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Abstract

A unified testing framework is presented for large-dimensional mean vectors of one
or several populations which may be non-normal with unequal covariance matrices.
Beginning with one-sample case, the construction of tests, underlying assumptions and
asymptotic theory, is systematically extended to multi-sample case. Tests are defined
in terms of U -statistics-based consistent estimators, and their limits are derived under
a few mild assumptions. Accuracy of the tests is shown through simulations. Real data
applications, including a five-sample unbalanced MANOVA analysis on count data,
are also given.

Keyword High-dimensional inference - Behrens—Fisher problem - MANOVA -
U -statistics

1 Introduction

Let Xi = (Xi1,..., Xxp) ~ F, k = 1,...,n be iid random vectors, where F
denotes a p-variate distribution, with E(Xy) = p € R” and Cov(Xy) = X € Rigp .

A hypothesis of foremost interest to be tested in this setup is Hy : p = 0 against
an appropriate alternative, say H; : Not Hy. For an extension to g > 2 samples, let
Xix = (Xik1,..-,Xikp)’ ~ F; be iid random vectors with E(Xjr) = pu; € R?,
Cov(Xj) = X; e RGP k=1,...,n;,i = 1, ..., g. The corresponding hypothesis
of interest is Hog: pty = -+ = p, vs. Hig: Not Ho,.

Our objective here is to present test statistics for the aforementioned one- and
multi-sample hypotheses when p > n;, F;’s are not necessarily normal and X;,
likewise n;, in the multi-sample case may be unequal. The proposed tests are thus valid
for high-dimensional, non-normal, unbalanced data under Behrens—Fisher problem.
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In particular, for g > 3, it refers to testing high-dimensional one-way MANOVA
hypothesis under non-normality and multi-sample Behrens—Fisher problem.

When p < n;, tests of Hy or Hyg are most often carried out by Hotelling’s T2 or
Wilks’ Lambda statistic which are uniformly most powerful invariant likelihood ratio
tests. They, however, collapse for high-dimensional case, particularly due to singularity
of the empirical covariance matrix involved (see Sects. 2, 3). A number of proposals
have recently been put forth in the literature on the modification of these classical tests
for high-dimensional data.

Whereas most modifications assume normality, some of them are based on a more
flexible model, and still others offer completely nonparametric solution to the problem.
Likewise holds for homoscedasticity assumption, ¥; = X Vi = 1,...g > 2. For
details, see e.g., Dempster (1958), Bai and Saranadasa (1996), Lauter et al. (1998),
Lauter (2004), Fujikoshi (2004), Schott (2007), Chen and Qin (2010), Aoshima and
Yata (2011, 2015), Katayama and Kano (2014), Wang et al. (2015), Feng et al. (2016)
and Hu et al. (2017). For a review, see Hu and Bai (2015) and Fujikoshi et al. (2010).

We present a coherent testing theory encompassing one- and multi-sample cases.
The construction of the tests, the assumptions, and the strategy of obtaining limit-
ing distribution of the test statistics is succinctly threaded together via a common
approach, initiating with the one-sample case and extending systematically to the
multi-sample cases. The main distinguishing feature of the proposed tests is that we
simultaneously relax commonly adopted linear model assumptions such as normality
and homoscedasticity, for all cases up to one-way MANOVA. Further, all tests are
defined in terms of U-statistics with simple, bivariate, product kernels composed of
bilinear forms of independent vectors. This helps us determine the limits of the test
statistics for a general multivariate model. These limits are derived under (n;, p)- or
high-dimensional asymptotics, i.e., n;, p — 00, using only a few mild assumptions.

The basic idea is introduced in detail for one-sample case in the next section, with
an extension to two-sample case. Multi-sample extension follows in Sect. 3. Sections 4
and 5 deal with simulations and applications. Proofs and technical details are deferred
to “Appendix”.

2 The one- and two-sample tests
2.1 The one-sample case

For the one-sample data setup in Sect. 1, let the unbiased estimators of u and X be
definedas X = Y 7_ Xp/nand T = Y0 Xy — X)X — X)'/(n — 1). If n > p
and F is multivariate normal, then Hy : g = 0 can be tested using Hotelling’s
statistic 72 = nX 3 'X = X/[f/n]_li where f/n estimates X /n = Cov(X).
When p > n, T is singular and T2 collapses, requiring a careful modification that can
provide valid inference when p — o0, possibly along with n — oo. The two indices
may sometimes be assumed to grow at the same rate so that p/n — ¢ € (0, 00).
Alternatively, a sequential asymptotics, first letting p — oo followed by n — oo,
may be considered under which conditions like p/n — ¢ may be dispensed with.
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Note that, & may be ill-conditioned for p < n whence (-)~! can be replaced
with Moor-Penrose inverse (see e.g., Duchesne and Francq 2015). For p > n, this
approach is unreliable and inefficient. An alternative is to remove 3! from 72 and

consider the Euclidean distance Q = XX = IX]12. An interesting consequence of
this can be witnessed by a simple split of Q as

222xk , = ZZXka—i— 2ZZX,J( =01+ U (D

k=1r=1 k=1r=1
k#r

where Q1 = (E — U,)/nwith E =)} X; Xy /nand U, = ZZ# X X, /n(n—1).
Note that, E is an average of quadratic forms, and U, is an average of bilinear forms
composed of independent components. It is shown below that the limiting distribution
of the statistic mainly follows from U,, where Q1 converges in probability to a constant.
With E(X; X;) = tr(Z) +u'm, EX(X,) = p'p, weget E(Q1) = tr(X)/n, E(Uy) =
i . Thus,

E(Q) = t(X)/n + ||l )

which is tr(X)/n under Hy. We observe a few salient features of this bifurcation
of Q. First, E(Q1) = tr(X)/n = Cov(X) implies that the removal of the inverse
of the estimator of Cov(X) results into a bias term composed of the trace of the
same estimator, since it can be verified that Q| = tr(f) /norE;f — Qg = ¥ with
E; =) XiX}/nand Qo = Zz#r XX/ /n(n — 1) as matrix versions of E and
U, . Note also that O is independent of p, and U, is independent of X, under both
Hy and H;. Now, E(U,) = ||p||* which is 0 under Hj. Together, the last two facts
imply that U,, can be used to construct the modified test statistic for Hy, whereas Q1
can help compensate for the removal of estimator from the original test statistic. For
this, write Q = tr(f)/n + U, = Q1 + U, and by a simple scaling and re-writing,
consider the statistic
nQo

nQi/p’

where Qo = U, /p is U, but with kernel normed by p, h(Xg, X;) = X;{X,/p. T, is the
proposed modified statistic for Hy : ¢ = 0 when p > n and F may be non-normal.

For the limit of 71, nQ1/p is first shown to converge in probability to a constant
as n, p — oo. Then, n Qg is shown to converge weakly to a normal limit. Under Hy,
the kernel of U,, degenerates so that the null limit follows through a weighted sum
of independent x? variables. The limit of 7' follows then by Slutsky’s lemma. As the
same scheme will later be extended for g > 2, we treat the one-sample case in detail.
Let As, s =1, ..., p be the eigenvalues of X so that A;/p = v corresponds to X/ p.
We need the following assumptions.

T, =1+

3

Assumption1 E(X}) =y, <y <oo¥Vs=1,...,p,y € R".
Assumption 2 limp_, o0 >0, vy = vg € RT.

Assumption 3 lim, .o p/n =c = O(1).
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Assumption 4 lim, ..o W' Zp/p =¢ = O(1).

Assumption 1 helps us relax normality. By Assumption 2, Zs 1 S = 0(l), as
p — o00. Assumption 4 is only required under Hj. We have the following theorem,

proved in “Appendix B.1.”

