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Abstract
The definition of multivariate quantiles has gained considerable attention in previous
years as a tool for understanding the structure of a multivariate data cloud. Due to
the lack of a natural ordering for multivariate data, many approaches have either con-
sidered geometric generalisations of univariate quantiles or data depths that measure
centrality of data points. Both approaches provide a centre-outward ordering of data
points but do no longer possess a relation to the cumulative distribution function of the
data generating process and corresponding tail probabilities. We propose a new notion
of bivariate quantiles that is based on inverting the bivariate cumulative distribution
function and therefore provides a directional measure of extremeness as defined by
the contour lines of the cumulative distribution function which define the quantile
curves of interest. To determine unique solutions, we transform the bivariate data to
the unit square. This allows us to introduce directions along which the quantiles are
unique. Choosing a suitable transformation also ensures that the resulting quantiles
are equivariant under monotonically increasing transformations. We study the result-
ing notion of bivariate quantiles in detail, with respect to computation based on linear
programming and theoretical properties including asymptotic behaviour and robust-
ness. It turns out that our approach is especially useful for data situations that deviate
from the elliptical shape typical for ‘normal-like’ bivariate distributions. Moreover,
the bivariate quantiles inherit the robustness of univariate quantiles even in case of
extreme outliers.
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1 Introduction

Quantiles are an important concept in many areas of statistics. For example, they pro-
vide a notion of extremeness for the data points of interest, are utilised to determine
measures of variability and can be used to derive distribution-free tests in nonpara-
metric statistics. In case of univariate data, quantiles can be characterised in various
different ways, e.g. based on inverting the cumulative distribution function (CDF),
as minimisers of a weighted absolute deviation loss, based on the centrality of data
points as quantified by appropriate depth functions, etc. When going beyond the uni-
variate case, however, these different possibilities yield rather different generalisations
of quantiles due to the lack of a natural ordering of observations (see Serfling 2002,
for a systematic review of multivariate quantile definitions).

One common way of generalising univariate quantiles is to replace the linear order-
ing on the line by a centre-outward ordering which requires the appropriate definition
of a most central point that replaces the median. An early example is the multivariate
simplexmedian ofOja (1983) obtained byminimising the sumof volumes of simplices
with vertices defined by observed data points. More generally, approaches based on
data depths utilise nonnegative real-valued depth functions D( y, F) (with y being a
multivariate data point and F the CDF the data depth is evaluated on) to assign a depth
to each observed data point. The deepest point (in the sense of the data depth) then
corresponds to the median while the remaining points can be ordered centre-outward
based on their depth values (see, among others, Liu et al. 1999; Zuo and Serfling 2000)

Another approach for deriving multivariate quantiles is based on the fact that for
a univariate random variable Y with E(|Y |) < ∞ the τ th quantile, τ ∈ (0, 1) can be
characterised as the minimiser of E [|Y − q| − (2τ − 1)(Y − q)], see, e.g., Ferguson
(1967). Chaudhuri (1996) suggests the generalisation E

[‖Y − q‖ + 〈u,Y − q〉] to
define geometric multivariate quantiles where ‖ · ‖ is the Euclidean norm and 〈·, ·〉
the Euclidean inner product while u ∈ BD(0) = {u|u ∈ R

D, ‖u‖ < 1} determines
the direction as well as the level of the multivariate quantile. More specifically, the
quantile q is ‘central’ (i.e. close to the median), for ‖u‖ close to zero and ‘extreme’
for ‖u‖ close to one. Earlier attempts in this direction have, for example, been pre-
sented by Small (1990) for the special case of the median or Abdous and Theodorescu
(1992). Chakraborty (2001) criticises the approach of Chaudhuri (1996) since geo-
metric quantiles are not equivariant under affine transformations such as rotations.
Consequently, no sensible estimates are available whenever the different components
of the data vectors aremeasured in different units orwhen they have different degrees of
variability. To overcome this problem, Chakraborty (2001) proposes a transformation–
re-transformation approach based on a data-driven coordinate system.

Another class of multivariate quantile definitions relates to an extension of the
probability integral transform to a multivariate analogue which maps the multivariate
quantile function to a reference distribution (Hallin et al. 2010; Carlier et al. 2016).
This concept has been related to depth-based multivariate quantile definitions in Cher-
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Fig. 1 Illustration of bivariate quantile curves before and after the transformation on the unit square. On
the left, the proposed bivariate quantile curves on the original scale of Y are shown for selected quantile
levels τ ∈ {0.4, 0.5, 0.6, 0.7}. The grey dots represent a random sample from the joint CDF while the two
crosses are exemplary data points on the curve at level τ = 0.4. On the right, we depict the corresponding
curves on the unit square (color figure online)

nozhukov et al. (2017), a Bayesian formulation has been proposed by Guggisberg
(2016) and the formulation has also been studied under misspecification (Carlier et al.
2016).

We will follow a different route that considers quantiles as resulting from the inver-
sion of the joint CDF. This approach is related to both the abstract formulation of
real-valued quantile processes proposed in Einmahl and Mason (1992) who define the
multivariate τ th quantile as the smallest Borel set having a probability of at least τ and
the bivariate quantile approach of Chen and Welsh (2002). Here, the authors consider
the inversion of the bivariate CDF but decompose it into the inversion of one marginal
and one conditional distribution to achieve a unique solution. In this paper, we also
focus on the bivariate case but, in contrast to Chen andWelsh (2002), define the bivari-
ate CDF-based quantile curve Qτ , τ ∈ (0, 1) as the set of points (q1, q2)′ in R

2 for
which the bivariateCDF is equal to the desired quantile level τ (see the left plot of Fig. 1
for an empirical illustration showing quantile curves for several quantile levels). The
main differences between our approach and the proposal by Chen and Welsh (2002)
are (1) the transformation on the unit square (where Chen and Welsh 2002 rely on a
standardisation step instead) that makes our CDF-based quantiles equivariant under
componentwise monotonically increasing transformations, (2) the robustness that we
achieve by using this transformation as it avoids the determination of multivariate
measures for location and dispersion and (3) the geometric interpretation offered by
the polar coordinate-type characterisation of bivariate quantiles based on the angle and
the distance with respect to a reference point. Belzunce et al. (2007) and Fernandez-
Ponce and Suarez-Llorens (2007) also derive bivariate quantiles from inverting the
CDF but they rather focus on central quantile region again that are obtained by com-
bining regions implied by the four directions inR2 corresponding to the extreme points
of the unit sphere induced by the product topology.
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228 N. Klein, T. Kneib

In contrast to most previous multivariate quantile definitions, our approach does
not provide a centre-outward but rather a directional notion of extremeness as defined
by the contour lines of the joint CDF. While Hallin (2017) argues that multivariate
quantiles should be related to ranks in order to allow for distribution-free, rank-based
inference, we are developing our novel proposal for applications where the focus
is on studying the directional tail behaviour of a distribution. For example, we will
investigate the joint distribution of two measures for the nutritional status of children
in developing countries later on in this paper, where one is particularly interested in
children that are in the joint lower tail of the bivariate distribution since these are the
ones most urgently in need of nutritional improvement. This change in focus has to
be taken into account when interpreting CDF-based quantile curves. As illustrated in
Fig. 1, it is not the area below the quantile curve that has probability mass τ but rather
the rectangles defined by the points on the quantile curve. Note also that due to the
different notion of extremeness, we are interested in different theoretical properties of
bivariate quantiles. For example, invariance under rotations is not of interest since it
alters the orientation of the joint CDF. In contrast, we are interested in invariance under
componentwise monotonic transformation such that the same children are identified
as extremely malnourished, regardless of the precise measurement instrument utilised
for the two malnutrition dimensions.

Since the CDF-based quantile curve is no longer a single point as in one dimension
and thus cannot be uniquely determined numerically, we introduce an appropriate
reference point such that bivariate points can be described in a polar coordinate-type
fashion. Similar as in copula-based models, we therefore transform the data to the
unit square (see the right plot of Fig. 1) such that each point in the unit square can be
characterised by an angle and the distance along that angle from the upper right corner
of the unit square. For a given angle, we show that elements of the quantile curve
are obtained by minimising an appropriate loss criterion along the angles. Similar
to the univariate case, we demonstrate that this can be done efficiently via linear
programming techniques.

In summary, the main advantages of our new definition of bivariate quantiles are
as follows:

• The bivariate CDF-based quantiles are related to tail probabilities as determined
by the bivariate CDF.

• They provide a direct relation to the quantile level τ in terms of a joint probability,
whereas the quantile level is only determined implicitly in most alternatives that
provide a centre-outward ordering.

• The robustness properties of empirical bivariate CDF-based quantiles are inherited
from univariate quantiles leading to the same breakdown point.

• Empirical bivariate CDF-based quantiles can easily be determined by linear pro-
gramming.

• The univariate quantiles of the marginal distributions are obtained as special cases.

The rest of this paper is structured as follows: Sect. 2 introduces CDF-based bivariate
quantiles in more detail and studies their theoretical properties. Section 3 discusses
numerical optimisation based on linear programming. Section 4 considers asymptotic
results including consistency and asymptotic normality while Sect. 5 provides empir-
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ical evaluations of the novel approach both in simulations and an application. Finally,
Sect. 6 summarises our findings and discusses avenues for future research such as the
generalisation beyond the bivariate case.

2 Bivariate quantiles derived from the cumulative distribution
function

2.1 Prerequisites

For the definition of bivariate quantiles,we consider either a bivariate, continuous, real-
valued randomvariableY = (Y1,Y2)′ or, for the empirical counterpart, an i.i.d. sample
y1, . . . , yn of size n from the distribution of Y . Throughout the rest of the paper, we
will always assume that the domain D of Y is rectangular with a positivity constraint
on the density f (y1, y2), i.e. f (y1, y2) > 0 for all pairs (y1, y2)′ ∈ D. Without loss of
generality, we will considerD = R

2 in the following. The joint density is furthermore
assumed to be continuously differentiable such that the joint CDF

F(y1, y2) = P(Y1 ≤ y2,Y2 ≤ y2) =
y1∫

−∞

y2∫

−∞
f (y1, y2)dy2dy1,

is strictlymonotonically increasing in both arguments and continuously differentiable.
From the joint CDF, the marginal CDFs can be obtained via

F1(y1) = lim
y2→∞ F(y1, y2), F2(y2) = lim

y1→∞ F(y1, y2).

