of the ROC curve directly using the standard definition. 
When the relationship between the marker and the likelihood of being a positive sub-
ject is not monotone, they find a functional transformation of the marker whose result 
maximizes the standard AUC. If we consider a continuous transformation h, the family 
of eligible classification subsets is

(3)Ig(t) =
{
s =

(
−∞, xL

]
∪
(
xU ,∞

)
⊂ ℝ such that P{𝜒 ∈ s} ≤ t

}
,

(4)I
h(X)(t) =

{
s∗ = (c,∞) ⊂ R(h) such that P{h(𝜒) ∈ s∗} ≤ t

}
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where R(h) denotes the codomain of the function h(⋅) , leading to the ROC curve

When the function h(⋅) considered is the likelihood ratio, such ROC curve is called 
the efficient ROC curve (eROC curve). In practice, the density functions of the 
marker in both populations are unknown and thus the problem arises in estimating 
the referred function h(⋅) or any monotone transformation of it.

If h(⋅) is a monotone increasing transformation, the classification subsets 
for the initial marker are of the form st = (h(ct),∞) where ct ∈ ℝ is such that 
P{𝜒 > ct} = t and the ROC curve is the standard one. However, if h(⋅) is not 
monotone, the subsets for the original marker, st , may not be only one interval. 
For example, if h(⋅) is a polynomial function of degree n, those may be the union 
of even ⌊n∕2 + 1⌋ intervals, where ⌊⋅⌋ denotes the floor function. Figure 1 reflects 
the classification subsets from a cubic splines (with seven knots) transformation.

In Martínez-Camblor et  al. (2019), an analysis of a particularly intricate real-
world dataset is provided, illustrating the differences between the two approaches: 
the eROC and the gROC curves. The authors claimed that improving the AUC by 
means of different functional transformations can result in an overfitting or classifi-
cation regions with no practical interpretability, so it may not be worthwhile to find 
the eROC curve with the highest area. Besides, they proved an important result 
linking gROC and eROC curves: If the variable in both negative and positive popu-
lation is normally distributed, the gROC curve is based on the optimal classifica-
tion rules. That is, in a binormal scenario, Rh(t) = Rg(t) = sup

s∈Ig(t)

P{� ∈ s}.

2.1 � The efficient ROC curve: the eROC curve

Mathematically, the procedure of defining the ROC curve coming from a trans-
formation h(⋅) of the marker can be formally formulated as follows:

(5)Rh(t) = sup
s∗∈Ih(X)(t)

P{h(�) ∈ s∗}.

Fig. 1   Efficient ROC curve. Left, the classification subsets (gray) for every false-positive rate t for the 
transformed (bottom) and the original marker (top), s∗

t
 and st , respectively; right, the eROC curve
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where BX and Bh(X) denote the Borel subsets of the space where the original and 
the transformed marker, respectively, are defined; t denotes the false-positive rate; 
I

h(X)(t) is the family of eligible classification subsets for the transformed marker 
defined in (4); IX(t) is the family of regions s for the original marker resulting from 
applying the inverse function h−1(⋅) over the subsets s∗ ∈ I

h(X)(t) ; and R(t) is the 
value of the ROC curve in t.

McIntosh and Pepe (2002) proved that the optimal transformation, in terms of 
achieving the highest sensitivity for any fixed specificity and consequently report-
ing the optimal AUC, is the likelihood ratio h(⋅) = f�(⋅)∕f� (⋅) , where f� and f� are 
the density functions of � and � , respectively. As a monotone increasing function 
of the likelihood ratio, the risk score, P(D = 1 | ⋅ ) where D = 1 indicates the real 
condition of being positive, induces also an optimal transformation. It turns out that 
binary regression methods can be used to approximate the eROC curve, since f� and 
f� are generally unknown. Several authors have exploited this result: Kauppi (2016) 
proposed procedures to find the optimal transformation under semiparametric and 
nonparametric conditions, Chen et al. (2016) presented a semiparametric model by 
directly modeling the likelihood ratio as an unspecified function of a transformation 
of the marker, and López-Ratón (2015) made use of logistic GAM regression model 
to estimate the risk score function, among others.

In practice, the shape of the classification subsets depends on the transformation 
considered in the regression model. The function hROC(X, D, formula) in the 
package movieROC allows any formula to fit a logistic regression model, consider-
ing a cubic polynomial fitting by default (formula = “D ∼ pol(X,3)”).

2.2 � A generalization of the ROC curve: the gROC curve

With a focus on the classification process, a different perspective is proposed 
to improve the accuracy of the marker, also making use of the distribution of the 
marker in positive and negative groups, but maintaining control of the classification 
regions. The idea is to use more flexible decision criteria, defining a family of eligi-
ble classification subsets suitable for each particular scenario.

In the scenario where both higher and lower values of the marker are associated 
with a higher probability of being a positive, the logical family of eligible classifica-
tion subsets is Ig(⋅) [defined in (3)]. For each false-positive rate t ∈ [0, 1] , the clas-
sification regions st = (−∞, xL

t
] ∪ (xU

t
,∞) with xL

t
≤ xU

t
 reporting the maximum sen-

sitivity fulfill F� (x
U
t
) − F� (x

L
t
) = 1 − t . Therefore, we can write xL

t
= F−1

� (� ⋅ t) with 
� ∈ [0, 1] and consequently xU

t
= F−1

� (1 − (1 − �) ⋅ t) , i.e., � represents the portion of 
false-positive rate t which is kept in the subinterval (−∞, xL] and consequently 1 − � 
represents the portion of false-positive rate t in the subinterval (xU ,∞) . With this 
notation, we can reformulate the gROC curve definition as

[0, 1] ⟶ Bh(X) ⟶ BX ⟶ [0, 1]

t ⇝ I
h(X)(t) ⇝ I

X(t) ⇝ R(t) ∶= sup
s∈IX (t)

P{� ∈ s} = sup
s∗∈Ih(X)(t)

P{h(�) ∈ s∗}
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where �t ∶= arg sup �∈[0,1]

{
F�(F

−1
� (� ⋅ t)) + 1 − F�(F

−1
� (1 − (1 − �) ⋅ t))

}
.

