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Abstract In science and engineering, we are often interested in learning about the
lifetime characteristics of the system as well as those of the components that made up
the system. However, in many cases, the system lifetimes can be observed but not the
component lifetimes, and so we may not also have any knowledge on the structure
of the system. Statistical procedures for estimating the parameters of the component
lifetime distribution and for identifying the system structure based on system-level
lifetime data are developed here using expectation–maximization (EM) algorithm.
Different implementations of the EM algorithm based on system-level or component-
level likelihood functions are proposed. A special case that the system is known to be
a coherent system with unknown structure is considered. The methodologies are then
illustrated by considering the component lifetimes to follow a two-parameter Weibull
distribution. A numerical example and a Monte Carlo simulation study are used to
evaluate the performance and related merits of the proposed implementations of the
EM algorithm. Lognormally distributed component lifetimes and a real data example
are used to illustrate how the methodologies can be applied to other lifetime models in
addition to theWeibull model. Finally, some recommendations along with concluding
remarks are provided.
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1 Introduction

In science and engineering, systems are made up of different components and these
systems can be complex in form and structure. Reliability engineers and researchers
are often interested in the lifetime distribution of the system as well as the lifetime
distribution of the components that form the system. In many cases, the lifetimes
of a n-component system can be observed, but not the lifetimes of the components
themselves. This problem may arise when it is not possible to put the individual
components on a life test after the n-component system is already built. A system with
specified performance characteristics but unknown or unspecified constituents and
means of operation is also known as a black-box system. For example, an integrated
circuit (IC) is made up of different electrical components, such as transistors, resistors,
capacitors anddiodes, that are connected to eachother in differentways.Manufacturers
of IC are not only interested in the lifetime of the IC, but also the lifetime distributions
of the electrical components that form the IC. Once the IC is built, it may not be
possible to test these electronic components inside the IC individually. Therefore, in
this situation, the development of statistical inference for the component reliability
characteristics based on system lifetime data becomes necessary.

In recent years, parametric and nonparametric inferential methods for the lifetime
distribution of components based on system lifetimes have been developed by many
authors. Coherent systems (i.e., each component contributes to the functioning/failure
of the system and the reliability of the system is monotone) are commonly considered
in these studies. For nonparametric inference, Bhattacharya and Samaniego (2010)
considered the nonparametric estimation of component lifetime distributions from
system failure-time data, while Balakrishnan et al. (2011a) developed exact nonpara-
metric confidence intervals for population quantiles as well as tolerance intervals.
Al-Nefaiee and Coolen (2013) discussed nonparametric inference for system lifetimes
with exchangeable components. For parametric inference, Eryilmaz et al. (2011) con-
sidered the analysis of consecutive k-out-of-n systemswith exchangeable components.
Ng et al. (2012) discussed the estimation of parameters in the component lifetime dis-
tribution under a proportional hazard ratemodel. Balakrishnan et al. (2011b) developed
the best linear unbiased estimation method for the location and scale parameters of the
lifetime distribution of components based on complete and censored system lifetime
data. Zhang et al. (2015) discussed different estimation methods for the parameters
when the component lifetime distribution is in the location-scale family of distribu-
tions or log-location-scale family of distributions. In these existingworks, the structure
of the systems under investigation was assumed to be known. However, in some prac-
tical situations, the system of interest is a black box, in which case there is a lack of
knowledge on the system’s internal structure. System identification is the subject that
tries to estimate a black box based on observed experimental system lifetime data.
There is a rich literature on system identification based only on data (data driven)
without having previous knowledge of the system (see, for example, Eykhoff 1974;
Ljung 1999; Tangirala 2015). In this paper, we are interested in developing statis-
tical inferential procedures for estimating the parameters of the component lifetime
distribution as well as for identifying the system structure based on the system-level
lifetime data.
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Expectation–maximization algorithm for system-based… 71

Based on the special features of the system lifetime data, we treat the system-
level data as incomplete data and apply the expectation–maximization (EM) algorithm
(Dempster et al. 1977; McLachlan and Krishnan 2008) to obtain the maximum likeli-
hood estimates (MLEs). EM algorithm is an iterative method for finding the MLEs of
the parameters in statistical models that involve some unobserved latent variables. It is
based on the idea of replacing a difficult likelihood maximization with a sequence of
easier maximization steps which will ultimately converge to the value obtainable by
direct maximization of the likelihood. It is particularly useful for solving missing data
problems. EM algorithm has been widely used in lifetime data analysis, for example,
in the analysis of progressively censored data (Ng et al. 2002), for hybrid censored
data (Dube et al. 2011), and for left- truncated and right-censored data (Balakrishnan
and Mitra 2012). Based on the representations of the system structure, system signa-
ture (Samaniego 2007) and minimal signature (Navarro et al. 2007), we propose here
different ways of implementing the EM algorithm and evaluate relative merits of these
implementations.

The rest of this paper is organized as follows. Section 2 provides the details of
the form of system lifetime data and the notion of system signature. In Sect. 3, we
discuss the statistical inference based on maximum likelihood method and present the
framework of the EM algorithm when considering the system lifetime distribution
as a mixture distribution. Different implementations of the EM algorithm based on
system-level and component-level likelihood functions are presented in Sects. 3.1–3.3.
Then, in Sect. 4, we discuss the applications of the EM algorithm when the system
is known to be a coherent system with an unknown system structure. In Sect. 5, we
illustrate the methodologies by considering the lifetimes of the components in the
system to follow a two-parameter Weibull distribution. An illustrative example is
presented in Sect. 5.2, and aMonte Carlo simulation study is carried out in Sect. 5.3 to
evaluate the performance of the proposed implementations of the EM algorithm when
the component lifetimes follow the Weibull distribution. In Sect. 6, we consider the
case when the component lifetimes follow a lognormal distribution to further illustrate
how the methodologies can be applied to different lifetime models in addition to the
Weibull model. A real data example of water-reservoir control system is used to verify
the performance of the proposed estimation procedures. Finally, some concluding
remarks are made in Sect. 7.

2 System lifetime data and system signature

Let the random variable T be the lifetime of a coherent system with independent and
identically distributed (i.i.d.) component lifetimes X1, X2, . . . , Xn from a common
absolutely continuous cumulative distribution function (c.d.f.) FX (·), probability den-
sity function (p.d.f.) fX (·) and survival function (s.f.) F̄X (·) = 1− FX (·). We denote
the order statistics corresponding to the n component lifetimes by X1:n < X2:n <

· · · < Xn:n . We shall further denote the c.d.f., p.d.f. and s.f. of the i-th order statis-
tic by Fi :n(·), fi :n(·) and F̄i :n(·), and the c.d.f., p.d.f. and s.f. of the lifetime of the
system T by FT (·), fT (·) and F̄T (·), respectively. Now, let us assume m indepen-
dent such n-component coherent systems are placed on a life-testing experiment and
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Fig. 1 A 3-component
parallel-series system

their lifetimes are observed, with the corresponding ordered system lifetimes being
T1:m < T2:m < · · · < Tm:m .

System signature (Samaniego 2007) is an index that characterizes a system without
using complex structure function. The system signature of a coherent n-component
system is a n-dimensional probability vector, s = (s1, s2, . . . , sn), defined by

si = Pr(system fails upon the failure of thei − th component)

= Pr(T = Xi :n),

where 0 ≤ si ≤ 1, i = 1, 2, . . . , n, and
∑n

i=1 si = 1. System signature is a
distribution-free representation (Kochar et al. 1999) of the system structure meaning
that s does not depend on the distribution of the component lifetimes. For example, let
us consider a 3-component series-parallel system, as shown in Fig. 1. The signature
for this system is (1/3, 2/3, 0). Once we establish a system signature s, the distribution
function of the system lifetime T can be expressed readily in terms of s and FX alone.
For a n-component system with i.i.d. components, the p.d.f. and s.f. of the system
lifetime T can be expressed as

fT (t |θ, s) =
n∑

i=1

si fi :n(t |θ) =
n∑

i=1

si

(
n

i

)

i fX (t |θ)[FX (t |θ)]i−1[F̄X (t |θ)]n−i (1)

and

F̄T (t |θ, s) =
n∑

i=1

si F̄i :n(t |θ) =
n∑

i=1

si

i−1∑

j=0

(
n

j

)

[FX (t |θ)] j [F̄X (t |θ)]n− j , (2)

respectively, where θ is the vector of model parameters. For more discussions on the
system signatures and their applications, one may refer to Samaniego (2007) and the
references therein.

Supposem independent n-component systemswith the same but unknown structure
are placed on a life-testing experiment and the censoring time for the k-th system is
τk . That is, the experiment is terminated at T ∗

k = min{Tk, τk} for the k-th system. Let
dk be the censoring indicator, i.e., dk = 1 if Tk < τk and dk = 0 otherwise. Then, the
observation can be expressed as T ∗

k = dkTk + (1 − dk)τk , k = 1, 2, . . . ,m, and we
denote the observed values as t∗k = dktk + (1− dk)τk , k = 1, 2, . . . ,m. In this paper,
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we consider the system structure to be unknown but unchanged over time, i.e., s is
considered as a vector of parameters. Our aim is to estimate the system signature s and
the model parameter θ simultaneously based on the censored system-based lifetime
data (t∗, d) = ((t∗1 , d1), . . . , (t∗m, dm)).