For the characterisation of bivariate quantiles based on loss functions, we will further-
more assume that

∫ ∞
−∞

∫ ∞
−∞ |y1| f (y1, y2)dy1dy2 < ∞ and

∫ ∞
−∞

∫ ∞
−∞ |y2| f (y1, y2)

dy2dy1 < ∞, i.e. existence of first moments for the two components.

2.2 The general set-up

To obtain a bivariate generalisation of univariate quantiles that can be obtained by
inverting the univariate CDF, we define the bivariate quantile curve for fixed quantile
level τ as follows:

Definition 1 (Bivariate quantile curve) For τ ∈ (0, 1), the bivariate quantile curveQτ

is defined as
Qτ =

{
q = (q1, q2)

′ ∈ R
2|F(q1, q2) = τ

}
. (1)

If the strict monotonicity assumption for the bivariate CDF is not fulfilled, e.g. for
(partially) discrete random vectors, the definition should be relaxed to

Qτ = {q ∈ R
2|P(Y1 ≤ q1,Y2 ≤ q2) ≥ τ and

P(Y1 ≥ q1,Y2 < q2)+P(Y1 < q1,Y2≥q2)+P(Y1 ≥ q1,Y2 ≥ q2) ≥ 1−τ } .

(2)
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230 N. Klein, T. Kneib

To get a better understanding of the concept of bivariate quantile curves, Fig. 2 shows
quantile curves for the levels τ = 0.1, . . . , 0.9 for bivariate distributions with standard
normal marginals and the Gaussian, the Clayton, the Gumbel and the Frank copula
with dependence parameters chosen such that Kendall’s tau τK equals 0.2, 0.4, 0.6 and
0.8. From these curves, we can draw some conclusions on stylised features represented
in bivariate quantile curves:

• For the Gaussian copula with elliptical contour lines, the bivariate quantile curves
for different quantile levels but fixed dependence shift in an almost parallel way
towards the upper right corner of the domain. Increasing dependence, on the
other hand, leads to a sharper kink close to the diagonal line. For all dependence
parameters, the quantile curves approach the same value as one of the coordi-
nates approaches ∞ which reflects the fact that marginal quantiles are obtained as
special cases in this situation (see below for details).

• For the case of lower tail dependence (illustrated along the Clayton copula), we see
strong changes in the shape of the quantile curve over the quantile levels. For small
values of τ , we observe the sharp kink on the diagonal line that was associated
with strong dependence in case of the normal copula while the quantile curve is
more circular for larger values of τ . This exactly fits with the notion of lower tail
dependence where there is strong association in the lower tail of the distribution
but weaker dependence in the upper tail.

• For the Gumbel copula as a representative of copulas with upper tail dependence,
the behaviour observed for Clayton copula reverses, i.e. one observes circular
quantile curves for the lower tails and sharp kinks in the quantile curve for the
upper tail.

• The Frank copula behaves similarly to the Gaussian copula since it is also invariant
under rotations of 180.

To characterise the bivariate quantile curve, we now define the loss function

ρτ ( y, q) = max (y1 − q1, y2 − q2)
(
τ − 1{max(y1−q1,y2−q2)<0}

)
(3)

with y = (y1, y2)′, q = (q1, q2)′ ∈ R
2 which provides the bivariate analogue to the

check function known from univariate quantile optimisation (Koenker 2005).

Theorem 2 (Loss function for bivariate quantiles) Under the general assumptions
from Sect. 2.1, the bivariate quantile curveQτ is equal to the set of minimisers of the
expected loss under ρτ , i.e.

Qτ =
{
q ∈ R

2
∣∣E (ρτ (Y , q)) = min

v∈R2
E (ρτ (Y , v))

}
.

The proof of Theorem 2 is given in “Appendix A.1”. The basic idea is to separate the
domain of Y into appropriate rectangles and to apply the Leibniz rule for parameter
integrals twice.

An empirical version of the bivariate quantile curve can easily be defined based
on the bivariate empirical CDF. Let therefore y1, . . . , yn be an i.i.d. sample from the
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Fig. 2 Illustration of bivariate quantile curves for four parametric copulas C with increasing Kendall’s
tau τK = 0.2, 0.4, 0.6, 0.8. Shown are quantiles τ = 0.1, . . . , 0.9 of the theoretical CDF F(y1, y2) =
C(F1(y1), F2(y2)). The margins are assumed to be N(0, 1) distributions (color figure online)

bivariate CDF F :R2 → [0, 1] and define the bivariate empirical CDF as

Fn(y1, y2) = 1

n

n∑

i=1

1 {yi1 ≤ y1, yi2 ≤ y2} .

The empirical bivariate quantile curve Qn,τ can be either obtained by plugging the
empirical CDF into (2) or by using the empirical loss

∑n
i=1 ρτ

(
yi , q

)
. In fact, we

have the following corollary to Theorem 2.
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Corollary 3 The empirical bivariate quantile curveQn,τ is equal to the set of minimis-
ers of the empirical loss under ρτ , i.e.

Qn,τ =
{

q ∈ R
2
∣∣∣∣

n∑

i=1

ρτ

(
yi , q

) = min
v∈R2

n∑

i=1

ρτ

(
yi , v

)
}

.

Even for strictlymonotonic bivariateCDFs, the bivariate quantile curvedoes not reduce
to a single scalar value but rather yields a set along the contour lines of the CDF as
visualised in Fig. 1.Wewill therefore consider a transformation ofR2 to the unit square
which allows us to characterise points in a polar coordinate-type parameterisation. This
enables the introduction of unique direction-specific quantiles that allow us to estimate
Qτ and to study its theoretical properties.

2.3 Transformation to the unit square

Let t :R2 → [0, 1]2, y �→ t( y) = (t1(y1), t2(y2))′ denote a componentwise,monoton-
ically increasing transformation from the original domain to the unit square. Applying
this transformation to the observed data yields

ỹ = (ỹ1, ỹ2)
′ = (t1(y1), t2(y2))

′ = t( y),

and similarly random vectors can be transformed to obtain Ỹ = t(Y). While for theo-
retical considerations on the underlying randomvectors,we require strictmonotonicity
(which ensures that t is invertible), any order-preserving univariate monotonically
increasing function is a candidate for the components of the transformation t for
observed data (which includes piecewise constant functions that do not induce ties in
the observations).

To establish a link to copulae (Joe 2014), transformations based on the marginal
distributions of the components of Y are particularly interesting. Such transformations
also ensure that the transformeddatamarginally spreadover the complete domain [0, 1]
which would not necessarily be the case when relying on some pre-specified CDF that
might place most of its probability mass where no data have been observed. For most
of the theoretical results that we derive in Sect. 4, we will consider the transformation
based on the true marginal CDFs, leading to transformed observations

ỹi1 = F1(yi1), ỹi2 = F2(yi2), i = 1, . . . , n.

In practice however, we will rely on the marginal empirical CDFs

Fj,n(y j ) = 1

n

n∑

i=1

1(yi j ≤ y j ), j = 1, 2

leading to

ỹi1n = F1,n(yi1), ỹi2n = F2,n(yi2), i = 1, . . . , n.
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The latter resembles the definition of empirical copulae (Joe 2014) such that the
transformed data contain the information about the dependence structure only but are
also inherently dependent due to the transformation with the empirical CDF. This
dependence between the transformed observations has to be taken into account when
studying statistical properties of the estimates. In Sect. 4, we will therefore also com-
ment on the changes for the theoretical results when transforming with the empirical
CDFs.

2.4 Direction-specific CDF-based bivariate quantiles

After having transformed to the unit square, we represent points q̃ ∈ [0, 1]2 in a polar
coordinate-type fashion, where α ∈ Dα = [0, π/2] is the corresponding angle of the
distance r̃ to the upper right corner of the unit square. This is illustrated in Fig. 3 for

q̃ = (1 − r̃ cos(α), 1 − r̃ sin(α))′ .

As a consequence,

P(Ỹ1 ≤ q̃1, Ỹ2 ≤ q̃2) = P

(
Ỹ1 ≤ 1 − r̃ cos(α), Ỹ2 ≤ 1 − r̃ sin(α)

)

= P

(
1 − Ỹ1
cos(α)

> r̃ ,
1 − Ỹ2
sin(α)

> r̃

)

= P

(

min

(
1 − Ỹ1
cos(α)

,
1 − Ỹ2
sin(α)

)

> r̃

)

.

This leads to the following definition fromwhichwe derive direction-specific quantiles
along a pre-specified angle α:

Definition 4 (Distance survivor function along α) For a random vector Ỹ with domain
[0, 1]2, we define the distance to the upper right corner of the unit square as

R̃ = min

(
1 − Ỹ1
cos(α)

,
1 − Ỹ2
sin(α)

)

.

The distance survivor function S̃α(r̃) = P(R̃ > r̃) then coincides with the bivariate
CDF of Ỹ evaluated at q̃ = (1 − r̃ cos(α), 1 − r̃ sin(α))′, i.e.

S̃α(r̃) = P

(
Ỹ1 ≤ 1 − r̃ cos(α), Ỹ2 ≤ 1 − r̃ sin(α)

)
.