Theorem5 For Ty in Eq. (3), (Ti — E(T1))//Var(T;) = N(0, 1) under Assump-
tions 1-4, as n, p — oo, where E(T1) and Var(T1) denote the mean and variance of
Ti.

From the proof of Theorem 5, E (77) and Var(T}) approximate 1 and 2 tr(= 2y /[tr(E)1%,
respectively, 2 = nX/p. As the limit follows from a weighted sum of X12 variables, the
moments in fact approximate a scaled Chi- square variable, say ijc / f with moments 1

and 2/ f, where f = fi/f>, fi = [tr(E)]?, f» = tr(E?). Thus, to estimate Var(Tl)
we need consistent estimators of tr(X2) and [tr(E)]z.Deﬁne 0= Zkzl(X Xk) /(n—

1), X = X, —X,n= (n—l)/[n(n 2)(n—3)]. Then, E; = n{(n—1)(n— 2)tr(§2)+
[tr(E))? — nQ), E3 = n{2t:(E) + (n — 3n + l)[tr(E)]2 — nQ)} are unbiased and
consistent estimators of tr(X?) and [tr(X)]?. Then f fl / fz is consistent estimator

of f, hence Vm) of Var(Ty) such that Var(77)/ Var(T;) — 1; see Ahmad (2017b)
and end of Sect. 3. We have the following corollary.

Corollary 6 Theorem 5 remains valid when Var(Ty) is replaced with \//a\r(Tl).

Power of T Let z, be 100« %th quantile of N (0, 1), 8(0) the power function of 7}
with @ € O or 8 € ©| where @y = {0}, @; = O\{0} are respective parameter
spaces under Hy, H) with ® = @ U ©1, Og N @ = ¢. By Theorem 5, () =
P(z1 > z4) with B(0|Hy) = «, BO|H)) = 1 — B, as n, p — 00, where z1 =
(T1 E(ﬂ))/W Then, 1 — B = P(z > 24 —n8), 8 = 81/82, 81 = p'n/p,
82 = A 1 x By the convergence of nQ1/p, and as §1, 87 are uniformly bounded
under the assumptions, | — 8 — 1 asn, p — oo.

Remark 7 A remark on the structure of 77 is in order. With [n Q1/p]/ tr(E) converging
in probability to 1, consider 71 = 1 4+ nU, /tr(X), also ignoring p for convenience.
Then, E(Ty) = 1 + n|p|?/tr(2) = 1 + EX)E(X)/ Cov(X), where E(T}) = 1
under Hy. In this sense, T is similar to an F'-statistic, where 7] is close to 1 under Hy
and moves apart as g deviates from 0. Since Cov(X) + EX)EX) = E(X'X), the
partitioning used to define 77 helps not only adjust for bias term but also makes the
resulting statistic computationally much simpler, particularly under non-normality. A
similar argument holds for multi-sample tests presented in the next sections.

2.2 The two-sample case

For the multi-sample setup in Sect. 1, let g = 2. We are interested totest Ho @ pt1 = ptp
versus His : Not Hp. Let X; = Y /° Xix/n; and 3 = S Xk — X)X —
ii)’/(nl- — 1) be unbiased estimators of jt; and X;. Denote n = n| + ny. Assuming
normality, £, = XV i and n — 2 > p, Hp is usually tested by two-sample 72,
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f— r— =—1 = — o~ ~
T2 = [mnz/n1X1 —X2)'E " (X1 —Xp), where T = Y7 (n; — DZ;/ Y7 (ni = 1)
is an estimator of common X. For p > n — 2 or more generally for p > n;, T? is
invalid by the same token as for its one-sample counterpart. We consider a likewise

partition of Q = |X| — Xs|?2 = X1X1 + X;Xz — ZX/liz as

2 np  nj ny np
1
SR ) 3F T TR oL
P L p— 2 =1 =1
with Q1 = Y2, 011 = Y2, u@E)/n = w(Eo), Qi1 = (Ei — Up)/ni =
(E;)/nis Up = 31—y Up; — 2Un ny, Where E; = 370 X!, X /n; and
np nj ny np
U L= X , U X X , 5
k;ér

are one- and two-sample U -statistics, respectively, with symmetric kernels as bilinear
forms of independent vectors. As in the one-sample case, E(Q;1) = tr(X;)/n; =
E(Q1) = tr(Zg), g = Y7 Ti/n; and E(Up) = ||, — p,]|* which vanishes
under Hy,. Thus,

E(Q) = tr(Zo) + [y — pal> = (o) under Hop. (6)

Again, E(Q1) is independent of u;, and E(lﬁ)) is i_ndependent of X;, under Hp and
Hjps. Further, E(Q1) = tr(Xp), X9 = Cov(X] — X3). We thus extend 77 in Eq. (3)
for Hy, as

nQo
=140 7
2= o N

where Qo = Uy/p is Up with kernels of Uy, and U,,,, scaled by p,i.e., h(X;, X,) =
X; (Xir/p and h(Xg, X)) = X’1 X1/ p, respectively. Following assumptions extend
those of one-sample case, where v;; = A;s/p are eigenvaluesof E; = X;/p,i =1, 2.

Assumption 8 E(Xlkg)_yis <y<oo¥s=1,....,p,i=1,...,8,y e R".
Assumption 9 lim, oo Y 7 vis =D o0 vis =vio e RT,i=1,..., 3.
Assumption 10 lim,; , o p/ni =c¢;=0(),i=1,...,¢.

Assumption 11 lim,;, ,oon/n; = p; = 0O(1),i =1,...,g.

Assumption 12 lim 0o Wi Tk ;/p = Gijk < ¢ = O(1), i, j,k=1,...,¢

As the same assumptions will be used in Sect. 3, they are stated for g > 2. Assump-
tion 11 is additional to those for one-sample case. It is needed to keep the limit
non-degenerate when n; — oo, n = Zf: | i Assumption 12 is again needed only
under Hjp,. Following theorem, proved in “Appendix B.2”, extends Theorem 5 to
two-sample case.
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Theorem 13 For T» in Eq. (7), (T» — E(12))/+/Var (1) 2) N(O, 1) under Assump-
tions 812, as n;, p — 0o, where E(T) and Var(T) denote the mean and variance
of T».

It is interesting to see how the limit for degenerate case sums up. With vy as the limit
of nQ1/p, it follows from (21) and (22) that (see e.g., Anderson et al. 1994)

)
D 2
nQy — E («/,Olvlszls - Vp2V2sZ25) — Y
s=1
)

D 2
= 1 — Z(\/plvl‘yzls_\/p2v2xz2s) /vo,
s=1

with 1 and 22;”;1(,011;“ — ,olvzs)2 / ug as limiting mean and variance, where the
variance approximates 2tr(52)/[tr(5)]2, E =nXo/p, o = Z?:l Y;/n;. By the
same argument of a scaled Chi-square approximation as for one-sample case, the
moments correspond to those of X}/f, ie,land2/f, f = fi/fo f1 = [tr(Eo)]%,

fo = t(E3). Let Eyy =i (n; — D)y =2)tr(E]) +[tr(E) P = n; O;1}, Exy =i 2r(3)
+ (nf = 3n; + D) — n; Qi}, where Q; = Y3 (X[, Xin)?/(ni — 1), X; =
X —X;, n; = (n; —1)/[n; (n; —2)(n; —3)]. Further, by independence, tr(fl fz) isan
unbiased and consistent estimator of tr(X 1 X7). Plugging in f, f> leads to a consistent
estimator of f, hence of Var(73), i.e., V?lr(Tﬁ. We have the following corollary.