It should be noted that

–	 if �t = 0 ∀t ∈ [0, 1] (that is, false-positive rate t is totally kept in the subinterval 
(xU ,∞) ), the gROC curve equals the standard ROC curve, Rg(t) = Rr(t);

–	 if �t = 1 ∀t ∈ [0, 1] (that is, false-positive rate t is totally kept in the subinter-
val (−∞, xL] ), the gROC curve equals the left-sided ROC curve, Rg(t) = Rl(t) , 
defined as Rl(t) ∶= sups∈Il(t)

P{� ∈ s} with 

Related to this, Martínez-Camblor and Pardo-Fernández (2019) claimed that “the 
gROC curve is close to the ROC curve (...) when the difference in means domi-
nates over the difference in variances.”

Furthermore, the consideration of the supremum in the definition of the gROC 
curve is crucial because, in contrast to the standard ROC curve where there is 
only one subset of the form s = (c,∞) reporting a particular specificity 
1 − t ∈ [0, 1] , for the general ROC curve there exist infinite subsets of the form 
s = (−∞, xL] ∪ (xU ,∞) reporting a particular specificity 1 − t ∈ [0, 1] . Therefore, 
among them, the one reporting the maximum sensitivity, i.e., 
st = arg sups∈Ig(t)

P{� ∈ s} , is chosen for defining the value of the gROC curve in 
t, Rg(t).

Figure  2 displays the construction of the gROC curve for a scenario where 
considering subsets of the form (−∞, xL] ∪ (xU ,∞) is advisable. In this particular 
scenario, the classification regions are self-contained over the increase in false-
positive rate, that is, they fulfill the condition (C): 

(6)Rg(t) = F�(F
−1
� (�t ⋅ t)) + 1 − F�(F

−1
� (1 − (1 − �t) ⋅ t)) t ∈ [0, 1]

Il(t) = {s = (−∞, c] ⊂ ℝ such that P{𝜒 ∈ s} ≤ t}.
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(C)	� let t1, t2 ∈ [0, 1] with t1 ≤ t2 and let st1 = (−∞, xL
t1
] ∪ (xU

t1
,∞) and 

st2 = (−∞, xL
t2
] ∪ (xU

t2
,∞) be the corresponding eligible subsets such that 

R(t1) = P{� ∈ st1} and R(t2) = P{� ∈ st2} , then st1 ⊆ st2.

 This condition (C) implies that if a subject is classed as a positive for a particular 
false-positive rate t1 , it will also be classed as a positive for every t ≥ t1.

Imposing it, Martínez-Camblor and Pardo-Fernández (2019) gave the follow-
ing probabilistic interpretation of the gAUC: The area under the gROC curve is 
the probability of selecting randomly and independently two subjects, one posi-
tive and one negative, for which there exists a classification subset of the form 
(−∞, xL] ∪ (xU ,∞) which correctly classifies both subjects.

However, when the condition is not directly fulfilled, imposing it may sup-
pose a loss in the gAUC. In practice, on the basis of a particular dataset, the 
process of searching the regions which define the gROC curve under the restric-
tion (C) becomes a relevant computational task to address. Finding the optimal 
solution involves the computation of all possible ways resulting in self-contained 
subsets built by pairs of values of the marker. However, the computational times 
are unfeasible and thus a lighter search algorithm to find solutions close to the 
optimal one is needed. In the next subsection, an algorithm to find those classifi-
cation regions getting a proficient solution is proposed and a simulation study to 
examine the impact of imposing the restriction (C) is carried out. The algorithm 
was also included in the movieROC package, and it makes use of the also imple-
mented method to estimate the gROC curve without restrictions (using the func-
tion gROC(X, D, side = “both”)).

2.2.1 � Proposed method to estimate the gROC curve under restriction (C)

The steps of the proposed algorithm are the following: 

1.	 Estimate the gROC curve without restrictions, R̂g(t).
2.	 Select a false-positive rate (FPR), ti ∈ [0, 1] , to start from. The point (ti, R̂g(ti)) will 

also be a point in the estimated gROC curve under restriction (C), (ti, R̂
C,ti

g
(ti)).

3.	 Take the classification subset reported by R̂g(ti) , uti = (−∞, xL
ti
] ∪ (xU

ti
,∞).

4.	 Departing from uti , the sequence {uti−1 , uti−2 ,… , u0} , where ti−1 = ti − 1∕m with m 
the total number of negative subjects, is built iteratively considering the restric-
tion (C), which comes out into restriction (C.A):

0 ≤ �tj−1 ≤ min

{
�tj

tj

tj−1
, 1 − (1 − �tj )

tj

tj−1

}
 for every tj < ti.

	    Then, the algorithm used to find the �ti reporting the optimal sensitivity for ti 
computed in the estimation of R̂g(t) is used over the domain imposed by (C.A). 
The resulting sequence of regions contained in uti will end up in u0 , a subset 
(−∞, xL

0
] ∪ (xU

0
,∞) without any positive subject inside.
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5.	 Departing from uti , the sequence {uti+1 , uti+2 ,… , u1} , where ti+1 = ti + 1∕m , is built 
iteratively considering the restriction (C), which comes out into the restriction 
(C.B):

max

{
1 − (1 − �tj)

tj

tj+1
, �tj

tj

tj+1

}
≤ �tj+1 ≤ 1 for every tj > ti.

	    Then, the algorithm used to find the �ti which reports the optimal sensitivity 
for ti computed in the estimation of R̂g(t) is used over the domain imposed by 
(C.B). This restriction results in a sequence of classification regions containing 
uti , ending in u1 , with all the positive subjects inside.

In Step 2, the implemented gROC function gives the option of running the algo-
rithm starting from every FPR ∈ [0, 1] and keeping that one reporting the maxi-
mum empirical AUC, that is the optimal estimated gROC curve with restriction (C) 
(gROC(X, D, side = “both”, restric = TRUE, t0max = TRUE)). 
This option is time-consuming since it implies m + 1 computations of the algorithm. 
But if t0max = FALSE (default), the initial FPR (t0∕(m + 1) ) can be selected by 
the user (gROC(X, D, side = “both”, restric = TRUE, t0)), being 
the point leading to Youden index (defined as the maximum sum of sensitivity and 
specificity, Fluss et al. 2005), the option by default if t0 is not specified.