3 Maximum likelihood estimation and EM algorithm

Suppose U is the observed data which are generated from the distribution f (u|θ),
and V is the missing data. Then, the complete data are (U,V) with a joint distribution
f (u, v|θ) = f (v|u, θ) f (u|θ), where θ is the vector ofmodel parameters. The problem
of interest is to estimate the parameter vector θ . The log-likelihood based on the
observed data u is

�(θ) = ln f (u|θ). (3)

TheMLE of θ can be obtained by direct maximization of the log-likelihood function in
Eq. (3). However, in some cases, the directmaximization of the log-likelihood function
based on the observed datamay not be straightforward.An alternativemethod to obtain
the MLE of θ is by applying the EM algorithm. Consider the log-likelihood function
based on the complete data (U,V) given by ln f (u, v|θ). The log-likelihood function
of (U,V) is in fact a random variable because V is unobserved. The EM algorithm
first takes the conditional expectation of the complete data log-likelihood with respect
to the unobserved dataV, given the observed data U and the parameter estimate in the
h-th iteration θ (h). Let us define

Q(θ, θ (h)) = EV

(
ln f (u,V|θ)|u, θ (h)

)
=

∫

v
ln f (u, v|θ) f (v|u, θ (h))dv,

where f (v|u, θ (h)) is the conditional marginal distribution of the unobserved data V,
given the observed data U and the current parameter estimate θ (h). The evaluation of
the expectation Q(θ , θ (h)) is the E-step of the EM algorithm. The first argument θ

in Q(θ , θ (h)) corresponds to the variable that maximizes the function Q(θ , θ (h)), and
the second argument θ (h) is treated as a constant in each iteration.

Then, theM-step of the EM algorithmmaximizes the expected log-likelihood func-
tion obtained from the E-step, i.e.,

θ (h+1) = argmax
θ

Q(θ, θ (h)).

The MLE of the parameter vector θ is obtained by iterating the E-step and the M-
step successively until convergence. Each iteration in the EM algorithm is guaranteed
to increase the log-likelihood. Detailed discussions on the convergence of the EM
algorithm can be found in Dempster et al. (1977) and Wu (1983). An estimate of the
asymptotic variance–covariance matrix of the MLE of parameter vector θ , denoted by
θ̂ , can be obtained by inverting the observed (local) Fisher information matrix (see,
for example, Zhang et al. 2015)
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IU(θ̂) =
(

−∂2�(θ)

∂θ∂θT

)∣
∣
∣
∣
θ=θ̂

.

While the EM algorithm is used to find the MLE of θ , an alternative way to obtain
the observed Fisher information matrix is through the use of the missing information
principle (Louis 1982; Tanner 1993):

Observed information = Complete information − Missing information;

that is,

IU(θ̂) = I(U,V)(θ̂) − IV|U(θ̂),

where I(U,V)(θ̂) = EV

(
− ∂2 ln f (u,V|θ)

∂θ∂θT

)∣
∣
∣
θ=θ̂

is the complete information and

IV|U(θ̂) = EV

(
− ∂2 ln f (V|u,θ)

∂θ∂θT

)∣
∣
∣
θ=θ̂

is the missing information. In the following

subsections, we describe different approaches of implementing the EM algorithm
based on the censored system-level lifetime data.

3.1 EM algorithm based on system-level likelihood function

Based on the censored system lifetime data (t∗, d) = ((t∗1 , d1), . . . , (t∗m, dm)), the
log-likelihood function is

�(θ , s) =
m∑

k=1

dk ln

(
n∑

i=1

si fi :n(tk |θ)

)

+
m∑

k=1

(1 − dk) ln

(
n∑

i=1

si F̄i :n(τk |θ)

)

. (4)

The MLEs of θ and s can be obtained by maximizing the log-likelihood function in
(4) with respect to θ and s. However, direct maximization of (4) with respect to θ and
s simultaneously is not an easy task, especially when the number of components n is
large. For this reason, we consider an alternative iterative procedure in which we fix
one parameter vector at a time and maximize the log-likelihood function with respect
to the other parameter vector.

First, we consider the parameter vector θ to be fixed (i.e., assume that θ is known)
and then maximize the log-likelihood function with respect to s. Here, maximizing

Eq. (4) with respect to s with the constraint
n∑

i=1
si = 1 can be done by maximizing

m∑

k=1

dk ln

(
n∑

i=1

si fi :n(tk |θ)

)

+
m∑

k=1

(1 − dk) ln

(
n∑

i=1

si F̄i :n(τk |θ)

)

−υ

(
n∑

i=1

si − 1

)

, (5)
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where υ is the Lagrange multiplier. Taking the derivative of Eq. (5) with respect to si ,
and setting the derivative to 0, we obtain

m∑

k=1

dk
fi :n(tk |θ)

∑n
l=1 sl fl:n(tk |θ)

+
m∑

k=1

(1 − dk)
F̄i :n(τk |θ)

∑n
l=1 sl F̄l:n(τk |θ)

− υ = 0, (6)

for i = 1, . . . , n. Multiplying both sides of Eq. (6) by si , and summing over all si , for
i = 1, . . . , n, we can obtain υ = m and

si = 1

m

[
m∑

k=1

dk
si fi :n(tk |θ)

∑n
l=1 sl fl:n(tk |θ)

+
m∑

k=1

(1 − dk)
si F̄i :n(τk |θ)

∑n
l=1 sl F̄l:n(τk |θ)

]

, (7)

for i = 1, . . . , n.

Second, we consider the system signature s to be fixed (i.e., assume that s is
known) and then maximize the log-likelihood function with respect to θ . Taking the
first derivative of �(θ, s) in Eq. (4) with respect to the parameter θ , we obtain

∂�(θ , s)
∂θ

=
m∑

k=1

dk

(
n∑

i=1

si fi :n(tk |θ)
∑n

l=1 sl fl:n(tk |θ)

∂ ln fi :n(tk |θ)

∂θ

)

+
m∑

k=1

(1 − dk)

(
n∑

i=1

si F̄i :n(τk |θ)
∑n

l=1 sl F̄l:n(τk |θ)

∂ ln F̄i :n(τk |θ)

∂θ

)

. (8)

Defining

δki (θ , s) = si fi :n(tk |θ)
∑n

l=1 sl fl:n(tk |θ)
and δ̃ki (θ , s) = si F̄i :n(τk |θ)

∑n
l=1 sl F̄l:n(τk |θ)

,

for k = 1, . . . ,m, i = 1, . . . , n, Eq. (8) can be rewritten as

∂�(θ, s)
∂θ

=
m∑

k=1

dk

(
n∑

i=1

δki (θ , s)
∂ ln fi :n(tk |θ)

∂θ

)

+
m∑

k=1

(1 − dk)

(
n∑

i=1

δ̃ki (θ, s)
∂ ln F̄i :n(τk |θ)

∂θ

)

.

Here, the observed data U is the system lifetimes or censoring times t∗ =
(t∗1 , t∗2 , . . . , t∗m) and the censoring indicators d = (d1, d2, . . . , dm), and the miss-
ing (unobserved) data V is the number of failed components at the time of the system
failure for each of the m systems. Let the number of failed components at the time of
the system failure for system k be Ik and I = (I1, I2, . . . , Im). Here, I can be consid-
ered as the latent variable and the complete sample for the system-level EM algorithm
is (U,V) = (t∗, d, I).
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With an initial estimate of the parameter vector θ and an initial estimate of the
system signature s, say θ (0) and s(0), respectively, and the estimates at the h-th iteration
(θ (h), s(h)), the (h + 1)-th iteration of the EM algorithm based on the system-level
likelihood function can be described as follows:

E-step Evaluate the conditional probability of latent variable I as

Pr(Ik = i |Tk = tk, θ
(h), s(h)) = δki (θ

(h), s(h))

= s(h)
i fi :n(tk |θ (h))

∑n
l=1 s

(h)
l fl:n(tk |θ (h))

for dk = 1, (9)

Pr(Ik = i |Tk > τk, θ
(h), s(h)) = δ̃ki (θ

(h), s(h))

= s(h)
i F̄i :n(τk |θ (h))

∑n
l=1 s

(h)
l F̄l:n(τk |θ (h))

for dk = 0, (10)

k = 1, 2, . . . ,m, i = 1, 2, . . . , n. Then, we obtain the expectation of the
complete data on system-level log-likelihood as

Q(θ, (θ (h), s(h))) =
m∑

k=1

n∑

i=1

dkδki (θ
(h), s(h)) ln fi :n(Tk = tk |θ)

+
m∑

k=1

n∑

i=1

(1 − dk)δ̃ki (θ
(h), s(h)) ln F̄i :n(τk |θ). (11)

M-step Step 1. Maximize Q(θ, (θ (h), s(h))) in Eq. (11) with respect to θ to obtain
θ (h+1);
Step 2. The updated estimate of s can be obtained as

s(h+1)
i = 1

m

m∑

k=1

[
dkδki (θ

(h), s(h)) + (1 − dk)δ̃ki (θ
(h), s(h))

]
, (12)

for i = 1, . . . , n.

The above E-step and M-step are repeated until convergence occurs to the desired
level of accuracy. The MLEs of the model parameter θ and the system signature s
based on the EM algorithm are the convergent values of the sequence θ (h) and s(h),
respectively. In the following comparative study, we denote this implementation of
the EM algorithm based on system-level likelihood function by EM-sys.

3.2 EM algorithm based on component-level likelihood function

Due to the complexity of the distribution of order statistics, maximizing the function
in Eq. (11) usually does not yield an explicit solution. The EM algorithm will lose its
advantage if theM-step in each iteration is not straightforward. Therefore, we consider
here a different way of applying the EM algorithm by considering the component-level
likelihood function.
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When all the n component lifetimes in a system are observed, finding the MLE is
simply reduced to maximizing the likelihood function based on a complete sample
from the component lifetime distribution fX , which is amuch simpler problembecause
computational algorithms to computeMLEs of parameters of commonly used lifetime
distributions are well-known.

