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Abstract
Linear mixed-effects models are a class of models widely used for analyzing different
types of data: longitudinal, clustered and panel data. Many fields, in which a statistical
methodology is required, involve the employment of linear mixed models, such as
biology, chemistry, medicine, finance and so forth. One of the most important pro-
cesses, in a statistical analysis, is given by model selection. Hence, since there are a
large number of linear mixed model selection procedures available in the literature,
a pressing issue is how to identify the best approach to adopt in a specific case. We
outline mainly all approaches focusing on the part of the model subject to selection
(fixed and/or random), the dimensionality of models and the structure of variance and
covariance matrices, and also, wherever possible, the existence of an implemented
application of the methodologies set out.

Keywords Linear mixed model · Mixed model selection · AIC · BIC · MCP ·
LASSO · Shrinkage methods · MDL

1 Introduction

Linear mixed-effects models (LMM) represent one of the most wide instruments for
modeling data in applied statistics, and increasing research on linear mixed models
has been rapidly in the last 10–15 years. This is due to the wide range of its applica-
tions to different types of data (clustered data such as repeated measures, longitudinal
data, panel data, and small area estimation), which involve the fields of agriculture,
economics, medicine, biology, sociology etc.

Some practical issues usually encountered in statistical analysis concern the choice
of an appropriate model, estimating parameters of interest and measuring the order
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or dimension of a model. This paper focuses on model selection, which is essential
for making valid inference. The principle of model selection or model evaluation is to
choose the “best approximating” model within a class of competing models, charac-
terized by a different number of parameters, a suitable model selection criterion given
a data set (Bozdogan 1987). The ideal selection procedure should lead to the “true”
model, i.e., the unknown model behind the true process generating the observed data.
In practice, one seeks, among a set of plausible candidate models, the parsimonious
one that best approximates the “true” model.

The selection of only one model among a pool of candidate models is not a trivial
issue in LMMs, and the different methods proposed in the literature over time are,
often, not directly comparable. In fact, not only there is a different notation among
papers and great confusion as regards the software (R, SAS,MATLAB, etc.) to be used,
but also a lack of landmarks allowing users to prefer one method rather than others.

Hence, the main purpose of this review is to provide a view about some useful
components/factors characterizing each selection criterion, so that users can identify
the method to apply in a specific situation. Moreover, we will also try to tidy up the
notation used in the literature, by “translating,” if necessary, the symbols and formulas
found in each paper to produce a common “language.” We begin by updating the
recent review by Müller et al. (2013), then add some information about each selection
criteria, such as the kind of effects that each method focuses on, or the structure of
variance–covariance matrix, or the model dimensionality, or even the software used
for implementing each method.

When coping with LMMs, it is not a good idea to assume independence or uncor-
relation among response observations. For example, in the case of repeated measures,
date are collected about the same individual over time. Hence, the traditional linear
regression model is not appropriate to describe the data. For a detailed description of
analogies and differences between linear mixed models and linear models, see Müller
et al. (2013).

An important issue associated with LMMs selection is related to the dimension of
the fixed and random components. Most of the literature bases inference, selection and
interpretation of models in the finite (fixed) dimensional case, which means that the
number of parameters is less than the number of units. Recently, more attention has
been given to the handling of high-dimensional settings, which requires more complex
computational applications. The word “high-dimensional” refers to situations where
the number of unknown parameters that are to be estimated is one or several orders of
magnitude larger than the number of samples in the data (Bülmann and van de Geer
2011). Furthermore, in LMMs, the number of parameters can grow exponentially
with the sample size, i.e., the number of effects is strictly related to the number of
units. Thus, if the sample size increases the set of effects diverges. Only recently, some
authors have tried tomake inferencewithin the LMMframework, on high-dimensional
settings (Fan and Li 2012; Schelldorfer et al. 2011).

Model selection is a challenge in itself when one deals with the classic linear
model. It becomes more complex when mixed models are involved, because of the
presence of two kinds of effects with completely different characteristics and roles.
Among others, a key aspect of linear mixed model selection is how to identify the
real important random effects, i.e., those whose coefficients vary among subjects.
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It is important to note that the exclusion of relevant effects has a drawback on the
estimation of the fixed effects: their variance–covariance matrix would be underfitted
and the estimation of the variances related to the fixed part estimates would be biased.
The inclusion of irrelevant random effects in a model, on the other hand, would lead
to a singular variance–covariance matrix of random effects, producing instability in
the model (Ahn et al. 2012). As pointed out by Müller et al. (2013), most procedures
focus on the selection of fixed effects exclusively. Only Chen and Dunson (2003) and
Greven and Kneib (2010) worked on random part selection beforeMüller et al. (2013).
There are obvious difficulties due to computational issues in selecting only the random
part, that is why the researchers who worked on the random effects, after Müller et al.
(2013), optimize with respect to the fixed part, too, excepted for Li and Zhu (2013).
In recent years, in fact, it has been easy to find procedures selecting both the effects .

It is worth noting that since the LMMs are a special case of Generalized LMMs, we
obviously excluded from the current review all thosemethods builtmainly for selecting
effects in the GLMMs, such as Hui et al. (2017). Moreover, this review doesn’t include
works based on graphical tools for model selection if these graphical representations
are referred tomethods already existent in the literature. This is the case, for example, of
Sciandra and Plaia (2018) who adapt an available graphical representation to the class
of mixed models, in order to select the fixed effects conditioning on the random part
and covariance structure, and of Singer et al. (2017) who discuss different diagnostic
methods focusing on residual analysis but also addressing global and local influence,
giving general guidelines for model selection.

This review mentions the available theoretical properties corresponding to the dif-
ferent methodologies, with comparisons among them whereas it’s possible.

Müller et al. (2013) classified the proposed methods by considering four differ-
ent kinds of procedures: information criteria (such as Akaike information criterion,
Bayesian information criterion); shrinkage methods such as LASSO and adaptive
LASSO; the Fence method; and some Bayesian methods.

In this paper, we prefer to cluster methods according to which part of the model,
fixed, random or both, they focus on. The paper is organized as follows. In Sect. 2,
we present the structure and notation of a linear mixed model and we discuss some
problems occurring in selection models. In Sect. 3, we give an overview of model
selection procedures within the LMMs framework that are useful for selecting linear
mixed models, by considering the classification proposed in Müller et al. (2013). In
Sects. 4 and 5, we describe the methods grouped according to the part of the model
selected, i.e., fixed and both, respectively. Finally, we examine some simulations in
Sect. 6 and concludewith a brief discussion and some conclusions in Sect. 7.Moreover,
to help the reader decide whichmethod to prefer, according to his own data, we include
two Tables 2 and 3, that summarize the main features of each method.

2 LMM and the linear mixedmodel selection problEM

Suppose data are collected fromm independent groups of observations (called clusters
or subjects in longitudinal data). The response variable Y i is specified in the linear
mixed models at cluster level as follows:
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Y i = X iβ + Zi bi + εi , i = 1, 2, . . . ,m, (1)

where Y i is a ni dimensional vector of observed responses, X i and Zi are the known
ni × p and ni × q matrices of covariates related to the fixed effects and to the random
effects, respectively, β is the p-vector of unknown fixed effects, bi is the q-vector of
unobserved and independent random effects and εi is the vector of unobserved random
errors. Let us assume that bi s are independent of εi s and that they are independent
and identically distributed random variables for each group of observations in the
following way:

bi ∼ Nq(0,�), εi ∼ Nni (0,�), (2)

where � is a q × q positive definite matrix and � is a ni × ni positive definite matrix.
Consequently, the response vector follows a multivariate normal distribution, Y i ∼
Nni (X iβ, V i ), where the variance–covariance matrix is given by V i = Zi�Z

′
i + �.

The vectorized form of the model is:

Y = Xβ + Zb + ε, (3)

where all elements concern all macro units; therefore, Y is a n-dimensional vector
(n = ∑

ni ), X and Z are the known n × p and n × q matrices of covariates related to
the fixed effects and to the random effects, respectively, β is the p-vector of unknown
fixed effects, b is the q-vector of unobserved and independent random effects and ε

represents the vector of unobserved random errors.
The selection of linearmixed-effectsmodels implies the selection of the “true” fixed

parameters and/or the “true” randomeffects. Even if there exists a kindof estimation for
b, theBest LinearUnbiasedPredictors [BLUP, seeEq. (7)], the correct investigation for
identifying b requires to estimate its q(q + 1)/2 variance–covariance parameters. Let
τ denote the s-vector filled with all distinctive components in the variance–covariance
matrices� and�. A random effect is not relevant if its variance–covariance elements,
for all observations, are zero (Ahn et al. 2012); hence, it suffices to identify the nonzero
diagonal components in� (Wu et al. 2016) correctly and, also, their related covariance
terms, for avoiding the drawback of excluding random effects correlated to some
explanatories.

We call θ = (β, τ ) the overall set of parameters relevant in a linear mixed model.
This set represents the whole group of the parameters related to the true model gener-
ating data. Let us identify the selection of linear mixed models with M ∈ M, where
M is the countable set containing all candidate models involved in the selection. The
number of candidate models used depends on some contextual considerations: some
variance–covariance components could be known or assumed to be known; some
authors could focus only on nested models; or, still, the classic null model (the one
with intercept only) could not be admitted among the set of candidate models (see
Sect. 7 for further details).

The conditional log-likelihood for model (3) is given by:

l(θ |b; y) = log f y( y|b; θ) = −1

2

{

log |�|+( y−Xβ−Zb)
′
�−1( y−Xβ−Zb)

}

− n

2
log(2π),

(4)
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while the marginal likelihood is:

l(θ; y, b) = log f y( y; b, θ) = −1

2
{log |V | + ( y − Xβ)′V−1( y − Xβ)}. (5)

For fixed τ , the optimization process of the joint log-likelihood leads to an estimate
of β that is similar to a generalized least squares estimator:

β̂(τ ) = (X ′V−1X)−1X ′V−1 y. (6)

The most popular approach for predicting b is an empirical Bayesian method, which
uses the posterior distribution f (b| y) yielding the following BLUP prediction:

b̂(τ )BLUP = �Z′V−1{ y − Xβ̂(τ )}. (7)

The same solutions of β̂(τ ) and b̂(τ )BLUP can be obtained by solving Henderson’s
linear mixed model equations (Müller et al. 2013):

[
X ′�−1X X ′�−1Z
Z′�−1X Z′�−1Z + �−1

] [
β̂(τ )

b̂(τ )

]

=
[
X ′
Z′

]
[
�−1 y

]
. (8)

Although consistent, theML estimator of variance–covariance parameters is known
to be biased in small samples. Hence, the restricted maximum likelihood estimators
(REML) are used:

lR(τ ) = −1

2
{log |V | + log |X ′V−1X| + y′P−1 y}, (9)

where P = V−1 −V−1X(X ′V−1X)−1X ′V−1 (Müller et al. 2013). Thus, the simple
ML estimators for β and τ will here forth be indicated as β̂ and τ̂ , while the REML
estimators as β̂R and τ̂ R .

It is important to note that in many papers dealing with LMMs some authors use
the σ 2 scaled versions of � and �, which are σ 2�∗ and σ 2�∗. Then we are going
to use, in the description of the methods, the symbol ∗ for those variance–covariance
matrices scaled by σ 2.

3 Introduction tomodel selection criteria

Within the framework of linear mixed-effect models, a large number of selection
criteria are available in the literature. Model selection criteria are frequently set up by
building estimators of discrepancy measures, which evaluate the distance between the
“true” model and an approximating model fitted to the data.
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3.1 AIC and its modifications

The most widely used criteria for model selection are the information criteria. Their
application consists in finding themodel thatminimizes a function, in the form of a loss
function plus a penalty, usually dependent on model complexity. The Akaike informa-
tion criterion (AIC), introduced by Akaike (1992), is the most popular method. The
Akaike information criterion is based on the Kullback–Leibler distance between the
true density of the distribution generating the data, y, and, the approximating model
for fitting the data, g(θ) (Vaida and Blanchard 2005). With his criterion, Akaike tried
to combine point estimation and hypothesis testing into a single measure, thus formal-
izing the concept of finding a good approximation of the true model in a predictive
view. In this sense, a good model is the one that is able to generate predictive values
(independent of the real data) as close as possible to the observed data. AI is given
by −2E f ( y)E f ( y∗) log g{ y∗; θ̂( y)}, where θ̂ is an estimator of θ , while y∗ represents
the predictive set of data obtained from the fitted model and independent of y. Vaida
and Blanchard (2005) defined a new version of AI by conditioning the distribution
f ( y; θ) to the clusters. Hence, the conditional AI (cAI) uses the conditional distribu-
tion f ( y; θ , b) as follows:

−2E f ( y,b)E f ( y∗|b) log g{ y∗; θ̂( y), b̂( y)},

where b̂( y) is the estimator of b. It should be noted that y∗ and y have to be considered
conditionally independent of b and belonging to the same conditional distribution
f (.|b). These two last assumptions imply that they have the same random effects b.
The underlying reasoning of the criterion based on the Akaike information criterion

is not to identify the true model generating the data, but the best approximation of
it, which adapts well to the data. The estimators employed for measuring AI and
cAI are known as Akaike information criterion and conditional Akaike information
criterion, respectively, and they are both biased for finite samples. They approximate
their own information asminus twice the relative log-likelihood function plus a penalty
term, an(dM ), which tries to adjust the bias. The marginal AIC, defined by Vaida and
Blanchard (2005), has the following generic formula:

mAIC = −2l(θ̂) + 2an(p + q)

where an = 1 or an = n/(n− p−q−1) in small samples (Vaida and Blanchard 2005;
Sugiura 1978). The conditional Akaike information criterion (cAIC—Vaida and Blan-
chard 2005) provides a procedure for selecting variables in LMMs with the purpose of
predicting specific clusters or random effects, since the mAIC is inappropriate when
the focus is on clusters and not on the population. For predicting at cluster level, the
likelihood needs to be computed conditionally on the clusters and the random effects
bi need to be considered as parameters. Hence, for computing the cAIC, the terms to
estimate are the p + q + s parameters in θ . If all the variance elements τ are known,
the q random effects b are predicted by the best linear unbiased predictor (BLUP) or
using an estimated version of BLUP (Eq. 7). The generic formula for cAIC is:
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cAIC = −2l(θ̂ |b̂) + 2an(ρ + 1) (10)

where ρ is connected to the effective degrees of freedom used in estimating β and b.
Many authors (Shang and Cavanaugh 2008; Kubokawa 2011; Vaida and Blanchard
2005; Greven and Kneib 2010; Srivastava and Kubokawa 2010; Liang et al. 2008)
have tried to reduce the bias of mAIC and cAIC, working on the penalty term in
different ways, i.e., taking into account the MLE estimator or the REML estimator for
θ , distinguishing if variance–covariance matrices are known or unknown. A clear and
complete overview of all penalties used in the literature is available in Müller et al.
(2013), Sects. 3.1 and 3.2.

