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Abstract
A unified testing framework is presented for large-dimensional mean vectors of one
or several populations which may be non-normal with unequal covariance matrices.
Beginningwith one-sample case, the construction of tests, underlying assumptions and
asymptotic theory, is systematically extended to multi-sample case. Tests are defined
in terms of U -statistics-based consistent estimators, and their limits are derived under
a fewmild assumptions. Accuracy of the tests is shown through simulations. Real data
applications, including a five-sample unbalanced MANOVA analysis on count data,
are also given.

Keyword High-dimensional inference · Behrens–Fisher problem · MANOVA ·
U -statistics

1 Introduction

Let Xk = (Xk1, . . . , Xkp)
′ ∼ F , k = 1, . . . , n be iid random vectors, where F

denotes a p-variate distribution, with E(Xk) = μ ∈ R
p and Cov(Xk) = � ∈ R

p×p
>0 .

A hypothesis of foremost interest to be tested in this setup is H0 : μ = 0 against
an appropriate alternative, say H1 : Not H0. For an extension to g ≥ 2 samples, let
Xik = (Xik1, . . . , Xikp)

′ ∼ Fi be iid random vectors with E(Xik) = μi ∈ R
p,

Cov(Xik) = �i ∈ R
p×p
>0 , k = 1, . . . , ni , i = 1, . . . , g. The corresponding hypothesis

of interest is H0g : μ1 = · · · = μg vs. H1g : Not H0g .
Our objective here is to present test statistics for the aforementioned one- and

multi-sample hypotheses when p > ni , Fi ’s are not necessarily normal and �i ,
likewise ni , in themulti-sample casemay be unequal. The proposed tests are thus valid
for high-dimensional, non-normal, unbalanced data under Behrens–Fisher problem.
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In particular, for g ≥ 3, it refers to testing high-dimensional one-way MANOVA
hypothesis under non-normality and multi-sample Behrens–Fisher problem.

When p < ni , tests of H0 or H0g are most often carried out by Hotelling’s T 2 or
Wilks’ Lambda statistic which are uniformly most powerful invariant likelihood ratio
tests. They, however, collapse for high-dimensional case, particularly due to singularity
of the empirical covariance matrix involved (see Sects. 2, 3). A number of proposals
have recently been put forth in the literature on the modification of these classical tests
for high-dimensional data.

Whereas most modifications assume normality, some of them are based on a more
flexiblemodel, and still others offer completely nonparametric solution to the problem.
Likewise holds for homoscedasticity assumption, �i = � ∀ i = 1, . . . g ≥ 2. For
details, see e.g., Dempster (1958), Bai and Saranadasa (1996), Läuter et al. (1998),
Läuter (2004), Fujikoshi (2004), Schott (2007), Chen and Qin (2010), Aoshima and
Yata (2011, 2015), Katayama and Kano (2014), Wang et al. (2015), Feng et al. (2016)
and Hu et al. (2017). For a review, see Hu and Bai (2015) and Fujikoshi et al. (2010).

We present a coherent testing theory encompassing one- and multi-sample cases.
The construction of the tests, the assumptions, and the strategy of obtaining limit-
ing distribution of the test statistics is succinctly threaded together via a common
approach, initiating with the one-sample case and extending systematically to the
multi-sample cases. The main distinguishing feature of the proposed tests is that we
simultaneously relax commonly adopted linear model assumptions such as normality
and homoscedasticity, for all cases up to one-way MANOVA. Further, all tests are
defined in terms of U -statistics with simple, bivariate, product kernels composed of
bilinear forms of independent vectors. This helps us determine the limits of the test
statistics for a general multivariate model. These limits are derived under (ni , p)- or
high-dimensional asymptotics, i.e., ni , p → ∞, using only a few mild assumptions.

The basic idea is introduced in detail for one-sample case in the next section, with
an extension to two-sample case.Multi-sample extension follows in Sect. 3. Sections 4
and 5 deal with simulations and applications. Proofs and technical details are deferred
to “Appendix”.