Consider a single n-component system, say system k, with system lifetime Tk = tk
and the system fails due to the failure of the Ik-th ordered component failure. Let
xk = (xk1, xk2, . . . , xkn) be the vector of the n component lifetimes in system k. If all
the n component lifetimes in system k are observed, the log-likelihood function can
be expressed as

�k(θ) =
n∑

j=1

ln fX (xk j |θ). (13)

If the lifetime of system k is observed as Tk = tk , then the system lifetime must
correspond to one of the n component lifetimes, i.e., tk = xk(Ik :n). In this case, the
number of component failures at the time of the system failure (Ik) and the lifetimes
of the other n − 1 component lifetimes (xk(1:n), xk(2:n), . . ., xk(Ik−1:n), xk(Ik+1:n), . . .,
xk(n:n)) can be considered as missing data and the EM algorithm can then be applied
in this framework. On the other hand, if the lifetime of system k is right censored
at τk , then all the n component lifetimes, xk = (xk(1:n), xk(2:n), . . . , xk(n:n)), can be
considered asmissing data and the EMalgorithm can then be applied.Wewill describe
now the ways of handling these two situations in the following subsections.

3.2.1 Observed system failures

Suppose the lifetime of system k is observed as Tk = tk . For notational simplicity, we
use xk1 < xk2 < . . . < xk(Ik−1) < tk = xk Ik < xk(Ik+1) < . . . < xk,n to denote the
ordered component lifetimes in system k. Let us further denote the observed system
lifetime by Uk , i.e., Uk = Tk , the missing data by V k = (Vk1, V k2), where Vk1 = Ik
is the number of component failures at the time of the system failure and V k2 = (Xk1,
Xk2, . . ., Xk(Ik−1), Xk(Ik+1), . . ., Xkn) is the vector of unobserved component lifetimes.
From Eq. (13), the log-likelihood function of the complete data (Uk, Vk1, V k2) for
system k is

�k(θ |Uk, Vk1, V k2)

= �k(θ |Tk = xk Ik , Ik, (xk1, . . . , xk(Ik−1), xk(Ik+1), . . . , xkm))

=
Ik−1∑

j=1

ln fX (xk j |θ) + ln fX (tk |θ) +
n∑

j=Ik+1

ln fX (xk j |θ). (14)

As mentioned in Sect. 2, the EM algorithm first takes the conditional expectation
of the log-likelihood function based on complete data with respect to the missing data
(Vk1, V k2). Suppose the estimates of θ and s after the h-th iteration are θ (h) and s(h),
respectively. We then need to evaluate the function
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Qk(θ , (θ (h), s(h)))

= E(Vk1,V k2)|Uk

(
�k(θ |Uk, Vk1, V k2)|uk, θ (h), s(h)

)

= EV k2|Uk

[
EVk1|(V k2,Uk )

(
�k(θ |Uk, Vk1, V k2)|uk, θ (h), s(h)

)]
. (15)

We first consider the inner layer of the expectation

EVk1|(V k2,Uk )

(
�k(θ |Uk, Vk1, V k2)|uk, θ (h), s(h)

)

=
n∑

i=1

Pr(Ik = i |Tk = tk, θ
(h), s(h))�k(θ |Uk, Vk1 = Ik = i, V k2). (16)

Next, we consider the outer layer of the expectation in Eq. (15). The conditional
distribution of the first (Ik −1) ordered component lifetimes, given tk , is i.i.d. random
variables from a right-truncated distribution

gRX (xk j |θ , tk) = fX (xk j |θ)

FX (tk |θ)
, xk j < tk,

for j = 1, . . . , Ik − 1; see Arnold et al. (1992). The outer layer of the expectation of
the log-likelihood in Eq. (15) with respect to the components failed before the system
failure (i.e., X < t) can be written as

EX |X<t [ln fX (x |θ)] =
∫ t

−∞
ln fX (x |θ)gRX (x |θ , t)dx .

Similarly, given the lifetime of the system k, tk , the last (n− Ik) ordered component
lifetimes are i.i.d. random variables from a left-truncated distribution

gLX (xk j |θ, tk) = fX (xk j |θ)

F̄X (tk |θ)
, xk j > tk,

for j = Ik + 1, . . . , n; see Arnold et al. (1992). The outer layer of the expectation of
the log-likelihood in Eq. (15) with respect to the components survived at the time of
system failure (i.e., X > t) can be written as

EX |X>t [ln fX (x |θ)] =
∫ ∞

t
ln fX (x |θ)gLX (x |θ , t)dx .

Then, Eq. (15) can be expressed as

Qk(θ , (θ (h), s(h)))

=
n∑

i=1

Pr
(
Ik = i |Tk = tk, θ

(h), s(h)
)
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[

(i − 1)
∫ tk

−∞
ln fX (x |θ)gRX (x |θ (h), tk)dx + fX (tk |θ)

+ (n − i)
∫ ∞

tk
ln fX (x |θ)gLX (x |θ (h), tk)dx

]

. (17)

3.2.2 Censored system lifetimes

Suppose the component lifetimes in system k are xk = (xk1, . . . , xkn), and the sys-
tem lifetime Tk is right censored at time τk . Let Λk be the random variable that
denotes the number of failed components in system k before time τk . Λk is a dis-
crete random variable with support on {0, 1, . . . , n − 1}. In this case, the observed
data are Uk = τk and the missing data are V k = (Vk1, V k2), where Vk1 = Λk

and V k2 = (Xk1, . . . , XkΛk , Xk(Λk+1), . . . , Xkn). From Eq. (13), the log-likelihood
function of the complete data (Uk, Vk1, V k2) can be written as

�k(θ |Uk, Vk1, V k2) =
Λk∑

j=1

ln fX (xk( j :n)|θ) +
n∑

j=Λk+1

ln fX (xk( j :n)|θ). (18)

As in the case when the system failure is observed, the conditional distribution of
the firstΛk ordered component lifetimes, given the censoring time τk , are i.i.d. random
variables from a right-truncated distribution

gRX (xk j |θ, τk) = fX (xk j |θ)

FX (τk |θ)
, xk j < τk,

for j = 1, . . . , Λk . Given the censoring time of system k, τk , the last (n−Λk) ordered
component lifetimes are i.i.d. random variables from a left-truncated distribution

gLX (xk j |θ , τk) = fX (xk j |θ)

F̄X (τk |θ)
, xk j > τk,

for j = Λk + 1, . . . , n. Suppose the estimates of θ and s after the h-th iteration are
θ (h) and s(h), respectively. We then need to evaluate the function

Qk(θ , (θ (h), s(h)))

=
n−1∑

λ=0

Pr(Λk = λ|Tk > τk, θ
(h), s(h))

[

λ

∫ τk

−∞
ln fX (x |θ)gRX (x |θ (h), τk)dx

+ (n − λ)

∫ ∞

τk

ln fX (x |θ)gLX (x |θ (h), τk)dx

]

, (19)

where
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Pr(Λk = λ|Tk > τk, θ
(h), s(h)) = Pr(Λk = λ, Tk > τk |θ (h), s(h))

Pr(Tk > τk |θ (h), s(h))

= (1 − ∑λ
l=1 s

(h)
l )

(n
λ

)[FX (τk |θ (h))]λ[F̄X (τk |θ (h))]n−λ

F̄T (τk |θ (h), s(h))

de f= δckλ(θ
(h), s(h)),

(20)

(1 − ∑λ
l=1 s

(h)
l ) is the probability that the system did not fail due to the i-th ordered

component failure, i = 1, 2, . . . , λ, and
(n
λ

)[FX (τk |θ (h))]λ[F̄X (τk |θ (h))]n−λ is the
probability that λ-out-of-n components are failed at time τk .

3.2.3 Implementation of the EM algorithm

Based on the results presented in Sects. 3.2.1 and 3.2.2, when the system signature s
is unknown and given the estimates of θ and s after the h-th iteration are θ (h) and s(h),
respectively, the (h + 1)-th iteration of the EM algorithm on component-level can be
described as follows:

E-step Compute the conditional probabilities δki (θ
(h), s(h)) in Eq. (9) for dk = 1,

i = 1, . . . , n, and δckλ(θ
(h), s(h)) in Eq. (20) for dk = 0, λ = 0, . . . , n − 1,

k = 1, . . . ,m. We then have

Q(θ, (θ (h), s(h))) =
m∑

k=1

dk

n∑

i=1

δki (θ
(h), s(h))

×
[

(i − 1)
∫ tk

−∞
ln fX (x |θ)gRX (x |θ (h), tk)dx + fX (tk |θ)

+ (n − i)
∫ ∞

tk
ln fX (x |θ)gLX (x |θ (h), tk)dx

]

+
m∑

k=1

(1 − dk)
n−1∑

λ=0

δckλ(θ
(h), s(h))

×
[

λ

∫ τk

−∞
ln fX (x |θ)gRX (x |θ (h), τk)dx

+ (n − λ)

∫ ∞

τk

ln fX (x |θ)gLX (x |θ (h), τk)dx

]

. (21)

M-step Step 1. Maximize Q(θ, (θ (h), s(h))) in Eq. (21) with respect to θ to obtain
θ (h+1);
Step 2. The updated estimate of s can be obtained by Eq. (12) for i = 1, . . . , n.