In order to explore the influence of this restriction and the impact of the initial 
point in Step 2 on the resulting gROC curves, a simulation study has been carried 
out (See Appendix for more details). Generally, the restriction (C) does not seem to 
have a big impact on the final gAUC except for some pathological scenarios. The 
suggested procedure is: first, to estimate the gAUC without restrictions; second, to 
estimate the area under the curve with restriction (C) departing from default initial 
point (Youden index) in Step 2, R̂

C,Y

g
 ; finally, if the difference between those esti-

mates is high, compute the optimal estimated gROC curve with restriction (C), R̂
C

g
 ; 

otherwise, keep the estimation R̂
C,Y

g
.

3 � ROC curve for multivariate markers

When more than one marker is available, combining them may incur a substantial 
improvement in the classification accuracy. The main difference with the represen-
tation for univariate markers (Sect. 2) is that, in the multivariate case, it is not pos-
sible to keep all the classification regions (for all specificities) in one simple 2D 
plot. When the dimension is two, p = 2 , we propose to display the change of those 
regions st along t by means of dynamic graphical representations in order to add a 
new time dimension which keeps the change in the false-positive rate, t, from 0 to 
1 (Fig. 3). When the dimension is higher, p > 2 , the solution is not direct since it is 
no longer feasible to display the subsets on the original space using a 2D graphic. 
Two solutions are proposed: to project the regions on the plane constituted by a) two 
variables selected by the user among the p available, or b) the first two components 
resulting from a dimensionality reduction technique. This section is divided in two: 
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the first part devoted to bivariate markers and the second one to markers in higher 
dimension.

The standard ROC curve is only defined for univariate markers; thus, for studying 
the classification accuracy of a multivariate marker, the available literature suggests 
reducing it to a univariate one by a transformation, h ∶ ℝ

p
→ ℝ . As it was in the 

definition of the efficient ROC curve, the choice of h(⋅) is not direct and it may incur 
an overfitting, besides the resulting classification subsets for the original marker may 
be useless. In this process of reduction to dimension one, the classification problem 
may often be blurred and, in most references, not even one single region st is visual-
ized. We study the graphical representations of the outcomes of that classification 
process and include them in the presented tool.

The simple linear combination of the different components is frequently consid-
ered as h(⋅) , i.e., h(X) = L�(X) =

∑p

i=1
�iXi where X = (X1,… ,Xp)

⊤ denotes the 
multivariate marker. These transformations are easy to interpret in terms of classifi-
cation subsets: For each fixed specificity, there is a hyperplane in the original space 
separating the two classes (Fig. 3).

Once the type of functional transformation h(⋅) = h�(⋅) is chosen, the AUC of the 
transformed marker h(X) is generally the objective function to maximize for getting 
the parameters � of the combination which reports the “best classification ability”. 
The meaning of the latter concept depends on that objective function; for example, 
if it is the standard AUC, the “best resulting marker” is the one reporting the maxi-
mum probability P{h(𝜉) > h(𝜒)} . It should be noted that, optimizing the AUC, the 
whole ROC curve is relevant and not only one particular specificity, highlighting 
the importance of visualizing all the classification subsets which generate the ROC 
curve. There are some references considering different objective functions related to 
ROC curves: McIntosh and Pepe (2002) aimed to estimate the linear combination 

Fig. 3   Bivariate ROC curve. Left, the classification subset (blue) for a particular false-positive rate t; 
right, the ROC curve resulting from varying the intercept of the linear classifier function. Data have been 
simulated from bivariate normal distributions in positive (red) and negative (green) populations. Video: 
https​://doi.org/10.6084/m9.figsh​are.98919​89

https://doi.org/10.6084/m9.figshare.9891989
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which maximizes the partial AUC (the area under the curve over an interval of spe-
cificities); Yin and Tian (2014) and Xu et al. (2015) proposed linear and nonlinear 
transformations of the marker, respectively, to optimize the Youden index; while 
Meisner et al. (2017) deals with the search of the linear combination which maxi-
mizes the sensitivity for every fixed specificity (which is denoted subsequently by 
linear combinations with dynamic parameters).

3.1 � Bivariate markers

Most references cover linear combinations of the original markers, 
L�(X) = �1X1 + �2X2 , whose resulting ROC curve optimizes an objective function 
(AUC, partial AUC, Youden index, etc.). Once the parameter � is estimated, clas-
sification subsets of the form (c,∞) over h(X) = L�(X) are considered. The regions 
in the original space (two-dimensional) are limited by a line with the same slope, 
−�1∕�2 , but changing intercept ct∕�2 depending on t. Then, the lines separating the 
two classes are parallel over the change in t (Fig. 3). These combinations will be 
called linear combinations with fixed parameters.

The ROC curve coming from the linear combination L�(X) = �1X1 + �2X2 with 
fixed parameter � can be defined as (2) with the following family of eligible classifi-
cation subsets:

In this paper, we also cover a different perspective: when the objective function 
is the true-positive rate for each false-positive rate separately. The goal is to find, 
for each t ∈ [0, 1] , the combination L�(t)(X) = �1(t)X1 + �2(t)X2 and classification 
subset st = (ct,∞) such that P{L�(t)(�) ∈ st} ≤ t reporting the highest sensitivity 
P{L�(t)(�) ∈ st} . In this case, the parameter �(t) depends on t; hence, the parallel 
property of the borders of the regions over t may not be fulfilled since the slope is 
−�1(t)∕�2(t) (video linked in Sect. 3.1.2). These combinations will be called linear 
combinations with dynamic parameters.

The ROC curve resulting from the transformation L�(t)(X) = �1(t)X1 + �2(t)X2 
with parameter �(t) can be defined as (2) with the family of eligible classification 
subsets:

3.1.1 � Linear combinations with fixed parameters

Recently, Kang et al. (2016) carried out a complete review of algorithms which seek 
linear combinations maximizing the AUC. They provided the R code used to esti-
mate the “best parameters” using the different methods revised. We have used it in 
order to find those parameters �1 and �2 and include them as an input parameter in 

(7)IL𝛽
(t) =

{
s ⊂ ℝ

2 such that 𝛽⊤y ≤ c ∀y ∈ s and P{𝜒 ∈ s} ≤ t
}
.

(8)IL𝛽(t)
(t) =

{
s ⊂ ℝ

2 such that 𝛽(t)⊤y ≤ c ∀y ∈ s and P{𝜒 ∈ s} ≤ t
}
.
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the function biROC(X, D, method = “fixedLinear”, coefLinear = 
c(�1,�2)) of our R package.