3.2 Mallow’s Cp

Another criterion, based on a discrepancy measure (Gauss discrepancy) and used for
choosing the model nearest to the true one, is given by Mallows’ Cp.

Cp = SSEp

σ̂ 2 − n + 2p,

with SSEp and p representing, respectively, the error sum of squares and the number
of parameters of the reference model and σ̂ 2 an estimate of σ 2 (Gilmour 1996). Some
variants on Mallows’Cp are provided by Kubokawa (2011) and are clearly presented
by Müller et al. (2013).

3.3 BIC

The Bayesian information criterion is based on the marginal distribution of y, which
requires the full prior information about all parameters (β, θ ) to be computed:

f ( y) =
∫ ∫

fm( y|β, θ)π(β, θ)dβdθ . (11)

BIC, proposed by Schwarz (1978), is an approximation of −2 log{ fπ ( y)}, free of any
prior distribution setup:

BIC = −2l(θ̂) + (p + q) log(N ). (12)

Since BIC is a Bayesian procedure for model selection, it requires prior dis-
tributions. Kubokawa and Srivastava (2010) derived the expression of EBIC, an
intermediatemethodbetweenBICand fullBayesian variable selection tools. TheEBIC
procedure employs partial non-subjective prior distribution only for the parameters of
interest, ignoring the nuisance parameters in terms of distributional assumptions.

3.4 Shrinkage

Often, it is not feasible to compute information criteria in variable selection when
p and/or q are large, i.e., in high-dimensional settings, when one deals with classic
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linear models. Hence, in this sense, shrinkage methods such as the least absolute
shrinkage and selection operator, LASSO (Tibshirani 1996), and its extensions such
as the adaptive LASSO, ALASSO (Zou 2006), the elastic net (Zou andHastie 2005) or
the smooth clipped absolute deviation, SCAD (Fan and Li 2012), have been proposed
in the literature. When using these techniques, thanks to a penalization system, some
coefficients are shrunk toward zero, while at the same time, the once influential on
response are estimated to be nonzero. The shrinkage procedures are applicable to either
the least squares or the likelihood functions. For the sake of simplicity, the penalized
likelihood function is readopted in the case of the classical linear model:

−
n∑

i=1

li (β; yi ) + n
p∑

j=1

pλ(||β||�), (13)

where ||β||� is the �-th norm ofβ. Taking into account that �1 corresponds toworkwith
the LASSO, while �2 refers to ridge estimation. The adaptive LASSO is an extension
of LASSO. It involves the addition of some weights depending on the �-th norm of β,
i.e., pλ(||β||�) = λ j ||β||�/2, with λ j = λ/||β||�, where � is an additional parameter
often considered equal to 1.

The generic SCAD penalty on θ introduced by Fan and Li (2001) works on the first
derivative of pλ(|θ |):

p′
λ j

(|θ |) = λ

{

I (θ ≤ λ) + (aλ − θ)+
(a − 1)λ

I (θ − λ)

}

. (14)

For the solution of θ , Fan and Li (2001) provided an algorithm via local quadratic
approximations.

3.5 MDL principle

The minimum description length (MDL) principle originates from data compression
literature and Rissanen (1986) who developed it to “understand” the observed data;
it represents a valid statistical criterion employed for selecting linear mixed models.
This method aims to detect the best model approximating the observed data, among
a pool of candidate models, through a data compression process based on the code
length needed to describe the data. Amodel can be described using fewer symbols than
those necessary to describe the data. Usually, this criterion is used in the presence of
independent data. Li et al. (2014) propose a MDL principle for fixed effects selection
when there is a correlation between observations within clusters. The principle is
presented as a good trade-off between AIC, thanks to its asymptotic optimality, and
BIC, because of its consistency property. The proposed criterion is a hybrid form of
MDL which merges a two stage description length and the mixture MDL with the
dependent data.
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4 Fixed effects selection

AIC and its modifications consist in finding the model that minimizes a function in the
form of a loss function plus a penalty, which measures model complexity. Kawakubo
and Kubokawa (2014) and Kawakubo et al. (2014) propose a modified conditional
AIC and a conditional AIC under covariate shift in Small Area Estimation (SAE),
respectively. For linear mixed model selection, random intercept model selection in
particular, in the small area estimation, Marhuenda et al. (2013) work on two variants
of AIC and two variants of theKullback symmetric divergence criterion (KIC), defined
as:

KIC = −2 log f ( y|θ̂) + 3(p + 1).

Kawakubo and Kubokawa (2014) and Kawakubo et al. (2018) provide a modified
version of the exact cAIC (McAIC), because the cAIC suggested by Vaida and Blan-
chard (2005) is highly biased when the candidate models do not include the true model
generating the data (underspecified cases). They assume that � = σ 2�∗, � = σ 2 Ini ,
and extend cAIC to a procedure that could be valid both for the overspecified cases
(situations in which the true model is included among the candidate models) and for
the underspecified cases. The modified conditional AIC is given by:

McAIC = −2 log f (y|b̂ j , β̂ j , σ̂
2
j ) + ̂�cAI, (15)

where ̂�cAI is the estimate of the bias of cAIC, estimated by:

̂�cAI = B∗ + B̂1 + B̂2 + B̂3, (16)

where B∗ is a function of V−1 and B1, B2 and B3 are functions of V and X . The
authors demonstrate that B∗, B̂1, B̂2 and B̂3 have distributions proportional to χ2

with degrees of freedom opportunely quantified and, in the overspecified case, ̂�cAI
reduces to B∗, i.e., McAIC=cAIC by Vaida and Blanchard (2005).

When the variable selection problem focuses on finding a set of significant variables
for a good prediction, Kawakubo et al. (2014) propose a cAIC under covariate shift
(CScAIC). They derive the cAIC of Vaida and Blanchard (2005) under the covariate
shift for both known and unknown variances σ 2 and �∗ and with �∗ assumed to be
known.

The proposed criterion replaces, in the formula of the classic cAIC, the conditional
density of y (the vector of the observed responses) given b, with the conditional density
of ỹ (the vector of observed responses in the “predictive model”: ỹ = X̃β + Z̃b+ ε̃, a
LMM with same regression coefficients β and random effects b, but different shifted
covariates) given b.

CScAIC = −2 log g( ỹ|b̂, β̂, σ̂ 2) + B∗
c , (17)

when σ 2 is unknown and estimated by its ML estimator and B∗
c is the bias correction.
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Lombardía et al. (2017) introduce amixedgeneralizedAkaike information criterion,
xGAIC, for SAEmodels. One typicalmodel used in the field of SAE is the Fay–Herriot
model, which is a particular type of LMMs containing only one random effect, the
intercept. The clusters are represented by areas and the model in Eq. (1) for each area
is reduced to: yi = x

′
iβ + bi + εi , with i = 1, 2, . . . ,m.

Instead of the usual AIC types based only on the marginal or the conditional log-
likelihood, the authors propose to use a new AIC, based on a combination of both the
log-likelihood functions. The quasi-log-likelihood used for deriving the new statistics
is the following:

log(lx) = −1

2
m log(2π) − 1

2
log |V | − 1

2
(Y − μ)

′
V−1(Y − μ), (18)

where μ = E(Y |b). The generalized degrees of freedom (xGDF), linked to the quasi-
log-likelihood in Eq. (18), takes into account the expectation and covariance with
respect to the marginal distribution of Y :

xGDF =
m∑

i=1

∂E y(μ̂i )

∂(X iβ)
=

m∑

i=1

m∑

j=1

V i jcov(μ̂i , y j ), (19)

where V i j is the i j-element of the matrix V−1. Combining the log(lx) with xGDF,
the mixed generalized AIC is finally defined as:

xGAIC = −2 log(lx) + xGDF. (20)

Han (2013) derives the closed form for the unbiased conditional AIC when the
linear mixed model is reduced to the Fay–Herriot model. The author proposed a more
suitable cAIC for three different approaches to fitting themodel: the unbiased quadratic
estimator (UQE), the REML estimator and the ML estimator. The unbiased cAIC for
the Fay–Herriot model has the same form as for the classical LMMs, with i.i.d. errors

(see Eq. 10), where the degrees of freedom are measured by 
 = ∑m
i=1

∂X i β̂
∂Y i

=
tr( ∂X

′
β̂

∂Y ), which is computationally expensive, because X i β̂ is not a linear estimator
through σ̂ 2

b and the derivates therein depend on the specific choice of estimating σ 2
b :

cAIC = −2 log f ( y|b, θ) + 2
. (21)

If σ̂ 2
b = 0, whatever is the method used for estimating it, then 
 = p, otherwise

when σ̂ 2
b > 0 the way of measuring 
 is different. If the unbiased quadratic estimate

method is used, then:


 = ρ̂ + 2(m − p)−1r
′
S�−1P∗rs . (22)
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If σ̂ 2
b > 0 is the REML or ML estimate:


 = ρ̂ − 2

(
∂ ŝ

∂σ 2
b

)−1

r
′
s�̂

−1
P∗S�−1P∗rs, (23)

with ∂ ŝ
∂σ 2

b
= tr

(
(�−1P∗)2

) − 2r
′
s�̂

−1
P∗rs in the case of REML or ∂ ŝ

∂σ 2
b

= tr(�−2) −
2r

′
s�̂

−1
P∗rs forMLestimatingprocess, P∗ = I−X(X

′
�−1X)−1�−1, r the residuals

from the OLS estimation for β and rs = �−1P∗Y the standardized residuals obtained
from the GLS estimation for β. The closed-form cAIC results to be an unbiased
estimator for the conditional AI for the Fay–Herriot model.

It is worth mentioning (Lahiri and Suntornchost 2015) for their contribution to the
selection of fixed effects in LMMs with applications in SAE models, even if their
proposal doesn’t concern a modification of some Information Criteria. The authors
define an alternative to the usualMean Square Error andMeanSquare Total, estimating
them with ̂MSE = MSE − Dw and ̂MST = MST − D, respectively, where Dw =∑m

i=1((1 − hii )Di )/(m − p) and Dw = ∑m
i=1 Di/m, with hii = x

′
i (X

′
X)−1xi .

They suggest to use ̂MSE and ̂MST, because under standard regularity conditions
these measures tend to the true MSE and MST with probability one, as the number
of areas increases. But, since for small areas ̂MSE and ̂MST could be negative, the
authors suggest an alternative to their estimates, through the function h(x, b) in Eq.
(24) which guarantees to obtain positive values for them:

h(x, b) = 2x

1 + exp
( 2b
x

) . (24)

This function allows to figure out new estimators in the following way: ̂MSE =
h(MSE, Dw) and ̂MST = h(MST, D).

Kubokawa and Srivastava (2010) derive an exact expression of the empirical Bayes
information criterion (EBIC) for selecting the fixed effects in a linear mixed model.
Their criterion represents an intermediate solution between BIC and the full Bayes
variable selection methods, because it exploits the partitioning of the vector of param-
eters (β, τ ∗, σ ) into two sub-vectors, one for the parameters of interest (β) and the
other one for the nuisance parameters (τ ∗, σ ). Specifically, it works with a partial
non-subjective prior distribution for only the parameters of interest, ignoring a prior
setup for the nuisance parameters and applying the Laplace approximation for this
one. The full prior distribution π(β, τ ) can be written through a proper prior distribu-
tion, π1(β|τ , λ), which is not completely subjective because of its dependence on an
unknown hyperparameter λ:

π(β, τ ) = π1(β|τ , λ)π2(τ ).

The two authors derive EBIC, starting from the BIC but they approximate the
marginal distribution of y, f ( y), with one of its two components, i.e., the conditional
marginal density based on the partial prior distribution, m1( y|τ , λ):
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m1( y|τ , λ) =
∫

f ( y|β, τ )π1(β|τ , λ)dβ.

After estimating λ, λ̂ = argmaxλ m1( y|τ̂ , λ) using a consistent estimator of τ , the
EBIC is obtained as follows:

EBIC = −2 log{m1( y|τ̂ , λ̂)} + dim(θ) log(n)

= −2 log{m1( y|σ̂ 2, τ̂ ∗, λ̂)} + (d + 1) log(n).