The MLEs of the model parameter θ and the system signature s can be obtained
by repeating the E-step and M-step until convergence occurs to the desired level of
accuracy. In the following comparative study, we denote this implementation of the
EM algorithm based on component-level likelihood function by EM-comp.
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3.3 Alternate implementation based on component-level likelihood function

Suppose a Type II censored system lifetime data, t = (t1:m < t2:m < . . . < tr :m),
r ≤ m, are observed. According to the results in order statistics (Arnold et al. 1992,
pp. 23), the censored system lifetimes Tr+1:m, . . . , Tm:m have the same distribution as
order statistics Z1:m−r , . . . , Zm−r :m−r , where Z1, . . . , Zm−r are generated from

gL(z|tr :m) = fT (z)

1 − FT (tr :m)
, z > tr :m .

Then, the distribution of order statistic Tr+ j :m is simply

g(r+ j):m(z|tr :m) = (m − r)!
( j − 1)!(m − r − j)!
× gL(z|tr :m)GL(z|tr :m) j−1(1 − GL(z|tr :m))m−r− j , z ≥ tr :m,

j = 1, 2, . . . , (m − r), where GL(z|tr :m) = ∫ z
tr :m gL(x |tr :m)dx . The expectation of

Tr+ j :m can then be expressed as

E(T(r+ j):m) =
∫ ∞

tr :m
xg(r+ j):m(x |tr :m)dx, j = 1, . . . ,m − r.

Once we have the expectation of the censored system lifetimes, those expectations
could be used to replace the censored system lifetimes, i.e., assuming the observed
system lifetimes to be T1:m, . . . , Tr :m, E(Tr+1:m), . . . , E(Tm:m) as an approximation.
The theoretical basis of this approximation is approximating E[ln fT (T )|T > tr :m]
by ln fT [E(T |T > tr :m)] based on the first-order Taylor expansion of ln fT (T ) at
E(T |T > tr :m). Then, the EM algorithm discussed in Sects. 3.1 and 3.2 can be applied
with d1 = 1, . . . , dm = 1 on the system lifetimes. We denote this implementation of
the EM algorithm by EM-exp.

4 Coherent systems with unknown structure

In the preceding sections, when the system signature is unknown, we have developed
different implementations of the EM algorithm for the estimation of the model param-
eter θ and the system signature s, but we did not put any restriction on the estimate
of the system signature except

∑n
i=1 ŝi = 1. However, in practice, if we have the

information that the observed system lifetimes are coming from a coherent system
with n components, there are a limited number of possible system signatures that need
to be considered. For example, if the system is a 3-component coherent system, then
there are only 5 possible arrangements, as shown in Table 1.

If the system is a 4-component coherent system, then there are 20 possible arrange-
ments (Navarro et al. 2007, p. 184). Therefore, we should take into account the
restriction on the limited possible system signatures in the parameter estimation pro-
cedures. This can be achieved by applying the proposed EM algorithms with known
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Table 1 All possible 3-component coherent system

System System lifetime System signature

Series min(X1, X2, X3) = X1:3 s1 = (1, 0, 0)

Series-parallel (X1,max(X2, X3)) s2 = (1/3, 2/3, 0)

2-out-of-3 max
1≤i< j≤3

(min(Xi , X j )) = X2:3 s3 = (0, 1, 0)

Parallel-series max(X1,min(X2, X3)) s4 = (0, 2/3, 1/3)

Parallel max(X1, X2, X3) = X3:3 s5 = (0, 0, 1)

system signature for each of the possible system signature and then choose the system
signature that results in the largest likelihood value. Specifically, if there are L possible
system signatures, sl , l = 1, 2, . . . , L , we can apply the proposed implementations
of EM algorithms by fixing the system signature as sl to obtain the MLE of θ as θ̂ l ,
l = 1, 2, . . . , L , and then computing the value of the log-likelihood in Eq. (4) as
�(θ̂ l , sl). Then, suppose

�(θ̂ l∗ , sl∗) = max
l=1,2,...,L

{�(θ̂ l , sl)},

the final estimates of the parameter vector and the system signature will be θ̂ l∗ and
sl∗ , respectively.

5 Weibull distributed component lifetime data

To illustrate the methodologies developed in the preceding sections, we consider the
lifetimes of the components in an n-component system to follow a two-parameter
Weibull distribution. Then,Monte Carlo simulations and a numerical example are used
here to evaluate the performance of different implementations of the EM algorithm in
obtaining the MLEs of the parameters in the subsequent sections.

5.1 Implementations of the EM algorithm

Suppose that the component lifetimes follow a two-parameter Weibull distribution
(see, for example, Weibull 1951; Murthy et al. 2004; Rinne 2010) with c.d.f. and
p.d.f.

FX (x |α, β) = 1 − exp

[

−
(
x

β

)α]

, x > 0

and fX (x |α, β) = α

x

(
x

β

)α

e
−

(
x
β

)α

, x > 0,

respectively, where α > 0 is the shape parameter and β > 0 is the scale parameter.
The log-transformation of the component lifetimes follows the smallest extreme value
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(SEV) distribution. Let W = ln X be the log-lifetime of the component. Then, the
c.d.f. and p.d.f. of the log-transformed component lifetimes are

FW (w|μ, σ) = 1 − exp

{

− exp

[
w − μ

σ

]}

,−∞ < w < ∞

and fW (w|μ, σ) = 1

σ
e

w−μ
σ exp

[
−e

w−μ
σ

]
,−∞ < w < ∞,

respectively, with location parameter −∞ < μ = ln β < ∞ and scale parameter
σ = 1/α > 0.

The p.d.f. and c.d.f. of the i-th order statistic Wi :n are, respectively,

fi :n(w|μ, σ) =
(
n

i

)

i (FW (w|μ, σ))i−1 fW (w|μ, σ) (1 − FW (w|μ, σ))n−i

= 1

σ

(
n

i

)

i exp

(
w − μ

σ

){

exp

[

− exp

(
w − μ

σ

)]}n−i+1

×
{

1 − exp

[

− exp

(
w − μ

σ

)]}i−1

,−∞ < w < ∞ (22)

and Fi :n(w|μ, σ) =
n∑

l=i

(
n

l

)

[FW (w|μ, σ)]l [1 − FW (w|μ, σ)]n−l

=
n∑

l=i

(
n

l

) {

1 − exp

[

− exp

(
w − μ

σ

)]}l

×
{

exp

[

− exp

(
w − μ

σ

)]}n−l

,−∞ < w < ∞, (23)

where−∞ < μ < ∞ and σ > 0. Here after, we consider the log-transformed system
and component lifetimes instead of the original lifetimes as it is more convenient. For
notational simplicity, we still use X to denote the log-transformed component lifetime
and T to denote the log-transformed system lifetime, unless stated otherwise.

In the following subsections, we illustrate different implementations of the EM
algorithm described earlier in Sect. 3 when the component lifetime distribution is
Weibull. The algorithms and the required computational formulae for the conditional
expectations are presented.

5.1.1 EM-sys algorithm

The EM-sys algorithm is realized by directly applying Eqs. (22) and (23) to the algo-
rithm described earlier in Sect. 3.1. Suppose the estimates of the parameter vector and
the system signature in the h-th iteration are, respectively, θ (h) = (μ(h), σ (h)) and s(h).
Then, the (h + 1)-th iteration of the EM-sys algorithm can be described as follows:

E-step Evaluate the conditional probability of I in Eq. (9) by plugging in the p.d.f.
in Eq. (22) and the c.d.f. in Eq. (23);
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M-step Step 1. Maximize Q(θ, (θ (h), s(h))) in Eq. (11) with respect to μ and σ to
obtain μ(h+1) and σ (h+1);
Step 2. Obtain the updated s(h) by Eq. (12).

5.1.2 EM-comp algorithm

Suppose a sample w = (w1, w2, . . . , wn) follows SEV distribution with location
parameter μ and scale parameter σ . Then, the MLEs of μ and σ can be obtained by
solving the following equation (Lawless 2011):

σ̂ =
∑n

i=1 wi exp(wi/σ̂ )
∑n

i=1 exp(wi/σ̂ )
− 1

n

n∑

i=1

wi , (24)

and then substituting the solution σ̂ into

μ̂ = σ̂ ln

[
1

n

n∑

i=1

exp
(wi

σ̂

)
]

. (25)

The M-step of the EM algorithm based on component-level likelihood function can
be simplified to solve Eq. (24).

In order to compute the conditional expectations in theE-step,we consider a random
variable Zk that follows a left-truncated SEV distribution with truncation at time tk
(see, for example, Ng et al. 2002). The p.d.f. of Zk is then given by

fZk (zk |Zk > tk, μ, σ ) = fX (zk |μ, σ)

1 − FX (tk |μ, σ)

= exp[exp(ξk)]
σ

exp

[
zk − μ

σ
− exp

(
zk − μ

σ

)]

, zk > tk,

− ∞ < μ < ∞, σ > 0,

where ξk = tk−μ
σ

.

Let Z∗
k = Zk−μ

σ
and ηk = exp

[
exp(ξk)

]
. Then, the p.d.f. of Z∗

k could be expressed
as

fZ∗
k
(z∗k |Z∗

k > ξk, μ, σ ) = ηk exp
[
z∗k − exp(z∗k )

]
, z∗k > ξk,−∞ < μ < ∞, σ > 0.