Particularly, the reviewed techniques are the following: Su and Liu (1993) found 
the linear combination which maximizes the AUC under conditionally multivariate 
normality; Pepe and Thompson (2000) developed a procedure for bivariate markers 
where a grid is used to numerically find 𝛽  and proposed a distribution-free estimator 
using the Mann–Whitney U statistics to the AUC estimation (Hanley and McNeil 
1982).

In addition to this, logistic regression can be used to find the parameter � maxi-
mizing the risk score function fitting the following model:

 Pepe et al. (2006) proved that, if the model (9) holds, the ROC curve of the lin-
ear combination resulting from this method dominates any other ROC curve coming 
from any other linear or nonlinear transformation of the marker.

In Figure S2, the classification subsets st for t reporting the Youden index and the 
corresponding ROC curves for the three procedures above over two simulated exam-
ples are displayed. It can be seen that even if a perfect linear separation is possible 
(top), since it is far from being multivariate normal, the parametric approach (Su and 
Liu 1993) results in an AUC of 0.894 instead of 1, the optimal achievable. In this 
linearly separable case, the outputs from the regression model and Pepe and Thomp-
son (2000) method coincide. However, if a perfect linear separation between groups 
is not possible, the results may differ, being the estimated AUC from the second 
method always greater. An example of this scenario is shown in Figure S2 (bottom). 
The AUC resulting from fitting a logistic linear regression model is 0.716, with an 
improvement of 9.4% using the Pepe and Thompson (2000) approach. It should be 
noted the difference in the classification regions resulting from each method.

As a final remark, there is another procedure gathered in Kang et al. (2016): Liu 
et al. (2011) considered the min–max combination maximizing the Mann–Whitney 
U estimator of the AUC, i.e., L�(X) ∶= Xmax + �Xmin where Xmax ∶= max

k=1,2
Xk and 

Xmin ∶= min
k=1,2

Xk . This is based on the fact that, for every threshold, Xmax is the uni-
variate marker with the largest sensitivity and the smallest specificity, while Xmin has 
the smallest sensitivity and the largest specificity. It is a nonparametric approach and 
thus more robust than Su and Liu (1993) method, but every marker involved is 
required to be either expressed in the same units or standardized to be unit-less. 
Besides the regions induced by L�(X) ∶= Xmax + �Xmin are determined by two 
lines: symmetric with respect to  X1 − X2 = 0 (Figure S3 in Supplementary 
Material).

3.1.2 � Linear combinations with dynamic parameters

There also exist some procedures seeking linear combinations of the markers 
which may not vary in a parallel way along the construction of the ROC curve 
since the parameter � depends on t. The two following methods aim to maximize 
the sensitivity for a particular specificity, that is, for a particular t ∈ (0, 1) , the 

(9)logit (P{D = 1|X = (X1,X2)}) = �0 + �1X1 + �2X2.
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objective is to find the coefficient �(t) and threshold c(t) for the linear combina-
tion L�(t)(X) = �1(t)X1 + �2(t)X2 such that

 

–	 Meisner et al. (2017) suggested to estimate the probabilities involved in (10) 
by means of the empirical distribution functions of L�(t)(X) in both groups for 
different possible �(t) over a grid. But, as the authors highlighted, this estima-
tor involves the indicator function, which is non-smooth with respect to the 
parameters (�(t), c(t)) , so they proposed to use a smooth approximation of it. 
Good theoretical asymptotic properties of this estimator under certain weak 
conditions were derived, and the algorithm was implemented in their R pack-
age called maxTPR. That implementation is internally used in our package by 
the function biROC(X, D, method=“dynamicMeisner,” alpha, 
approxh, multiplier), where the last input parameters are those for 
their function maxTPR regarding convergence and smoothness of the algo-
rithm.

–	 We propose to use a grid search method similar to the one proposed in Pepe 
and Thompson (2000) to estimate �(t) and the empirical distribution functions 
to estimate the probabilities in (10), despite their lack of smoothness. The 
steps of the proposed algorithm are detailed below: 

1.	 For a fixed false-positive rate, t, consider K equally spaced val-
ues �l ∈ [0, 1] and calculate �l = 1∕�l . For each element of the grid 
G = {g1,… , g4K} ∶= {(1, �1),… , (1, �K), (1, �1),… , (1, �K), (−1, �1),… , 
(−1, �K), (−1, �1),… , (−1, �K)} , calculate the minimum ck such that 

 where m is the negative sample size and XD=0
k,j

 with k = 1, 2 and j = 1,… ,m 
is the kth component of the jth negative subject.

2.	 For each k ∈ {1,… , 4K} and ck in Step 1, calculate the true-positive rate 

 where n is the positive sample size and XD=1
k,i

 with k = 1, 2 and i = 1,… , n is 
the kth component of the ith positive subject.

3.	 Search the k ∈ {1,… , 4K} which reports the maximum T̂PR(gk, ck) . Hence, 
the estimated parameters are 

(10)

(𝛽(t), c(t)) ∈ argmax
(𝛽,c)∈Ωt

P{𝛽1𝜉1 + 𝛽2𝜉2 > c} where

Ωt ∶=
�
(𝛽, c) ∈ ℝ

3 such that ‖𝛽‖ = 1 and P{𝛽1𝜒1 + 𝛽2𝜒2 > c} ≤ t
�
.

�FPR(gk, ck) ∶=
1

m

m∑
j=1

I
(
g1,kX

D=0
1,j

+ g2,kX
D=0
2,j

> ck

)
≤ t

�TPR(gk, ck) ∶=
1

n

n∑
i=1

I
(
g1,kX

D=1
1,i

+ g2,kX
D=1
2,i

> ck

)
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	    The implementation of this algorithm was included in the movieROC pack-
age by the function biROC(X, D, method = “dynamicEmpirical”, 
K), where K is the grid parameter K in Step 1 (201 by default).

In order to estimate the whole ROC curve, for each t on a grid of the unit inter-
val, the parameters (�(t), c(t)) are estimated using one of the two algorithms above. 
By definition, the last algorithm results in a monotone ROC curve empirical esti-
mate, but the opposite may happen using the estimates from Meisner et al. (2017) 
approach.