The derivation of the EBIC neglects the full prior distribution, but it uses the non-
subjective prior distribution π1(β|σ 2, λ), assuming that, conditioned to σ 2, it assumes
a multivariate normal distribution:

π1(β|σ 2, λ) = Np(0, σ
2λ−1W ),

with an unknown scalar λ and a p × p known matrix W . A possible choice for W
could be the so called Zellner’s q-prior, Wq = n(X ′X)−1. The authors demonstrate
that EBIC is a consistent estimator.

Wenren and Shang (2016) andWenren et al. (2016) work on conditional conceptual
predictive statistics and on marginal conceptual predictive statistics for linear mixed
model selection, respectively. The conditionalCp is formalized in both cases in which
σ 2 and �∗ are known and unknown. The marginal Cp appears to be useful in two
ways, both when the sample size is small and when there is a high correlation between
the observations. Wenren et al. (2016) propose a modified variant of Mallows’ Cp

when there is a correlation between observations, even if not known. They work under
the assumption that � = σ 2�∗ and � = σ 2 Ini . They assume that the estimator of
the correlation matrix (for the candidate model) is consistent. The formalization of
Modified Cp (MCp) is as follows:

MCp = SSRES
σ̂ 2 + 2p − n, (25)

where SSRES is the residual sum of squares for the candidate model, σ̂ 2 represents an
asymptotically unbiased estimator for σ 2 and it is computed for the largest candidate
model. MCp is a biased estimator for the expectation of the transformed marginal
Gauss discrepancy. However, it is an unbiased estimator of �Cp (θ), if the true model
is included in the pool of all candidate models. For better performance, they also
provide a more accurate estimator:

IMCp = (n − p∗ − 2)SSRes
SS∗

Res
+ 2p − n + 2, (26)

using the symbol * for referring to the largest candidate model. IMCp results to
be an asymptotically unbiased estimator of the expected overall transformed Gauss
discrepancy. It is preferred to MCp because it avoids the bias introduced by 1

σ̂ 2 used

for estimating 1
σ 2 .
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Wenren andShang (2016) provide another conceptual predictive statistics for select-
ing a linear mixed model if one is interested in predicting specific clusters or random
effects. Inspired by cAIC and conditional Mallow’s Cp, they construct two versions
of the conditional Cp (CCp), according to known or unknown variance components.
They work under the assumption that � = σ 2�∗ and � = σ 2 Ini , too. Assuming that
σ 2 and �∗ are known, they combine a goodness of fit term with a penalty term, and
propose CCp defined as:

CCp = SSRes
σ 2 + K , (27)

where K = 2ρ −n defines the effective degrees of freedomwith ρ = tr(H1) (Hodges
and Sargent 2001). If the variance components are unknown, �∗ is substituted by its
ML �̂∗ or restricted MLE �̂∗R estimate. The effective degrees of freedom ρ is also
estimated, ρ̂ = tr(Ĥ1) where Ĥ1 = Ĥ1(�̂∗) or Ĥ1 = Ĥ1(�̂∗R). σ 2 is estimated in

the largest candidate model (∗) through σ̂ 2 = SS∗
Res

N−p∗ , an unbiased estimator of σ 2. For

further details about Ĥ1 see Hodges and Sargent (2001). By substituting the variance
components by their estimators in a suitable way, the conditional Cp is:

CCp = (n − p∗)
SSRes
SS∗

Res
+ K̂ , (28)

with K̂ = 2ρ̂ − n indicating the (ML or REML) estimated penalty term.
Kuran and Özkale (2019) provide a conditional conceptual predictive statistic, too,

in the framework of LMMs but applying a ridge estimator for overcoming multi-
collinearity problems. LikeWenren and Shang (2016), theywork under the assumption
that� = σ 2�∗ and� = σ 2 Ini . Whenwe have tomanagemulticollinearity problems,
usually we delete one or more variables related to the fixed effects, but this could cause
some not irrelevant consequences: The fitted candidate model could be misspecified.
For this reason, the two authors are motivated to require to the ridge estimator and
the ridge predictor for LMMs proposed by Liu and Hu (2013) and Özkale and Can
(2017):

β̂k = (X
′
V−1∗ X + k Ip)

−1X
′
V−1∗ y, (29)

b̂k = �∗Z
′
V−1∗ ( y − Xβ̂k), (30)

where k, a positive real number, represents the ridge biasing parameter. Its selection
is obtained by minimizing a generalized cross-validation in the predictive step, while
the same is measured through the minimization of the scalar mean square error of
the ridge regression, in the estimation process (see Özkale and Can 2017). Following
Wenren and Shang (2016), they propose two versions of the conditional conceptual
predictive statistic, distinguishing the case in which σ 2 and �∗ are known or they
aren’t. The proposed criteria are the same of CCp in Eqs. (27) and in (28), substituting
the effective degrees of freedom under ridge estimator for LMMs, ρk = tr(H1k), to
ρ, ρ̂k = tr(Ĥ1k) to ρ̂ and SSRes,k = ( y − ŷk)

′
( y − ŷk) to SSRes, where H1k =

In − V−1∗ [In − X(X
′
V−1∗ X + k Ip)−1X

′
V−1∗ ].
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Li et al. (2014) proposed a two-stage method based on the MDL principle. When β

is the only unknown parameter, encoding the estimated parameter represents the first
stage. Then, all the sequence of data with the distribution f

θ̂
is encoded. The resulting

total length code used for transmission is equivalent to BIC:

L( y) = L( y|θ̂) + L(θ̂) = − log f
θ̂
( y) + p

2
log(m).

The penalty term, which measures the precision used to encode each parameter, is
log(m)/2 with a uniform distribution. The authors follow the idea of the mixtureMDL
proposed by Hansen and Yu (2003), which assumes a mixture distribution induced by
the user-defined probability distributionw(θ) on the parameter space	. They assume
that � = σ 2 Ini , β ∼ N (0, cσ 2(X ′

i�
−1
∗i X i )

−1) and the hyperparameter c is a scalar
constrained to be nonnegative. As regards the distribution of σ 2, an inverse gamma
distribution is assumedwith parameters (a, 3/2). Hence, themixture description length
of y is expressed as:

− logm( y) = − log
∫

fθ ( y)w(θ)dθ .

The code length is minimized with respect to c ≥ 0 and the resulting ĉ is plugged
into the code length expression, leading to the lMDL0 criterion. The expression of the
final code length, with only β unknown and ignoring the impact of b, is:

{
1
2

{∑n
i=1 y′

i�
−1
i yi − FSSσ + p

[
1 + log

(
FSSσ

p

)]
+ log n

}
, if FSSσ > p,

1
2

∑n
i=1 y′

i�
−1
i yi , otherwise,

FSSσ = (
∑n

i=1 y′
i�

−1
i X i )(

∑n
i=1 X

′
i�

−1
i X i )

−1(
∑n

i=1 X
′
i�

−1
i yi ) and (log n)/2

represents the code length necessary for transmitting ĉ. If FSSσ ≤ p, ĉ = 0 and this
implies that all fixed effects are null. The lMDL0 criterion has the same structure of
penalized likelihoods such as AIC and BIC, but with a proper data-adaptive penalty,
depending on the covariance matrices. The two-stage mixture MDL principle, in the
most realistic case with (σ 2,�∗) unknown, it consists in estimating �∗ and plugging
it into the code length. Minimization of the code length function, with respect to a and
c, leads to an even more complex lMDL structure. The authors showed that the MDL
criteria possess the selection consistency of BIC for finite-dimensional models.

Marino et al. (2017) give a really important contribution to the selection of relevant
covariates in the LMMs, since their proposal is aimed at mixed models with missing
data. Their work deals with selection of covariates in multilevel models, hence appli-
cable to linear mixed models being a two-level model. The authors work under the
assumption that � = σ 2�∗ and � = σ 2 Ini and that parts of the covariates are ignor-
able missing, hence imputable. They propose to identify the covariates with missing
data, to perform imputations producing m complete datasets (multiple imputations)
and in the end to stack all these datasets into one single wide complete dataset. Before
imputation, the generic linear mixed model in Eq. (1) is rewritten, taking into account
for the missing values, as follows:
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Yi =
L∑

l=1

G∑

g=1

(X(l)
ig β(l)

g )+Z(•)
i bi+εi , i = 1, 2, . . . ,m; g = 1, . . . ,G; l = 1, . . . , L;

(31)
where X(l)

ig represents the g-th predictor for the i-th cluster from the l-th imputed
dataset. After grouping all datasets into one, according to group relevant variables for
imputation, the model could be rewritten in a compact way:

Yi = X(•)
i β(•) + Z(•)

i bi + εi , (32)

where X(•)
i = (X(•)

i1 ,X(•)
i2 , . . . ,X(•)

iG )
′
containing all the imputation data, and β(•) is

the related G-vector of parameters. For identifying the relevant covariates, the authors
suggest a shrinkage estimation process, i.e., to maximize the profile penalized REML
log-likelihood built for the extended model to imputed datasets:

QR(β(•)) = lR(β(•), σ 2,�∗) − λ

G∑

g=1

√
ug||β(•)

g ||, (33)

where λ is the positive tuning parameter, ug is the number of covariates, belonging
to the group g, with imputation data inside. In case of no missing data or only one
imputation, the optimal penalized solution is obtained through the classical LASSO
penalization. Instead of maximizing Eq. (33), because of some computational issues,
the authors prefer to solve a different optimization problem through an iterative algo-
rithm concerning the following penalized function:

Q2
R(β(•)) = lR(β(•), σ 2,�∗) −

G∑

g=1

τ 2
g − λ2

G∑

g=1

ug
4τ 2

g
[||β(•)

g ||]2, (34)

Hossain et al. (2018) propose a non-penalty Stein-like shrinkage estimator and then
an adaptive version of the same estimator. This approach, first, consists in using a non-
penalty shrinkage estimator (SE) and then it applies an adaptive measure related to the
number of restrictions, which measures the distance between the restricted and the full
model. The procedures works as follows: they propose to maximize the log-likelihood
function under the postulated restricted parameter space, using the Lagrangemultiplier
vector, to get a restricted estimator forβ this allows to build the profiling log-likelihood
for estimating τ . Once the RE for θ = (β, τ ) are available, the likelihood ratio test
statistic Dm = 2[l(θ̂ |θ) − l(θ̂RE|θ)] is introduced, and it allows to define the pretest
estimator (PT) for β:

β̂PT = β̂ − I (Dm ≤ χ2
r ,α)(β̂ − β̂RE). (35)

Since that β̂PT is a discontinuous function of β̂ and β̂RE and it depends on the α-level
chosen a priori by the user, an adapted shrinkage estimator is built up, as follows:

β̂PSE = β̂RE + (1 − (r − 2)D−1
m )(β̂ − β̂RE), r ≥ 3, (36)
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The shrinkage estimator is, actually, a linear combination of β̂ and ˆβRE: λβ̂ + (1 −
λ)β̂RE, where the shrinkage parameter λ is an optimal value equal to (r −2)D−1

m . The
final estimator proposed by the authors is the positive-part shrinkage estimator, which
takes into account only the positive values of the estimator in Eq. (36) due to the not
convex function of SE in β̂ and ˆβRE.

Only two papers discuss the selection of fixed effects in a linear mixed model in
the case of a high dimensional setting: Rohart et al. (2014) and Ghosh and Thoresen
(2018).

In many fields, it happens that one has to manage quite large amount of covariates.
Thus, if interest is focused on obtaining an optimal inference, then choosing only the
relevant covariates is particularly important.

Ghosh and Thoresen (2018) contribute to linear mixed-effects model selection with
a non-concave penalization for the selection of fixed effects. Their procedure works
with a maximum penalized likelihood, where non-concave penalties are implemented,
considering � = σ 2 Ini . A general objective function (with a general non-convex
optimization):

Qn,λ(β, η) = Ln(β, η) +
p∑

j=1

Pn,λ(|β j |), (37)

has to be minimized with respect to (β, η) for a general loss function, L(β, η), which
is assumed to be convex only in β and non-convex in η. We can distinguish two
situations: the number of fixed effects is less than the number of observations (p < n)
and a high-dimensional setup where p is of non-polynomial (NP) order of sample size
n.

Making some appropriate assumptions on the penalty, it is important to note that:

as n increases, max{p′′
λn

(|β|)} → 0 and
p′
λn

(θ)

λn
> 0. Moreover, the true parameter

β0 is divided into two sub-vectors β0 = (β
(1)′
0 ,β

(2)′
0 )′, where β

(2)
0 is a null vector. If

λn → 0 and
√
nλn → ∞, as n increases, we can be sure that the local minimizer

exists and satisfies that β̂
(2)

is equal to 0. Concerning the case of high dimensionality,
when p is of non-polynomial (NP) order of sample size, one should take into account
the SCAD penalty for obtaining an estimator that is simultaneously consistent and
satisfies the oracle property (Fan and Li 2001) of variable selection optimality for
any suitably chosen regularization sequence λn . Under some particular assumptions
(extensively presented in Ghosh and Thoresen 2018) what happens is that a local
minimizer is obtained,which satisfies,with a probability of reaching one asn increases,
that β(2) = 0 and that the estimated active set of β̂ coincides with the true active set of

the fixed effect parameters. The β̂
(1)

and η̂ estimators are normally distributed under
both types of dimensional settings.