Corollary 14 Theorem 13 remains valid when Var(T») is replaced with @(Tz).

Remark 15 Due to its special practical value, the two-sample test has been investigated
the most, also for high-dimensional case. We briefly discuss three tests, most closely
related to 75. Denote k = nina/n,w; = (n —1)/(n —2), wy = (n — 2)2/n(n — 1),
n=ny+ny Leté = ||§1 — §2||2 — tr(f)//c, where ¥ is the pooled estimator of
common X as given in the context of 72 above.

Dempster (1958) proposed the first two-sample test for high-dimensional data under
normality, motivated by a problem put forth by his colleagues (see Sect. 5). The test,
in simpler form, is given as Tp = 1X1 — X1/« tr(f). An alternative form of Tp
follows by partitioning the norm in the numerator into several independent quadratic
forms using an orthonormal transformation, so that the test follows an approximate F
distribution with degrees of freedom estimated using a scaled Chi-square distribution.
See also Dempster (1960, 1968) for details, where Bai and Saranadasa (1996) give a
detailed evaluation of the approximation and power of Dempster’s test.

Bai and Saranadasa (1996)’s test, Tgs = «&/+/2w1 B, is a standardization of £ under
homoscedasticity, where B? = a)z{tr(/Z\)2 — [tr(/fl)]2 /n}. Chen and Qin (2010)’s test,
Tcq,is astandardization of Uy = Z%:l Uy, —2Up,n,; see (4). Tcq is based on the same
model used for Tgs but relaxing normality and homoscedasticity. From the partition
of Q in (4), it follows that, under the assumption of homoscedasticity, 7p divides the
norm by the biased term, where Tgs and Tcq subtract the same bias term from the
norm, so that the numerator in both tests is Uy with E(Up) = || — [L2||2 = 0 under
Hy, where for ¥; = X,i = 1, 2, both tests coincide.
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The proposed test, T,, g > 1, differs from both in that it uses the removed bias
term to rescale the test, where it neither requires normality nor homoscedasticity
assumption. Note that, Tcq is also defined without the two assumptions, but the bias
adjustment, assumptions and computation of variance of the statistic are reasonably
different for the two tests.

To get a more precise idea on the comparison of these tests, we did a simulation
study to assess their test sizes and power. Two independent random samples of iid
vectors of sizes (n1, ny), n1 € {10,20, 50}, np = 2ny, each of dimension p €
{50, 100, 300, 500}, are generated from normal, #; and Unif[0, 1] distributions with
covariance matrices, X;,i = 1, 2, compound symmetry, CS, and autoregressive of order
1, AR(1). The CS and AR(1) are defined, respectively, as I+ pJ and Cov(Xy, X;) =
/c,o‘k” | Wk, 1, with I as identity matrix and J a matrix of 1s. For size, we pair X; for
the two populations: both X1 and ¥, CS with p = 0.5 and p = 0.8, respectively; X
as CS, X, as AR(1), both with p = 0.5. For power, we use CS with p = 0.4 and 0.8.
We take « = 1 for all cases. For brevity, power results are only reported for p = 100,
for normal and ¢ distributions.

Table 1 reports estimated test sizes of T, Tgs and Tcq for all distributions with both
pairs of X;. We observe an accurate performance of 7, for all parameters, whereas Tps
and Tcq prove, respectively, to be very liberal and very conservative, with their perfor-
mance at least not improving with increasing p or (particularly) increasing . Note that,
the inaccuracy of 7gg can be justified as it may pertain to the homoscedasticity assump-
tion the test is based on and which is violated in the simulations. The performance of
Tcq, on the other hand, can be ascribed to its assumptions, particularly on the vanish-
ing of trace ratios such as tr(£4) /[tr(22)12, tr(2?) /[tr(X)]? and tr(E3) / tr(X) tr(T?),
which are not satisfied for certain covariance structures, e.g., compound symmetric.
A discussion on Ty is adjourned for Sect. 4, where it is evaluated in more detail.

From Fig. 1, we also observe power of 7> higher than its competitors where the
curves come closer with increasing non-centrality parameter as well as with increasing
sample sizes, and this phenomenon is very similar for both distributions. Generally, a
similar comparative performance and effect of sample sizes are observed for different
p values; hence, not all are reported here.

3 Multi-sample test: one-way MANOVA

Here, we extend 7, to the general case, g > 2. As usual, X,- and fi are unbiased
estimators of u;, X; L = L ..., g Recall 75 in (7) as a modification of T2 using_ the
Euclidean distance || X; —X3||2. For Hog, we sum over all pairwise norms, ) °; _ j 1X; —
X2 =3 jEi=Up)/ni+ Y j (U 4+Up; =2Up;) = (g=1) 15 (X)) /ni+
g—DYf Uy —2 Zf<j Un;n;» and define the MANOVA statistic as

1nQo

T, = —1 _
e =@ Dt

®)

01 =Y%,0i1, Qit = (Ei — Uy /ni = w(E) /ni, Ei = Y3, X0 Xk /nis Qo =
ij Qoij» Qoij = Up; + Unj — 2Un,~n_,~, where U,,, U,,l.nj are as defined in (5) with
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Fig. 1 Power curves of T, Tgs and T¢( for normal (upper) and ¢ (lower) distributions with (L to R)
(n1,n2) = (10, 20), (20, 40), (50, 100), p = 100 and CS structures with p = 0.4 and 0.8

kernels h (X, X;r) = X Xir, k # 1, h(Xig, xj1) = X, Xj0,0 # j.k,r,l=1,...,n;,
i,j=1,...,g,n = % n. Further, Q1 = tr(To), o = Yo, T;/n;, is an
unbiased estimator of tr(Xg), Xg = Zf':] ¥, /n;. We begin with the moments of Q.
In particular,

8§ & 8§ & & &
Var(Qo) = ) ) Var(Quip) + ) > > Y Cov(Qij. Qoijr)
i=1 j=1 i=1i'=1j=1j'=I
i#] @ N#GE,JN
8 8§ &
=(g—1>)_Var(Uy,) +4Y > Var(Upnn,)
i=1 i=1 j=1
<j

g g g
+ SZZ Z Cov(Unin;» Unin )
=1

i=1 j=1j
i<j<j'

§ & 8
+8Y 3" " CovUnin;» Unyn,)

i=1 j=1j'=1
i<i’'<j’
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8
—4(g — 1)2 Z > Cov(Un,;. Unn))

i=1 j=1j'=1
i<j<j
g & 8

— 4(g — 1)22 Z Cov(Un;, Upin;)

i=l j=1j'=1
i<j<j'
g8 & 8

— (g — 1)2 Z Z Cov(Up;, Unjn;)

i=1 j=1j'=1

i<j<j

where the covariances vanish when i # i’, j # j’. Denoting Xo;; = X;/n; + X /n;,
i < j,and using the moments of U -statistics from Sect. A.2, we obtain

2 4
Var(Qo;j) = e tr(ZOU) + —2(Mi — ) Zoij(; — 1) 9)

2
Cov(Qoij» Qoij) = 27 tr(%; )+~ 2(IL1 )T —py) o (10)

1

2
cOv(QOij,QOif,,)—nzpztr@)+ z(u, w)Ej (e —pp). (D)
J

Theorem 16 summarizes the moments which reduce to those of two-sample case for
g=2.