The construction of the ROC curves from these two procedures for a simulated 
contaminated bivariate normal scenario is shown in https​://doi.org/10.6084/m9.figsh​
are.98920​61. When the parameters are dynamic, it is specially interesting to visual-
ize how the regions change with the specificity.

3.1.3 � Optimal combinations Fˇ(X)

It should be noted that the linear combination may not be the optimal transforma-
tion in terms of achieving the highest sensitivity uniformly at any specificity. In fact, 
that is the likelihood ratio, f�(X)∕f� (X) , or any monotone transformation, as it was 
pointed out in Sect. 2.1. In case of a conditionally bivariate normal marker, it is

for some �1,… , �5 . Under equal covariance matrices, �3 = �4 = �5 = 0.
Furthermore, if the model

holds for some monotone increasing function g(⋅) , then the optimal combination of 
the marker is a linear combination. But even in this case, if g(⋅) is unknown, the 
logistic regression model in (9) may not lead to the referred optimal parameters.

However, the conditionally distribution of the marker is often unknown in prac-
tice; hence, finding a proper family of combinations (linear, quadratic, etc.) becomes 
a difficult task to address. With the purpose of covering different families of com-
binations and consequently several shapes of classification subsets, the option 
biROC(X, D, method = “lrm”, formula, stepModel) is included 
in the presented package. It computes a logistic regression model considering the 
combination suggested by formula, which is a quadratic function of X by default 
(formula = “D ∼ poly(X.1,2)+poly(X.2,2)+I(X.1*X.2)” where 
X.i is the ith component of the marker). A model based on the Akaike information 
criterion (AIC) by means of a stepwise algorithm is selected by default; otherwise, 
the crude model is taken (stepModel = FALSE).

(11)(𝛽(t), ĉ(t)) = (ĝk, ĉk) = argmax
k∈{1,…,4K}

�TPR(gk, ck).

F�(X) = �1X1 + �2X2 + �3X1X2 + �4X
2
1
+ �5X

2
2

logit (P{D = 1|X = (X1,X2)}) = g(�0 + �1X1 + �2X2)

https://doi.org/10.6084/m9.figshare.9892061
https://doi.org/10.6084/m9.figshare.9892061
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Figure S4 (Supplementary Material) collects the classification subsets obtained 
from the function biROC for different choices of families of combinations. Par-
ticularly formula = “D ∼ X.1 + X.2” (linear) and formula by default 
(quadratic), reporting AUCs of 0.705 and 0.854, respectively.

3.2 � Multivariate markers

To cope with multivariate markers, the techniques included in the previous sub-
section to handle bivariate markers are extended to higher dimension. While the 
approaches proposed by Su and Liu (1993), Liu et al. (2011) and logistic regres-
sion model can be directly accommodated to p > 2 , the extension of the Pepe and 
Thompson (2000) algorithm, despite being direct, is computationally demanding. 
To deal with it, they proposed the following stepwise algorithm: 

1.	 Find two markers, X∗
1
 and X∗

2
 , whose optimal linear combination, 

S(1)(�1, �2) = �1X
∗
1
+ �2X

∗
2
 , reports the maximum AUC among all pairs of mark-

ers.
2.	 Among the rest of variables, find the marker X∗

3
 whose optimal linear combination 

with S(1)(�) reports the maximum AUC.
3.	 Repeat Step 2 until all the markers are included, i.e., S(p−1)(�) = �1X

∗
1
+⋯ + �pX

∗
p

.

However, this algorithm implies the computation of Pepe and Thompson (2000) 
method 1∕2 ⋅

[
p(p − 1) +

∑p−1

k=2
(p − k)(p − k − 1)

]
 times, which becomes very 

large when the dimension increases (129 computations for p = 10 ). Two different 
solutions for p > 2 which are much less computationally intensive ( p − 1 compu-
tations of the method are needed) were proposed by Kang et  al. (2016) (step-
down and step-up techniques) and Yan et al. (2015).

The multiROC function in our package allows the user to input the esti-
mated fixed parameters of a linear combination for visualizing the results. Par-
ticularly, multiROC(X, D, method = “fixedLinear”, coefLinear 
= c(�1,..., �p)).

Regarding linear combinations with dynamic parameters, Meisner et  al. 
(2017) technique was designed for multivariate markers. However, as the 
authors mention, the risk of overfitting is expected to grow as the dimension 
increases. This method is included in movieROC making use of maxTPR pack-
age: multiROC(X, D, method = “dynamicMeisner”, alpha, 
approxh, multiplier).

Nevertheless, if there does not exist a monotone function g(⋅) such that 
f�(X)∕f� (X) = g(L�(X)) , the optimal combination of the markers is not linear. For 
covering nonlinear combinations, binary logistic regression procedures have been 
included in our package: multiROC(X, D, method = “lrm”, formula, 
stepModel).
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When p > 2 , it is not possible to display the regions on the original space, so two 
options are implemented in the movieROC package: 

(a)	 To show the regions on the plane of the two principal components result-
ing from a principal component analysis (PCA), using the function plot.
buildROC(obj, display.method = “PCA”) where obj is the output 
of the multiROC function;

(b)	 To choose two markers among the p involved and project the classification sub-
sets on that plane, by means of the function plot.buildROC(obj, dis-
play.method = “OV”, displayOV = c(.,.)) where the vector 
displayOV indicates the two univariate markers to be considered.

An important remark should be mentioned at this point: The colored areas indi-
cating the classification regions below or above the corresponding border (Fig. 3) 
are not used any more since the meaning is lost with the projection. A clear exam-
ple is the figure at right, where the red plane defines the border of the classifica-
tion region in a linearly separable 3D scenario. The solution proposed is to project 
the border and indicate the classification rule in the original space highlighting the 
points which are classed as positive for every particular specificity (video in Fig. 8).

4 � Real‑world data example

The real-world dataset we have taken into consideration to illustrate the use of 
the proposed tool and also the differences among the approaches discussed in this 
manuscript is the Banknote Authentication dataset, which can be found in the UCI 
Machine Learning Repository. It contains four features of the wavelet transformed 
images of a total of 1372 pictures taken from two types of banknotes: genuine and 
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forged. The goal is to study the performance of those features to detect which ones 
are counterfeit ( 44.46% of the sample). The markers are: variance, skewness and 
kurtosis of wavelet transformed image and entropy of image.