Rohart et al. (2014) focus on the selection of the fixed effects in a high dimensional
linear mixed model, suggesting the addition of an �1-penalization on β to the log-
likelihood of the complete data. This penalization is useful in cases where the number
of fixed effects is greater than the number of observations: It shrinks some coefficients
to zero. They propose an iterative multicycle expectation conditional maximization
(ECM) algorithm to solve the minimization problem of the objective function:
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g(θ; x) = −2L(θ; x) + λ||β||1, (38)

The algorithm consists of four steps and it converges when three stopping crite-
ria, based, respectively, on ||β[t+1] − β[t]||2 , ||b[t+1]

k − b[t]
k ||2 and ||L(θ [t+1], x) −

L(θ [t], x)||2, are fulfilled. Since the estimation of θ is biased, a good choice would be
to use the algorithm only for estimating the support of β and, after that, to estimate
θ using a classic mixed model estimation, based on the model that contains the only
J relevant fixed effects: y = Xβ j + Zb + ε. The regularization parameter λ is tuned
with the BIC,

λBIC = min
λ

{log |Vλ| + ( y − Xβ̂λ)
′V−1

λ ( y − Xβ̂λ) + dλ log(n)}, (39)

where dλ is the number of nonzero variance–covariance parameters plus the number
of nonzero fixed effects coefficients. Substituting the LASSO method in the second
step with any other variable selection method that optimizes a criterion, the algorithm
becomes amulticycle ECM.All these considerations are valid assuming independence
between the random effects, i.e., if there are q random effects corresponding to q
grouping factors. As regards the selection of the random effects, it suffices to observe
quite a small variance of a random effect to remove it at one step of the algorithm.
The algorithm produces the same results and the same theoretical properties of the
lmmLasso method (Schelldorfer et al. 2011) when variances are known or they are
assumed to be known, but it is much faster.

5 Random effects selection

Testing if random effects exist is equivalent to testing the hypothesis whether their
variance/covariance matrix is made by zeros. Some authors, like Zhang et al. (2016),
worked on the identification of the covariance structure of random effects, and others
such as Wang (2016) provided some characterizations of the response covariance
matrix that cause model non-identifiability. The common perspective of these works
lies in providing a preliminary analysis before the selection of the effects in a linear
mixed model, without providing a tool for testing the significance of random effects.
Li and Zhu (2013), instead, introduced a test for evaluating the existence of random
effects in semi-parametric mixed models for longitudinal data, proposing a projection
method. The two authors created a test with two estimates for the error variance,
one consistent under the null hypothesis and the other consistent under both the null
and the alternative. The idea was to compare the two estimates under the alternative
hypothesis, leading to reject the null one in case of large values of the test. But the
test showed to be not stable and powerful, because of the projection matrix of Z
variables onto the space spanned by the X variables. Hence, the two authors propose
a similar, but more powerful test, in the LMMs framework but without projections.
For developing the test, no assumptions are necessary for the random effects or the
random errors. The test is built using the trace of the variance/covariance matrix of
random effects:
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Tm = tr( Â)
√

(k̂ − 3σ̂ 4)tr{diag2(M tr
0m)} + 2σ̂ 4tr{(M tr

0m)2}
d−→ N (0, 1), m → ∞.

(40)
Under the alternative, the same test converges in distribution to N (m, 1), where

m = k0c11 − q1 + (q1 − 1)c13tr(�zQ10)
√

(k − 3σ 4)Cdiag + 2σ 4Ctr

, (41)

with c11 and c13 estimates of variance/covariance matrices related to scaled Z, Ctr
and Cdiag two nonnegative constants such that limm→∞[m · tr{diag2(M tr

0m)}] = Cdiag
and limn→∞[m · tr(M tr

0m2)] = Ctr . The test results to be consistent, not only under
the null hypothesis, but under the alternative too. Even if the rate of convergence is
slower than m−1/2, the test is consistent. Furthermore, the test is good even if high
correlations between Z and X are present.

6 Fixed and random effects selection

In most real cases, it is a matter of investigating the individuation of the important
predictors corresponding not only to the fixed effects but, also, to the random part of
the model. The joint selection of the two types of effects has drawn more attention
in recent years. Most of the proposed procedures are related to shrinkage methods: It
suffices to look simultaneously at Tables 2 and 3 to check this statement. The joint
effect selection through penalized function can be based on a two-stage procedure,
considering fixed and random effects separately, or a one-stage procedure, considering
them jointly. Bondell et al. (2010) underlined that, in a separate selection, a change in
the structure of one set of effects can lead to considerable different choices of variables
for the other set of effects. Lin et al. (2013), on the other hand, argued that greater
computation efficiency is reached if one prefer a separate selection of the effects. The
number of stages employed in the shrinkage methods is reported in Table 1.

Braun et al. (2012) propose a predictive cross-validation (CV) criterion for the
selection of covariates or random effects in the presence of linearmixed-effectsmodels
with serial correlation. Their approach is based on the logarithmic and the continuous
ranked probability score (CRPS). Wang and Schaalje (2009) use point predictions,
while Braun et al. (2012) focus on the whole predictive distribution, inspired by the
proper scoring rules suggested byGneiting and Raftery (2007), and the “mixed” cross-
validation approach provided byMarshall and Spiegelhalter (2003). Going into detail,
they use a very common proper score, the LS (local score), which considers the log
predictive density f ( y) for the observed value yobs and the CRPS, which is sensitive to
the distance. The CRPS considers how close a predictive value is to the observed value
through a ponderation system. With the univariate Gaussian as predictive distribution,
the CRPS has the following form:

CRPS(Y , yobs) = σ

[
1√
π

− 2ϕ

(
yobs − μ

σ

)

− yobs − μ

σ

(

2


(
yobs − μ

σ

)

− 1

)]

,

(42)
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where ϕ and 
 indicate the p.d.f. and the distribution function of a standardized
Gaussian variable, respectively. The “mixed” cross-validation approach fits a model
to the whole dataset. Once the hyperparameters have been estimated through all data,
one observation is left out and for this one the LS and the CRPS are computed.
Finally, the cross-validation mean scores LSCV and CRPSCV are calculated from the
distribution. The LSCV is asymptotically equivalent to cAIC, but it is preferable to a
full cross-validation approach because only onemodel is fitted at the beginning instead
of fitting a model for each observation left out.

Schmidt and Smith (2016) focus on model selection when the number of models
involved in the process is huge. They introduce a parameter subset selection algo-
rithm (PSS). This technique consists in ranking the parameters by their significance,
to establish the influential parameters. The basic assumption regarding the variance–
covariance matrices of the random effects and of the random errors is � and σ 2 Ini ,
respectively. The methodology is based on the asymptotic approximation of standard
errors, measured through a normalization of the estimated standard deviations for each
parameter. The proposedmethodworks as follows: at first an estimate of the error vari-
ance is measured, then using a local sensitivity matrix—containing all the derivatives
with respect to all fixed and random parameters for each i-th observation—one is
able to estimate the variance–covariance matrix with all variances and correlations
for the fixed and for the random effects (the authors suggest to use for instance the
Moore-Penrose pseudoinverse). An estimate for the standard errors for each parameter
is now possible:

√
Cov(k, k), which is used for obtaining a measure of the selection

score related to each k-th parameter in the i-th individual: αki = |st.err.k/θ̂ki |. A small
selection score is equivalent to a significant parameter. A ranking of all selection
scores is created assigning a selection index γki according to the position reached by
each αki in the ordering. For all the parameters is calculated a global selection index
�k = ∑m

i=1 γki , which implies that the smallest values of this global index are related
to the most significant parameters for all the clusters. If two or more parameters bring
to the same �k , then the parameter that has the smallest selection scores over all m
individuals, is chosen as the most significant one. It is worth noting that since the PSS
is repeated m times, the m sets of parameter rankings will be all different because the
random effects parameter estimate will be different for each individual. The PSS algo-
rithm attributes to the standard errors the role of measuring the parameter uncertainty:
the parameters which obtain the smallest selection scores are those most significant
and with the smallest uncertainty.

Rocha and Singer (2018) propose exploratory methods based on fitting standard
regression models to the individual response profiles or to the rows of the sample
within-units covariance matrix (in the case of balanced data) as supplementary tools
for selecting a linear mixed-effects model. As concerns the choice of the fixed effects
they examine the profile plots and suitable hypothesis tests. Assuming homoschedastic
conditional independence, the model in Eq. (1) is rewritten as:

yi = X∗
i β

∗
i + εi , (43)

where X∗
i contains the common variable between X i and Zi and those that are unique

to both the kind of variables, β∗
i contains the amount of p + k parameters related to
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the fixed and the random effects. To test whether the generic k-th element of β is null,
they propose the following statistic test:

t = β
∗
k

n−1
√

σ̂ 2diagk[(
∑m

i=1 X
∗′
i X∗

i )
−1]

∼ tv, (44)

where the degrees of freedom v = ∑m
i=1 ni −m(p+q) and the estimated σ̂ 2 is given

by
∑m

i=1
ni−(p+q)

v
σ̂ 2
i , with:

σ̂ 2
i = 1

ni − (p + q)
Y

′
i [Ini − X∗

i (X
∗
i X i )

−1X i ]Y i . (45)

The variance of β̂∗
ik , i = 1, 2, . . . ,m, is expected to be equal to the k-th diagonal

term of σ 2(X∗′
i X∗

i )
−1 when the variance of the corresponding random coefficient,

b̂ik , is null. Otherwise, we might expect a larger variability of the β̂∗
ik around its

mean. The k-th element of β̂
∗
i , β̂∗

ik , follows a N (β∗
ik; vikσ

2) distribution where

vik = diagk{(X∗′
i X∗

i )
−1}. Therefore, β̂∗

ik/
√

vik ∼ N (β∗
ik/

√
vik; σ 2). Letting ŵik =

β∗
ik/

√
vik and wk = ∑m

i=1 ŵik/m, it follows that:

t(ŵk) = √
n/(n − 1)(ŵik − wk)/σ̂ ∼ tv . (46)

Thus, for each k we expect around α% of the values of t(ŵk) outside the correspond-
ing global significance level α∗% = α/(m(p + q)) Bonferroni-corrected confidence
interval, namely [tv(α∗/2), tv(1−α∗/2)]where tv(δ) denotes the 100δ%percentile of
the t distribution with v degrees of freedom. A larger percentage of points outside that
interval suggests that bik may be a random coefficient. Combining the two statistic
tests in Eqs. (44) and (46) makes possible to detect which effects are statistically sig-
nificant in the selection procedure. Another way to select the random effects requires
the assumption of the homoschedastic conditional independence, i.e., when data are
collected at the same time. In this case, the number of units for each i-th individual
is the same and hence it is possible to estimate only one variance–covariance matrix
V as S − σ̂ 2 In , where S = (m − 1)−1 ∑m

i=1( yi − y)( yi − y)
′
. Fitting polynomial

models, with the same degree, to the rows of S the exploratory analysis along the lines
obtained becomes an additional tool for the selection of the random effects.

6.1 One-stage shrinkage procedures

Chen et al. (2015) propose a variable selection methodology under the ANOVA type
linear mixed models, for a high-dimensional setting .They focus on the selection of
the fixed effects and on testing the existence of the random effects. The authors state
that cov(bi ) = σ 2

i Ini and � = σ 2 I , without setting any distributional assumption for
Y . The selection regarding the fixed effects is made through the SCAD penalty. With
the main purpose of removing the heteroschedasticity and correlation of the response
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variable, they modify the model in Eq. (1), through an orthogonalization applied to
random variables Z⊥. Let M (Z) be the vector space spanned by the columns of Z,
Z⊥ such that Z

′
⊥Z = 0, M (Z)⊥ the orthogonal complementary space of M (Z),

therefore:
Z⊥Y = Z⊥Xβ + Z⊥ε, (47)

A sparse estimate of β can be obtained by minimizing:

Q(β) = 1

2
(Y − Xβ)

′
P(Z)⊥(Y − Xβ) + n

p∑

j=1

pλ(|β j |), (48)

where P(Z)⊥ = Z⊥Z
′
⊥ is the orthogonal projectionmatrix of spaceM (Z)⊥ and pλ(θ)

is the SCAD penalty. Putting Y∗ = Z
′
⊥Y and X∗ = Z

′
⊥X the minimization algorithm

Q(β), the convergence test and the selection of thresholding parameters can be applied
to Eq. (48) without additional effort. Once the fixed effect parameters are estimated,
the authors focus on the selection of the random effects, which means to detect if some
σi = 0. The formal hypothesis system is:

H0 : σ 2
k = 0, k ∈ D ↔ Ha : ∃D∗ ⊆ D, s.t ., σ 2

k > 0, k ∈ D∗, (49)

whereD is a subset of 1,2,…,q. Two estimators are proposed forσ 2: one, σ̂ 2, consistent
even if the null hypothesis does not hold, the other one, σ̂0, consistent only under the
null hypothesis. Indicating with l̂=̂{i : β̂i �= 0} all the relevant fixed effects, once the
fixed parameters have been estimated, with Wl̂=̂(X l̂ , Z) the relative covariate matrix
together with the design matrix for the random effects, an estimate of σ 2 is defined as:

σ̂ 2 = Y
′
P(Wl̂ )⊥Y

tr [P(Wl̂ )⊥] , (50)

where P(Wl̂ )⊥ is the orthogonal projection matrix on the space of M (Wl)
⊥:

σ̂ 2
0 =

Y
′
P(Wl̂,−D )⊥Y

tr [P(Wl̂,−D )⊥] , (51)

Let’s assume that D = D1 ∪ D2 with D1=̂{k : k ∈ D,mk → ∞ when n → ∞}
and D2=̂{k : k ∈ D,mk = O(1)}. Under H0 in (49), under certain conditions and
assuming that the D1 is a null set, the authors built a test for assessing the exis-
tence of at least one of the random effects based on the difference between (50) and
(51), which tends in distribution to χ2(g) where g represents the dimension of space
M (P(Wl,−D )⊥ ZD ). Whereas, under H0 in (49) ifD1 contains at least one element and

knowing that σ̂ 2 − σ̂ 2
0 = Y

′
Mn,l̂Y , with Mn,l̂=̂

P(W
l̂
)⊥

tr(P(W
l̂
)⊥ )

− P(W
l̂,−D

)⊥
tr(P(W

l̂,−D
)⊥ )

, then the test

to be considered is:
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TnG,l̂(γ ) = Y
′
Mn,l̂Y

σ̂ 2
√

γ tr{diag2(Mn,l̂)} + 2tr{Mn,l̂}
d−→ N (0, 1) as n → ∞, (52)

where γ indicates the kurtosis parameter that can be estimated with any consistent
estimator.