2 The one- and two-sample tests

2.1 The one-sample case

For the one-sample data setup in Sect. 1, let the unbiased estimators of μ and � be
defined as X = ∑n

k=1Xk/n and �̂ = ∑n
k=1(Xk − X)(Xk − X)′/(n − 1). If n > p

and F is multivariate normal, then H0 : μ = 0 can be tested using Hotelling’s
statistic T 2 = nX

′
�̂

−1X = X
′[�̂/n]−1X where �̂/n estimates �/n = Cov(X).

When p > n, �̂ is singular and T 2 collapses, requiring a careful modification that can
provide valid inference when p → ∞, possibly along with n → ∞. The two indices
may sometimes be assumed to grow at the same rate so that p/n → c ∈ (0,∞).
Alternatively, a sequential asymptotics, first letting p → ∞ followed by n → ∞,
may be considered under which conditions like p/n → c may be dispensed with.
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Note that, �̂ may be ill-conditioned for p < n whence (·)−1 can be replaced
with Moor–Penrose inverse (see e.g., Duchesne and Francq 2015). For p 	 n, this
approach is unreliable and inefficient. An alternative is to remove �̂

−1
from T 2 and

consider the Euclidean distance Q = X
′
X = ‖X‖2. An interesting consequence of

this can be witnessed by a simple split of Q as

Q = 1

n2

n∑

k=1

n∑

r=1

X′
kXr = 1

n2

n∑

k=1

X′
kXk + 1

n2

n∑

k=1

n∑

r=1
k �=r

X′
kXr = Q1 + Un, (1)

where Q1 = (E − Un)/n with E =∑n
k=1X

′
kXk/n and Un =∑n

k �=r X
′
kXr/n(n − 1).

Note that, E is an average of quadratic forms, and Un is an average of bilinear forms
composed of independent components. It is shown below that the limiting distribution
of the statisticmainly follows fromUn where Q1 converges in probability to a constant.
With E(X′

kXk) = tr(�)+μ′μ, E(X′
kXr ) = μ′μ, we get E(Q1) = tr(�)/n, E(Un) =

μ′μ. Thus,
E(Q) = tr(�)/n + ‖μ‖2, (2)

which is tr(�)/n under H0. We observe a few salient features of this bifurcation
of Q. First, E(Q1) = tr(�)/n = Cov(X) implies that the removal of the inverse
of the estimator of Cov(X) results into a bias term composed of the trace of the
same estimator, since it can be verified that Q1 = tr(�̂)/n or E1 − Q0 = �̂ with
E1 = ∑n

k=1 XkX′
k/n and Q0 = ∑n

k �=r XkX′
r/n(n − 1) as matrix versions of E and

Un . Note also that Q1 is independent of μ, and Un is independent of �, under both
H0 and H1. Now, E(Un) = ‖μ‖2 which is 0 under H0. Together, the last two facts
imply that Un can be used to construct the modified test statistic for H0, whereas Q1
can help compensate for the removal of estimator from the original test statistic. For
this, write Q = tr(�̂)/n + Un = Q1 + Un and by a simple scaling and re-writing,
consider the statistic

T1 = 1 + nQ0

nQ1/p
, (3)

where Q0 = Un/p isUn , but with kernel normed by p, h(xk, xr ) = X′
kXr/p. T1 is the

proposed modified statistic for H0 : μ = 0 when p 	 n and F may be non-normal.
For the limit of T1, nQ1/p is first shown to converge in probability to a constant

as n, p → ∞. Then, nQ0 is shown to converge weakly to a normal limit. Under H0,
the kernel of Un degenerates so that the null limit follows through a weighted sum
of independent χ2 variables. The limit of T follows then by Slutsky’s lemma. As the
same scheme will later be extended for g ≥ 2, we treat the one-sample case in detail.
Let λs , s = 1, . . . , p be the eigenvalues of � so that λs/p = νs corresponds to �/p.
We need the following assumptions.

Assumption 1 E(X4
ks) = γs ≤ γ < ∞∀ s = 1, . . . , p, γ0 ∈ R

+.

Assumption 2 lim p→∞
∑p

s=1 νs = ν0 ∈ R
+.

Assumption 3 limn,p→∞ p/n = c = O(1).
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Assumption 4 lim p→∞ μ′�μ/p = φ = O(1).