First, the performance of kurtosis as a single marker is measured. The standard 
AUC is 0.536 (Fig. 4), suggesting that kurtosis is not a good marker to discriminate 
between genuine and forged banknotes considering the usual classification subsets 
(c,∞).

Considering the transformation h(⋅) = f̂𝜉(⋅)∕f̂𝜒 (⋅) where f̂𝜉(⋅) and f̂𝜒 (⋅) are the ker-
nel density estimates for kurtosis of wavelet transformed image in forged and genu-
ine banknotes, respectively, with smoothing bandwidth 1.5 and Gaussian kernel, the 
resulting area under the curve (eAUC) increases to 0.678. For a fixed specificity of 
0.9, the rule is to class as counterfeit those banknotes whose kurtosis value is in the 
region (−∞,−4.7) ∪ (−1.33,−1.29) ∪ (5.57,∞) (bottom figure in Fig. 5).

On the other hand, considering more general classification regions over the 
original marker, particularly of the form (−∞, xL] ∪ (xU ,∞) , the resulting gAUC 
differs only 0.011 from eAUC. Imposing the restriction (C) to those subsets, 
the gAUC is reduced to 0.647. The regions to classify a banknote as counterfeit 
regarding its kurtosis with a specificity of 0.9 are (−∞,−4.38] ∪ (5.59,∞) and 
(−∞,−3.41] ∪ (8.83,∞) without and with restriction, respectively (Fig. 5).

When the skewness is also taken (multiplied by −1 to assume that higher values of 
the marker are related to a higher likelihood of being a forged banknote), the optimal 
linear combination L�(⋅) = �1 ⋅ skewness

� + �2 ⋅ kurtosis
� (where ′ means standard-

ized) resulting from each method in Sect. 3.1.1 has been estimated. The ROC curves 
and classification regions for specificity 0.9 are displayed in Fig. 6. The AUCs are 
around 0.815 except for Liu et al. (2011) method, whose AUC (0.692) is even lower 
than the result considering only skewness (0.749).

Regarding linear combinations with dynamic parameter �(t) , the ROC curves 
estimated by the two procedures in Sect. 3.1.2 are shown in Fig. 7, reporting AUCs 
0.835 and 0.858 for Meisner et al. (2017) and proposed empirical algorithm, respec-
tively. In the video linked in Fig.  7, the construction of the first ROC curve, not 
monotone over t, is illustrated. Besides, considering nonlinear combinations by 
means of a quadratic logistic regression, the AUC is slightly higher (0.860).
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Fig. 4   Standard ROC curve. Left, histograms of kurtosis of wavelet transformed image in genuine 
(green) and forged (red) banknotes. Right, the ROC curve
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If the entropy of the image is also considered (multiplied by −1 ), the parameters 
of the optimal combination L�(⋅) = �1 ⋅ skewness

� + �2 ⋅ kurtosis
� + �3 ⋅ entropy

� 
were estimated using the four techniques in Sect. 3.2: Su and Liu (1993), Pepe and 
Thompson (2000) with the extension proposed by the authors (here p = 3 ), linear 
logistic regression and Liu et al. (2011) method. The AUCs are approximately 0.880 
except for Liu et  al. (2011) method, with an AUC of 0.711 (Fig.  8). In the video 
linked in Fig. 8, the construction of the ROC curve from Pepe and Thompson (2000) 
procedure is illustrated: The projection plane is constituted by the variables kurtosis 
and entropy (standardized). The decision rule for each t is displayed highlighting the 
subjects (points) classed as positive.

Finally, Meisner et  al. (2017) approach was considered to estimate the linear 
combination L�(t)(⋅) with dynamic parameters reporting the maximum sensitivity 
for each specificity. The AUC is slightly higher (0.897), but it can be seen that the 

Fig. 5   General and efficient ROC curves. Classification subsets of kurtosis of wavelet transformed image 
and resulting ROC curves. From top to bottom: gROC curve without restrictions, gROC curve with 
restriction (C) and eROC curve
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ROC curve estimate is not monotone. Considering a quadratic logistic regression 
over the three considered features, the final AUC is 0.907 (Fig. 9).

To sum up, Table 1 shows the results in terms of the estimated AUCs and the 
improvement in each method and each variable included in this dataset. It should 
be noted that, even if the AUC of entropy as a univariate marker is very small 

Fig. 6   Bivariate ROC curves. Classification subsets of the standardized bivariate marker (skewness, kur-
tosis) for FPR = 0.1 and resulting ROC curves using different methods to find a linear combination with 
fixed parameters

Fig. 7   Bivariate ROC curves. Classification subsets of the standardized bivariate marker (skewness, kur-
tosis) for FPR = 0.05 and resulting ROC curves using different methods to find a linear combination with 
dynamic parameters (solid lines) and quadratic combination from a logistic regression model (dashed 
line). Video: https​://doi.org/10.6084/m9.figsh​are.98918​33

https://doi.org/10.6084/m9.figshare.9891833
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(0.519), when it is combined with the other two features (skewness and kurtosis), 
the resulting AUCs increase. The quadratic transformation is more general, and it 
reports the highest AUCs, although the procedures to obtain linear combinations 
with dynamic parameters are comparable to it.

Fig. 8   Multivariate ROC curves. Left, projection of the marker (skewness’, kurtosis’, entropy’) over 
the two principal components from PCA; the subjects classed as positive for FPR = 0.1 using Pepe and 
Thompson (2000) method are highlighted in blue. Right, the ROC curves for different methods to find a 
linear combination with fixed parameters. Video: https​://doi.org/10.6084/m9.figsh​are.98919​35

Fig. 9   Multivariate ROC curves. Left, projection of the standardized marker (skewness, kurtosis, 
entropy) over the two principal components from a PCA; subjects classed as positive for FPR = 0.1 
by Meisner et al. (2017) method are highlighted in orange. Right, the ROC curves from Meisner et al. 
(2017) procedure (orange) and fitting a quadratic logistic regression model (green)

https://doi.org/10.6084/m9.figshare.9891935
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5 � Discussion

In this article, we have proposed alternatives to visualize the classification regions 
leading to the construction of the ROC curve, on the basis of either a univariate 
or a multivariate marker. The solutions include both static and dynamic graphical 
representations which help the practitioner to understand the classification prob-
lem under study. In addition, a graphical tool including the different options of 
visualization has been implemented in the user-friendly R package movieROC.