Fan et al. (2014) propose a robust estimator for jointly selecting the fixed and
random effects. The variable selection methodology defined by the three authors is
robust against outliers in both the response and the covariates. The variance–covariance
matrix of the random effects is factorized using the Cholesky decomposition: � =
���

′
�, where � = diag(ν1, ν2, . . . , νq) and � represents a diagonal matrix and a

triangular matrix with 1 on its diagonal, respectively. Hence, the random effects bi
are now substituted by ��b∗

i . It is worth noting that setting to zero one element of
� implies that all elements of the corresponding row and column in � are zero, too,
i.e., the relative random effect is not significant. To obtain a robust estimator which
doesn’t suffer the impact of outliers in the covariates, they introduce some weights,
wi j , function of the Mahalanobis distance:

wi j = min

{

1,

{
d0

(xi j − mx)
′ S−1

x (xi j − mx)

} δ
2

,

{
b0

(zi j − m z)
′ S−1

z (zi j − m z)

} δ
2
}

,

(53)
where the parameter δ ≥ 1, d0 and b0 are the 95-th percentiles of the chi-square
distributions with the dimension of xi j and zi j like degrees of freedom, respectively.
Sx and Sz are the median absolute deviance and mx and m z represent the medians of
the covariates and random variables, respectively. For reducing the impact of outliers
in the response variable, it is modified subtracting υi j to each its element in Eq. (54),
considering the studentized residuals ri j = yi j − x

′
i jβ − z

′
i j��b∗

i

υi j = sign(ri j )(|ri j | − c)σ I (|ri j | > c). (54)

The robust log-likelihood is then defined as:

l R(θ) = log
∫

σ 2− mq+n
2 exp

{

− 1

2σ 2

∥
∥W

1
2 ( y∗ − Xβ − Z Im ⊗�Im ⊗�b∗)

∥
∥
}

× exp

{

− 1

2σ 2 b
∗′
b∗

}

.

(55)
To guarantee the consistency property to the estimators, a correction has to be applied
to lR(θ):

l RC (θ) = l R(θ) − am(θ), (56)

with am(θ) = ∑m
i=1 ai (θ) such that ∂

∂θ
ai (θ) = Eθ

[
∂l Ri (θ)

∂θ

]

.

Selection and estimation of fixed and random effects are obtained maximizing:

QR(θ) = l Rc (θ) − n

⎛

⎝
p∑

j=1

pλn (|β j |) +
q∑

j=1

pλm(|ν j |)
⎞

⎠ , (57)
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where pλm(·) is a shrinkage penalty with λn being the parameter which controls the
amount of shrinkage, whileβ j and ν j are the un-penalizedmaximum estimators in Eq.
(55). The authors propose the ALASSO penalty to control the amount of shrinkage.
For selecting λm the authors prefer to minimize the following BIC criterion:

BIC(λ) = −1

2
log |V̂ | − 1

2
|| y − Xβ̂||2

V̂
+ log(m)||θ̂λ||0, (58)

where σ̂ 2, part of V̂ , is the median absolute deviation estimate, β̂ and V̂ are obtained
as robust estimators and, finally, ||θ̂λ||0 states for the zero norm, measuring the amount
of nonzero elements of θ̂λ.

Taylor et al. (2012) extend the two-parameter Lr penalty of Frank and Friedman
(1993) and Fu (1998) in order to obtain new mixed model penalized likelihood, useful
for selecting both the random and the fixed effects. The extended linear mixed model
considers a set of penalized effects (a), containing a subset of some effects:

y|b ∼ N (Xβ + Zb + Ma,�), y ∼ N (Xβ + Ma, V (τ )). (59)

The authors use the scaled variance–covariance matrices �∗ = �/σ 2 and V (τ )∗ =
V (τ )/σ 2 and identify a, a potentially large vector of k effects, k < p + s and k < n,
with covariates M. The penalized likelihood involves the Lr class of penalties with
0 < r < 1:

l = log f ( y, θ) −
k∑

j=1

pλ(|a j |; r), (60)

with the penalty term given by: pλ(|a j |; r) = λ((|a j |+1)r −1)/r , λ > 0. Taking into
account a simple setting with σ 2 = 1 and M as orthonormal columns, an unbiased
OLS estimator for a is obtained, through an iterative process:

a j(s+1) = sign(â j )(|a j | − λ∗)+. (61)

This penalty is singular at origin, then, a local quadratic approximation is introduced
to the derivative of the penalty, approximated as follows:

pλ(|a j |; r) ≈ 1

2
(λ(|a js | + 1)r−1/|a js |)a2j , (62)

Thus, the introduction of a penalized term estimated iteratively, as shown is equivalent
to inserting the pseudo-random effects in the linear mixed models. This it suffices to
guarantee Henderson’s results for estimation (REML estimates for τ ) and prediction
of both kinds of effects. Thresholding the elements of |as+1| with an optimal rule,
a partitioned set of estimates into nonzero and zero components (a1,s+1, a2,s+1) is
obtained. The zero set (a2,s+1, M2,s+1) is discarded from the set of information and
the nonzero set replaces a2 until the iterative penalized REML estimates converge.

Li et al. (2018) propose a doubly regularized approach for selecting both the fixed
and the random effects, in two cases: a) finite dimension of fixed and/or random
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effects, b) fixed and/or random effects that increase as the sample size goes to infinity.
Their approach set � = σ 2 Ini and � = σ 2�∗ = σ 2LL

′
, (Cholesky decomposition)

with L a lower triangular matrix containing positive diagonal elements. The authors
apply a double regularization (a �1-norm penalty for β and a �2-norm penalty for
�∗ parameters) to the log-likelihood function, l(β, σ 2,�∗) (equivalent to Eq. 5),
as concerns the case with m < p. Hence, the objective function to maximize for
estimating β, σ 2 and �∗ is the following:

Q(β, L, σ 2) = �(β, σ 2, L) − λ1

p∑

j=1

|β j | − λ2

q∑

k=2

√
L2
k1 + · · · + L2

kq . (63)

For the case m > p, they modify l(·) in Eq. (63) with the following function:

�m(β, σ 2, L) = − 1

2

m∑

i=1

log |σ 2V ∗i | − 1

2
log

∣
∣
∣
∣σ

−2
m∑

i=1

X
′
iV

−1
∗i X i

∣
∣
∣
∣ − 1

2σ 2 (Y i − X iβ)
′
V−1

∗i (Y i − X iβ).

(64)
The authors propose an algorithm as effective as the Newton–Raphson algorithm for
estimating step by step β and L , since the penalty function in Eq. (64) is separable.

Pan and Shang (2018b) propose a simultaneous selection procedure of fixed and
random effects. Let’s assume that� = σ 2�∗,� = σ 2 Ini andψ containing the q(q+1)

2
unique elements in �∗, and let’s indicate with θ∗ the vector related to (β,ψ). The
authors maximize the following penalized profile likelihood function:

Q(θ∗) = p(θ∗) − λmρ(|θ∗|)

= −1

2

m∑

i=1

log |V i∗| − n

2
log

(
m∑

i=1

( yi − X iβ)T V−1
i∗ ( yi − X iβ)

)

− λmρ(|θ∗|),

(65)

where λm is the tuning parameter controlling the amount of shrinkage and ρ(|θ∗|
is the adaptive Lasso function: ρ(|θ∗| = |θ∗|/|θ̃∗|, with θ̃∗ the MLE estimator of
θ∗ used as the initial weights vector. To maximize 65, the authors use the Newton–
Raphson algorithm, considering a local quadratic approximation at each iteration step
as concerns the approximation of |θ∗|.

6.2 Two-stage shrinkagemethods

One issue with the application of one stage shrinkage methods is that the combined
dimension of both fixed and random effects is higher than the dimension of each of
the two steps considered separately (Lin et al. 2013). The computational efficiency
depends also on the penalized log-likelihood taken into account for the selection of
the random effects: The REML is preferred by Lin et al. (2013) and Pan (2016). The
reasoning behind this choice is intuitive and underlined by Lin et al. (2013): REML
estimators are unbiased and seem to be more robust to outliers than ML estimators.
Furthermore, REML estimators do not involve the fixed effects.
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Lin et al. (2013) propose two-stage model selection by REML and pathwise coor-
dinate optimization, inspired by the algorithm suggested by Friedman et al. (2007).
The mixed model used is formulated assuming that � = σ 2 Ini . In detail, during the
first stage, the random effects are selected by maximizing the restricted log-likelihood
penalized with the adaptive LASSO penalization:

QR(τ ) = l R(τ ) − λ1,m

s∑

j=1

λ jw j |� j |, (66)

where � j is the j-th diagonal element of � and w j is the known weight. Because
of the non-differentiable nature of the objective function, the Newton–Raphson algo-
rithm is used for maximizing QR(τ ), after having locally approximated the penalty
function by a quadratic function. Once the variance–covariance matrix is estimated,
it is considered as known when the following penalized log-likelihood function is
maximized to estimate the fixed effects:

Q f (β) = −1

2
( yi − X iβ)′v−1

i ( yi − X iβ) − λ

p∑

j=1

w j |β j |. (67)

Wu et al. (2016) propose an orthogonalization-based approach, which selects sepa-
rately the fixed effects, at first, and then the random effects. All the selection steps are
based on the least squares and no specific distribution assumption has to be involved.
This method is suggested when the dimension of fixed effects is not large. The mixed
model used considers � = σ 2 I and the selection procedure applies, at first, a QR
decomposition of the design matrices, related to the random effects, for obtaining a
homogeneous linear regression model (which does not depend on the random effects).
To select the fixed effects, it suffices to minimize, with respect to β, the sum of resid-
uals with SCAD penalization, thanks to possibility to find an unbiased estimate (Fan
and Li 2001):

S1(β) = 1

2
(Y − Xβ)′Pz′(Y − Xβ)′ + (n − ms)

p∑

j=1

pλ1(|β j |), (68)

where Pz′ = I − Z(Z′Z)−1Z is an idempotent matrix and pλ1(|β j |) is a function
whose first derivative depends on the tuning parameter λ. A ridge estimation process
is computed for obtaining β̂, approximately:

β̂
k+1 = (X ′Pz′X + (n − ms)

∑
(λ1, β̂

k
))−1X ′Pz′Y , (69)

while to estimate σ 2 they consider:

W ∗
2 (�, σ 2) = 1

2

m∑

i=1

(( yi − xi β̂) ⊗ ( yi − xi β̂) − vec(V i ))
′ (70)

× (( yi − xi β̂) ⊗ ( yi − xi β̂) − vec(V i )), (71)
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where V i stands for the variance–covariance matrix of Y i ,⊗ for the Kronecker tensor
product and β̂ for the estimates of the fixed effects obtained previously. Then, the
objective function S2(θ) with the SCAD penalty becomes:

S2(τ ) = 1

2

m∑

i=1

(Ỹ −uiτ )′(V̂ i ⊗ V̂ i )
−1(Ỹ −uiτ )+

m∑

i=1

n2i

(q2+q)/2+1∑

j=1

pλ2(|τ j |),
(72)

and even in this situation it is solved iteratively obtaining the ridge estimation for τ :

τ̂
k+1 = (U ′Ŵ−kU +

m∑

i=1

n2i
∑

λ2

(τ̂
k
))−1U ′Ŵ−k Ỹ , (73)

knowing thatW is a diagonal matrix whose elements are given by Wi = V i ⊗ V i , Ỹ
is the bias corrected Y and ui is a function of zi ⊗ zi .

Ahn et al. (2012) provide a class of robust thresholding and shrinkage procedures
for selecting both the effects in linear mixed models. The robustness is guaranteed as
they deal with non-normal correlated data and they do not assume any distribution of
random effects and errors. For the estimation of the variance components, a moment-
based loss function is built. For ensuring the desired sparse structure, they employ a

hard thresholding estimator �̂
H = [σ̂ H

i j ], defined as σ̂ H
i j = σ̃i j I (|̃σi j | > ν), where

I (·) is a typical indicator function and ν ≥ 0 is the parameter which controls the

thresholding criterion. Although �̂
H

is consistent, it could not be a positive semi-
definite matrix in the presence of small sample sizes. Hence, in this sense, a sandwich
estimator with a shrinkage penalty is yielded, by minimizing the following function:

QR(D) =
m∑

i=1

ni−1∑

j=1

ni∑

k= j+1

(ỹi jk − z′i j D�̃Dz jk)
2 + λ

q∑

i=1

di , subject to all di ≥ 0,∀i = 1, . . . , q.