Theorem 16 For Qg defined above, we have

E(Qo) = Z Znu, — il

11]1
i<j

1 tr(X? tr(X;X;
Var(Qo) = — 2<g—1>22r( )4 Z r%i %))

" nin;
p i-1 M i=1 j=1 J
J

g8 8
+4 ZZ(M{ — ) Zoij(; — 1j)
i—1 j=1
i<j
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8 8 8
H4Y NS (i — ) Toij (i — )
i=1j=1j'=1
i<j<j’

Now, consider the limit of 7, under Assumptions 8-12. By the independence of g
samples, the convergence of Q1 follows exactly as for g = 2 so that, as n;, p — 00,

P
nQi/p — Vv,

where v) = Y ¥ pivio = D5 D22, pjvis. For the limit of Qo, we note, from
the formulation (g — 1) Zle Uy, —2 ZK j Unin, and by the independence of Uy,
Un;, i # J, which we need the distribution of Uy = (Up;, Upjnzyys - s U,,l.ng)’,
i =1,...,g — 1. Alternatively, we can consider Qyp = (Qo12, ..., Qog,l,g)’. For
g =2,Uyx = (Uyn,, Unny)', Qo = Qo12. We can use either of the two options and
proceed as for g = 2. Qpisa G x 1 vector, G = g(g — 1)/2, with Cov(Qp) a G x G
partitioned matrix A = (A;;/ pz)g =1 where

Al Ap ... Alg
Ay Apn ... Azg

A = , o - (12)
Agi Al ... Ag

Thus, Aji/p* = Cov(Qu)): (g—i) x (g —1),and A;/p* = Cov(Qoi, Qo)): (g —i) X
(g—i)Aji=Aji=1,...,¢g—1,j=i+l,..., g Denoteq; = tr(£}/n}),a0;j =
tr(ZOU) Then A;; = 2(65] 1+1aOl/ +J—Dg- iai)/ p2, Aij =20 lfg—iai ®§:i+2

aj)'/ p?, where 1 is vector of 1s, J = 11’, I is identity matrix, @ is Kronecker sum
and 0in A;;is (j —7 — 1) x (g — j) withno 0if j —i — 1 = 0. For any 7, A;;
has same off-diagonal element g; with diagonal elements ag;; = tr(E%i j), Xoij =
Xi/nj+Xj/nj = Cov(ii — Xj), J =1+ 1. Further, most off-diagonals in A;; are
0, and the number of (rows with) zeros increases with j for every i, making A an
increasingly sparse matrix.

The weak convergence holds for Qg;; for any (i, j) in Qp, and we only need to
take care of the nonzero off-diagonal elements in A, i.e., a; / p2, which are uniformly
bounded under the assumptions and same holds for Egs. (9)—(11). The limit of nQy,
hence of nQy, follows then as of Uy for g = 2. Finally, Slutsky’s lemma gives the
limit of 7}, For the limit under Hyg, E(Qo) = 0, all covariances of U-statistics vanish
(Sect. A. 2) and Eqgs. (9)—(11) reduce to Var(Qo;;) = 2tr(ZOU) Cov(Qoij, Qoij)) =

2tr()32)/nl, Cov(Qoij, Qoi'j) = 2tr()32)/n which are independent of u;, so that
we continue to assume u; = 0V i. In partlcular from Theorem 16, E(Qg) = 0 under
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Hp, and

1 tr(X? X
Var(0o) = — | 2~ 17 JUED gy i)

: nin
i=1 i i=1 j=1 J
i<j

which is 2tr():%12) for g = 2; see Eq. (19). The null limit then also follows on the
same lines as for g = 2. The following theorem generalizes Theorem 13 for g > 2
samples.

Theorem 17 For T, in Eq. (8), (Tg — E(Ty))/+/ Var(Ty) 2) N (0, 1) under Assump-
tions 8-12, as n;, p — oo, where E(T,) and Var(T) denote the mean and variance
of Tg.

For the moments of 7, note that the general distribution follows from the projection

Z,<j QOU = Zl<1(Un, 2Un n; ) of Q Z;<1 QOl] QOlj = Qo — E(Q0),
SO that

E(Qo) = ZZnu, will?

i=1 j=1
i<j

. 4 g 8
Var(Qo) = — DO e — ) Zoij (i — 1)
i=1j=1

i<j

8 8 8
H4Y N (i — ) Toij (i — o)
i=1 j=1j'=1
i<j<j’

Likewise, under Hyg, the convergence of degenerate Uy, and Uy, i gives
g 8§ o 5
Z Z Z (\/ PiVisZis — A/ ijszjs)

i=1 j=1s=1
i<j

such that the limiting moments E(nQ¢) = 0 and Var(n Q) = 2 Zz<1 Y02 (pivis +
pjv js) approximate exact moments of Q¢ under Hop,. Combined with the limit of
nQ1/p, it gives
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| &8 @
—ZZZ (VPiviszis — «/Pjvszjs)zﬁ (13)
Yo z=1 j=1s=1

i<j

with E(Tg) = g — 1 and variance Var(T,) = ZZK] Yoo (pivis + ,ojvjs)z/vg
which approximates 2tr(_.2)/[tr(_.)]2, E = nXog/p, Lo = Z;g:l ¥ /n;. Further
Zij = /PiVisZis—+/PjV}sZ s is alinear combination of independent N (0, 1) variables,
hence itself normal with mean 0, variance p; v;s + p;v;s. To estimate Var(Tg), we note
that the set of distinct non-zero elements in A is

S = {al- = (), a; =t(%;%,). i.j=1,....¢ i<j}, (14)

with cardinality so = #{S} = g(g + 1)/2, i.e., for any g, we only need to estimate
so elements out of G(G + 1)/2 in order to estimate A. With the estimators of tr(Ziz),
[tr(Z)]? and tr(Z; X j) same as given in the two-sample case, a consistent plug-in
estimator of Var(Ty) follows, leading to the following generalization of Corollary 14.

Corollary 18 Theorem 17 remains valid when Var(Ty) is replaced with @(Tg).

Power of 7, For z, as before, P(T, > z4,/Var(Tg) + (¢ — 1)) = «, so that 1 —
B = P(zg > z4 — nd) where, with z, = (T, — E(Ty))/\/Var(Ty), § = 61/d2,
81 = X5 Imi — wjl?/p, 85 = w(Eo), B = nZo/p, Lo = >.;_; Zi/n;. For
g=2,81=|p; —myll?/p, To = Z%:l ¥, /n;. A case of particular interest is when
p; are mutually orthogonal, u’ rj =0,Vi < j. The power function remains the
same, now with §; = (g — 1) 5, i |1>/p or, for g = 2,81 = || 1> + w2l

Remark 19 This remark pertains to the trace estimators used to define consistent esti-
mators of Var(7,). Consider one-sample case where E», Ej as estimators of tr(X2),
[tr(X)]?, given after Theorem 5, are defined as functions of T to keep them simple in
formulation and efficient in computation. Alternatively, however, the same estimators
can be defined as U -statistics which helps study their properties, particularly consis-
tency, more conveniently. Let Dy, = X — X, k # r and define Ay, = D;{err,
A, = (D, D)% Then, we can equivalently write

n n n
1

p(n)ZZZZIQBk”S’ E; = p(n)zzzzlzckrls

=1r=1I=1 s=1 =1r=1I=1 s=1
ak, r, 1, s) wk, r, 1, s)

where Byyis = Akrls + Aklrs + A%m, Ciris = AgrAls + Apt Ars + Ags Agr, 7 (-) means
all indices pairwise unequal and P (n) = n(n—1)(n—2)(n—3). This formulation of E>,
E5 lends itself to be mathematically easily amenable using the theory of U-statistics.
For details, see Ahmad (2016). The form extends directly to multi-sample cases by
deﬁning E»;, E3; for ith independent sample in the same way, with tr(f )tr(f i) and
tr(): o ;) estimating tr(X;) tr(X ;) and tr(X; X ;) as usual, where a U-statistic form of
tr(Z) is Zk# Ajr/n(n — 1). For details, see Ahmad (2017a,b).
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Remark 20 Note that, the Chi-square approximation in both one- and multi-sample
cases follows through two-moment approximation of the limit of the test statistics
with that of a scaled Chi-square variable. Box (1954a,b) used this approximation
to study the violation of assumptions of homoscedastic and uncorrelated errors in
ANOVA settings, later extended and modified by Geissser and Greenhouse (1958),
Greenhouse and Geissser (1959) and Huynh and Feldt (1970, 1976).