The empirical analogue yields

S̃n,α(r̃) = 1

n

n∑

i=1

1 (ỹi1 ≤ 1 − r̃ cos(α), ỹi2 ≤ 1 − r̃ sin(α))
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i.e. the empirical survivor function of the distances

ri = min

(
1 − ỹi1
cos(α)

,
1 − ỹi2
sin(α)

)

coincides with the bivariate empirical CDF of ỹ1, . . . , ỹn evaluated at q̃ = (1 −
r̃ cos(α), 1 − r̃ sin(α))′.
We proceed to define direction-specific bivariate quantiles by inverting the survivor
function of R̃ for a given value of the angle α.

Definition 5 (Bivariate quantiles along α) For τ ∈ (0, 1) and α ∈ Dα , the τ th quantile
distance along α is defined as

r̃α,τ = inf{r̃ ∈ Dr̃ (α)|S̃α(r̃) = τ } (4)

where Dr̃ (α) denotes the (angle-dependent) domain of r̃ . From this, the corresponding
direction-specific bivariate quantile along α can be deduced as

q̃α,τ = (1 − r̃α,τ cos(α), 1 − r̃α,τ sin(α))′.

Similarly, the empirical τ th quantile distance along α is

r̃n,α,τ = inf{r̃ ∈ Dr̃ (α)|S̃n,α(r̃) ≥ τ },

and the empirical direction-specific bivariate quantile along α is given by

q̃n,α,τ = (1 − r̃n,α,τ cos(α), 1 − r̃n,α,τ sin(α))′. (5)

In order to obtain the quantile distances as minimisers of the expected loss function
in (3), the latter has to be adapted to account for the transformation on [0, 1]2. To be
more precise, since the introduction of α allows us to reduce the original bivariate
problem to a set of univariate ones, the distance to be considered can be determined
along α leading to the loss function

ρα,τ ( ỹ, r̃) = min (ṽ1, ṽ2)
(
τ − 1{min(ṽ1,ṽ2)≤0}

)
(6)

with ṽ1 = (1 − ỹ1)/ cos(α) − r̃ and ṽ2 = (1 − ỹ2)/ sin(α) − r̃ .

Theorem 6 The theoretical quantile distances r̃α,τ and the empirical quantile distance
r̃n,α,τ can be obtained by minimising

Lα,τ (r̃) = E

(
ρα,τ

(
Ỹ , r̃

))
(7)

and

Ln,α,τ (r̃) = 1

n

n∑

i=1

ρα,τ ( ỹi , r̃). (8)
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Fig. 3 Transforming an observed data point q̃ into an angle α and a distance r̃ based on the upper right
corner of the unit square

A proof of Theorem 6 is given in “Appendix A.2”. In particular, Eq. (8) will form the
basis for numerically determining bivariate quantiles based on linear programming
(LP) as derived and discussed later in Sect. 3.1.

We finally define bivariate quantiles along α on the original scale by retransforming
with the marginal inverse CDFs.

Definition 7 (Bivariate CDF-based quantiles along α on the original scale) For a
bivariate real-valued random vector Y , the CDF-based bivariate quantile along α on
the original scale is defined as

qα,τ =
(
F−1
1 (q̃1,α,τ ), F

−1
2 (q̃2,α,τ )

)′
(9)

where q̃1,α,τ = 1 − r̃α,τ cos(α) and q̃2,α,τ = 1 − r̃α,τ sin(α). The bivariate quantile
curve (1) is then given by Qτ = {qα,τ , α ∈ Dα}. Similarly, the empirical bivariate
quantile along α on the original scale is

qn,α,τ = (F−1
1 (q̃1,n,α,τ ), F

−1
2 (q̃2,n,α,τ ))

′. (10)

Of course, in practice the true marginal CDFs in (10) will typically be replaced by
empirical CDFs, as discussed in the following.

General strategy for obtaining CDF-based bivariate quantiles The following recipe
summarises how empirical bivariate quantiles for a fixed quantile level τ ∈ (0, 1)
and a random sample y1, . . . , yn from a continuous bivariate distribution F can be
calculated:

1. Transform the observed data to the unit square utilising the univariate empirical
CDFs, i.e. determine ỹi = (F1,n(yi1), F2,n(yi2))′ for i = 1, . . . , n.

2. Estimate quantile distances r̃n,α,τ for a fine grid of directions represented by a
sequence of angles α ∈ Dα to approximate the quantile curve.
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3. Transform the estimators back onto the original scale by applying the inverse
univariate empirical quantile functions to determine qn,α,τ based on (10).

Some properties of the proposed CDF-based bivariate quantiles are summarised in the
following theorem (where all properties hold both for the theoretical as well as the
empirical versions):

Theorem 8 (Properties of CDF-based bivariate quantiles)

1. CDF-based quantiles are equivariant under componentwise strictlymonotonically
increasing transformations h:R2 → R

2, h( y) = (h1(y1), h2(y2))′.

Proof Let W = h(Y) = (h1(Y1), h2(Y2))′ denote the transformed observations, and
let G1,G2 be the marginal CDFs of W1,W2, respectively. We then have

argmin
r̃∈Dr̃ (α)

Lα,τ (r̃ |Y) = argmin
r̃∈Dr̃ (α)

Lα,τ (r̃ |W)

where Dr̃ (α) denotes the domain of r̃ . This follows from G j (w j ) = Fj (h
−1
j (w j )) =

Fj (y j ) on the one hand and h j (F
−1
j (y j )) = F−1

j (h j (y j )), j = 1, 2, on the other hand.
The proof works in complete analogy in the empirical case when using the empiri-
cal CDFs and in fact equivariance would still hold with arbitrary order-preserving
transformation t used to transform to the unit square. �
2. CDF-based quantiles are in general not equivariant under affine transformations.

While equivariance for componentwise affine transformations (with positive slope
parameter) follows from Property 1., general affine transformations alter the ori-
entation of the data/distribution such that the fraction of data points/probability
mass to the lower left of a given point inR2 is changed. For definitions of bivariate
quantiles that provide a centre-outward ordering of the data, equivariance of the
bivariate quantile under affine transformations seems a plausible prerequisite since
the affine transformationmerely rotates and scales the data cloud and therefore any
meaningful notion of ‘centrality’ should be preserved. However, when consider-
ing the bivariate CDF to define bivariate quantiles and therefore a direction-based
approach, the affine transformation alters the coordinate system in such a way that
equivariance is no longer achievable (and not desirable as well).

3. The expected loss has a unique, global minimum. For the empirical loss, any local
minimum is also a global minimum and the minimum is unique up to the inherent
nonidentifiability resulting from the discreteness of the data.

Proof For the expected loss, the statement is a direct consequence from the proof of
Theorem 6 since E(ρα,τ ( ỹ, r̃)) is a strictly convex function on the compact set Dr̃ (α).
For the empirical loss, we have that the individual contributions to the loss function
are piecewise linear, convex functions (see Sect. 3.1) such that the complete loss is
also convex. As a consequence, any local minimum is also a global minimum. The
nonuniqueness arises in a similar way as for univariate quantiles where, if nτ is a
natural number, the empirical quantile is only determined up to an interval formed
by two adjacent observations. A similar statement holds for the CDF-based quantiles
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based on the transformed data. This also implies that the empirical quantiles will
converge to a unique solution as the sample size grows to infinity (see Sect. 4.2 for a
more precise result). �
4. The boundary cases α = 0 and α = π/2 yield the marginal distributions for Y1

and Y2, respectively.

Proof For α = 0 we obtain S̃α(r̃) = P(Ỹ1 ≤ 1 − r̃ , Ỹ2 ≤ 1) which is in fact the
marginal CDF of Ỹ1 and hence we retrieve quantiles of the marginal distribution for
Y1. The analogue for α = π/2 results in the marginal distribution of Y2. Similarly,
when considering the loss function in (6), we find that ṽ1 → 1− ỹ1 − r̃ and ṽ2 → ∞
for α → 0 such that the loss function reduces to the loss in case of a univariate quantile
for ỹ1. On the other hand, we have ṽ1 → ∞ and ṽ2 → 1− ỹ2 − r̃ for α → π/2 such
that the loss for the univariate quantile of ỹ2 results. �
5. The breakdown point of the bivariate quantiles is min(�nτ�, �n(1 − τ)�).
Proof This follows from the construction of the loss function which, after reducing
information to the distances to the upper right corner of the unit square, has the same
structure as the loss function for univariate quantiles. �

2.5 Using the origin as the reference point

For our considerations, we have chosen the upper right corner of the unit square as the
reference point for the polar coordinate-type characterisation of points on purpose. To
motivate this choice, we will now discuss results based on the origin as an alternative
reference point. In this case, we obtain the representation

q̃ = (r̃ cos(α), r̃ sin(α))′

and based on the distances R̃ = max(Ỹ1/ cos(α), Ỹ2/ sin(α)) we find that F̃α(r̃) =
P(R̃ ≤ r̃) coincides with the bivariate CDF at q̃ = (r̃ cos(α), r̃ sin(α))′, i.e.

F̃α(r̃) = P

(
Ỹ1 ≤ r̃ cos(α), Ỹ2 ≤ r̃ sin(α)

)
, r̃ ∈ Dr̃ (α),

for a given angle α ∈ Dα = (0, π/2) and r̃ ∈ Dr̃ (α) = [0,min(1/ cos(α), 1/ sin(α))]
(and a similar result holds for the empirical versions). One important difference to our
standard definition is that F̃α(r̃) is in fact not a proper CDF since (for α < π/4)

lim
r̃→1/ cos(α)

F̃α(r̃) = P

(
Ỹ1 ≤ 1, Ỹ2 ≤ sin(α)/ cos(α)

)
= P

(
Ỹ2 ≤ sin(α)/ cos(α)

)

and therefore F̃α(r̃) does not approach 1 as r̃ increases towards its upper limit. This
also implies that with the origin as a reference point, not all quantile levels can actually
be achieved for a given angle. Similar statements hold for α > π/4 and the empirical
direction-specific CDF.
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Nevertheless, we could still continue to proceed as in the previous section if we
restrict ourselves to cases where, for a given angle α, the quantile of interest is indeed
existing. Then, the loss criterion (8) would have to be replaced by

Ln,α,τ (r̃)

= 1

n

n∑

i=1

max

(
ỹi1

cos(α)
− r̃ ,

ỹi2
sin(α)

− r̃

)(
1{

max
(

ỹi1
cos(α)

−r̃ ,
ỹi2

sin(α)
−r̃

)
≥0

} − τ

)
.