To select the fixed effects, using V = Z�̃Z′ + σ̂ 2
ε In , a feasible generalized least

square (FGLS) estimator for β is computed as theminimizer of the following objective
function:

QF (β) = LF (β|�̂, σ̂ 2
ε ) + τ

p∑

j=1

w j |β j |,

where data are transformed and w j ’s are data-dependent weights.
Pan (2016) and Pan and Shang (2018a) propose a shrinkage method for selecting

separately the two kinds of effects. The employment of the profile log-likelihood
leads to a more efficient and stable computational procedure. Recalling the linear
mixed model, let us assume that � = σ 2�∗, � = σ 2 Ini and ψ contains the q(q+1)

2
unique elements in �∗. The profile and the restricted profile log-likelihood functions
are, respectively:
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p(β,ψ) = −1

2

m∑

i=1

log |V i | − n

2
log

(
m∑

i=1

( yi − X iβ)T V−1
i ( yi − X iβ)

)

,

(74)

pR(ψ, σ ) = −1

2
log

∣
∣
∣
∣
∣

m∑

i=1

XT
i V

−1
i X i

∣
∣
∣
∣
∣
− 1

2

m∑

i=1

log |V i |

− 1

2
(n − p) log

[
m∑

i=1

( yi − X i β̃)T V−1
i ( yi − X i β̃)

]

, (75)

The random covariance structure is selected by maximizing the penalized restricted
profile log-likelihood with the adaptive LASSO, but a factorization of the vector con-
taining the variance–covariance elements of �∗ in (d, γ ) has to be carried out before
hand, with d representing the vector of the diagonal elements and γ the vector of
parameters that can vary freely:

QR(ψ) = pR(ψ) − λ1m

q∑

j=1

w1 j d j |, (76)

where λ1m is the tuning parameter and w1 = 1/|d̃| are weights used for reaching the
optimality of the solution, with d̃ computed as a root-n consistent estimator vector
of d. The Newton–Raphson algorithm is first applied for maximizing the penalized
restricted profile likelihood function leading to V̂ and, then, the same is applied for
maximizing the penalized profile likelihood function:

QF (β) = pF (β) − λ2m

p∑

j=1

w2 j |β j |, (77)

where pF (β) is the profile log-likelihood, λ2m is the tuning parameter for fixed effect
selection and w2 j are weights computed as the inverse of |β̃ j |, considering that β̃ is
the MLE of β. When the algorithm converges, the maximizer of the penalized profile
log-likelihood is obtained. Hence, the set of suitable covariates is identified.

Fan and Li (2001) stated that “the penalty functions have to be singular at the origin
to produce sparse solutions (many estimated coefficients are zero), to satisfy certain
conditions to produce continuous models (for stability of model selection), and to be
bounded by a constant to produce nearly unbiased estimates for large coefficients.”
The estimator obtained through the penalty functions should lead to three important
properties: asymptotic unbiasedness for avoiding modeling bias; sparsity, i.e., as a
thresholding rule, the estimator should shrink some estimated coefficients to zero in
order to reduce model complexity; continuity in data to avoid instability in model
prediction. They showed, in few, that the choice of the shrinkage parameter should
guarantee the well known oracle properties in the resulting estimator: The penalized
likelihood estimator is root-n consistent if λn → 0, a set of estimated parameters is
set to 0 and the remaining estimators converge asymptotically to a normal distribution
when

√
nλn → ∞.
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Hossain et al. (2018) show that under certain regularity conditions and for fixed
alternatives BHa = δ �= 0, as n increases, the estimators β̂PT (see in Eq. 35), β̂PSE
(see in Eq. 36) and the positive-part shrinkage estimator converge in probability to
β̂ and they derive the asymptotic joint normality for the unrestricted and restricted
estimators, of which the three estimators are a function. Fan et al. (2014) demonstrate
that their proposed robust estimator enjoy all the properties defined by Liski and Lisk
(2008). Chen et al. (2015) demonstrate only the validity of the Oracle property of
only sparsity and consistency, but not the asymptotical distribution. Li et al. (2018)
show the “sparsistency” property which ensures the selection consistency for the true
signals of both fixed and random effects; hence, they provide analytical proofs about
the validity of consistency and sparsity, but nothing about the distributional form.
Pan and Shang (2018b) demonstrate that their procedure fills the consistency and the
sparsity properties, without mentioning anything about the asymptotical normality.
Marino et al. (2017) only refer to take a look at Rubin (2004) in which is possible
to assess that “a small number of imputations can lead to high-quality inference.” As
concerns Rohart et al. (2014) thus no mention about asymptotic properties fulfilled by
their final estimator. Pan (2016), Pan and Shang (2018a), Ahn et al. (2012) and Lin
et al. (2013) demonstrate that, if λ → 0 and

√
mλ → ∞ as m → ∞, the estima-

tors produced by their two stage model selection are
√
m consistent and they possess

the oracle properties, i.e., sparsity and asymptotic normality (asymptotically the pro-
posed approaches can discover the subset of significant predictors). In other words, for
an oracle procedure, the covariates with nonzero coefficients will be identified with
probability tending to one, and the estimates of nonzero coefficients have the same
asymptotic distribution as the true model (Pan 2016). All these statements are valid if
an appropriate tuning parameter is chosen.

Consistent variable selection depends on the choice of the tuning parameter. The
shrinkage procedures yield estimates, assuming the tuning parameters as known, but
they are not. Hence, they have to be tuned among a pool of values, from the largest to
the smallest quantity, identifying a path through the model space. After constructing
the path and reducing parameter space, one can apply a direct approach (information
criteria, cross-validation and so forth) to better identify the important variables. For
this reason, shrinkage methods are, usually, employed in the case of many variables,
thanks to the fact that they do not need to focus on all possible models (2p+q ). The
most widely used methods in the literature for tuning the parameter, which controls
regularization, are cross-validation and BIC. “A more rigorous theoretical argument
justifying the use of the BIC criterion for the �1 penalized MLE in high-dimensional
linear mixed-effects models is missing: the BIC has been empirically found to perform
reasonably well” (Schelldorfer et al. 2011). This seems to be generally valid for other
shrinkage methods: there is not theoretical justification for employing the BIC. Fan
et al. (2014) highlight their choice to select the shrinkage parameter through the BIC
criterion is due to the fact that GCV leads to over-fitting models and AIC seems not
to be consistent when the true model has a sparsity structure. The BIC criterion on
which the authors base their selection of λn is the following:

BIC(λ) = −1

2
log |V̂ | − 1

2
|| y − Xβ̂||2

V̂
+ log(m)||θ̂λ||0, (78)
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where V̂ = diag(V̂ 1, V̂ 2, . . . , V̂m) and the generic V̂ i , β̂, �̂∗ are the robust estimates
contained in θ̂λ upon convergence of the EM algorithm. Because of the over-fitting
problems using GCV, Marino et al. (2017) choose the BIC criterion for the selection
of the tuning parameter:

BIC(λ) = −2lR(β(•), σ̂ 2, �̂∗) + q × ln(n), (79)

where lR(β(•), σ̂ 2, �̂∗) is the REML log-likelihood function related to the model in
(32).

Li et al. (2018) select the two tuning parameter minimizing a variant of BIC, pro-
posed by Wang (2016):

BIC = −2pR(β, L) +
[

dβ + (1 + d�∗)d�∗
2

]

log(n), (80)

where pR(β, L) is the profile log-likelihood in Eq. (75), dβ and d�∗ are given by the
amount of nonzero elements in β and on the diagonal of �∗, respectively. Pan (2016)
and Pan and Shang (2018a) propose to minimize the BIC or the AIC or the generalized
CV (GCV) as possible criteria for selecting the optimal tuning parameter. The above
criteria, surely, have to be computed with the corresponding profile likelihood, shown
in Eqs. (74) and (75), to identify the tuning parameter for the fixed part and the random
part, respectively. The degrees of freedom necessary to compute all three criteria also
refer to the fixed effects in one case (the number of nonzero β̂’s) and to the random
part in the other case (the amount of nonzero parts in ψ̂). Pan and Shang (2018b) select
the optimal λ by minimizing the BIC criterion, where the degrees of freedom takes
into account the number of nonzero elements in θ∗. The tuned parameters (λ1, λ2) are
computed, by Wu et al. (2016), with a CV or GCV technique. Taylor et al. (2012) and
Ahn et al. (2012) choose a tuning parameter that minimizes the BIC criterion; Taylor
et al. (2012) focus on the value of r (from a fixed grid, see Eq. (60)), which leads to
the minimum BIC, after obtaining convergence for the penalized REML estimators:

BIC = −2l(β̂, â, τ̂ ) + log(m)#d f , (81)

where l(·) is the un-penalized (since it involves a as fixed effects) marginal log-
likelihood over the random effects b evaluated at the REML estimates of τ and #d f
represents the number of nonzero elements in â. Ahn et al. (2012) work on a modified
version of the BIC, similar to the RSS ratio, for both the fixed effects and the random
effects:

BICR(ν) = L0(�
H
ν )

L0(�)
+ log(n)

n
× d f 1, (82)

BICF (τ ) = LF (β̂τ |�̂, σ̂ 2)

LF (β̂G |�̂, σ̂ 2)
+ log(n)

n
× d f 2, (83)

where β̂G is the FGLS estimator and d f 1 and d f 2 represent the number of nonzero

components on the diagonal in �̂
H
and in β̂τ . The degrees of freedom measure the

123



Model selection in linear mixed-effect models 559

effective model dimension. Unlike Bondell et al. (2010) and Ibrahim et al. (2011),
where the degrees of freedom considered are, respectively, sample size n and cluster
size m, in the methods discussed above the number of parameters that can vary freely
is connected to the nonzero parameters in the working model (fixed components and
variance–covariance elements of the random effects). As pointed out by Müller et al.
(2013), the number of nonzero estimated components related to the tuning parameter
is not equivalent to the number of independent parameters, which is instead true for
the linear models.

The main characteristics associated with shrinkage procedures available in the lit-
erature are summarized in Table 1.

7 Review of simulations

Almost all the authors have performed at least one simulation to measure and demon-
strate the reliability of their own procedure. As in a meta-analysis, we have collected
the simulations but, since the results are not directly comparable, the tables synthe-
size the main parameters characterizing the simulations. We followed the setting of
Müller et al. (2013), for continuity to purposes. Considering Table 2, the smaller the
values of min |β|/σ and min{ev(�/σ 2)} the more difficult the selection of the true
model for β and τ . Nevertheless, it is worth noting that these values are not useful
as regards the goodness of fit of the models or the real ability of the methods, once
they are applied, for identifying the true values of β and τ , since they refer to initial
settings of simulations and not to their results. As Müller et al. (2013) underlined,
one could consider these simulations as a mere meta-analysis. The results obtained
are not directly comparable, because the authors use different measures to assess the
performance of their method.

It isworth noting that, all simulations are appliedwith amoderate number of random
effects (for both the full and the true model) and of variance–covariance parameters,
except for that of Li et al. (2018) and Ahn et al. (2012). A large amount of fixed effects
occur in the full model of Chen et al. (2015), Ghosh and Thoresen (2018) and Rohart
et al. (2014).

To determine the set of candidate models for β, |Mβ |, the authors do not follow the
same criterion. Some authors focus only on covariates, and in this sense |Mβ | is equal
to 2p−1. (So the intercept is not included for size of β). Others instead refer to p as
the whole fixed regression parameters, including the intercept, and thus, the candidate
models are 2p. Furthermore some authors, such as Kawakubo et al. (2014), state that
they exclude from |Mβ | the null model (i.e., the model containing only the intercept).

Kawakubo andKubokawa (2014) found that both theMcAICand amodel averaging
procedure (which has more appropriate weights) depending on McAIC, work better
than cAIC in terms of prediction errors. They prove empirically the same results in the
case of small area prediction, which is the topic on which Kawakubo et al. (2014) and
Lombardía et al. (2017) focus on. They show, therefore, a prediction error improvement
of CScAIC with respect to cAIC. Compared to mAIC, cAIC and BIC, the EBIC of
Kubokawa and Srivastava (2010) is the criterion which, by simulation, leads to a
better selection of the truemodel as the number of covariates and the number of clusters
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increase. These results constitute empirical evidence of the consistency property of the
EBIC. Lombardía et al. (2017), instead, compared the extended generalized AIC they
defined (20) with the conditional AIC defined by Vaida and Blanchard (2005). They
discovered that the xGAIC for the Fay–Herriot model presents better performances
in terms of correct classification rates of the true model. As the number of covariates
increases, the xGAIC performs better and better (in a scenario with three variables it
perfectly brings to the correct model), instead the vAIC selects 44% of the times a
model with a fewer number of fixed effects. Wenren and Shang (2016) show that the
proposed conditional criteria perform more efficiently than the classic Mallow’s Cp

when more significant fixed effects are added. A large number of units for each cluster
is required, if one works with the random effects within clusters (for instance small
area estimation) or if one could obtain a less biased estimation of the penalty term.
Wenren et al. (2016) show by simulation that their two marginal Cp-types perform
better, in selecting the correct model, than mAIC and mBIC in particular situations:
when observations are few and highly correlated or when the true model is included in
all candidate models and includes more significant fixed effect variables. Kuran and
Özkale (2019) compare the performance of their conditional ridgeCp with the CCP of
Wenren and Shang (2016), in both cases of known and unknown variance–covariance
matrices of the randomeffects andof the randomerrors. Furthermore, theyuse different
values for the ridge parameters and compare various models (with different number
of the explicative variables). They show that the percentages of choosing the true
model by all the Cp statistics are quite optimal and comparable and they increase as
the number of fixed effects increases as well. When the ridge parameter increases,
the number of individuals and the number of units are quite small and the correlation
between explanatory variables is not high, the CRCp outperforms the CCp.