4 Simulations

We evaluate the accuracy of tests for size control and power, specifically focusing on
violation of normality and homoscedasticity assumptions. We take g = 1 and 3 and gen-
erate data from Normal, Exponential and Uniform distributions with n = 10, 20, 50
for 71 and (n1, np, n3) = (10, 15, 20), (5, 25, 50), (10, 30, 60), for 73, where the
last two triplets represent seriously unbalanced designs. For dimension, we take
p € {50, 100, 300, 500, 1000}. For covariances structures, we use compound sym-
metry (CS), autoregressive of order 1, AR(1), as defined in Sect. 2.2, and unstructured
(UN), defined as X = (aij);i,/:l witho;; = 1(1)d (i = j), pij = ( —1)/d (i > )),
with I as identity matrix and J as matrix of 1s. Weuse p = 0.5,k = 1.

We use o = 0.01, 0.05, 0.10 and estimate test size by averaging P(T < T,|Hy)
over 1000 simulations, where T denotes T or T3 and T, is their observed value under
Hy. Tables 2 and 3 report estimated size and power of 77 for normal and exponential
distributions, and Tables 4 and 5 report the same for 73 for all distributions. For power,
we fix @ = 0.05 and estimate the power by averaging P(T > T,|Hj) over 1000 runs,
where Hj is defined as u = 6,p1, p1 = (1/p, ..., p/p), 6 = 0.2(0.2)1. Note that,
T3 is assessed under a triplet of covariance structures (CS, AR, UN) followed by the
three populations.

We observe an accurate size control for normal as well as for non-normal distribu-
tions and under all covariance structures. The stability of the size control for increasing
p, for n as small as 10, is also evident. We observe a similar performance for power,
with discernably better performance under AR and UN structures than under CS, for
all distributions, which might be attributed to the spiky nature of CS. The power, how-
ever, also improves reasonably under CS for increasing n and p. For g = 3, we also
observe accuracy for unbalanced design, with a drastic improvement for the last triplet
of n;. Although not reported here, similar results were observed for other p values in
CS and AR, for other covariance structures, e.g., Toeplitz, and for other distributions,
e.g.,t.

We also assessed the power of proposed tests under possible sparse alternatives.
For simplicity, we report results for 77 for normal distribution with same n as used
above and p € {60, 100, 200}. We consider three levels of sparsity: small, medium
and large with 25%, 50% and 75% zeros in the mean vector, respectively. Note that,
0% sparsity implies the case under Hq, where 100% sparsity implies the null case.
Table 6 reports the results. Generally, the power is high under all parameter settings,
indicating the validity of tests for such alternatives. Further, the power increases with
increasing sample size, so that even under sparsity, the test shows a high probability
to tell the null from the alternative, particularly as the sample size grows.
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Table 2 Estimated size of T7: normal and exponential distributions
n p CS AR UN
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
Normal
10 50 0.020 0.065 0.115 0.025 0.071 0.116 0.025 0.068 0.120
100 0.019 0.069 0.127 0.024 0.080 0.136 0.020 0.069 0.113
200 0.022 0.073 0.134 0.020 0.065 0.122 0.024 0.077 0.131
300 0.019 0.068 0.116 0.020 0.067 0.120 0.023 0.075 0.133
500 0.016 0.068 0.127 0.018 0.062 0.114 0.021 0.064 0.130
20 50 0.015 0.060 0.112 0.020 0.058 0.112 0.014 0.047 0.098
100 0.011 0.053 0.098 0.014 0.054 0.109 0.015 0.055 0.109
200 0.018 0.060 0.114 0.016 0.053 0.107 0.016 0.063 0.109
300 0.016 0.056 0.113 0.012 0.055 0.108 0.011 0.056 0.114
500 0.012 0.055 0.102 0.014 0.057 0.104 0.012 0.062 0.114
50 50 0.013 0.043 0.093 0.018 0.053 0.094 0.014 0.051 0.103
100 0.015 0.048 0.102 0.011 0.044 0.089 0.014 0.052 0.107
200 0.012 0.050 0.098 0.013 0.050 0.101 0.012 0.060 0.104
300 0.010 0.048 0.099 0.014 0.057 0.107 0.013 0.051 0.094
500 0.009 0.052 0.097 0.012 0.056 0.102 0.012 0.050 0.108
Exp
10 50 0.053 0.105 0.137 0.021 0.065 0.121 0.021 0.069 0.112
100 0.048 0.074 0.138 0.023 0.063 0.125 0.024 0.057 0.119
300 0.033 0.068 0.125 0.018 0.065 0.113 0.016 0.062 0.108
500 0.021 0.650 0.114 0.014 0.059 0.117 0.018 0.063 0.113
1000 0.015 0.610 0.118 0.016 0.054 0.111 0.015 0.061 0.114
20 50 0.013 0.057 0.107 0.011 0.053 0.108 0.016 0.052 0.103
100 0.007 0.051 0.103 0.009 0.051 0.102 0.015 0.051 0.106
300 0.015 0.062 0.118 0.012 0.053 0.102 0.012 0.051 0.101
500 0.011 0.049 0.102 0.013 0.054 0.110 0.010 0.056 0.110
1000 0.012 0.058 0.110 0.010 0.052 0.095 0.012 0.056 0.113
50 50 0.013 0.057 0.102 0.011 0.052 0.110 0.009 0.049 0.101
100 0.011 0.059 0.104 0.011 0.051 0.102 0.011 0.055 0.105
300 0.008 0.047 0.105 0.013 0.054 0.103 0.010 0.050 0.101
500 0.008 0.051 0.097 0.011 0.049 0.097 0.009 0.045 0.093
1000 0.011 0.048 0.101 0.010 0.051 0.105 0.010 0.049 0.102

5 Analyses of real data sets

Figure 2 depicts average counts of macrobenthos observed along an approximately
2000 km long transact of Norwegian continental shelf. The transact under observation
comprised a range of water depths and sediment properties. A total of p = 809 species
were observed from n = 101 independent sites in five different regions of the transact,
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Table 3 Estimated power of 77: normal and exponential distributions

n P CS AR UN

0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0
Normal
10 50 0.198 0.780 0.999 0.201 0.930 0.994 0.331 0.945 1.000