In generalisation of Theorem 8, we then obtain the following properties:

Corollary 9 1. Properties 1–3 of Theorem 8 hold when using the origin as the refer-
ence point.

2. The boundary cases α = 0 and α = π/2 have to be excluded (and in particular
they do not correspond to determiningmarginal quantiles)with (0, 0)′ as reference
point.

Proof For α = 0, we obtain F̃α(r̃) = P(Ỹ1 ≤ r̃ , Ỹ2 ≤ 0) which is zero due to the
transformation to the unit square. Similarly, with α = π/2 we obtain F̃α(r̃) = P(Ỹ1 ≤
0, Ỹ2 ≤ r̃) ≡ 0. This is a consequence of the difficulty discussed above, i.e. the fact
that the α-specific CDFs are degenerate. �

3 Estimation of direction-specific quantile curves

Due to the convex, piecewise linear structure of the loss function in (6), empirical
bivariate quantiles can be determined as the solution of a linear program. Compared
to the check function in the univariate case, however, the individual contributions
Li,α,τ (r̃) do not only depend on the quantile level τ but also on the angle α. While it is
also possible to estimate the quantiles by direct inversion of an empirical CDF on the
transformed data, casting the estimation problem as a minimisation problem solved
via linear programming has two advantages: first, we gain a better understanding of
the geometry underlying our definition of bivariate quantiles and, second, it can be
expected to prove useful when considering extended bivariate quantile settings, for
example with a regression specification on the quantile distances. In the following, we
investigate the geometry of the loss function and show how the minimization problem
can be cased into a linear program.

3.1 Geometric perspectives on the loss function

Define the two index sets I1, I2 to divide the set of observation indices I = {1, . . . , n}
into two disjunct subsets I = I1 ∪̇ I2 as

I1 =
{
i ∈ I

∣∣∣∣
1 − ỹi1
cos(α)

≤ 1 − ỹi2
sin(α)

}
, I2 = I\I1 =

{
i ∈ I

∣∣∣∣
1 − ỹi1
cos(α)

>
1 − ỹi2
sin(α)

}
.
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Li,α,τ( r~)
(1 − τ) ((1 − y~i1) cosα − r~)
− τ ((1 − y~i1) cosα − r~)

r~

L i
,α

,τ
(r~ )

i ∈ I1

Li,α,τ( r~)
(1 − τ) ((1 − y~i2) sinα − r~)
− τ ((1 − y~i2) sinα − r~)

r~

L i
,α

,τ
(r~ )

i ∈ I2

Fig. 4 Contributions to the loss function with rotated origin as reference point. Subfigures visualise the
piecewise linear contributions Li,α,τ (r̃) for i ∈ I1 (left) and i ∈ I2 (right)

Then, depending on i , the piecewise linear contributions Li,α,τ (r̃) in each subset are
given by

i ∈ I1:Li,α,τ (r̃) =
⎧
⎨

⎩

(1 − τ)
(
1−ỹi1
cos(α)

− r̃
)

if 1−ỹi1
cos(α)

− r̃ < 0

− τ
(
1−ỹi1
cos(α)

− r̃
)

if 1−ỹi1
cos(α)

− r̃ ≥ 0

i ∈ I2:Li,α,τ (r̃) =
⎧
⎨

⎩

(1 − τ)
(
1−ỹi2
sin(α)

− r̃
)

if 1−ỹi2
sin(α)

− r̃ < 0

− τ
(
1−ỹi2
sin(α)

− r̃
)

if 1−ỹi2
sin(α)

− r̃ ≥ 0

(see Fig. 4 for a graphical illustration).

3.2 Linear programming

To take advantage of the piecewise linear structure of the convex loss function, we
formulate a linear program for the estimation of bivariate quantiles as follows. For
i ∈ I1, we let u+

i , u−
i be auxiliary variables with

u+
i = max(0, (1 − ỹi1)/ cos(α) − r̃)

u−
i = −min(0, (1 − ỹi1)/ cos(α) − r̃).

Similarly, we specify v+
i , v−

i for i ∈ I2 as

v+
i = max(0, (1 − ỹi2)/ sin(α) − r̃)

v−
i = −min(0, (1 − ỹi2)/ sin(α) − r̃).

By definition, the 2n additional variables u+
i , u−

i , v+
i , v−

i are functions of the unknown
quantile distance r̃ but allow us to rewrite the problem argminr̃∈Dr̃ (α) Ln,α,τ (r̃) into
a linear program. Let therefore ỹα = (ỹ1,α, . . . , ỹn,α)′ be the vector of transformed
observations with
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ỹi,α = 1 − ỹi1
cos(α)

1{i∈I1} + 1 − ỹi2
sin(α)

1{i∈I2}

and define an additional set of auxiliary variables w+
α = (w+

1,α, . . . , w+
n,α)′ and w−

α =
(w−

1,α, . . . , w−
n,α)′ with

w+
i,α = u+

i 1{i∈I1} + v+
i 1{i∈I2} w−

i,α = u−
i 1{i∈I1} + v−

i 1{i∈I2}

such that the complete set of unknown parameters is given by

wα = (r̃ , (w+
α )′, (w−

α )′)′ ∈ Dr̃ (α) × [0, 1]2n .

With the constraint matrix Aα = (1n, diag(w
+
i,α),− diag(w−

i,α)) ∈ R
n × R

2n+1 and

coefficient vector c = (0, (1 − τ)1′
n, τ1

′
n)

′ ∈ R
2n+1, this finally yields the linear

program representation

min
r̃ ,w+

α ,w−
α

{
(1 − τ)1′

nw
+
α + τ1′

nw
−
α | ỹα=r̃1n + w+

α − w−
α

}=min
wα

{
c′wα| ỹα = Aαwα

}

of our optimisation problem.The optimal quantile distance r̃n,α,τ is thus simply the first
entry ofwα which can be used to compute an estimate qn,α,τ for the direction-specific
bivariate quantile along α on the original scale using Eq. (10).

3.3 Implementation

An implementation of our novel directional bivariate quantiles is provided in the R-
package bivquant (Klein 2019). Results in the package are based on solutions of
linear programming systems available in the R-package lpSolve (Berkelaar et al.
2015). We also provide an implementation for estimating the geometric quantiles
of Chakraborty (2001) that we will use for comparison purposes in our simulations.
Estimates for depth-based bivariate quantiles will be derived using the R-package
ddalpha (Pokotylo et al. 2015).

4 Asymptotic properties

In this section, we investigate the asymptotic properties of the proposed empirical
bivariate quantiles. We start by establishing some preliminary results before proving
consistency of the bivariate empirical quantile qn,α,τ and asymptotic normality of the
quantile distance r̃n,α,τ . We will always assume that the upper right corner of the unit
square is used as the reference point such that S̃α (the survivor function along α from
Definition 4) is a proper survivor function in the usual sense.
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4.1 Preliminary results for direction-specific quantiles

Lemma 10 (Properties of S̃n,α(r̃)) Let (R̃1, . . . , R̃n) with R̃i = min
(
1−Ỹi1
cos(α)

,
1−Ỹi2
sin(α)

)

be the sample of distances with survivor function S̃α and assume that the general
assumptions from Sect. 2.1 are fulfilled. Then,

1. R̃1, . . . , R̃n are i.i.d.
2. For all r̃ ∈ Dα(r̃) the empirical survivor function S̃n,α(r̃) converges almost surely

to S̃α(r̃), i.e.
S̃n,α(r̃)

a.s.−−→ S̃α(r̃).

3. For all r̃ ∈ Dα(r̃), the empirical survivor function S̃n,α(r̃) is asymptotically nor-
mal, i.e.

√
n(S̃n,α(r̃) − Sα(r̃))

d−→ N
(
0, S̃α(r̃)(1 − S̃α(r̃))

)
.

4. The empirical survivor function S̃n,α converges uniformly to S̃α , i.e.

P

(
lim
n→∞ S̃n,α(r̃) = S̃α(r̃), r̃ ∈ Dr̃ (α)

)
= 1.

The proof of the lemma can be found in “Appendix A.3”.
While Lemma 10 provides us with nice theoretical results on the distances and their

survivor function, the results crucially rely on the assumption that the transformation
to the unit square was conducted based on the true marginal CDFs while in practice
one will rely on the marginal empirical CDFs. The latter have the consequence that the
distances R̃1, . . . , R̃n are no longer i.i.d., which forms the basis for all further results
of Lemma 10. This is similar to the consideration of inference for copulas which also
involve a transformation based on the marginal CDFs.

Genest and Segers (2010) studied the asymptotic properties of the empirical cop-
ula process and the impact of using either the true or the empirical marginal CDFs.
Interestingly, they found that the asymptotic variance of the empirical copula process
is uniformly smaller when relying on the empirical marginal CDFs. Their results also
allow us to derive the asymptotic variance of S̃n,α(r̃) when using the empirical CDFs
for transforming to the unit square, as we detail in the following remark.

Remark 1 We start by considering convergence of S̃n (obtained by transforming with
the true marginal CDFs) as a function on [0, 1]2 indexed by both the angle α and the
distance r̃ . Note that

S̃n,α(r̃) = 1

n

n∑

i=1

1(Ỹi1 ≤ 1 − r̃ cos(α), Ỹi2 ≤ 1 − r̃ sin(α)) = Cn(u1, u2)

where Cn denotes the empirical copula obtained by transforming with the known
marginals and u1 = 1− r̃ cos(α), u2 = 1− r̃ sin(α). This equivalence can, of course,
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also be established for the true distance survivor function such that S̃α(r̃) = C(u1, u2)
where C is the true copula of the data generating process.