Focusing on the shrinkage selection procedures, Hossain et al. (2018) compare the
performances, in terms of mean squared prediction errors, reached by their PT and
PSE estimators against the unrestricted MLE, the restricted MLE, the LASSO and
ALASSOmethods. They show that theirmethodology, as the sample size increases and
the number of active covariates decreases, brings to better performance than the other
estimators except the restricted MLE. Ghosh and Thoresen (2018) try to demonstrate
the great performances of the SCAD penalty over �1 penalization. Hence, by simula-
tions, they point out that both in a low-dimensional setting and in a high-dimensional
setting the twopenalties correctly select the truefixed effects.With respect to �1, SCAD
focuses on a smaller activate set of β, especially, in the high-dimensional case. Marino
et al. (2017) compare their penalized likelihood procedure for multilevel models with
missing models with the LASSO method applied on data without missing values and,
hence, used as benchmark reference. Therefore they also compare the performance
of their method with the regularized LASSO on complete-case data. When missing
data are present in the dataset the proposed methodology performs better, especially
when the number of imputations increases. Taking into account only one imputation
doesn’t produce huge benefits. On the other hand, the methodology is quite good in
identifying the correct model when the number of imputation and the number of units
increases. Rohart et al. (2014) reached the same results as Schelldorfer et al. (2011)
in the case of known variances, but with an algorithm much faster. It is worth not-
ing that their method can be computationally combined with other procedures. The
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orthogonal-based SCAD procedure ofWu et al. (2016) is very efficient in selecting the
fixed effects as the number of total units increases, but has to be improved for the selec-
tion of the random effects. Pan (2016) compared the ability of his two-stage procedure
to correctly identify the two kinds of effects with that of Ahn et al. (2012) and Bondell
et al. (2010). He found that the percentage of the effects (taken both separately and
together) correctly identified was higher than the others and was rose as the number
of clusters increased. Only in the case of a non-normal distribution assumed for ε did
the method proposed by Ahn et al. (2012) perform better, since it does not need any
distributional assumptions. Pan (2016) also compares the computational efficiency of
his model selection with that of Bondell et al. (2010) and concludes that his algorithm
takes less time to converge. There are two probable reasons: σ 2 is not included in the
profile log- likelihood used by Pan (2016) and a two-stage procedure for selecting both
the effects is faster than the procedures involving only one step. Lin et al. (2013) used
the same settings for their simulations as those used by Bondell et al. (2010), that is the
reason why their results are missing in Table 2: They are available in Table 2 of Müller
et al. (2013). The robust selection method presented by Fan et al. (2014) has been
shown to lead to the same results of the equivalent non-robust method if the data do
not present outliers. On the other hand, the method has no influence on the estimates
if outliers are present in the data (both in the response variable and in the covariates),
while the non-robust methodology brings to over-fitting with lower fit percentages and
higher mean squared errors of the estimated parameters as a consequence. The robust
selection method is perturbed by outliers if these are only in the response variable or
in the covariates.

In the case of high-dimensional settings where the focus is on selection the fixed
and the random effects, Li et al. (2018) used in their simulations two ways of con-
trolling the tuning parameters: a non-adaptive regularization (NAR), which chooses
the tuning parameter from a simple grid of values, and an adaptive regularization
(AR), which attributes weights to different penalty parameters. The AR methodology
leads to smaller estimation bias for the variance components and to a better control
of the false discovery rate. Chen et al. (2015) obtained a good performance selec-
tion in terms of low proportion of parameters that did not shrink to zero while one
expected the opposite or of parameters shrinking to zero, by mistake. Furthermore,
they obtained accurate results in terms of bias and standard deviations of the estimates.
They conducted some simulations excluding from the selection the fixed effects, and
they discovered that in all situations the fixed effect selection never affects the power
performances.

The parameter subset selection method proposed by Schmidt and Smith (2016)
leads to better performances, compared to other techniques, among which LASSO,
ALASSO and M-ALASSO.

As specified at the beginning of this review, our purpose is to give a clear outline
of most methodologies used in linear mixed models that are available in the litera-
ture. Hence, in this sense, Table 3 summarizes all the features that easily identify all
procedures: the part of the model focusing on (fixed and/or random), the dimension
of the linear mixed model used and the structure of variance and covariance matri-
ces. Dimensionality represents the level of the number of parameters (θ = β, τ )
involved in the model. We included not only the methods mentioned by this article,

123



Model selection in linear mixed-effect models 565

Ta
bl
e
3

Se
tti
ng
s
of

L
M
M

se
le
ct
io
n
pr
oc
ed
ur
es

fo
r
al
lt
he

pr
oc
ed
ur
es

an
al
yz
ed

in
th
e
re
vi
ew

R
ef
er
en
ce

Fo
cu
s

D
im

en
si
on
al
ity

�
�

So
ft
w
ar
e

In
se
rt
ed

in
M
ül
le
r
et
al
.(
20

13
)

B
K
G
10

(B
on
de
ll
et
al
.2

01
0)

Fi
xe
d

+
ra
nd

om
L
ow

/m
ed
iu
m

σ
2
�

∗
σ
2
I n

i
R

C
D
03

(C
he
n
an
d
D
un

so
n
20

03
)

R
an
do

m
L
ow

�
σ
2
I n

i

D
M
T
11

(D
im

ov
a
et
al
.2

01
1)

Fi
xe
d

+
ra
nd

om
L
ow

σ
2
�

∗
σ
2
I n

i

G
K
10

(G
re
ve
n
an
d
K
ne
ib

20
10

)
R
an
do

m
L
ow

σ
2
�

∗
σ
2
I n

i
“c
A
IC

4”
R
pa
ck
ag
e

IZ
G
G
11

(I
br
ah
im

et
al
.2

01
1)

Fi
xe
d

+
ra
nd

om
L
ow

/m
ed
iu
m

�
σ
2
I n

i
R

JN
R
09

(J
ia
ng

et
al
.2
00

9)
Fi
xe
d

L
ow

σ
2

σ
2

“f
en
ce
”
R
pa
ck
ag
e

JR
03

(J
ia
ng

an
d
R
ao

20
03

)
Fi
xe
d

+
ra
nd

om
L
ow

�
�

JR
G
N
08

(J
ia
ng

et
al
.2

00
8)

Fi
xe
d

M
ed
iu
m

�
�

“f
en
ce
”
R
pa
ck
ag
e

K
11

(K
ub

ok
aw

a
20

11
)

Fi
xe
d

+
ra
nd

om
L
ow

�
�

N
J1
2
(N

gu
ye
n
an
d
Ji
an
g
20

12
)

Fi
xe
d

H
ig
h

σ
2 b
I

σ
2 ε
I

“f
en
ce
”
R
pa
ck
ag
e

PL
12

(P
en
g
an
d
L
u
20

12
)

Fi
xe
d

+
ra
nd

om
L
ow

/m
ed
iu
m

�
σ
2
I n

i
M
at
la
b

PN
06

(P
u
an
d
N
iu

20
06

)
Fi
xe
d

+
ra
nd

om
L
ow

�
�

SC
08

(S
ha
ng

an
d
C
av
an
au
gh

20
08

)
Fi
xe
d

+
ra
nd

om
L
ow

�
σ
2
�

∗
SK

10
(S
ri
va
st
av
a
an
d
K
ub
ok
aw

a
20

10
)

Fi
xe
d

L
ow

σ
2
�

∗
σ
2
I n

i

N
ot

in
se
rt
ed

in
M
ül
le
r
et
al
.(
20

13
)

A
Z
L
12

(A
hn

et
al
.2

01
2)

Fi
xe
d

+
ra
nd

om
L
ow

/m
ed
iu
m

�
σ
2
I n

i

C
L
SZ

15
(C

he
n
et
al
.2

01
5)

Fi
xe
d

+
ra
nd

om
H
ig
h

σ
2 i
I n

i
σ
2
I n

i

123



566 S. Buscemi, A. Plaia

Ta
bl
e
3

co
nt
in
ue
d

R
ef
er
en
ce

Fo
cu
s

D
im

en
si
on
al
ity

�
�

So
ft
w
ar
e

FQ
Z
14

(F
an

et
al
.2
01

4)
Fi
xe
d

+
ra
nd

om
L
ow

σ
2
I n
i

σ
2
I n
i

G
T
16

(G
ho

sh
an
d
T
ho

re
se
n
20

18
)

Fi
xe
d

L
ow

/h
ig
h

�
σ
2
I n

i
R

H
13

(H
an

20
13

)
Fi
xe
d

L
ow

/m
ed
iu
m

σ
2 b
I n

i
σ
2 i
I n

i
R

H
TA

18
(H

os
sa
in

et
al
.2
01

8)
Fi
xe
d

L
ow

/m
ed
iu
m

�
�

K
K
14

(K
aw

ak
ub

o
an
d
K
ub

ok
aw

a
20

14
)

Fi
xe
d

L
ow

σ
2
�

∗
σ
2
�

∗
K
O
18

(K
ur
an

an
d
Ö
zk
al
e
20

19
)

Fi
xe
d

L
ow

/m
ed
iu
m

σ
2
�

∗
σ
2
I n
i

R

K
S1

0
(K

ub
ok

aw
a
an
d
Sr
iv
as
ta
va

20
10

)
Fi
xe
d

L
ow

σ
2
�

∗
σ
2
�

∗
K
SK

14
(K

aw
ak
ub
o
et
al
.2

01
4)

Fi
xe
d

L
ow

σ
2
�

∗
σ
2
�

∗
L
LV

R
17

(L
om

ba
rd
ía
et
al
.2

01
7)

Fi
xe
d

L
ow

/m
ed
iu
m

�
�

R

L
PJ
13

(L
in

et
al
.2

01
3)

Fi
xe
d

+
ra
nd

om
M
ed
iu
m

�
σ
2
I n

i
R

L
S1

5
(L
ah
ir
ia
nd

Su
nt
or
nc
ho

st
20

15
)

Fi
xe
d

L
ow

/m
ed
iu
m

σ
2 b i

σ
2
I n

i

LW
SW

Z
Z
18

(L
ie
ta
l.
20

18
)

Fi
xe
d

+
ra
nd

om
H
ig
h

σ
2
�

∗
σ
2
I n
i

LY
C
Z
14

(L
ie
ta
l.
20

14
)

Fi
xe
d

L
ow

�
σ
2
I n

i

L
Z
13

(L
ia
nd

Z
hu

20
13

)
R
an
do

m
L
ow

/(
m
ed
iu
m
)

�
σ
2
I n

i

M
B
L
17

(M
ar
in
o
et
al
.2

01
7)

Fi
xe
d

L
ow

(m
ed
iu
m
)

σ
2
�

∗
σ
2 i
I n

i

P1
6
(P
an

20
16

)
Fi
xe
d

+
ra
nd

om
L
ow

/m
ed
iu
m
/h
ig
h

σ
2
�

∗
σ
2
I n

i
R

PS
18

(P
an

an
d
Sh

an
g
20

18
b)

Fi
xe
d

+
ra
nd

om
L
ow

/m
ed
iu
m

σ
2
�

∗
σ
2
I n

i
R

R
SC

L
14

(R
oh

ar
te
ta
l.
20

14
)

Fi
xe
d(

+
ra
nd

om
)

H
ig
h

�
σ
2
I n

i
“M

M
S”

R
pa
ck
ag
e

SS
16

(S
ch
m
id
ta
nd

Sm
ith

20
16

)
Fi
xe
d

+
ra
nd

om
L
ow

/(
m
ed
iu
m
)

�
σ
2
I n

i
M
at
la
b

123



Model selection in linear mixed-effect models 567

Ta
bl
e
3

co
nt
in
ue
d

R
ef
er
en
ce

Fo
cu
s

D
im

en
si
on
al
ity

�
�

So
ft
w
ar
e

T
V
C
N
12

(T
ay
lo
r
et
al
.2
01

2)
Fi
xe
d

+
ra
nd

om
M
ed
iu
m
/H

ig
h

σ
2
�

∗
σ
2
�

∗
A
SR

em
l-
R

W
L
X
Z
16

(W
u
et
al
.2

01
6)

Fi
xe
d

+
ra
nd

om
L
ow

/m
ed
iu
m

�
σ
2
I n

i
R
an
d
M
at
la
b

W
S1

6
(W

en
re
n
an
d
Sh

an
g
20

16
)

Fi
xe
d

L
ow

σ
2
�

∗
σ
2
I n

i
R

W
SP

16
(W

en
re
n
et
al
.2

01
6)

Fi
xe
d

L
ow

σ
2
�

∗
σ
2
I n

i
R

“R
ef
er
en
ce
”
re
fe
rs
to

th
e
in
iti
al
s
of

th
e
au
th
or
s
fo
llo

w
ed

by
th
e
se
co
nd

di
gi
to

f
th
e
ye
ar

of
pu
bl
ic
at
io
n
(w

e
us
e
th
e
sa
m
e
ap
pr
oa
ch

as
(M

ül
le
r
et
al
.2

01
3)
);
“F
oc
us
”
in
di
ca
te
s

th
e
pa
rt
of

th
e
m
od

el
th
at
is
su
bj
ec
tt
o
se
le
ct
io
n
(F
ix
ed
,R

an
do

m
or

bo
th
);
“D

im
en
si
on

al
ity

”
is
in
he
re
nt

to
th
e
nu

m
be
r
of

pa
ra
m
et
er
s
in
vo
lv
ed

in
th
e
in
iti
al
m
od
el
;�

an
d

�

de
sc
ri
be

th
e
st
ru
ct
ur
e
as
su
m
ed

fo
r
th
e
va
ri
an
ce
–c
ov
ar
ia
nc
e
m
at
ri
ce
s
re
la
te
d
to

th
e
ra
nd
om

ef
fe
ct
s
an
d
th
e
ra
nd
om

co
m
po
ne
nt
,r
es
pe
ct
iv
el
y;

“S
of
tw
ar
e”

sp
ec
ifi
es

th
e
so
ft
w
ar
e

(w
he
n
sp
ec
ifi
ed
)
us
ed

fo
r
im

pl
em

en
ta
tio

n
of

th
e
pr
oc
ed
ur
e

123



568 S. Buscemi, A. Plaia

but also those contained in Müller et al. (2013), in order to provide a global view of all
methodologies. Taking a look jointly to Table 2 of Müller et al. (2013), Tables 2 and 3,
it becomes obvious that most model selection procedures, focusing on selecting both
the fixed and the random part in cases of medium and/or high dimensionality, involve
a shrinkage procedure. The shrinkage methods are computationally more efficient and
statistically accurate (Bülmann and van de Geer 2011; Müller et al. 2013.