100 0.258 0.949 1.000 0.260 0.948 1.000 0.255 0.946 1.000
300 0.487 1.000 1.000 0.501 1.000 1.000 0.488 1.000 1.000
500 0.650 1.000 1.000 0.666 1.000 1.000 0.643 1.000 1.000
1000 0.839 1.000 1.000 0.805 1.000 1.000 0.858 1.000 1.000
20 50 0.397 0.998 1.000 0.384 0.998 1.000 0.393 0.995 1.000
100 0.556 1.000 1.000 0.562 1.000 1.000 0.570 1.000 1.000
300 0.904 1.000 1.000 0.910 1.000 1.000 0.908 1.000 1.000
500 0.987 1.000 1.000 0.987 1.000 1.000 0.987 1.000 1.000
1000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 50 0.888 1.000 1.000 0.883 1.000 1.000 0.897 1.000 1.000
100 0.990 1.000 1.000 0.990 1.000 1.000 0.988 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Exp
10 50 0.124 0.308 0.678 0.138 0.514 0.892 0.162 0.676 0.990
100 0.126 0.329 0.714 0.188 0.707 1.000 0.206 0.900 1.000
300 0.201 0.413 0.778 0.350 0.907 1.000 0.462 1.000 1.000
500 0.255 0.491 0.802 0.504 0.999 1.000 0.706 1.000 1.000
1000 0.302 0.561 0.881 0.735 1.000 1.000 0.854 1.000 1.000
20 50 0.242 0.502 0.701 0.303 0.890 1.000 0.654 1.000 1.000
100 0.337 0.521 0.898 0.418 0.987 1.000 0.857 1.000 1.000
300 0.498 0.665 0.997 0.734 1.000 1.000 0.999 1.000 1.000
500 0.605 0.717 1.000 0.871 1.000 1.000 1.000 1.000 1.000
1000 0.723 0.815 1.000 0.912 1.000 1.000 1.000 1.000 1.000
50 50 0.458 0.748 0.998 0.682 1.000 1.000 0.898 1.000 1.000
100 0.554 0.795 0.999 0.879 1.000 1.000 0.977 1.000 1.000
300 0.714 0.823 1.000 0.998 1.000 1.000 1.000 1.000 1.000
500 0.831 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.885 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

where n; = 16, n, = 21, n3 = 25, n4 = 19, ns = 20. Each count is a five-replicate
pooled observation, and the data contain a large amount of zeros where no species
could be recorded. For details, see Ellingsen and Gray (2002).

In our notation, X = (X/, ..., X)" € R"*” represents the complete data matrix
with regionwise data matrices X; = (X}, ..., X;ni)/ e R%*P X € R”, where
n; and p are given above. It is thus an unbalanced one-way MANOVA experiment
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Table 4 Estimated size of T3 for (CS, AR, UN) structures: all distributions
ni,np,n3 P N(, 1) Exp(1) Unif[0, 1]
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
10, 15,20 50 0.006 0.041 0.090 0.006 0.040 0.086 0.008 0.043 0.092
100 0.009 0.049 0.091 0.013 0.052 0.094 0.013 0.056 0.105
300 0.011  0.047 0.094 0.010 0.047 0.090 0.011 0.048 0.100
500 0.010 0.047 0.093 0.009 0.045 0.089 0.012 0.052 0.098
1000 0.011 0.048 0.096 0.010 0.046 0.098 0.011 0.052 0.097
5, 25,50 50 0.007 0.044 0.089 0.011 0.043 0.093 0.008 0.043 0.093
100 0.005 0.040 0.092 0.004 0.035 0.078 0.005 0.043  0.090
300 0.004 0.034 0.084 0.004 0.034 0.084 0.004 0.038 0.084
500 0.004 0.037 0.088 0.002 0.031 0.080 0.004 0.037 0.087
1000 0.005 0.035 0.082 0.003 0.036 0.085 0.007 0.034 0.081
10, 30, 60 50 0.009 0.050 0.096 0.008 0.042 0.083 0.014 0.049 0.093
100 0.011  0.051 0.096 0.009 0.044 0.087 0.014 0.055 0.101
300 0.008 0.043 0.092 0.008 0.040 0.085 0.001 0.048 0.096
500 0.008 0.042 0.086 0.009 0.048 0.099 0.010 0.047 0.094
1000 0.008 0.044 0.090 0.006 0.040 0.093 0.007 0.042 0.090
Table 5 Estimated power of 73 for (CS, AR, UN) structures: all distributions
ni,np,n3 P N, 1) Exp(1) Unifo0, 1]
0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0
10, 15, 20 50 0.074 0405 0921 0.058 0399 0934 0.066 0414 0.919
100 0.071 0.598 1.000 0.064 0.603 0.995 0.078 0.600 0.993
300 0.097 0912 1.000 0.099 0931 1.000 0.097 0.921 1.000
500 0.123 0986 1.000 0.122 0985 1.000 0.127 0.988 1.000
1000 0.178 0.999 1.000 0.173 0999 1.000 0.171  1.000 1.000
5,25,50 50 0.109 0.887 1.000 0.117 0.899 1.000 0.101 0.871 1.000
100 0.142 0988 1.000 0.137 0988 1.000 0.143 0.990 1.000
300 0.237 1.000 1.000 0.226 1.000 1.000 0.241 1.000 1.000
500 0.313 1.000 1.000 0.311 1.000 1.000 0.317 1.000 1.000
1000 0.500 1.000 1.000 0.506 1.000 1.000 0.490 1.000 1.000
10, 30, 60 50 0.070 0.525 0988 0.056 0.539 0995 0.070 0.5418 0.988
100 0.079 0.768 0999 0.071 0.793 1.000 0.078 0.763 1.000
300 0.116 0991 1.000 0.103 0995 1.000 0.117 0.990 1.000
500 0.152  0.999 1.000 0.141 1.000 1.000 0.147 1.000 1.000
1000 0.218 1.000 1.000 0.208 1.000 1.000 0213 1.000 1.000
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Table 6 Estimated power of 77 under three sparse alternatives

n p 25% 50% 75%
0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

10 60 0.679 0.969 0.999 0.629 0.924 0.992 0.593 0.828 0.956
100 0.680 0.973 0.999 0.643 0.938 0.995 0.600 0.839 0.963
200 0.691 0.976 0.999 0.639 0.939 0.996 0.596 0.840 0.968
20 60 0.770 0.998 1.000 0.698 0.987 1.000 0.628 0.932 0.994
100 0.771 0.999 1.000 0.712 0.992 1.000 0.619 0.937 0.996
200 0.774 0.999 1.000 0.711 0.992 1.000 0.636 0.946 0.997
50 60 0.921 1.000 1.000 0.846 1.000 1.000 0.729 0.994 1.000
100 0.933 1.000 1.000 0.866 1.000 1.000 0.737 0.997 1.000
200 0.936 1.000 1.000 0.870 1.000 1.000 0.741 0.998 1.000

with ¢ = 5 independent samples, each of n; iid vectors of dimension 809, where
n= Zle n; = 101. The linear model can be expressed as

Xik=p; +€ix, j=1,....n;,i=1,...,5, (15)

where the vector X consists of 809 species counts measured for kth replicate (site)
from ith region, u; € R? is the true average count vector of ith region, and €;, € R?
are random error vectors, associated with each X, with E(¢;;) = 0 and Cov(e;r) =
Y;Vk,i =1,...,5 The hypothesis of interest can be formulated as Hyps : p; =
... = M5 Vs His: p; # p; for atleast one pairi # j,i, j =1,...,5. Weuse T, in
Eq. (8) to test Hps.

We also apply the proposed test to two well-known data sets, referred here to
as alcohol and leukemia data. The alcohol data is a two-group (g = 2) data that
motivated Dempster to construct the first two-sample high-dimensional test (Dempster
1958); see also Dempster (1960, 1968). The data consist of p = 59 biochemistry
measurements on n; = 8 alcoholic and n, = 4 control individuals aged 16-39
years; see also Beerstecher et al. (1950). The three-group (g = 3) leukemia data
are often also used for classification. It consist of measurements on patients with
acute lymphoblastic leukemia (ALL) carrying a chromosomal translocation involving
mixed-lineage leukemia (MLL) gene. A total of p = 11225 gene expression profiles
of leukemia cells are taken from patients in ALL group (n; = 28), B-precursor ALL
carrying an MLL translocation (n, = 24) and conventional B-precursor without MLL
translocation (n3 = 20); see Armstrong et al. (2002) for details.