The moment generating function of Z∗
k , conditional on Z∗

k > ξk , is given by

MZ∗
k
(s) = ηkΓ (s + 1, eξk ) = Γ (s + 1)

⎡

⎣ηk −
+∞∑

p=0

e(s+p+1)ξk

Γ (s + p + 2)

⎤

⎦ ,

where Γ (α) = ∫ ∞
0 uα−1e−udu is the gamma function andΓ (α, x) = ∫ ∞

x uα−1e−udu
is the incomplete gamma function. Then, we have the following expectations:
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E[Zk |ξk, μ, σ ] = σ ER,1,k + μ,

E[eZk/σ |ξk, μ, σ ] = eμ/σ ER,2,k

and E[Zke
Zk/σ |ξk, μ, σ ] = eμ/σ [σ ER,3,k + μER,2,k], (26)

where

ER,1,k = E
(
Z∗
k |ξk, μ, σ

)

= ψ(1)ηk +
+∞∑

p=0

e(p+1)ξkψ(p + 2)

Γ (p + 2)
− [ξk + ψ(1)]

+∞∑

p=0

e(p+1)ξk

Γ (p + 2)
,

ER,2,k = E
(
eZ

∗
k |ξk, μ, σ

)

= eξk + 1

and ER,3,k = E
(
Z∗
k e

Z∗
k |ξk, μ, σ

)

= ψ(2)ηk +
+∞∑

p=0

e(p+2)ξkψ(p + 3)

Γ (p + 3)
− [ξk + ψ(2)]

+∞∑

p=0

e(p+2)ξk

Γ (p + 3)
,

ψ(·) = d
dx lnΓ (x) is the digamma function.

Similarly, let Yk be a random variable with a right-truncated SEV distribution at
time tk . The p.d.f. of Yk is then

fYk (yk |Yk < tk, μ, σ ) = fX (yk |μ, σ)

FX (tk |μ, σ)

= 1

σ [1 − exp(exp(ξk))] exp
[
yk − μ

σ
− exp(

yk − μ

σ
)

]

,

yk < tk,−∞ < μ < ∞, σ > 0.

If Y ∗
k = Yk−μ

σ
, the p.d.f. of Y ∗

k can be expressed as

fY ∗
k
(y∗

k |Y ∗
k < ξk, μ, σ ) = 1

[1 − exp(exp(ξk))] exp
[
y∗
k − exp(y∗

k )
]
,

y∗
k > ξk,−∞ < μ < ∞, σ > 0.

The moment generating function of Y ∗
k , conditional on Y ∗

k < ξk , is given by

MY ∗
k
(s) = (ηk − 1)−1[ηkΓ (s + 1) − MZ∗

k
(s)].

The conditional expectations of interest are then given by

E[Yk |ξk, μ, σ ] = σ EL ,1,k + μ,

E[eYk/σ |ξk, μ, σ ] = eμ/σ EL ,2,k

and E[YkeYk/σ |ξk, μ, σ ] = eμ/σ [σ EL ,3,k + μEL ,2,k], (27)
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where

EL ,1,k = E(Y ∗
k |ξk, μ, σ )

= (ηk − 1)−1 [
ηkψ(1) − E(Z∗

k |ξk, μ, σ )
]
,

EL ,2,k = E(eY
∗
k |ξk, μ, σ )

= (ηk − 1)−1
[
ηk − E(eZ

∗
k |ξk, μ, σ )

]

and EL ,3,k = E(Y ∗
k e

Y ∗
k |ξk, μ, σ )

= (ηk − 1)−1
[
ηkψ(2) − E(Z∗

k e
Z∗
k |ξk, μ, σ )

]
.

As mentioned in Sect. 3.2, suppose system k failed at time tk . Then, the components
still working at time tk have the same distribution as the random variable Zk , and the
components failed before time tk have the same distribution as the random variable
Yk . If system k is censored at time τk , with ξ∗

k = τk−μ
σ

, the above formulations are
still applicable.

Following the notation and setting described earlier in Sect. 3.1, the (h + 1)-th
iteration of the EM-comp is as follows:

E-step Evaluate the conditional probabilities δki (μ
(h), σ (h), s(h)) in Eq. (9) for i =

1, . . . , n, and δckλ(μ
(h), σ (h), s(h)) in Eq. (20), for λ = 0, . . . , n − 1, k =

1, . . . ,m;
M-step Step 1. Update the estimates of the parameters by Eqs. (24) and (25) as

σ (h+1) =
∑m

k=1

(
ρ3(k|μ(h), σ (h), s(h)))

)

∑m
k=1

(
ρ2(k|μ(h), σ (h), s(h))

) −
∑m

k=1

(
ρ1(k|μ(h), σ (h), s(h)))

)

mn

and μ(h+1) = σ (h+1) ln

[∑m
k=1

(
ρ2(k|μ(h), σ (h), s(h))

)

mn

]

,

where

ρl(k|μ(h), σ (h), s(h)) = dk

n∑

i=1

Eo,l(k, i |μ(h), σ (h), s(h))

+ (1 − dk)
n−1∑

λ=0

Ec,l(k, λ|μ(h), σ (h), s(h)),

for l = 1, 2, 3, and

Eo,1(k, i |μ(h), σ (h), s(h)) = δki (μ
(h), σ (h), s(h))

[
(i − 1)E(Yk |ξk , μ(h), σ (h))

+ tk + (n − i)E(Zk |ξk , μ(h), σ (h))
]
,

Ec,1(k, λ|μ(h), σ (h), s(h)) = δckλ(μ
(h), σ (h), s(h))

[
λE(Yk |ξ∗

k , μ(h), σ (h))

+ (n − λ)E(Zk |ξ∗
k , μ(h), σ (h))

]
,
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Eo,2(k, i |μ(h), σ (h), s(h)) = δki (μ
(h), σ (h), s(h))

[
(i − 1)E(eYk/σ

(h) |ξk , μ(h), σ (h))

+ etk/σ
(h) + (n − i)E(eZk/σ

(h) |ξk , μ(h), σ (h))
]
,

Ec,2(k, λ|μ(h), σ (h), s(h)) = δckλ(μ
(h), σ (h), s(h))

[
λE(eYk/σ

(h) |ξ∗
k , μ(h), σ (h))

+ (n − λ)E(eZk/σ
(h) |ξ∗

k , μ(h), σ (h))
]
,

Eo,3(k, i |μ(h), σ (h), s(h)) = δki (μ
(h), σ (h), s(h))

[
(i − 1)E(Yke

Yk/σ (h) |ξk , μ(h), σ (h))

+ tke
tk/σ (h) + (n − i)E(Zke

Zk/σ
(h) |ξk , μ(h), σ (h))

]

and Ec,3(k, λ|μ(h), σ (h), s(h)) = δckλ(μ
(h), σ (h), s(h))

[
λE(Yke

Yk/σ (h) |ξ∗
k , μ(h), σ (h))

+ (n − λ)E(Zke
Zk/σ

(h) |ξ∗
k , μ(h), σ (h))

]
;

Step 2. Update s(h+1) by Eq. (12).

5.1.3 EM-exp algorithm

The algorithm of EM-exp based on Weibull distributed component lifetimes can be
described as follows:

E-step Step 1. Evaluate the expectations if the system lifetimes tk are censored, for
k = r + 1, . . . ,m, obtaining the pseudo-complete system lifetimes t1, t2, . . .,
tr , E(Tr+1), . . . , E(Tm);
Step 2. Evaluate the conditional probabilities δki (μ

(h), σ (h), s(h)) in Eq. (9)
for i = 1, . . . , n, k = 1, . . . ,m;

M-step The same as the M-step in Sect. 5.1.2 with dk = 1 for k = 1, . . . ,m.

5.2 Illustrative example

A numerical example is given here to illustrate the three different implementations of
the EM algorithm: EM-sys, EM-comp and EM-exp, proposed in Sects. 3.1, 3.2 and 3.3
by assuming the component lifetime distribution to be Weibull. A sample of m = 30
system lifetimes was simulated from a 4-component system with system signature
s = (1/4, 1/4, 1/2, 0), and the component lifetimes follow a Weibull distribution
with scale parameter β = 1 and shape parameter α = 1. In other words, the logarithm
of the component lifetimes is assumed to follow a SEV distribution with location
parameter μ = 0 and scale parameter σ = 1. The ordered log-transformed system
lifetimes are presented in Table 2. We consider the estimation of parameters and
the system signature when the system structure is unknown with different censoring
proportions in the following subsections.

Weare interested in estimating both the system signature s and themodel parameters
μ and σ . We apply the three different implementations of the EM algorithm proposed
in Sects. 3.1, 3.2 and 3.3, and the numerical maximization to obtain the MLEs based
on the dataset presented in Table 2 with censoring proportions q = 0, 10 and 30%.
We consider four different combinations of initial values for these algorithms:
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Table 2 Logarithm of m = 30 simulated system lifetimes of a 4-component system with system signature
s = (1/4, 1/4, 1/2, 0) when the component lifetimes are from Weibull(1, 1)

− 4.5469 − 4.4799 − 3.9642 − 3.2333 − 2.8369 − 2.6229 − 1.7921 − 1.4315 − 1.2964 − 1.2523

− 1.1188 − 1.1021 − 1.0527 − 0.8610 − 0.5840 − 0.5731 − 0.3609 − 0.2885 − 0.2457 0.0230

0.1509 0.2665 0.3275 0.3735 0.3877 0.4422 0.4823 0.5025 0.6734 1.1459

(i) θ (0) = (μ̂(0), σ̂ (0)) = (0, 1), s(0) = (0.25, 0.25, 0.50, 0.00);
(ii) θ (0) = (μ̂(0), σ̂ (0)) = (2, 3), s(0) = (0.25, 0.25, 0.50, 0.00);
(iii) θ (0) = (μ̂(0), σ̂ (0)) = (0, 1), s(0) = (0.40, 0.30, 0.20, 0.10);
(iv) θ (0) = (μ̂(0), σ̂ (0)) = (2, 3), s(0) = (0.40, 0.30, 0.20, 0.10).