8 Review of real examples

LMM are widely used in medical statistics and biostatistics. To enrich this review, we
give a brief look at the real examples described in some of the listed papers.

Ahn et al. (2012), Pan (2016) and Hossain et al. (2018) describe the Amsterdam
Growth and Health Study, widely used in literature. The Amsterdam Growth and
Health Study Data were collected to explore the relationship between lifestyle and
health in adolescence and young adulthood. In growing toward independence, the
lifestyle habits of teenagers change substantially with respect to physical activity,
food intake, tobacco smoking, etc. Accordingly, their health perspective may also
change. Individual changes in growth anddevelopment canbe studiedbyobserving and
measuring the same participant over a long period of time. TheAmsterdam growth and
health longitudinal study was designed to monitor the growth and health of teenagers
and to develop future effective interventions for adolescence. A total of 147 subjects in
the Netherlands participated in the study, and they were measured over 6 time points;
thus, the total number of observations is 882. The continuous response variable of
interest was the total serum cholesterol expressed in mmol/l. Pan (2016) in his paper
analyses a second dataset, which is the colon cancer data. The goal of the analysis was
to estimate the cost attributable to colon cancer after initial diagnosis by cancer stage,
comorbidity, treatment regimen, and other patient characteristics. The data reported
aggregate Medicare spending on a cohort of 10,109 colon cancer patients up to 5 years
after initial hospitalization, and these data are considered as the response for a linear
mixed model.

Taylor et al. (2012) applied their method to determine quantitative trait loci (QTL)
in a wheat quality data set. The data set was obtained from a two-phase experiment
conducted in 2006 involving awheat population consisting of 180 double haploid (DH)
lines from the crossing of two favored varieties. Data were collected from two phases
of experimentation consisting of an initial field trial andmilling laboratory experiment.
A partially replicated design approach was used at both experimental phases. The field
trial was designed as a randomized block design. The analysis considers a very large
set of candidate variables, and matrix a in Eq. (59) is a (390 × 1) size matrix.

Jiang et al. (2008) considered a dataset from a survey conducted in Guatemala
regarding the use of modern prenatal care for pregnancies where some form of care
was used. They consider applying the fence method in selection of the fixed covariates
in the variance component logistic model. Again, they cope with a quite large number
of covariates.

Marino et al. (2017) worked on a dataset provided by the Healthy Directions–Small
Business study conducted bySorensen et al. (2005). Some recent epidemiological stud-
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ies proved that there is a relationship between dietary patterns and physical inactivity
with multiple cancers and chronic diseases. One of the main purposes of the study
was to detect whether or not the cancer prevention (based on occupational health and
health promotion) could lead to reduce significantly the red meat consumption or to
improve significantly the mean consumption of fruits and vegetables, the levels of
physical activity, the smoking cessation and the reduction of occupational carcino-
gens. The HD-SB study was a randomized, controlled trial study conducted between
1999 and 2003 as part of the Harvard Center Prevention Program Project. The study
population of the study were twenty-six small manufacturing worksites that employed
multi-ethnic, low-wageworkers. Participatingworksites were randomized to either the
18-month intervention group or minimal intervention control group. The respondents
to the study were 974 but only 793 of them answered with complete information;
hence, there was 18.5% of missing data. The number of variables involved in the sur-
vey was huge, and they were grouped according different areas: health behaviors, red
meat consumption, physical activity and consumption of multivitamin and sociode-
mographic characteristics. The authors took into account 15 covariates, and they built
a linear mixed model where the mean consumption of fruit and vegetables at follow-
up. They proposed their methodology for missing data with 1, 3, and 5 imputations,
comparing the results to the analysis made on the complete-cases data.

Fan et al. (2014) applied their robust method on a longitudinal progesterone dataset,
available onDiggle P.J.’s homepage: https://www.lancs. The dataset contains 492 urine
samples from 34 women in a menstrual, where each woman contributed from 11–28
times. The menstrual cycle length was standardized for all women to a reference 28-
day cycle. A linear mixedmodel was analyzed by the authors with the log-transformed
progesterone level as response variable, a random intercept and 7 fixed effects: age,
bmi, time, the squared values of time and the three first-level interactions among age,
bmi and time.

Li et al. (2018) in their paper analyze two datasets. The first is related to a longitu-
dinal randomized controlled trial, involving 423 adolescent children from an Hispanic
population in New York City had their parents affected by HIV+. The main purpose
was to investigate about a negative state of mind (measured by a Basic Symptoms
Inventory, a score well described by Weiss 2005), over six years (each person has
been visited about 11.5 times). Six variables were involved in the original dataset,
i.e., treatment (or control group), age, gender, Hispanic (1 = Yes, 0 = No), visit time
(expressed in logarithmof year) andvisit season.The authors,workedon a linearmixed
model containing the six covariates plus the two-way interactions between treatment
and time, gender and Hispanic, counting so 10 predictors, which were included in all
the two types of effects. Their regularization procedure was applied both with the non-
adaptive version and with the adaptive version (through the inverse of the estimated
from the ridge-penalization procedure). Their second dataset is related to a clinical
study that investigated on a possible relationship of some protein signatures with post-
transplant renal functions for people with a kidney transplant. The study involved 95
renal transplant patients. The main purpose of the study was to analyze which proteins
had a significant influence on the longitudinal trajectory of renal function measured
by glomerular filtration rate (GFR) of the patients.

123

https://www.lancs


570 S. Buscemi, A. Plaia

Lombardía et al. (2017) analyzed a dataset about surveys conducted from the behav-
ioral risk factors information system in Galicia (2010–2011). The sample design
applied in the survey was a stratified random sampling, allocating with equal pro-
portions by sex and age group. Forty-one areas from the 53 counties in Galicia were
involved in the survey. The authors tried to estimate the prevalence of smokers (at
least 16 years old) distinguished by sex. The minimum sample size in the domain was
44 for men and 48 for women. The response variable, employed in the Fay–Herriot
model used, was the logarithmic transformation of smokers’ numbers. The covariates
were globally 14, classified in four groups: age, degree of urbanization, activity and
educational level.

Han (2013) analyzed a public health dataset about obesity released by the U.S.
Centers for Disease Control and Prevention, which realized a large health study (6971
people) in the United States (51 counties of California) in the years between 2006
and 2010. The information obtained by the surveys. The purpose of the author was to
estimate county level obesity rates for the female Hispanic population within working
ages of 18–64.

Bondell et al. (2010) consider a recent study of the association between total nitrate
concentration in the atmosphere (TNO3, ug/m3) and a set of measured predictors.
Nitrate is one of the major components of fine particulate matter (PM2.5) across the
USA. However, it is one of the most difficult components to simulate accurately using
numerical air qualitymodels. Identifying the empirical relationships that exist between
nitrate concentrations and a set of observed variables that can act as surrogates for the
different nitrate formation and loss pathways can help the research and can allow for
more accurate simulation of air quality. To formulate these relationships, data obtained
from the U.S. EPA Clean Air Status and Trends Network (CASTNet) sites are used.
The CASTNet dataset consists of multiple sites with repeated measurements of pol-
lution and meteorological variables on each site, i.e., the mean ambient particulate
ammonium concentration (NH4, ug/m3), the mean ambient particulate sulfate con-
centration (SO4, ug/m3), relative humidity (RH, %), ozone (O3, ppb), precipitation
(P, mm/h), solar radiation (SR, W/m2), temperature (T, ◦C), temperature difference
between 9 m and 2 m probes (TD, ◦) and scalar wind speed (WS, m/s). The same data
were used by Li et al. (2014) to apply their proposed MDL procedure. A subset of the
CASTnet dataset was, instead, implied by Chen et al. (2015), who focused only on five
sites across the eastern USA, (2001–2009) and took as original variables TNO3, NH4
and SO4, instead the others variables were transformed from ours to seasonal, substi-
tuting the maximum value for O3 and the mean value for the others. The total number
of observations were 175, and in the two-way random effect model the variable time
and sites were included as main random effect.

Ghosh and Thoresen (2018) investigated the effects of intake of oxidized and non-
oxidized fish oil on inflammatorymarkers in a randomized study of 52 subjects (dataset
already studied in literature). Inflammatory markers were measured at baseline and
after three and seven weeks. They use the data to investigate whether there are any
associations between gene expressions measured at baseline and level of the inflam-
matory marker ICAM-1 throughout the study. From a vast set of genes, they initially
selected p = 506 genes having absolute correlation greater than or equal to 0.2 with
the response at any time point, so that the total number of fixed effects considered
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becomes p = 512. On the other hand, removing the missing observations in the
response variable they obtain n = 150 observations, making it a high-dimensional
selection problem. Further, due to the longitudinal structure of the data, they addi-
tionally considered random effect components in the model: they included random
intercept and a random slope.

Finally, Rohart et al. (2014) apply their approach to a real data set from a project in
which hundreds of pigs were studied, the aim being to shed light on the relationships
between some of the phenotypes of interest and metabolic data. Linear mixed models
are appropriate in this case because observations are in fact repeated data collected
in different environments (groups of animals reared together in the same conditions).
Some individualswere also genetically related, introducing a family effect. The data set
consisted of 506 individuals from three breeds, eight environments and 157 families,
metabolic data contained p = 375 variables, and the phenotype investigated was the
daily feed intake (DFI).

Li and Zhu (2013) applied their new covariance-based test on a famous pig weight
dataset, containing the weights of 48 pigs, measured in nine successive weeks.

9 Discussion and conclusion

In this paper, we have discussed most of the model selection procedures for linear
mixed models available to date. The purpose of our review is to allow users to easily
identify the type of method they need, according to certain characteristics, such as the
number of clusters and/or the number of units per cluster, the part of the model to be
selected (fixed and/or random), the dimension of the model and the structure of the
variance–covariance matrices. For all the methods, a description of the simulations, if
available, is reported in Table 2: the purpose is to give an idea of the model settings and
not to provide evidence of the best methods.We used more or less the same notation as
Müller et al. (2013) for alignment with the previous review and, hence, facilitating the
comparisons of the various methods over time. But this review is not only an update
of Müller’s review (Müller et al. 2013, but an attempt to cluster the procedures from a
different point of view: the part of the model to be selected, fixed and/or random. As a
matter of fact, this is one of the main issues when looking for an appropriate method
to choose. Moreover, particular attention is given to the SW used, together with the
implementation and the availability of the code.

This review mentions the available theoretical properties corresponding to the dif-
ferent methodologies, with comparisons among themwhereas it’s possible. A relevant
importance is given here to the shrinkage methods (focused on the selection of fixed
and/or random effects), since these procedures need for the oracle properties estab-
lished by Fan and Li (2001).

By simulation the authors considered in this review try to achieve the best result,
i.e., to identify the optimal model among a pool of candidate models and not the true
model. Many issues are related to the choice of the optimal model, one of which is
determined by the dimension of the pool of candidate models (2p+s). The larger this
setM, the lower computational efficiency is. This has been proven by Fence methods
and a number of Bayesian methods reported in Müller et al. (2013) as well as the two-
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stage procedures of Sect. 6.2, which select the two effects separately, thus reducing
the overall dimension of models.

Over time, greater attention has been given to the generalization of � in Eq. (2):
the scaled version σ 2�∗ replaced σ 2 Ini , but except for Shang and Cavanaugh (2008)
the scaled version σ 2�∗ is assumed for �. There is still poor theoretical support for
a generalized scenario of the variance–covariance matrices for both the effects.

Most of the methods were implemented in R, using different packages or through
their own codes (not published in any package). Some authors, however, do not even
specify the software used (see Table 3). As in a meta-analysis, we gathered the simu-
lations presented in the papers described, since the results are not directly comparable,
the tables synthesize the main parameters characterizing the simulations.

Hence, the main purpose of this review was to provide an overview of some useful
components/factors characterizing each selection criterion, so that users can identify
which method to apply in a specific situation also. In addition, an effort was made to
tidy up the notation used in the literature, by “translating,” if necessary, symbols and
formulas in each paper into a common “language.”
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