From Genest and Segers (2010), it follows that the normalised survivor function
S̃n = √

n(S̃n − S̃) converges weakly to a zero-mean Gaussian process S̃ with covari-
ance function

Cov(S̃α1(r̃1), S̃α2(r̃2)) = P(Ỹ1 ≤ min(u1, v1), Ỹ2 ≤ min(u2, v2))

−P(Ỹ1 ≤ u1, Ỹ2 ≤ u2)P(Ỹ1 ≤ v1, Ỹ2 ≤ v2)

where u1 = 1 − r̃1 cos(α1), u2 = 1 − r̃1 sin(α1), v1 = 1 − r̃2 cos(α2), v2 = 1 −
r̃2 sin(α2). Note that our result on the asymptotic variance of S̃n,α(r̃) appears as a
special case when α1 = α2 and r̃1 = r̃2 and the covariance reduces to the variance.
Furthermore, the result can be equivalently expressed in terms of the normalised
empirical copula processCn = √

n(Cn−C)which converges to a zero-meanGaussian
process C with covariance function

Cov(C(u1, u2),C(v1, v2)) = C(min(u1, v1),min(u2, v2)) − C(u1, u2)C(v1, v2)

(11)
Turning to the situation where the transformation is achieved by the empirical CDFs,

let ˆ̃Sn denote the corresponding estimate of the directional survivor function. From

Genest and Segers (2010), we then have that the normalised version ˆ̃
Sn = √

n(
ˆ̃Sn − S̃)

converges weakly to a zero-meanGaussian process ˆ̃
Swith pointwise evaluations given

by

ˆ̃
Sα(r̃) = C(u1, u2) − C(u1, 1)

∂

∂u1
C(u1, u2) − C(1, u2)

∂

∂u2
C(u1, u2).

Note that this is a linear combination of three evaluations of the Gaussian process

C(u1, u2) such that the asymptotic variance of ˆ̃
Sα(r̃) can easily be calculated (for

given true copula C) by constructing the corresponding trivariate zero-mean normal
distribution where the elements of the covariance matrix are obtained from (11).

Lemma 11 (Almost sure convergence of the quantile distance) Under the same
assumptions as in Lemma 10, the empirical τ th quantile distance along α converges
almost surely to the true τ th quantile distance along α for τ ∈ (0, 1) and α ∈ Dα:

r̃n,α,τ
a.s.−−→ r̃α,τ .

Consequently,

q̃n,α,τ

a.s.−−→ q̃α,τ .

The lemma is proved in “Appendix A.4”.

Remark 2 Similar as with Lemma 10, Lemma 11 relies on the fact that the transforma-
tion to the unit square was accomplished based on the true marginal CDFs. Following
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the considerations in Genest et al. (1995) on the convergence of the maximum like-
lihood estimate for copula parameters obtained from the empirical copula, one can
expect that a similar generalisation will be possible also for directional bivariate quan-
tiles. However, the results of Genest et al. (1995) are not directly applicable here since
our optimisation criterion is not continuously differentiablewith respect to the quantile
distance.

4.2 Consistency of bivariate quantiles on the original scale

As a direct consequence fromLemma 11 and Slutsky’s theorem, consistency of bivari-
ate quantiles on the original scale is obtained as summarised in the following theorem.

Theorem 12 (Almost sure convergence of the bivariate quantile on the original scale)
Under the general assumptions from Sect. 2.1 and Lemma 10, the empirical τ th quan-
tile along α converges almost surely to the τ th quantile along α for τ ∈ (0, 1)

qn,α,τ

a.s.−−→ qα,τ .

4.3 Asymptotic normality of the quantile distance

The results from Lemma 10 allow us to show the asymptotic normality of the quantile
distance:

Theorem 13 (Asymptotic normality of the quantile distance) In addition to the usual
assumptions, assume that S̃α(r̃) is continuously differentiable and let f̃α(r̃) =
− ∂

∂r̃ S̃α(r̃) be the density corresponding to S̃α(r̃). For τ ∈ (0, 1) and α ∈ Dα the

empirical τ th quantile distance along α (r̃n,α,τ = S̃−1
n,α(τ )) is asymptotically normally

distributed with

√
n

(
S̃−1
n,α(τ ) − S̃−1

α (τ )
)

d−→ N

(

0,
τ (1 − τ)

( f̃α(r̃α,τ ))2

)

.

A detailed proof of Theorem 13 can be found in “Appendix A.5”.

Remark 3 Note that by the assumptions on f (y1, y2) in Sect. 2.1, f̃α(r̃) exists and is
strictly positive on the unit square. From Definition 5, it follows directly that q̃n,α,τ,1
and q̃n,α,τ,2 are also individually asymptotically normally distributed. However, this
does not lead to a joint asymptotic normality result for q̃n,α,τ since both components
of q̃n,α,τ are determined from r̃n,α,τ by transformation.

Remark 4 Similar as with Lemma 10, also Theorem 13 can be extended to the case
of transforming with the empirical CDFs rather than the true CDFs by relying the

asymptotic variance of ˆ̃
Sα(r̃) derived in Remark 1. In the proof of Theorem 13, we

need Lemma 10.2, which in case of having transformed with the empirical CDFs has
to be replaced by its weak consistency analogue. The latter follows from the results
of Genest and Segers (2010).
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Table 1 Data generating processes for the simulation

Name Data generating process

Gaussian y ∼ N(μ, �), μ =
(
0
0

)
, � =

(
1 0.7
0.7 1

)

Linear shift y ∼ N(μ̃, �), μ̃ =
(− 12

50

)

Scaling y ∼ N(μ, �̃), �̃ =
(− 2 0

0 20

)
�

(− 2 0
0 20

)

Rotation y ∼ N(μ, �̃), �̃ =
(
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)′
�

(
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)

Shearing y ∼ N(μ, �̃), �̃ =
(
1 − 0.6
0 1

)′
�

(
1 − 0.6
0 1

)

Lower tail Clayton copula , ρ = 2, y j ∼ N(0, 1), j = 1, 2

Upper tail Gumbel copula, ρ = 2, y j ∼ N(0, 1), j = 1, 2

Asymmetry Clayton copula, ρ = 2, y1 ∼ N(0, 1), y2 ∼ Ga(3, 1.5)

Single outlier y1 ∼ N(μ̃, �̃), μ̃ =
(− 3

3

)
, �̃ =

(
0.2 0
0 0.2

)
, yi ∼ N(μ,�), i = 2, . . . , n

Outlier yk ∼ N(μ̃, �̃), μ̃ =
(− 5.5

5.5

)
, �̃ =

(
0.2 0
0 0.2

)
, k = 1, . . . , 5,

yi ∼ N(μ, �), i = 6, . . . , n

5 Empirical evaluation

5.1 Simulations

We supplement the discussion of theoretical properties of CDF-based quantiles with
simulation-based empirical evidence. We compare the performance of our bivariate
quantiles with some of the previously suggested approaches and in particular the
geometric quantiles of Chakraborty (2001) and several depth-based proposals. The
main difficulties for such a comparison are on the one hand the lack of implementations
for most of the competing approaches (and in particular for those that are rather based
on abstract, theoretical concepts) and on the other hand the very different population
quantities they are targeting at. It therefore does not make sense to try to relate, for
example, geometric quantiles and CDF-based quantiles directly to each other. Hence,
we rather construct exemplary data generating mechanisms that allow us to study
specific properties of the approaches separately such as deviations from elliptical
contour lines, sensitivity with respect to outliers.

Simulation set-up More precisely, we consider the following data generating pro-
cesses (see Table 1 for details):

• Gaussian: Data generated from a bivariate normal distribution with standard nor-
mal marginals.

• Linear shift: A linear shift applied to Gaussian to modify the expectation vector.
• Scaling: Separate scaling factors are applied to the components of Gaussian.
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• Rotation: Applying an affine transformation that implies a rotation of Gaussian.
• Shearing: Applying an affine transformation that implies shearing of Gaussian.
• Lower tail:Data generated fromaClayton copula (implying lower tail dependence)
with standard normal marginals.

• Upper tail:Data generated fromaGumbel copula (implyingupper tail dependence)
with standard normal marginals.

• Asymmetry: One standard normal of Lower tail is replaced by a gamma marginal.
• Single outlier: One observation of Gaussian replaced by an outlier.
• Outlier: Five observations of Gaussian replaced by outliers.

The first five data generating processes all imply elliptical shapes of the true data
generating density. The next three data generating processes result in asymmetric
distributions with symmetric lower tail dependence (Lower tail), symmetric upper tail
dependence (Upper tail) and asymmetric lower tail dependence (Asymmetry). Thefinal
two data generating processes introduce one single and five more extreme outliers,
respectively.

We compare two different sample sizes (n = 200 and n = 1000) and generate
R = 6 replicates for each of the data generating processes and each sample size to
avoid conclusions being drawn from one single, potentially misleading data set. All
scenarios are then estimated with the following approaches:

1. CDF-based quantiles based on a sequence of 32 equidistant values for the angle
α ∈ [0, 2π) and for quantile levels τ = {0.1, 0.2, . . . , 0.8, 0.9}.

2. Geometric quantiles for a grid of 128 (i.e. four times the number of angles α)
directions u ∈ B2 in the unit open ball with directions u chosen based on ||u|| =
2τ − 1.