In the literature, there exist different approaches for increasing the classifi-
cation accuracy of a marker. Particularly, dealing with univariate markers, two 
options may be considered: to make the underlying classification regions more 
flexible (one of those generalizations defines the so-called gROC curve) or to 
transform the marker by means of a functional transformation (resulting in the 
eROC curve if the transformation considered is the one maximizing the sensitiv-
ity for each specificity). In both cases, it becomes very relevant to become aware 
of the classification subsets which derive every pair of specificity and sensitivity. 
An algorithm to estimate the gROC curve under a particular restriction over the 
regions has been proposed in this paper.

On the other hand, handling multivariate markers becomes a challenge, not 
only in terms of visualization but also for definition of the ROC curve in this 
context. A theoretical framework is provided in the present paper for generalizing 
the definition, keeping the interpretation of the underlying classification problem. 
The methods collected are mainly focused on finding hyperplanes in the original 
space ℝp which optimize the AUC (linear combinations with fixed parameters) or 
the sensitivity over each specificity in the unit interval (linear combinations with 
dynamic parameters), but also different shapes of classification regions can be 
examined by fitting logistic regression models.

It should be noted that the ROC curve definition in (2) extends the working area 
in two senses: First, it does not only accept univariate markers but also multivari-
ate markers (Fisher 1936; Zhang 1998) or even other kind of data also common 

Table 1   Area under the ROC curve estimate for different methods and variables

The last column of multivariate techniques refers to the consideration of the three features (skewness, 
kurtosis, entropy), while the second column refers to the bivariate marker (skewness, kurtosis)

skewness kurtosis entropy

Univariate Standard ROC curve 0.749 0.536 0.519
Multivariate (linear combination fixed 

parameters)
Su and Liu (1993) 0.814 0.880
Pepe and Thompson (2000) 0.819 0.875
Linear logistic regression 0.816 0.882
Liu et al. (2011) 0.692 0.711

Multivariate (linear combination dynamic 
parameters)

Meisner et al. (2017) 0.835 0.897
Empirical dynamic 0.858 –

Multivariate (quadratic combination) Quadratic logistic regression 0.860 0.907
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in practice such as functional data (Hall et al. 2001; Biau et al. 2005) or composi-
tional data (Aitchison and Egozcue 2005); and second, that generalization allows 
us to accommodate flexible shapes of regions by means of the novel concept of 
family of eligible classification subsets, I(t) . For instance, extending the gROC 
curve approach for bivariate markers, I(t) can be defined as the set of regions in 
the original space which lie between two parallel lines. Mathematically,

Making use of the framework discussed and particularly focusing on the extension 
of the definition of the ROC curve in (2), some other considerations of families of 
classification subsets and their visualization may be further studied.
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Appendix

Theoretical result about the existence of a transformation h(⋅) of the marker 
which reports a standard ROC curve equivalent to the gROC curve for the original 
marker

Proposition 1  Not for any set of values of (xL
t
 , xU

t
) with t ∈ [0, 1] giving rise to the 

gROC curve one can find a transformation h(⋅) of the marker such that the classifi-
cation regions st = (xL

t
, xU

t
] (or st = (−∞, xL] ∪ (xU ,∞) without loss of generality) 

can be expressed as Ct = {x ∈ ℝ such that h(x) ≥ x∗
t
} for some x∗

t
 for all t ∈ [0, 1] . 

In other words, in some scenarios there is no transformation h(⋅) of the marker such 
that the resulting standard ROC curve is the same as the gROC curve for the origi-
nal marker.

Proof 

(1)	 Suppose that there exists a function h ∶ D(h) ⊆ ℝ ⟶ R(h) ⊆ ℝ (where D(h) 
and R(h) denote the domain and codomain of the function h(⋅) , respectively) 
such that, for every false-positive rate t ∈ [0, 1] , there exists a x∗

t
∈ ℝ such that 

the classification subset Ct defined as 

 is equivalent to the classification subset st = (xL
t
, xU

t
] resulting from the clas-

sification process used in the definition of the gROC curve.
(2)	 By definition, t = P{� ∈ Ct} and hence x∗

t
∈ ℝ is such that P{h(�) ≥ x∗

t
} = t . 

Therefore, given two false-positive rates t1, t2 ∈ [0, 1] such that t1 > t2 , then 
P{h(𝜒) ≥ x∗

t1
} > P{h(𝜒) ≥ x∗

t2
} and thus x∗

t1
< x∗

t2
.

Ig2(t) =
{
s ⊂ ℝ

2 such that 𝛽⊤y ≤ xL ∪ 𝛽⊤y ≥ xU ∀y ∈ s andP{𝜒 ∈ s} ≤ t
}
.

Ct = {x ∈ D(h) such that h(x) ≥ x∗
t
}
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(3)	 But for any function h ∶ D(h) ⊆ ℝ ⟶ R(h) ⊆ ℝ , we know that the following 
subsets content relationship is fulfilled: 

 for every pair a1, a2 ∈ R(h) such that a1 < a2 . This is due to the fact that, every 
x ∈ {x ∈ D(h) such that h(x) ≥ a2} , by definition fulfills that h(x) ≥ a2 so, par-
ticularly, h(x) ≥ a1 for every a1 < a2 , i.e., x ∈ {x ∈ D(h) such that h(x) ≥ a1}.

Joining the results above, we have that given two false-positive rates t1, t2 ∈ [0, 1] 
such that t1 > t2 , then x∗

t1
< x∗

t2
 [by (2)] and thus Ct2

⊆ Ct1
 [by (3)]. But Ct = st for 

every t ∈ [0, 1] by (1), therefore st2 ⊆ st1.
In summary, if there exists a transformation h(⋅) of the marker such that the 

resulting ROC curve coincides with the gROC curve for the initial marker, then the 
corresponding classification regions, denoted by st ⊂ ℝ , fulfill that

In the scenario where the marker in the negative population is normally distributed 
as N(0, 0.75) and in the positive population follows the mixture of normal distribu-
tions Δ ×N(−0.5, 0.25) + Δ ×N(0.75, 0.25) where Δ is a Bernoulli random varia-
ble with success probability � = 0.5 , the classification subsets underlying the gROC 
curve are those reported in Fig. 10.