Model (15) remains the same for alcohol and leukemia data sets, with g = 2 and
3, respectively, and with corresponding sample sizes given above. The analyses of
all three data sets are reported in Table 7. The first three columns report the data
sizes and the next three the Chi-square approximation for 7, and the penultimate two
columns provide the corresponding normal approximation. Only for alcohol data, the
results provide evidence in support of null hypothesis of no difference of mean vectors,
whereas the hypotheses are significantly rejected for both leukemia and species data.
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Fig.2 Average species count of macrobenthos data for five regions
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Table 7 Analysis of example data sets

Data Data size Chi-square test Normal test

g (ny,...,ng) P T, daf p value T, p value
Alcohol 2 (8,4) 59 2.80 391 0.578 —0.40  0.654
Leukemia 3 (28, 24, 20) 11225 96.93 7.31 0.000 21.52  0.000
Species 5 (16, 21, 25, 19, 20) 809 180.40  7.03 0.000 40.61 0.000

The conclusions for all three data sets are consistent for both approximations. In
particular, the results for species data substantiate what can be roughly witnessed in
Fig. 2.

6 Discussion and remarks

Test statistics for high-dimensional mean vectors are presented. A unified strategy is
proposed that systematically encompasses one- and multi-sample cases. The tests are
constructed as linear combinations of U -statistics-based estimators and are valid for
any distribution with finite fourth moment. The limiting distributions of the tests are
derived under a few mild assumptions. Simulations are used to show the accuracy of
the tests for moderate sample size and any large dimension. The tests are location
invariant, so that the mean vectors need not be assumed zero. Due to singularity of
empirical covariance matrix in high-dimensional case, an affine-invariant test is not
possible, and location-invariance is the best that can be achieved in this case.
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A Some miscellaneous results
A.1 U-statistics

First, we need to set some notations. For details, see e.g., Serfling (1980),
Koroljuk and Borovskich (1994), van der Vaart (1998) and Lehmann (1999). For
iid X;, let h(Xy,..., X,;) : R™ — R denote the kernel of an mth order U-
statistic, U,, with E(U,) = 6 = E[h(-)] with its projection h.(x1,...,X;) =

ElhO)|x1, . %l () = h() and & = Var[he(), ¢ = 1,....m, so
that Var(U,) = Yoo ()™M /()). If 0 < & < ooV ¢, then (U, —

EU,))/«/Var(U,) 2) N(0, 1). For two U-statistics, U,;, of order m;, kernels
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hi (), projections h;c(+), i = 1,2, let &, = Cov[hic(-), hoe(D],c = 1,...,m; <
my. Then, Cov(Up1, Uyz) = >ty ("2) (Z“mg)é“/( ) Let Uy, be a U statistic
of two independent samples, with kernel 7 (X1, .. X]m1 s X215 oo, Xom,), Sym-
metric in each sample, projection h¢ ¢, = E[h(-)|X11, v Xieps Xz], v Xoe s
Eciep = Covlh(), heye, (D], &0 = 0, ¢; = 0,1,...,m;. Then, Var(Uy,n,) =
Yem0 ko (2 Gl e () G "Zi)fclcz/( V(o) 00 < nifn < Lon=ni+na,

D
0 <&y <00V, then (Uppn, — E(Upiny))//Var(Up,n,) — N(O, 1).

Lemma 21 (Jiang 2010, p. 183; Hajek etal. 1999, p. 184) Let Y1, Ya, . .. be iid random
variables, E(Y;) = 0, Var(Y;) = 1. Let by; be a sequence of constants, 1 < i < n.

Then Y}, bniY; D N (0, 1) given max; bﬁl. — 0, asn — oo.

A.2 Basic moments of U-statistics

For Uy, hXit, Xiy) = X Xip, m = 2, X)) = WX, &1 = w;Xip,,
£ = w(Z) + 2u/Tip;. For Unp; hXie, Xj1) = X[ Xj, mp = 1 = my,
hio = WX, hot = wiXj, hin() = h(), &0 = wiZipj, o = wiXjp;,
En o= wEju + pTip; + (X)), Then, for i # j, i # j.i" # ],
Var(Uy,) = 2[2(n; — D Zip; + tr()3,~2)]/ﬂi(ni = 1), Var(Up;p;) = [mipiXjp; +
nj”'/jziﬂj +u(X:X))]/ninj, Cov(Uy,, Un,-nj) = 2#;'21'”[/”[, COV(Unj» Un,-nj) =
2IL§Zjllvj/”j,C0V(Un,-nj, Un,’ilj/) = M;Eiﬂj’/ni,COV(Uninja Uni/nj):ﬂgzjﬂi//nj-
See Sect. A.1 for basic notations and general moment expressions.

B Main proofs
B.1 Proof of Theorem 5

First, E(Q1/p) = w(X)/p = Zf:l vy, bounded by vg, under Assumption 2, as
p — o0o. Now

Var(nQ1/p) = Var(E/p) + Var(Uy,/p) —2Cov(E/p, Un/p). (16)

With Var(X;ch) < y p? under Assumption 1, Var(E/p) < y/n = O(1/n). From
Sect. A.2, Var(U,/p) = y/n+2t(E?) /n(n — D) p> +4u'Epn/(n — 1) p* = 0(1/n)
under the assumptions. Finally, Cov(E/p, U,/ p) =0 for . = 0 which can be assumed
w.0.l.o.g. since E(Q1/p) does not depend on u. Alternatively, by Cauchy—Schwarz
inequality, Cov(E/p, U, /p) <[Var(E) Var(Un)]l/2 which simplifiesto O (1/n). This
proves consistency of nQ1/p. Note that, this consistency holds both under simulta-
neous and sequential (n, p)-asymptotics where in the later case the last term vanishes
with p, before the limit over »n is carried out. Further, the limit is the same under H
and H;.
Now, consider nU,, with h(xg, x,) = X’X /p so that E[h(-)] = ||[L||2 E(U,,)

Define U,, = U, — E(U,) with correspondlng kernel h() = h(-) — E[h(")]. Let U,,
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denotes the projection of U,. As U, is a second-order U-statistic with product kernel
(bilinear form of independent components), i (-), following the notation in Sect. A.1,

N n - 2 n
Un =) EWX0) =~ w'Xe = n)
k=1

k=1

with E(U,) = 0 = E(U,) and Cov(Uy, Uy) = 4p'Ep/n = Var(Uy) so that, with
Var(U ) as given above (see Sect. A.2), it follows that Var(nU ) and Var(nU ) are
uniformly bounded under Assumptions 2 and 4, such that Var(nU )/ Var(nU ) —> 1;
see e.g., Lehmann (1999, Ch.6), Serfling (1980, Ch.5) or van der Vaart (1998, Ch.12).
This, along with the convergence of nQ1/p, gives normal limit of nU, /[nQ1/p],
hence of T, by Slutsky’s theorem.

Some remarks concerning the aforementioned limit will help us extend it further
under the null. To begin with, the first-order projection of i (-), h1(xx) = E[h(-)|xx] =
Xy /p, along with its variance, & = Var[h(x¢)] = w'Zp/ p2 exactly vanishes
under Hy : u = 0, making the kernel (first-order) degenerate under Hyp. Note that, for
the limit under H, above, the term involving this projection, 4p’ ¥ u/np? is eventually
bounded under Assumption 4, for simultaneous (n, p)-asymptotics, when used for
nU,. But under sequential asymptotics, if p — oo first, then the projection vanishes
asymptotically. But the limit under H; still holds since the total variance Var(U,)
still remains bounded under the assumptions. In fact, an additional advantage under
sequential asymptotics is that now the power of 7' does not depend on any specific p.