3. Depth-based quantiles based on the halfspace depth (Tukey 1975), the simplicial
depth (Liu1990), the simplicial volumedepth, the spatial depth (Koltchinskii 1997)
and the zonoid depth (Koshevoy and Mosler 1997; Mosler 2002). For the determi-
nation of depth-based quantiles, we rely on the R-package ddalpha (Pokotylo
et al. 2015) and compute the depths on a 100 × 100 equidistant grid within
the range of observed values y. Since results obtained with the functions
depth.simplicial/depth.simplicialVolume turned out to be very
wiggly with the default settings of randomly choosing 5% of the simplices, we
changed the percentage to 99%. The exact approach was not computationally fea-
sible, in particular for the larger sample size where estimates for only one single
data set could not be completed within 3days of computing time.

Summarised results Since the first five data generating processes are all affine trans-
formations of normally distributed data, we did not find any structural differences
between the results such that we only present results for the scaled scenario. A similar
statement holds for the nonelliptical data generating processes where we focus on the
asymmetric case in the following. All methods turned out to be rather robust against
one single outlier, such that we focus on the second, more extreme scenario with five
outliers.

Concerning the depth-based quantiles, we restrict the presentation to halfspace and
simplicial depth since results with the simplicial volume depth and the spatial depth
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are resembling those of geometric quantiles, i.e. they turn out to be reliable only for
an elliptical structure of estimated curves. The results obtained with the zonoid depth
are comparable to those from the halfspace depth.

Finally, among the six replicates, no eye-catching structural differences could be
identified such that we only present results from replication r = 1. Figure 5 shows
estimates for the three chosen scenarios and four approaches. Note that in the upper
three rows the colours indicate the centrality of the points while for the fourth row
they differentiate the regions between the quantile curves of level τ .

From our simulation results, we can draw the following conclusions:

Scaling Elliptical structures can well be captured with all approaches and for both
small and large sample sizes.
Asymmetry Estimates of geometric quantiles remain mostly elliptical and are not
even able to clearly identify lower or upper tail dependence for the large sample
size (n = 1000). Quantiles based on the halfspace depth somewhat deviate from
elliptical shapes but still do not cover the strong lower tail dependence, especially
for smaller sample sizes. In contrast, the quantiles based on the simplicial depth
reflect the shape of the true data generating density quite well, in particular for
the large sample size. CDF-based quantiles identify the true quantile levels fairly
well already for small sample sizes and are rather close to the true values for large
samples. In comparison with elliptical data, the lower tail dependence results in
more peaked quantiles (both empirically and theoretically) for this method while
the density reveals an asymmetric structure in its contour lines.
Outlier The CDF-based quantiles are very robust against outliers even for small
samples. Robustness can also be found for depth-based and geometric quantiles
for the case of large samples while for small samples both approaches react more
sensitively. In particular, extreme quantiles obtained from the simplicial depth are
strongly dominated by the outliers.

5.2 Childhood undernutrition scores in India

To illustrate one potential area of application for bivariate quantiles, we consider a data
set on childhood malnutrition in India obtained from the 1998/1999 demographic and
health survey (DHS, www.dhsprogram.com). The data set contains information on the
nutritional status of n = 24,316 children assessed via different Z-scores comparing
the nutritional status of children in the population of interest with the nutritional status
in a reference population. More precisely, the Z-score is defined as

Z = AC − μAC

σAC

where AC denotes an anthropometric characteristic for the child, while μAC and σAC
correspond to median and standard deviation in the reference population. We consider
two indicators jointly in the following: insufficient weight for height capturing acute
undernutrition (Z1, wasting) and insufficient weight for age reflecting both, chronic
and acute undernutrition (Z2, underweight).
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Fig. 5 Simulation results. The first three rows show estimated quantiles for geometric quantiles as well as
quantiles based on the halfspace and simplicial depth. The colour scheme represents the true underlying
densities. The fourth row shows estimated quantile curves of CDF-based quantiles where the colours now
represent the theoretical quantile levels. The solid (dashed) lines are obtained from samples of size n = 200
(n = 1000) for the first replication; the dots represent the sampled data points for n = 200. Columnwise,
the data generating processes Scaling, Asymmetry and Outlier of Table 1 are shown. Note that in the upper
three rows, the colours indicate the centrality of the points while for the fourth row they belong to the region
starting at the τ -quantile curves (color figure online)

123



248 N. Klein, T. Kneib

wasting

un
de

rw
ei

gh
t

[1,6] months
[7,12] months

[13,24] months
[25,35] months

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F̂(wasting)

F̂(
un

de
rw

ei
gh

t)
Fig. 6 Childhood Undernutrition. CDF-based quantiles for quantile levels τ ∈ {0.1, 0.2, . . . , 0.8, 0.9} on
the original scale (left) and on the unit square (right) (color figure online)

Since the distribution of the scores is strongly dependent on the ages of children,
we divide the whole data set into four age-stratified subsets and estimate CDF-based
bivariate quantiles for each subset separately. Note that still the four resulting data
sets comprise a couple of thousand observations, each. Due to the linear programming
formulation, CDF-based bivariate quantiles are computationally feasible also for such
large data sets.

Figure 6 depicts the resulting estimated bivariate quantiles at quantile levels τ ∈
{0.1, 0.2, . . . , 0.8, 0.9} and for a dense grid of α values since this is the major interest
in real data analysis and not for fixed α. In addition to the quantiles on the scale of the
original observations (left), this figure also shows the quantiles for the data transformed
to the unit square to emphasise changes in the dependence structure with respect to the
age of the child (right). For better visibility, Fig. 7 depicts separate graphs for quantile
curves on the original scale. One observation that can be made from the bivariate
quantiles is that the variability of wasting is reducing considerably with increasing
age. Concerning the dependence between the two measures, it is helpful to compare
the shapes we estimate with those from the exemplary data generating processes from
the previous simulation (Sect. 5.1). For children of a very young age, the contours
are close to those of elliptical contour lines while the ones for older ages are showing
stronger signs of lower tail dependence (compare the discussion in Sect. 2.2 on the
shape of quantile curves for different types of stylised dependence patterns). This is in
line with previous findings presented in Klein and Kneib (2016) based on parametric
copula regression and can also be seen from the stronger kink of the quantile contours
close to the bisecting line (in particular for the lower quantile levels). The change in the
dependence structure ismore clearly detectablewhen considering the data transformed
to the unit squarewhere all quantile curves show a trend in their shift towards the origin
for increasing age of the child.
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Fig. 7 Childhood Undernutrition. CDF-based quantiles for quantile levels τ ∈ {0.1, 0.2, . . . , 0.8, 0.9} on
the original scale. Graphs show results of Fig. 6 (left) but depict the quantile curves in each subset separately
for visibility reasons. Here, grey points are the observed pairs of wasting (x axis) and underweight (y axis)
in each subset (color figure online)

6 Summary and conclusions

Weproposed a novel notion of bivariate quantiles based on inverting the bivariate CDF.
More precisely, we transformed observed bivariate data clouds to the unit square via
the empirical CDF and introduced direction-specific quantiles based on the upper right
corner of the unit square as the reference point. This construction enables the determi-
nation of bivariate CDF-based quantiles via linear programming and yields desirable
properties such as invariance under monotonically increasing transformations and
robustness. The resulting quantiles do not provide a centre-outward ordering as most
of the previous definitions of multivariate quantiles but rather measure extremeness of
observations in terms of the bivariate CDF such that the quantile level exhibits a clear
interpretation. As a major advantage, CDF-based quantiles can be applied without any
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prior assumptions on the shape of the underlying distribution while several competing
approaches only work well for distributions that are close to an elliptical shape.

The linear program formulation of bivariate CDF-based quantiles does not only
make the determination of bivariate quantiles computationally feasible even for large
data sets but will also be useful for developing bivariate quantile regression models
where the quantile distancewill be specified depending on covariates. As a second area
of future research, we will consider generalisations beyond bivariate data. While the
transformation to the unit cube would still work, an immediate generalisation would
require the specification of D − 1 angles in the D-dimensional case. It will therefore
be important to study alternative ways of parametrising the D-dimensional unit cube.

A Further proofs

A.1 Proof of Theorem 2

Proof For fixed b ∈ R, we define the expected loss as a function of v ∈ R by

E(ρb,τ (Y , q)) = E(ρτ (Y , (v, v + b)′)). (12)

Clearly, the bivariate quantile curves from (1) can be obtained as

Qτ =
⋃

b∈R
{v ∈ R|F(v, v + b) = τ }

which intuitively means that we describe R
2 by straight lines with slope one and

intercepts b. With the definition

u( y, v) = max (y1 − v, y2 − v − b),

the expected loss for fixed b ∈ R is given by

E
(
ρb,τ (Y , v)

) = (τ − 1)

v∫

−∞

v+b∫

−∞
u ( y, v) f (y1, y2)dy2dy1

+ τ

∞∫

v

∞∫

v+b

u( y, v) f (y1, y2)dy2dy1

+ τ

∞∫

v

v+b∫

−∞
u( y, v) f (y1, y2)dy2dy1

+ τ

v∫

−∞

∞∫

v+b

u( y, v) f (y1, y2)dy2dy1
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= (τ − 1)

v∫

−∞

y1+b∫

−∞
(y1 − v) f (y1, y2)dy2dy1

+ (τ − 1)

v∫

−∞

v+b∫

y1+b

(y2 − v − b) f (y1, y2)dy2dy1

+ τ

∞∫

v

y1+b∫

v+b

(y1 − v) f (y1, y2)dy2dy1

+ τ

∞∫

v

∞∫

y1+b

(y2 − v − b) f (y1, y2)dy2dy1

+ τ

∞∫

v

v+b∫

−∞
(y1 − v) f (y1, y2)dy2dy1

+ τ

v∫

−∞

∞∫

v+b

(y2 − v − b) f (y1, y2)dy2dy1.

Our strategy is now to show that for all b ∈ R the expected loss E(ρb,τ (Y , v)) is
uniquely minimised at q ∈ R and fulfils the condition P(Y1 ≤ q,Y2 ≤ q + b) = τ .
We therefore investigate the first derivative of E(ρb,τ (Y , v)) with respect to v. The
derivative is obtained by applying the Leibniz rule for parameter integrals twice.