{x ∈ D(h) such that h(x) ≥ a2} ⊆ {x ∈ D(h) such that h(x) ≥ a1}

st2 ⊆ st1 for every pair of false-positive rates t1, t2 ∈ [0, 1] such that t1 > t2.

Fig. 10   Top, the density functions for the scenario � ∼ N(0, 0.75) and 
� ∼ Δ ×N(−0.5, 0.25) + Δ ×N(0.75, 0.25) where Δ is a Bernoulli random variable with success prob-
ability � = 0.5 . Bottom, the classification subsets (left) underlying the gROC curve (right). The classifi-
cation subsets are of the form (xL, xU] ⊂ ℝ and are colored in gray for every false-positive rate t ∈ [0, 1] . 
In particular, those corresponding to t1 = 0.6 and t2 = 0.4 are highlighted in blue
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The classification subsets are of the form (xL, xU] ⊂ ℝ and, by definition, are 
those reporting the maximum sensitivity, Se(xL, xU) for each fixed specificity 
Sp(xL, xU) = 1 − t , where

with Φ(⋅) denoting the cumulative distribution function of a standard normal, N(0, 1)

.
Therefore,

where Ig(t) = {s = (xL, xU] ⊂ ℝ such that P{𝜒 ∈ s} ≤ t} is equivalent to

where I∗(t) = (−∞, 0.75 ⋅Φ−1(1 − t)] , with Φ−1(⋅) is the quantile distribution func-
tion of a standard normal, and

by using the substitution xU = 0.75 ⋅Φ−1

(
t + Φ

(
xL

0.75

))
 from 

t = 1 − Sp(xL, xU) = P{� ∈ (xL, xU]}.
Going back to the beginning of the proof, if there exists a transformation h(⋅) of 

the marker such that the resulting ROC curve classification subsets over the original 
space coincide with those subsets underlying the gROC curve, then the highlighted 
classification regions in Fig.  10, st1 and st2 corresponding to t1 = 0.6 and t2 = 0.4 , 
respectively, should fulfill that st2 ⊆ st1 since t1 > t2 . However, as it can be seen,

(12)Sp(xL, xU) = 1 −P{xL < 𝜒 ≤ xU} = 1 − Φ

(
xU

0.75

)
+ Φ

(
xL

0.75

)

(13)

Se(xL, xU) = P{xL < 𝜉 ≤ xU} = 0.5 ⋅

[
Φ

(
xU + 0.5

0.25

)
+ Φ

(
xU − 0.75

0.25

)]

− 0.5 ⋅

[
Φ

(
xL + 0.5

0.25

)
+ Φ

(
xL − 0.75

0.25

)]

Rg(t) = sup
s∈Ig(t)

P{� ∈ s}

Rg(t) = 0.5 ⋅ sup
xL∈I∗(t)

H(xL)

H(xL) = Φ

⎛
⎜⎜⎜⎜⎝

0.75 ⋅Φ−1

�
t + Φ

�
xL

0.75

��
+ 0.5

0.25

⎞
⎟⎟⎟⎟⎠
− Φ

�
xL + 0.5

0.25

�

+ Φ

⎛⎜⎜⎜⎜⎝

0.75 ⋅Φ−1

�
t + Φ

�
xL

0.75

��
− 0.75

0.25

⎞⎟⎟⎟⎟⎠
− Φ

�
xL − 0.75

0.25

�
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That is, we have found a scenario where there is no transformation h(⋅) of the marker 
with the ROC curve for such transformation being the same as the gROC curve for 
the original marker. 	�  ◻

Simulation study about the influence of imposing the restriction (C) 
on the classification subsets underlying the gROC curve (Sect. 2.2.1)

In order to explore the influence of the restriction (C) on the resulting gROC 
curves and the impact of the selection of the initial point in Step 2 of the algo-
rithm proposed in Sect. 2.2.1 on the classification subsets, a simulation study was 
carried out. An analysis of the change on the area under the gROC curve impos-
ing the restriction (C) departing from different FPRs was conducted for different 
scenarios and sample sizes. Particularly:

Scenario 1. � ∼ N(0, 1) and � ∼ N(a, b).
Scenario 2. � ∼ U(a, b) and � ∼ Δ ×N(−2, 1) + (1 − Δ) ×N(3, 0.5) where Δ is 
a Bernoulli random variable with success probability � = 0.5.

The parameters a and b were taken for obtaining gAUCs without restrictions 
of 0.75 and 0.85. The classification subsets and gROC curves without and with 
restriction (C) are shown in Figure S1 (Supplementary Material). The results are 
based on B = 500 simulations, and these are displayed in Fig 11. The numerical 
results have also been collected in Table S1 in Supplementary Material.

st2 = (0.145, 1.492] ⊈ (−0.307, 1.174] = st1 .

Fig. 11   Results of 500 simulations of Scenario 1 and 2 for different sample sizes and theoretical gAUC. 
The mean (95% C.I.) for every estimator is displayed. For each one, the four vertical lines correspond to 
n = m = 50 , 2n = m = 100 , n = m = 100 , 2n = m = 200 . R̂g denotes the estimated gROC curve without 
restrictions, R̂

C

g
 the optimal estimated gROC curve with restriction (C), and R̂

C,Y

g
 , R̂

C,0

g
 , R̂

C,0.1

g
 and R̂

C,1

g
 

the estimated gROC curve with restriction (C) considering as starting point in Step 2 of the algorithm the 
FPR related to the Youden index, FPR = 0, FPR = 0.1 and FPR = 1, respectively
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From the results, it can be seen that the area under the optimal gROC curve 
with the restriction (C) is similar to the gAUC without restrictions. Only a small 
decreasing is observed between R̂g and R̂

C

g
 , being 0.028 the maximum difference 

in gAUC means for Scenario 2. This scenario has been designed to be pathologi-
cal regarding the non-compliance of restriction (C) (Figure S1).

The estimation of the optimal restricted gROC curve is computationally time-
consuming for high sample sizes. In those cases, the suggestion is to use the FPR 
reported by the Youden index as the initial point in Step 2, because it results in 
higher AUCs for all the scenarios considered, compared to other initial points 0, 
0.1 and 1. Despite its superiority, in the Scenario 2 with gAUC​= 0.85 , R̂

C,Y

g
 slightly 

underestimates the area (with a maximum difference in means of 0.07), but the opti-
mal R̂

C

g
 remains giving adequate results.
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