Under Hy, however, the projection and its variance & are exactly zero and the
limit need to be derived differently. Since E[h%(")] = tr(X?)/p? < oo under the
consequence of Assumption 2, the kernel is square integrable. As we shall see in
the sequel, 2(-) being a product kernel makes it further convenient to derive the limit.
Without loss of generality, we can assume that the data X, are generated by a separable
(Hilbert) space L£2(X, A, P). By symmetry and square integrability of A (-), the map
T:Loy(X, A, P)— La(X, A, P), being a (bounded, linear) integral operator, i.e.,

Tf(x1) Z/f(xlwxr)f(xr)dp(xr),

is self-adjoint, Hilbert—Schmidt. With A’s and v’s introduced just before the assump-
tions, let (vs, fy) forms its orthonormal eigendecomposition, i.e., h(Xg,X,) =
o2 o s S (Xk) f5(Xp), where v2 < oo and fy = 1 correspond to A9 = 0. For
details, see e.g., van der Vaart (1998) and Koroljuk and Borovskich (1994). By the
Hilbert—-Schmidt Theorem (Reed and Simon 1980, p. 203), the convergence of the
kernel to its basis is in £», i.e.,

p 2 00
E (/’Z(Xk, X;) — Z)\sfs(xk)fs(xr)> = Z vsz — 0.
s=0 s=p+1

A general theorem on the limit of a degenerate U -statistics under this setup is given
in van der Vaart (1998, Theorem 12.10, p. 169) or Lee (1990, Theorem 1, p. 90). The
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limit holds for n¢/ ZU,,,C with variance c!E [h%(-)], where U, . is a U-statistic with
(projected) kernel /. (-) and c is the least value for which /4.(-) is non-degenerate (see
Sect. A.1).

Thus, in the present context with m = 2, ¢ = 2, nU, has a finite limit with
variance approximating 2& = 2tr(X?)/p* =2 Z % Specifically, for first-order
degeneracy, the limit is [m(m — 1)/2] ZS 1 Vs (z 1), where z; are independent
N (0, 1) variables; see Koroljuk and Borovskich (1994, Ch. ) and Shao (2003, Ch. 3).
With m = 2, we thus have, for n, p — oo,

[e )
D
nU, = Y vz = 1), (17)

with z2 ~ Xl iid, where the limiting mean is 0 and variance is 2 oo, v2 which
approximates 2 tr(X?)/p?. Combined with the limit of n Q1 /p by Slutsky’s theorem,

we have
D o o
T—1= u@ =1/ v (18)
s=1 s=1

Now write wg = vs/ Y vy such that ) ws; = 1 and max a)f — 0. Also let Y, =
(zf — 1)/\/5 so that E(Ys) = 0, Var(Ys) = 1. Then, the normal limit follows by the
Héjek—gidék Lemma (Lemma 21).

B.2 Proof of Theorem 13

With Q; composed of two independent components, the probability convergence of
nQ1/p follows exactly as in one-sample case, so that

P
n@i/p — vo,

where vy = Ziz=1 Pivio = Ziz:] Y o2 Pivis, as nj, p — 00. Now Qp, which we
first write as Qo = a’'Uy, wherea = (1 1 —2) and Uy = (Uy, Uy, Uy,n,)’, s0 that
the limit of Q¢ follows from that of Uy. Obviously E(Qo) = || — [L2||2 where,
from “Appendix A.2”,

COV(UN)
20(E]) A Zam 0 25811
1 ni(ni—1) ni—1 5 , /nl
—_ 0 2tr(X3) + 4ps oy 2u122uz
p2 , nz(nz—l)/ ny—1 ,
2us X p 2p) Zopo tr(X;Xs) + M]Ezm + 22315
ni na niny na ni

so that Var(Q) = a’ Cov(Uy)a results into

Var(Qo) =

pr\nini—1) nana—1) ning

2( w(z?) N w(zd) +2tr(2122)>
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4 "X ¥ "%, 52
L0 (ﬂ] 131 +IL2 ﬂ2+ﬂ'] 131 +ﬂ2 L)

P2 np—1 ny —1 np no
25T 2p Top,
ni ny

= [2r(Z)/p* + 4y — 12) To(iy — o) /P11 +op(D]. (19)

Note that, as n;, p — 00, terms involving u'Xu are finite under the assump-
tions, making Cov(nUy), hence Var(nQo), unlformly bounded, implying in turn
that nQo might have a finite limit. Let Qo = Zl 1 Un, 2U,,ln2 be the projec-

t10n of Qo Zl 1Un, ZU,”nz, where Un = Un, E(Uy,), w1th its kernel
h(xlk xir) = X, Xir/p — ||[L|| /p, and similarly U,,ln2 with its kernel h(xlk X27).
Further, U,,; are as deﬁned for one-sample case, whereas

Unin, = Zhlo(xlk) + — th(xzz)

where 7110(X1k) = E[ﬁ(xlk, X27)|X1k], similarly %1 (x27); see Sect. A.1 for notations.
Thus

ni

~ 2
Qo = EZM](XM — )+ _ZILQ(XZI n2)
k=1
[anItz(Xlk—lLl)Jr—Zﬂl(le Itz):|
k=1

ni

/ 2 /
— Z(m pa) X = ) = Z(m — 1) Xy — o)
=1

1 & 1 &
2(my — o)’ [H D Xk — ) — . D - uz)] (20)
k=1 =1

is the projection of Qg with E(Qo) = 0, Var(Qo) = 4(i; — o) Zo(y — my)/p>.
The term within brackets in Eq. (20) is the sum of two independent components, as
a direct extension of one-sample case. By the same procedure then, it follows that
Cov(éo, @o) = Var(@o) so that Var(n/QO)/ Var(nbo) — 1. Under the assumptions,
néo = n@o + op (1) with the limit of n @0 following by the central limit theorem,
leading to the limit of n 0o, hence of T», by Slutsky theorem.

Now consider Hy whence the projection Q = 0, making the component U -statistics,
hence Q, degenerate and leaving the normal limit above invalid under the null. To
simplify the matters, assume without loss of generality, that u; = p = 0,i = 1, 2.
Then

Cov(UN)=diag<2tr():%)/n1(n1—1), 2tr(23) /na(na—1), tr(2122)/n1n2>/p2
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and Var(Qp) = 2tr():%) /p?. This, again, is a direct extension of one-sample case
under Hy, so that we can similarly proceed to obtain the limit, except that here we
need to deal with a three dimensional vector instead of a scalar. Then, the limits of
nUy,, i =1, 2, follow from (17) as (see also Ahmad 2014)

o0
D
nUp, = Y pivis(zf, — 1), 1)

s=1

as nj, p — 00, where n = ny + np. Writing n/niny = [/n/ni/n/n2l[1//ninzl,
the corresponding limit for nU,, ,, is given as Koroljuk and Borovskich (1994, Ch. 4)

00
D
nUn1n2 — va1p2vlsv2szlsz2m (22)

s=1

asn;, p — oo, where z;, are iid N (0, 1) variables in both limits and z1;, zo, are also
independent of each other. To combine the three limits, define wizs =i vl.zs /Y pi vl.zs,

2 — (). Then, a multivariate extension of Lemma 21

i =1, 2suchthatlim_, , max; w;,

gives the normal limit
~ D
Uy — N3(0.1),

where ij = (Uy,//Var(Uy,), Up,/\/Var(Up,1), U,,lnz/,/Var(Unl,,z))/ is the

standardized form of Uy with each component having mean zero. Finally, under
Assumption 2 and by Slutsky theorem, with covariance matrix diagonal, the limit
easily extends for nQq/[nQ1/p] and hence for T, as a linear combination of three
components.
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