∂

∂v
E

(
ρb,τ ( y, v)

) = (τ − 1)

v∫

−∞

∂

∂v

y1+b∫

−∞
(y1 − v) f (y1, y2)dy2dy1

+ (τ − 1)

v∫

−∞

∂

∂v

v+b∫

y1+b

(y2 − v − b) f (y1, y2)dy2dy1

+ τ

∞∫

v

∂

∂v

y1+b∫

v+b

(y1 − v) f (y1, y2)dy2dy1

+ τ

∞∫

v

∂

∂v

∞∫

y1+b

(y2 − v − b) f (y1, y2)dy2dy1

− τ

∞∫

v+b

(y2 − v − b) f (v, y2)dy2
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+ τ

∞∫

v

∂

∂v

v+b∫

−∞
(y1 − v) f (y1, y2)dy2dy1

+ τ

v∫

−∞

∂

∂v

∞∫

v+b

(y2 − v − b) f (y1, y2)dy2dy1

+ τ

∞∫

v+b

(y2 − v − b) f (v, y2)dy2

= −(τ − 1)

v∫

−∞

y1+b∫

−∞
f (y1, y2)dy2dy1

− (τ − 1)

v∫

−∞

v+b∫

y1+b

f (y1, y2)dy2dy1

− τ

∞∫

v

y1+b∫

v+b

f (y1, y2)dy2dy1 − τ

∞∫

v

(y1 − v) f (y1, v + b)dy1

− τ

∞∫

v

∞∫

y1+b

f (y1, y2)dy2dy1 − τ

∞∫

v+b

(y2 − v − b) f (v, y2)dy2

− τ

∞∫

v

v+b∫

−∞
f (y1, y2)dy2dy1 + τ

∞∫

v

(y1 − v) f (y1, v + b)dy1

− τ

v∫

−∞

∞∫

v+b

f (y1, y2)dy2dy1 + τ

∞∫

v+b

(y2 − v − b) f (v, y2)dy2

= −(τ − 1)

v∫

−∞

v+b∫

−∞
f (y1, y2)dy2dy1 − τ

∞∫

v

∞∫

v+b

f (y1, y2)dy2dy1

− τ

∞∫

v

v+b∫

−∞
f (y1, y2)dy2dy1 − τ

v∫

−∞

∞∫

v+b

f (y1, y2)dy2dy1

=
v∫

−∞

v+b∫

−∞
f (y1, y2)dy2dy1 − τ.
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In summary, we have

∂

∂v
E

(
ρb,τ ( y, v)

) =
v∫

−∞

v+b∫

−∞
f (y1, y2)dy2dy1 − τ. (13)

Let us first assume that P(Y1 ≤ q,Y2 ≤ q + b) = τ holds. It then follows from
Eq. (13) that

∂

∂v
E

(
ρb,τ ( y, v)

)
∣∣
∣∣
v=q

= τ − τ = 0.

In addition,

∂2

∂v2
E

(
ρb,τ ( y, v)

)
∣∣∣∣
v=q

=
q∫

−∞
f (y1, q + b)dy1 +

q+b∫

−∞
f (q, y2)dy2 > 0

holds since we assumed f (y1, y2) > 0. Consequently, (q, q + b)′ is a minimiser of
E

(
ρb,τ ( y, v)

)
and in particular of E (ρτ ( y, q)).

Reversely, if (q, q + b)′ is a minimiser of E
(
ρb,τ ( y, v)

)
, a zero first derivative

∂

∂v
E

(
ρb,τ ( y, v)

)
∣
∣∣∣
v=q

=
q∫

−∞

q+b∫

−∞
f (y1, y2)dy2dy1 − τ = 0

is required which is equivalent to

P(Y1 ≤ q,Y2 ≤ q + b) = τ.

�

A.2 Proof of Theorem 6

Proof Recall first that Ỹ = (Ỹ1, Ỹ2)′ = (F1(Y1), F2(Y2))′, and let f̃ (ỹ1, ỹ2) > 0 be the
density of Ỹ . From Sect. 3.1, we furthermore have that ρα,τ ( ỹ, r̃) can be decomposed
into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − τ)
(

1−ỹ1
cos(α)

− r̃
)

if 1−ỹ1
cos(α)

− r̃ ≤ 1−ỹ2
sin(α)

− r̃ < 0

(1 − τ)
(
1−ỹ2
sin(α)

− r̃
)

if 1−ỹ2
sin(α)

− r̃ <
1−ỹ1
cos(α)

− r̃ < 0

− τ
(

1−ỹ1
cos(α)

− r̃
)

if min
(

1−ỹ1
cos(α)

− r̃ , 1−ỹ2
sin(α)

− r̃
)

≥ 0 and 1−ỹ2
sin(α)

− r̃ ≥ 1−ỹ1
cos(α)

− r̃

− τ
(
1−ỹ2
sin(α)

− r̃
)

if min
(

1−ỹ1
cos(α)

− r̃ , 1−ỹ2
sin(α)

− r̃
)

≥ 0 and 1−ỹ2
sin(α)

− r̃ <
1−ỹ1
cos(α)

− r̃ .
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Accordingly, the expected loss is

E(ρα,τ ( ỹ, r̃)) = (1 − τ)

∫ 1−r̃ cos(α)

0

∫ 1−(1−ỹ1)
sin(α)
cos(α)

0

1 − r̃ cos(α) − ỹ1
cos(α)

f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ (1 − τ)

∫ 1−r̃ cos(α)

0

∫ 1−r̃ sin(α)

1−(1−ỹ1)
sin(α)
cos(α)

1 − r̃ sin(α) − ỹ2
sin(α)

f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1−r̃ cos(α)

0

∫ 1

1−r̃ sin(α)

ỹ2 − 1 + r̃ sin(α)

sin(α)
f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1

1−r̃ cos(α)

∫ 1

1−(1−ỹ1)
sin(α)
cos(α)

ỹ2 − 1 + r̃ sin(α)

sin(α)
f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1

1−r̃ cos(α)

∫ 1−(1−ỹ1)
sin(α)
cos(α)

1−r̃ sin(α)

ỹ1 − 1 + r̃ cos(α)

cos(α)
f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1

1−r̃ cos(α)

∫ 1−r̃ sin(α)

0

ỹ1 − 1 + r̃ cos(α)

cos(α)
f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

Now, in analogy to the strategy of the proof of Theorem 2, we apply the Leibniz rule
for integrals twice, add or subtract terms with identical limits of integration afterwards
and after some further basic calculations obtain

∂

∂ r̃
E(ρα,τ ( ỹ, r̃)) = (τ − 1)

∫ 1−r̃ cos(α)

0

∫ 1−(1−ỹ1)
sin(α)
cos(α)

0
f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ (τ − 1)
∫ 1−r̃ cos(α)

0

∫ 1−r̃ sin(α)

1−(1−ỹ1)
sin(α)
cos(α)

f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1−r̃ cos(α)

0

∫ 1

1−r̃ sin(α)

f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1

1−r̃ cos(α)

∫ 1

1−(1−ỹ1)
sin(α)
cos(α)

f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1

1−r̃ cos(α)

∫ 1−(1−ỹ1)
sin(α)
cos(α)

1−r̃ sin(α)

f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

+ τ

∫ 1

1−r̃ cos(α)

∫ 1−r̃ sin(α)

0
f̃ (ỹ1, ỹ2)d ỹ2d ỹ1

Adding together the different integrals yields

∂

∂ r̃
E(ρα,τ ( ỹ, r̃)) = τ −

∫ 1−r̃ cos(α)

0

∫ 1−r̃ sin(α)

0
f̃ (ỹ1, ỹ2)d ỹ2d ỹ1 (14)

A necessary condition for r̃ giving a minimum of the expected loss is that (14) is
zero, i.e. that ∂

∂r̃E(ρα,τ ( ỹ, r̃))|r̃=r̃α,τ
= 0. This implies that the quantile condition
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P(Ỹ1 ≤ q̃1, Ỹ2 ≤ q̃2) = τ is fulfilled if and only if the first derivative of the expected
loss at r̃ is zero. What remains to show is that ∂2

∂r̃2
E(ρα,τ ( ỹ, r̃))|r̃=r̃α,τ

> 0 holds.

• For α ∈ (0, π/2), this follows from

∂2

∂ r̃2
E(ρα,τ ( ỹ, q̃)) =

∫ 1−r̃ cos(α)

0
sin(α) f̃ (ỹ1, 1 − r̃ sin(α))d ỹ1

+
∫ 1−r̃ sin(α)

0
cos(α) f̃ (1 − r̃ cos(α), ỹ2)d ỹ2 (15)

since f̃ (·, ·) > 0 and cos(α) > 0, sin(α) > 0.
• In case of α = 0, we have sin(α) = 0, cos(α) = 1 such that the second integral
in (15) is zero while the first one is

∫ 1
0 f̃ (1 − r̃ , ỹ2)d ỹ2 = f̃1(1 − r̃) > 0.

• In case of α = π/2, we have cos(α) = 0, sin(α) = 1 such that the first integral
in (15) is zero while the second one is

∫ 1
0 f̃ (ỹ1, 1 − r̃)d ỹ1 = f̃2(1 − r̃) > 0. �

A.3 Proof of Lemma 10

In the following and in order to prove asymptotic results of Sect. 4, we treat the
observed data as i.i.d. replications of Y defined on the probability space (�,F ,P) =
(R2,B(R2), F). Consequently, the transformed data are i.i.d. replicates of Ỹ =
(Ỹ1, Ỹ2)′ = (F1(Y1), F2(Y2)) supplemented with the probability space (�̃, F̃ , P̃) =
([0, 1]2,B([0, 1]2), F̃) and CDF F̃(ỹ1, ỹ2) = P(Y1 ≤ F−1

1 (ỹ1),Y2 ≤ F−1
2 (ỹ2)). In

addition, we introduce

R̃ = min
(

1−Ỹ1
cos(α)

, 1−Ỹ2
sin(α)

)
, α ∈ D(α)

as a randomvariable on theprobability space (�̃α, F̃α, P̃α) = (Dr̃ (α),B(Dr̃ (α)), F̃α).