The algorithm is considered to have converged when

max(|μ̂(h+1) − μ̂(h)|, |σ̂ (h+1) − σ̂ (h)|, |ŝ(h+1)
i − ŝ(h)

i |, i = 1, 2, 3, 4) < 10−6.

The parameter estimates (say, θ̂ = (μ̂, σ̂ )) and the estimate of system signature ŝ of
the three different implementations of the EM algorithm and the parameter estimates
obtained fromdirectmaximization of the log-likelihood function are presented inTable
3. In addition, to assess which method results in estimates with the largest likelihood,
the values of the log-likelihood in Eq. (4) are evaluated at the parameter estimates and
are denoted by �(θ̂ , ŝ). The largest value of �(θ̂ , ŝ) for each setting is marked with an
asterisk ∗. We can observe from Table 3 that different initial values (θ (0), s(0)) result
in different estimates of the parameters and the system signature. The initial value of
the system signature, s(0), plays an important role in the resulting estimates, especially
in the estimation of the system signature. It is noteworthy that the elements set to be
zero in the initial values of the system signature s(0) will never become nonzero in
the algorithm, and hence, the final estimate of those elements is always equal to zero.
From Table 3, the estimate of θ is very close to the true value when the censoring
proportion is small, regardless of the initial values. We will further investigate the
effect of the initial values on the final estimates by using a Monte Carlo simulation
study in the following section.

For Type II censored sample, the first r -out-of-m system failures are observed, and
thus, we define the censoring proportion by q = (m − r)/m. For Type II censored
sample with r = 27 (i.e., q = 10%) in Table 2 with initial values (μ̂(0), σ̂ (0)) = (2, 3)
and s(0) = (0.25, 0.25, 0.50, 0.00), the implementations EM-sys, EM-comp and EM-
exp take 78 iterations (in 17.54 s), 176 iterations (in 1.06 s) and205 iterations (in 1.22 s),
respectively, to converge to the final estimates. In this example, we can see that the
implementations of EM algorithm based on component-level likelihood function,EM-
comp and EM-exp, take less time to converge to the final estimates. This is because
the M-step of EM-sys requires a two-dimensional numerical optimization, while the
M-step in EM-comp and EM-exp only requires solving one nonlinear equation.

Since these three proposed implementations of the EM algorithm converge to
different values, to evaluate the correctness of the estimates obtained by these imple-
mentations, we compute the values of the log-likelihood function in Eq. (4), �(θ̂ , ŝ)
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Table 3 MLEs obtained by three different implementations of the EM algorithm with unknown system
signature

q (%) Implementation μ̂ σ̂ ŝ �(θ̂ , ŝ)

θ (0) = (0, 1), s(0) = (.25, .25, .5, 0)

0 EM-sys 0.0025 1.1675 (0.3719, 0.0054, 0.6226, 0.0000) −50.5854

EM-comp/EM-exp − 0.0004 1.1678 (0.3729, 0.0000, 0.6271, 0.0000) −50.5779*

10 EM-sys 0.0081 1.1915 (0.3660, 0.0064, 0.6277, 0.0000) −51.2285

EM-comp 0.0046 1.1913 (0.3673, 0.0000, 0.6327, 0.0000) −51.2209*

EM-exp 0.0232 1.1535 (0.3853, 0.0000, 0.6147, 0.0000) −51.2289

30 EM-sys 0.1366 1.3421 (0.3554, 0.0317, 0.6129, 0.0000) −50.6604*

EM-comp 0.1075 1.3400 (0.3589, 0.0002, 0.6409, 0.0000) −50.6653

EM-exp 0.1779 1.2146 (0.4240, 0.0001, 0.5759, 0.0000) −50.7007

θ (0) = (2, 3), s(0) = (.25, .25, .5, 0)

0 EM-sys 0.0034 1.1676 (0.3714, 0.0076, 0.6211, 0.0000) −50.5884

EM-comp/EM-exp − 0.0004 1.1678 (0.3729, 0.0000, 0.6271, 0.0000) −50.5779*

10 EM-sys 0.0084 1.1916 (0.3659, 0.0069, 0.6272, 0.0000) −51.2292

EM-comp 0.0046 1.1913 (0.3673, 0.0000, 0.6327, 0.0000) −51.2209*

EM-exp 0.0232 1.1535 (0.3853, 0.0000, 0.6147, 0.0000) −51.2289

30 EM-sys 0.1315 1.3419 (0.3558, 0.0266, 0.6176, 0.0000) −50.6611*

EM-comp − 0.237 2.3526 (0.0000, 0.1914, 0.8086, 0.0000) −50.7275

EM-exp 0.1786 1.2148 (0.4238, 0.0010, 0.5752, 0.0000) −50.7004

θ (0) = (0, 1), s(0) = (.4, .3, .2, .1)

0 EM-sys 0.0162 1.1644 (0.3656, 0.0385, 0.5925, 0.0034) −50.5835

EM-comp/EM-exp − 0.0004 1.1678 (0.3729, 0.0000, 0.6271, 0.0000) −50.5779*

10 EM-sys − 0.7414 1.1930 (0.2598, 0.0068, 0.1432, 0.5902) −51.1351

EM-comp − 0.7456 1.1949 (0.2609, 0.0014, 0.1462, 0.5915) −51.1337*

EM-exp 0.0233 1.1535 (0.3852, 0.0002, 0.6146, 0.0000) −51.2291

30 EM-sys − 0.6633 1.3368 (0.2183, 0.0797, 0.1659, 0.5362) −50.6486

EM-comp − 0.6617 1.3350 (0.2222, 0.0695, 0.1757, 0.5326) −50.6443

EM-exp − 0.5370 1.2351 (0.2740, 0.0164, 0.2558, 0.4538) −50.6405*

θ (0) = (2, 3), s(0) = (.4, .3, .2, .1)

0 EM-sys 0.0025 1.1675 (0.3719, 0.0055, 0.6226, 0.0000) −50.5854*

EM-comp/EM-exp 0.7165 1.1846 (0.4840, 0.5160, 0.0000, 0.0000) −51.3797

10 EM-sys − 0.7391 1.1925 (0.2619, 0.0010, 0.1505, 0.5866) −51.1328*

EM-comp − 0.7453 1.1949 (0.2613, 0.0000, 0.1478, 0.5909) −51.1331

EM-exp 0.7590 1.2039 (0.4913, 0.5087, 0.0000, 0.0000) −51.8952

30 EM-sys − 0.6619 1.3365 (0.2175, 0.0823, 0.1640, 0.5361) −50.6492

EM-comp − 0.6617 1.3350 (0.2222, 0.0695, 0.1757, 0.5326) −50.6443*

EM-exp 0.1786 1.2148 (0.4238, 0.0010, 0.5752, 0.0000) −50.7004

and compare these values. These values of the log-likelihood function are also pre-
sented in Table 3 with “∗” to indicate the largest log-likelihood among the three
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implementations. We do observe that these values of log-likelihood based on different
implementations are quite close to each other.

5.3 Monte Carlo simulation study

In this subsection, we evaluate the performance of the proposed implementations of
the EM algorithm using Monte Carlo simulation. Once again, the component lifetime
distribution is assumed to be Weibull, and hence, the logarithm of the component
lifetimes follows SEV distribution. Without loss of generality, we set μ = 0 and
σ = 1 in the following simulation studies.

5.3.1 Coherent systems with unknown system signature

In Sect. 4, we described the procedure to estimate the parameter vector and the system
signature when we have the information that the systems are coherent systems. A
Monte Carlo simulation study is conducted here to evaluate the performance of the
proposed implementations of the EM algorithm in correctly identifying the system
signature.

We consider the 3-component coherent systems with sample sizes m = 10 and
100. The five possible coherent systems and their corresponding system signatures
are presented in Table 1. We generate samples of m system lifetimes with system
signature sl , l = 1, 2, 3, 4, 5, presented in Table 1. Then, we apply the procedure
described in Sect. 4 to obtain the estimate of θ . Since all three implementations of the
EM algorithm converge to the same value when the system signature is assumed to be
known, we present the results based only on EM-comp in this simulation study. The
simulation results were based on 10,000 Monte Carlo runs.

The obtained results are summarized in Tables 4 and 5, where the sample sizes are
m = 10 and 100, respectively. The values in Tables 4 and 5 represent the percentages
that the data sampled from the row category have the largest likelihood value assuming
it is sampled from the column category. For example, the cell in row 1 (Series) column
2 (Series-parallel) in Table 4 is 0.292, which means of the 10,000 iterations that the
data are generated from a series system, the value of the likelihood of a series-parallel
system is the largest 2920 times compared to the other four likelihoods (series, 2-out-
of-3, parallel-series and parallel systems).

From Tables 4 and 5, we observe that the EM algorithm could not correctly detect
which system the data are generated fromwhen the sample size is small (saym = 10).
When m = 100, the percentage of correctly detecting the system structure increases.
It may also be seen that when the sample size is small, the most unlikely choices are
parallel-series and 2-out-of-3 systems.