Proof On 1. The claim follows directly due to the i.i.d. property of Y1, . . . ,Yn .
On 2. We introduce the random variables Zi = 1{(Ỹi1≤1−r̃ cos(α),Ỹi2≤1̃−r̃ sin(α))}
which are i.i.d. since Ỹ1, Ỹ2, . . . are assumed to be i.i.d. We then have

P(Zi = 1) = P(Ỹi1 ≤ 1 − r̃ cos(α), Ỹi2 ≤ 1 − r̃ sin(α)) = S̃α(r̃)

P(Zi = 0) = 1 − S̃α(r̃)

and hence E(Zi ) = S̃α(r̃). With the strong law of large numbers, we immediately
find

S̃n,α(r̃) = 1

n

n∑

i=1

Zi
a.s.−−→ E(Zi ) = E(Z1) = S̃α(r̃).
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On 3. From 2., we have that E(Zi ) = S̃α(r̃) and Var(Zi ) = S̃α(r̃)(1 − S̃α(r̃)).
Applying the central limit theorem implies

√
n

S̃n,α(r̃) − S̃α(r̃)
√
S̃α(r̃)(1 − S̃α(r̃))

=
1
n

∑n
i=1 Zi − E(Z1)√
Var(Z1)

=
∑n

i=1 Zi − nE(Z1)√
nVar(Z1)

d−→ N(0, 1).

On 4. Define

D̃n := sup
r̃∈Dr̃ (α)

|S̃n,α(r̃) − S̃α(r̃)|.

(i) S̃α is continuous and monotonically decreasing in r̃ . Hence, we can find a
decomposition r̃min = z0 < z1 < z2 < · · · < zm−1 < zm = r̃max such that
S̃α(z0) = 1, S̃α(z1) = m−1

m , D̃α(z2) = m−2
m , . . . , S̃α(zm−1) = 1

m , S̃α(zm) =
0 and where r̃min is the smallest r ∈ Dr̃ (α) and similar r̃max the largest r ∈
Dr̃ (α).

(ii) We use this decomposition to obtain approximations of S̃n,α(z) − S̃α(z) for
arbitrary z ∈ Dr̃ (α). Let k be such that z ∈ [zk, zk+1). Then,

S̃n,α(z) − S̃α(z) ≤ S̃n,α(zk) − S̃α(zk+1) = S̃n,α(zk) −
(
S̃n,α(zk) − 1

m

)

S̃n,α(z) − S̃α(z) ≥ S̃n,α(zk+1) − S̃α(zk) = S̃n,α(zk+1) −
(
S̃n,α(zk+1) + 1

m

)

due to the monotonicity of S̃α .
(iii) For m ∈ N, k = 0, 1, . . . ,m, define

Am,k :=
{
ω̃α ∈ �̃α: lim

n→∞ S̃n,α(zk; ω̃α) = S̃α(zk)
}

.

Due to the almost sure convergence of S̃n,α from 2., we have

P[Am,k] = 1 ∀m ∈ N, k = 0, 1, . . . ,m.

(iv) Define Am = ∩m
k=0Am,k . This is a finite intersection of sets such that P[Am] =

1 for all m ∈ N. Define A = ∩m∈NAm . This is a countable intersection of sets
such that P[A] = 1.

(v) Consider now ω̃α ∈ Am . By definition of Am,k , there exists an n(ω̃α,m) ∈ N

such that

|S̃n,α(zk; ω̃α) − S̃α(zk)| <
1

m
∀n > n(ω̃α,m), k = 1, . . . ,m. Hence,

|S̃n,α(z) − S̃α(z)| <
1

m
∀ω̃α ∈ Am, n > n(ω̃α,m), z ∈ Dr̃ (α).
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From (ii), it follows

D̃n(ω̃α) := sup
r̃∈Dr̃ (α)

|S̃n,α(r̃; ω̃α) − S̃α(r̃)| <
2

m
.

Furthermore, due to the definition of A , ω̃α ∈ A is element of all Am , m ∈ N.

Hence, ∀m ∈ N there exists an n(ω̃α,m) ∈ N such that ∀n > n(ω̃α,m)

0 ≤ D̃n(ω̃α) <
2

m
and in consequence lim

n→∞ D̃n(ω̃α) = 0 ∀ω̃α ∈ A.

Finally, we have {ω̃α ∈ �̃α: limn→∞ D̃n(ω̃α) = 0} ⊇ A and from 4. that
P[A] = 1 holds such that

P[
{
ω̃α ∈ �̃α: lim

n→∞ D̃n(ω̃α) = 0
}
] ≥ P[A] = 1.

�

A.4 Proof of Lemma 11

Proof The uniqueness of r̃α,τ yields S̃α(rα,τ + ε) < τ < S̃α(rα,τ − ε) for any ε > 0.
The strong consistency of S̃n,α(r̃) furthermore ensures

S̃n,α(r̃α,τ − ε)
a.s.−−→ S̃α(r̃α,τ − ε)

S̃n,α(r̃α,τ + ε)
a.s.−−→ S̃α(r̃α,τ + ε)

which is equivalent to

P

(
lim
n→∞ S̃n,α(r̃α,τ − ε) = S̃α(r̃α,τ − ε) > τ

)
= 1

P

(
lim
n→∞ S̃n,α(r̃α,τ + ε) = S̃α(r̃α,τ + ε) < τ

)
= 1.

Using that almost sure convergence P(limn→∞ Xn = X) = 1 is equivalent to
limn→∞ P(|Xm−X | < ε ∀m ≥ n) in combinationwithP(A∩B) = 1−P(Ac∪Bc) ≥
1 − P(Ac) − P(Bc) implies

lim
n→∞P

(
S̃m,α(r̃α,τ + ε) < τ < S̃m,α(r̃α,τ − ε) ∀m ≥ n

)
= 1.

Due to the monotonicity of S̃α , we have S̃α(r̃) ≤ τ ⇔ r̃ ≤ S̃−1
α (τ ) and therefore

lim
n→∞P

(
r̃α,τ + ε < S̃−1

m,α(τ ) = r̃m,α,τ < r̃α,τ − ε ∀m ≥ n
)

= 1

⇔ lim
n→∞P

(|r̃m,α,τ − r̃α,τ | < ε ∀m ≥ n
) = 1.
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Finally, q̃ j,n,α,τ
a.s.−−→ q̃ j,α,τ , j = 1, 2, is a direct consequence of the continuous

mapping theorem which in turn implies q̃n,α,τ = (q̃1,n,α,τ , q̃2,n,α,τ )
′ a.s.−−→ q̃α,τ =

(q̃1,α,τ , q̃2,α,τ )
′, compare Serfling (1980, 1.P, 2.b on page 52). �

A.5 Proof of Theorem 13

Proof For the proof of Theorem 13, wewill use Lemma 10 together with the following
Lemma 14.

Lemma 14 (Jump heights of S̃n,α) Given the general assumptions from Sect. 2.1,
the ordered sample R̃(1) < R̃(2) < · · · < R̃(n−1) < R̃(n) of distances R̃i =
min( 1−Ỹi1

cos(α)
,
1−Ỹi2
sin(α)

) will almost surely have no ties and therefore

|S̃n,α(S̃−1
n,α(τ )) − τ | ≤ 1

n
a.s.

From Lemma 10.3, we have that for any r̃ ∈ Dα(r̃) with survivor function S̃α

√
n(S̃n,α(r̃) − S̃α(r̃))

d−→ N(0, S̃α(r̃)(1 − S̃α(r̃)))

holds. Let r̃ = r̃α,τ = S̃−1
α (τ ). Then, we know that

√
n(S̃n,α(r̃α,τ ) − S̃α(r̃α,τ ))

d−→ N(0, τ (1 − τ)).

Using the property of stochastic equicontinuity for S̃n,α interpreted as an empirical
process (for an introduction and definition of stochastic equicontinuity, see Andrews
1994), we can replace r̃α,τ by a consistent estimator r̃n,α,τ such that

√
n(S̃n,α(r̃n,α,τ ) − S̃α(r̃n,α,τ ))

d−→ N(0, τ (1 − τ))

holds. From Lemma (ii) in Serfling (1980, Sec. 1.1.4, p. 3) it now follows that

√
n(S̃n,α(r̃n,α,τ ) − S̃α(r̃n,α,τ )) ≥ √

n(τ − S̃α(r̃n,α,τ )).

Since f̃α is continuous, the probability of observing duplicates of R̃i is zero. Hence,
using Lemma 14

√
n(S̃n,α(r̃n,α,τ ) − S̃α(r̃n,α,τ )) = √

n(τ − S̃α(r̃n,α,τ )) + Op(1/
√
n)

holds with probability one which (using Lemma 10.2) implies

√
n(τ − S̃α(r̃n,α,τ ))

d−→ N(τ (1 − τ)).
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Applying the Delta-method, i.e. Taylor expansion around of S̃α , r̃α,τ yields

S̃α(r̃n,α,τ ) ≈ S̃α(r̃α,τ ) − f̃α(r̄α,τ )(r̃n,α,τ − r̃α,τ ),

for r̄α,τ on the line segment between r̃n,α,τ and r̃α,τ . The last step is to apply Slutsky’s
theorem and the fact that r̄α,τ → r̃α,τ since r̃n,α,τ → r̃α,τ , such that we obtain

√
n(r̃n,α,τ − r̃α,τ ) = √

n
τ − Sα(r̃n,α,τ )

f̃α(r̃α,τ )

d−→ N

(

0,
τ (1 − τ)

( f̃α(r̃α,τ ))2

)

.

�
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