To investigate this problem further, a sample of size 30 was generated from a series-
parallel system with signature (1/3, 2/3, 0), and with log-transformed components
following a SEV distribution with locationμ = 0 and scale σ = 1. The EM algorithm
is then used to estimate the parameters μ and σ for each of the five possible system
signatures separately. Figure 2 presents the p.d.f. of the log-system lifetime for each
of the possible system, when log-component lifetimes follow SEV distribution with
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Table 4 The proportion of correct detection of system signature when the sample size is 10

Generated from Identified as

Series Series–parallel 2-out-of-3 Parallel–series Parallel

Series 0.295 0.292 0.076 0.033 0.304

Series–parallel 0.285 0.313 0.075 0.037 0.290

2-out-of-3 0.271 0.195 0.081 0.044 0.409

Parallel–series 0.239 0.171 0.082 0.045 0.462

Parallel 0.122 0.227 0.123 0.044 0.484

Table 5 The proportion of correct detection of system signature when the sample size is 100

Generated from Identified as

Series Series–parallel 2-out-of-3 Parallel–series Parallel

Series 0.392 0.349 0.193 0.027 0.039

Series–parallel 0.119 0.525 0.131 0.030 0.195

2-out-of-3 0.211 0.079 0.329 0.135 0.247

Parallel–series 0.093 0.030 0.258 0.188 0.431

Parallel 0.057 0.021 0.227 0.163 0.532

Fig. 2 Distributions of log-system lifetimes, when log-component lifetimes follow SEV distribution with
μ = 0 and σ = 1, based on different system signatures

μ = 0 and σ = 1. Figure 3 presents the estimated system lifetime distribution
by assuming different underlying system structures and the parameter estimates are
also presented. From Fig. 3, it can be seen that the estimated distribution of the log-
transformed system lifetime under different assumptions is very similar, even when
the parameter estimates vary.

5.3.2 Unknown system signature

Simulation studies are used in this subsection to evaluate the performance of the
proposed methodologies. The log-component lifetimes in the system with system
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Fig. 3 Estimated fT (t) with parameters estimated from different system signatures

signature s = (.25, .25, .5, 0) are generated from SEV distribution with μ = 0 and
σ = 1 with sample sizem = 20, 30, and proportion of censoring q = 0, 10, 30, 50%.
Different initial values are considered. The stopping criterion used is

max(|μ̂(h+1) − μ̂(h)|, |σ̂ (h+1) − σ̂ (h)|, |ŝ(h+1) − ŝ(h)|, i = 1, 2, 3, 4) < 10−4.

The simulation results are based on 10,000 Monte Carlo runs, and these results are
presented in Tables 6 and 7. We have also considered different system signatures in
the simulation study, and since the results demonstrate similar behavior, for the sake
of brevity, we only present here the results for s = (.25, .25, .5, 0). The average of
parameter estimates and themean square errors (MSEs) of the estimateswere obtained.
Moreover, the values of the likelihood function in Eq. (4) were evaluated with the
estimates of the component lifetime distribution parameters and system signature, i.e.,
�(θ̂ , ŝ). The proportions of cases in which the implementation results in estimates with
the largest likelihood function among the three proposed implementations, denoted as
“Prop”, are also presented in Tables 6 and 7. The obtained results are presented in
Tables 6 and 7 in which the starting values of (μ, σ ) and s are {(0, 1), (.25, .25, .5, 0)}
and {(0, 1), (.1, .4, .3, .2)}, respectively. The results for starting values {(1, 2), (.25,
.25, .5, 0)}, {(1, 2), (.1, .4, .3, .2)} are not presented here for the sake of conciseness.

It is observed that those estimates obtained from the three implementations of the
EM algorithm depend on the choice of the initial values, especially the initial value
of the system signature, when the system lifetimes are Type II censored. When the
censoring proportions are small (say, q < 30%), the effect of the initial values to the
final estimates is relatively small, and the three proposed implementations EM-sys,
EM-comp and EM-exp all give quite similar estimates which are indeed close to the
true value.

For the cases when the true value of the unknown system signature is used as the
starting value of the EM algorithm (see Table 6), EM-sys has the largest proportion of
times that the likelihood function is the largest inmost of the cases, especially for small
censoring proportion q ≤ 10%. For the estimation of the parameters of the component
lifetime distribution, EM-exp gives the smallest MSEs in most of the cases.
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Table 6 Estimates of the parameters and the proportions of �(θ̂ , ŝ) being the largest based on EM-sys,
EM-comp, EM-exp when the starting values for (μ, σ ) and s are (0, 1) and (.25, .25, .5, 0), respectively

q (%) Implementation μ̂ σ̂ Ave. of ŝ Prop

Ave. MSE Ave. MSE

m = 20

0 EM-sys −0.0004 0.0661 0.9345 0.0543 (0.3293, 0.1533, 0.5173, 0.0000) 0.582∗
EM-comp/EM-exp −0.0031 0.0637 0.9376 0.0499 (0.3246, 0.1545, 0.5210, 0.0000) 0.418

10 EM-sys −0.0750 0.0756 0.9484 0.0774 (0.3252, 0.0624, 0.6124, 0.0000) 0.485∗
EM-comp −0.0904 0.0783 0.9639 0.0679 (0.3061, 0.0597, 0.6341, 0.0000) 0.207

EM-exp −0.0247 0.0620 0.8950 0.0621 (0.3465, 0.1050, 0.5483, 0.0000) 0.308

30 EM-sys −0.1497 0.0977 0.9213 0.0979 (0.3210, 0.0099, 0.6690, 0.0000) 0.462∗
EM-comp −0.1824 0.1176 0.9705 0.0798 (0.2819, 0.0037, 0.7144, 0.0000) 0.275

EM-exp −0.1204 0.0819 0.8192 0.0858 (0.3526, 0.0495, 0.5978, 0.0000) 0.263

50 EM-sys −0.2813 0.1885 0.8792 0.1187 (0.2799, 0.0045, 0.7155, 0.0000) 0.436∗
EM-comp −0.3131 0.2158 0.9715 0.0848 (0.2237, 0.0005, 0.7758, 0.0000) 0.267

EM-exp −0.3002 0.1664 0.7450 0.1225 (0.3117, 0.0618, 0.6263, 0.0000) 0.297

m = 30

0 EM-sys −0.0067 0.0597 0.9652 0.0484 (0.3200, 0.1441, 0.5360, 0.0000) 0.555∗
EM-comp/EM-exp −0.0100 0.0568 0.9678 0.0445 (0.3159, 0.1457, 0.5384, 0.0000) 0.445

10 EM-sys −0.0768 0.0654 0.9793 0.0679 (0.3136, 0.0693, 0.6171, 0.0000) 0.516∗
EM-comp −0.0819 0.0661 0.9806 0.0589 (0.3057, 0.0599, 0.6344, 0.0000) 0.205

EM-exp −0.0221 0.0547 0.9212 0.0535 (0.3464, 0.0970, 0.5565, 0.0000) 0.279

30 EM-sys −0.1349 0.0798 0.9614 0.0866 (0.3142, 0.0190, 0.6668, 0.0000) 0.463∗
EM-comp −0.1598 0.0927 0.9943 0.0763 (0.2884, 0.0102, 0.7014, 0.0000) 0.294

EM-exp −0.1005 0.0643 0.8564 0.0702 (0.3569, 0.0372, 0.6058, 0.0000) 0.243

50 EM-sys −0.2434 0.1366 0.9328 0.0992 (0.2789, 0.0076, 0.7135, 0.0000) 0.458∗
EM-comp −0.2692 0.1562 0.9943 0.0802 (0.2420, 0.0011, 0.7569, 0.0000) 0.269

EM-exp −0.2643 0.1300 0.7987 0.0937 (0.3142, 0.0285, 0.6572, 0.0000) 0.273

For the cases when the starting value of the unknown system signature is different
from the true value (see Table 7), EM-exp has the largest proportion of times that
the likelihood function is the largest when the censoring proportion is moderate to
large (q ≥ 30%). EM-exp also gives the smallest MSEs for the estimation of the
parameters of the component lifetime distribution inmost of the cases. If the estimation
of the parameters of the component lifetime distribution is the major focus, we would
therefore recommend the use of EM-exp method.

6 Lognormal distributed component lifetime data

In order to illustrate how the proposed methodologies can be applied to different
lifetime models in addition to the Weibull model, we consider the case when the
component lifetimes follow lognormal distribution in this section. The component
lifetime X is assumed to follow a lognormal distribution with c.d.f. and p.d.f.
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Table 7 Estimates of the parameters and the proportions of �(θ̂ , ŝ) being the largest based on EM-sys,
EM-comp, EM-exp when the starting values for (μ, σ ) and s are (0, 1) and (.1, .4, .3, .2), respectively

q (%) Implementation μ̂ σ̂ Ave. of ŝ Prop

Ave. MSE Ave. MSE

m = 20

0 EM-sys −0.2851 0.1655 0.8557 0.0709 (0.2837, 0.1778, 0.2406, 0.2979) 0.547∗
EM-comp/EM-exp −0.1733 0.0881 0.8902 0.0562 (0.2837, 0.1871, 0.3633, 0.1659) 0.453

10 EM-sys −0.5180 0.4093 0.8568 0.0856 (0.2486, 0.1779, 0.0301, 0.5434) 0.386

EM-comp −0.5056 0.3942 0.8521 0.0795 (0.2507, 0.1820, 0.0258, 0.5414) 0.156

EM-exp −0.0895 0.0885 0.8334 0.0753 (0.2241, 0.2722, 0.1521, 0.3515) 0.458∗
30 EM-sys −0.6846 0.5942 0.8613 0.1064 (0.2135, 0.1326, 0.0096, 0.6443) 0.356

EM-comp −0.6833 0.5935 0.8593 0.0902 (0.2090, 0.1383, 0.0031, 0.6496) 0.109

EM-exp −0.2068 0.0979 0.7480 0.1118 (0.2382, 0.1706, 0.2247, 0.3664) 0.535∗
50 EM-sys −0.8829 0.9016 0.8683 0.1343 (0.1671, 0.0930, 0.0033, 0.7367) 0.352∗

EM-comp −0.8965 0.9337 0.8871 0.0936 (0.1464, 0.1084, 0.0001, 0.7451) 0.323

EM-exp −0.3230 0.1418 0.6689 0.1550 (0.2222, 0.1371, 0.3570, 0.2835) 0.325

m = 30

0 EM-sys −0.2835 0.1555 0.8780 0.0585 (0.2830, 0.1607, 0.2704, 0.2859) 0.504∗
EM-comp/EM-exp −0.1625 0.0796 0.9052 0.0482 (0.2954, 0.1598, 0.3920, 0.1528) 0.496

10 EM-sys −0.5265 0.4142 0.8887 0.0729 (0.2435, 0.1638, 0.0601, 0.5326) 0.427

EM-comp −0.5069 0.3932 0.8814 0.0697 (0.2483, 0.1678, 0.0580, 0.5259) 0.155

EM-exp −0.0791 0.0871 0.8423 0.0684 (0.2336, 0.2736, 0.1343, 0.3584) 0.418∗
30 EM-sys −0.6896 0.5992 0.9155 0.0923 (0.1999, 0.1399, 0.0199, 0.6403) 0.382

EM-comp −0.6870 0.5972 0.9105 0.0816 (0.1991, 0.1447, 0.0082, 0.6480) 0.098

EM-exp −0.2131 0.1000 0.7632 0.1031 (0.2473, 0.1616, 0.1898, 0.4012) 0.520∗
50 EM-sys −0.8783 0.8790 0.9283 0.1176 (0.1608, 0.0995, 0.0073, 0.7324) 0.344

EM-comp −0.8855 0.8982 0.9307 0.0900 (0.1544, 0.1045, 0.0003, 0.7408) 0.061

EM-exp −0.3356 0.1489 0.6977 0.1341 (0.2276, 0.1038, 0.3277, 0.3408) 0.595∗

FX (x |μ, σ) = Φ

[
ln x − μ

σ

]

and fX (x |μ, σ) = 1

σ x
φ

(
ln x − μ

σ

)

, x > 0,

respectively, where φ(z) = e−(z2/2)/
√
2π is the p.d.f. and Φ(z) = ∫ z

−∞ φ(u)du is
the c.d.f. of the standard normal distribution, exp(μ) is a scale parameter and σ > 0
is a shape parameter. The log-transformation of the component lifetimes, W = ln X ,
follows the normal distribution with location parameter μ ∈ (−∞,∞) and scale
parameter σ > 0.

Based on a complete sample of the log-lifetimes (w1, w2, . . . , wn) from a normal
distribution, the MLEs of μ and σ can be simply obtained as

μ̂ = 1

n

n∑

i=1

wi and σ̂ =
[
1

n

n∑

i=1

(wi − μ̂)2

]1/2

, (28)
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respectively.
Following the formulations presented in Sect. 5, to implement the EM-comp algo-

rithm, the expectations of a truncated normally distributed randomvariable are needed.
Let Zk be the left-truncated normal random variable at time tk , and Yk be the right-
truncated normal random variable. The required expectations could be obtained as

E(Zk |ξk, μ, σ ) = μ + σλ(ξk),

E(Z2
k |ξk, μ, σ ) = σ 2[1 + ξkλ(ξk)] + 2μσλ(ξk) + μ2,

E(Yk |ξk, μ, σ ) = μ − σλ(−ξk)

and E(Y 2
k |ξk, μ, σ ) = σ 2[1 − ξkλ(−ξk)] − 2μσλ(−ξk) + μ2,

where ξk = tk−μ
σ

and λ(s) = φ(s)
1−Φ(s) is the hazard function of the standard normal

distribution.
The Step 1 in M-step at the (h + 1)-th iteration of the EM-comp can be described

as follows:

M-step Step 1. Update the estimates of the parameters by Eq. (28) as

μ(h+1) = 1

mn

m∑

k=1

[
ρ∗
1 (k|μ(h), σ (h), s(h)))

]

and σ (h+1) =
[

1

mn

m∑

k=1

ρ∗
2 (k|μ(h), σ (h), s(h)) − (μ(h+1))2

]1/2

,

where

ρ∗
l (k|μ(h), σ (h), s(h)) = dk

n∑

i=1

E∗
o,l(k, i |μ(h), σ (h), s(h))

+ (1 − dk)
n−1∑

λ=0

E∗
c,l(k, λ|μ(h), σ (h), s(h)),

E∗
o,l(k, i |μ(h), σ (h), s(h)) = δki (μ

(h), σ (h), s(h))
[
(i − 1)E(Y l

k |ξk, μ(h), σ (h))

+ tk + (n − i)E(Zl
k |ξk, μ(h), σ (h))

]

and E∗
c,l(k, λ|μ(h), σ (h), s(h)) = δckλ(μ

(h), σ (h), s(h))
[
λE(Y l

k |ξ∗
k , μ(h), σ (h))

+ (n − λ)E(Zl
k |ξ∗

k , μ(h), σ (h))
]
,

for l = 1, 2

Here, we present a real data example to illustrate when the component lifetimes
follow a lognormal distribution. The failure times of a simple software control logic
for a water-reservoir control system presented in Pham and Pham (1991) and Teng
and Pham (2002) are used here to illustrate the EM algorithm. Water is supplied via
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Table 8 Failure times of water-reservoir control systems and the 2 components (software versions) in the
system (Teng and Pham 2002)

Fault no. 1 2 3 4 5 6 7 8 9 10

Component 1 1.2 2.8 8.4 10.0 16.4 20.0 24.4 28.0 29.2 31.2

Component 2 3.6 8.4 12.8 14.4 17.2 18.0 20.0 23.2 25.2 28.0

System 3.6 8.4 12.8 14.4 17.2 20.0 24.4 28.0 29.2 31.2

Fault no. 11 12 13 14 15 16 17 18 19 20

Component 1 34.0 36.0 36.8 39.2 40.0 44.0 44.8 54.0 56.0 62.4

Component 2 28.4 30.8 31.2 34.8 36.4 36.8 38.0 39.2 41.6 42.0

System 34.0 36.0 36.8 39.2 40.0 44.0 44.8 54.0 56.0 62.4

Fault no. 21 22 23 24 25 26

Component 1 80.0 92.0 99.6 100.0+ 100.0+ 100.0+

Component 2 46.4 59.6 62.4 98.8 99.6 100.0

System 80.0 92.0 99.6 100.0+ 100.0+ 100.0+

+ The failure time is right censored

a source pipe controlled by a source valve and removed via a drain pipe controlled
by a drain valve. There are two level sensors in the control system that maintain the
water level between the high and low limits in the water reservoir. The water-reservoir
control system achieves fault tolerance by using a two-version programming software
control logic in which the system fails only when both of its components (software
versions) fail. The control system can be treated as a two-component parallel system
with system signature s = (0, 1). The original dataset presented in Table IV of Teng
and Pham (2002) contains the failure times of the two individual components. In order
to verify the performance of the proposed estimation procedures discussed here, we
assume that the system failure times are observed, but not the individual component
lifetimes and the component lifetimes follow a lognormal distribution. The dataset is
presented in Table 8.

Since the complete component lifetimes are available, we can obtain the estimates
of the parameters based on the component lifetimes as μ̂ = 3.4608 and σ̂ = 0.9582.
The standard errors of μ̂ and σ̂ obtained from themethod using themissing information
principle described in Sect. 3 are 0.1336 and 0.0981, respectively. In this example,
we can observe that the parameter estimates based on system-level data (Table 9) are
close to the parameter estimates based on component-level data, while the system-level
data contain less information compared to the component-level data. As expected, the
standard errors of the estimates based on system-level data are larger than those based
on component-level data.

7 Concluding remarks

In this paper, we develop the EM algorithm for estimating the parameters of the
component lifetime distribution and the system structure simultaneously based on
censored system-level lifetime data. We propose three different implementations of
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Table 9 MLEs obtained by direct maximization and the proposed EM algorithms with known system
signature based on the data in Table 8

μ̂ (SE) σ̂ (SE) l(θ̂ , s = (0, 1))

Max-ll 3.0100 (0.1924) 1.1086 (0.1677) −33.5466

EM-sys 3.0103 (0.1924) 1.1086 (0.1676) −33.5466

EM-comp 3.0101 (0.1924) 1.1087 (0.1677) −33.5466

EM-exp 3.0133 (0.1910) 1.1022 (0.1653) −33.5474

the EM algorithm based on the system-level likelihood function and the component-
level likelihood function. These implementations are illustrated when the component
lifetimes follow a two-parameterWeibull distribution. The performances of these three
implementations of the EM algorithm are evaluated by Monte Carlo simulations. As
shown in the simulation results and the illustrative example given in Sects. 5.2 and 5.3,
the final estimates depend on the initial value of the system signature. Among the three
different implementations, EM-comp is the one that is most computationally efficient.
Overall, we recommend the use ofEM-expmethod for estimating the parameters when
we have no information on the system structure or when the censoring proportion is
large. If one is more concerned about the computational efficiency, the EM-comp
method is the best choice.

Since the estimate of the system structure is dependent on the initial estimate, if
more information could be collected, for example, if one can use autopsy on some
of the failed systems in order to observe the number of failed components, then a
better estimate of the system signature can be obtained and used as an initial estimate.
However, when little or no information is available on the system structure, we would
suggest using different system signatures as the initial value for the EM algorithm and
then comparing the resulting estimates. It will be of practical interest to see how a
reliable starting value can be obtained for the implementation of the EM algorithm.
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