Assumption 1 helps us relax normality. By Assumption 2,
∑p

s=1 ν2s = O(1), as
p → ∞. Assumption 4 is only required under H1. We have the following theorem,
proved in “Appendix B.1.”

Theorem 5 For T1 in Eq. (3), (T1 − E(T1))/
√
Var(T1)

D−→ N (0, 1) under Assump-
tions 1–4, as n, p → ∞, where E(T1) and Var(T1) denote the mean and variance of
T1.

From the proof ofTheorem5, E(T1) andVar(T1) approximate 1 and2 tr(�2)/[tr(�)]2,
respectively,� = n�/p. As the limit follows from aweighted sumofχ2

1 variables, the
moments in fact approximate a scaled Chi-square variable, say χ2

f / f with moments 1

and 2/ f , where f = f1/ f2, f1 = [tr(�)]2, f2 = tr(�2). Thus, to estimate Var(T1),
weneed consistent estimators of tr(�2) and [tr(�)]2.Define Q =∑n

k=1(X̃
′
kX̃k)

2/(n−
1), X̃ = Xi −X, η = (n −1)/[n(n −2)(n −3)]. Then, E2 = η{(n −1)(n −2)tr(�̂

2
)+

[tr(�̂)]2 − nQ}, E3 = η{2tr(�̂2
) + (n2 − 3n + 1)[tr(�̂)]2 − nQ} are unbiased and

consistent estimators of tr(�2) and [tr(�)]2. Then f̂ = f̂1/ f̂2 is consistent estimator
of f , hence V̂ar(T1) of Var(T1) such that V̂ar(T1)/Var(T1) → 1; see Ahmad (2017b)
and end of Sect. 3. We have the following corollary.

Corollary 6 Theorem 5 remains valid when Var(T1) is replaced with V̂ar(T1).

Power of T1 Let zα be 100α%th quantile of N (0, 1), β(θ) the power function of T1
with θ ∈ �0 or θ ∈ �1 where �0 = {0}, �1 = �\{0} are respective parameter
spaces under H0, H1 with � = � ∪ �1, �0 ∩ �1 = φ. By Theorem 5, β(θ) =
P(z1 ≥ zα) with β(θ |H0) = α, β(θ |H1) = 1 − β, as n, p → ∞, where z1 =
(T1 − E(T1))/

√
Var(T1). Then, 1 − β = P(z ≥ zα − nδ), δ = δ1/δ2, δ1 = μ′μ/p,

δ22 = ∑p
s=1 ν2s . By the convergence of nQ1/p, and as δ1, δ2 are uniformly bounded

under the assumptions, 1 − β → 1 as n, p → ∞.

Remark 7 A remark on the structure of T1 is in order.With [nQ1/p]/ tr(�) converging
in probability to 1, consider T1 = 1 + nUn/ tr(�), also ignoring p for convenience.
Then, E(T1) = 1 + n‖μ‖2/ tr(�) = 1 + E(X)′E(X)/Cov(X), where E(T1) = 1
under H0. In this sense, T1 is similar to an F-statistic, where T1 is close to 1 under H0
and moves apart as μ deviates from 0. Since Cov(X) + E(X)′E(X) = E(X

′
X), the

partitioning used to define T1 helps not only adjust for bias term but also makes the
resulting statistic computationally much simpler, particularly under non-normality. A
similar argument holds for multi-sample tests presented in the next sections.

2.2 The two-sample case

For themulti-sample setup in Sect. 1, let g = 2.We are interested to test H02 : μ1 = μ2
versus H12 : Not H02. Let Xi = ∑ni

k=1 Xik/ni and �̂i = ∑ni
k=1(Xik − Xi )(Xik −

Xi )
′/(ni − 1) be unbiased estimators of μi and �i . Denote n = n1 + n2. Assuming

normality, �i = �∀ i and n − 2 > p, H02 is usually tested by two-sample T 2,
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T 2 = [n1n2/n](X1−X2)
′�̂−1

(X1−X2), where �̂ =∑2
i=1(ni −1)�̂i/

∑2
i=1(ni −1)

is an estimator of common �. For p > n − 2 or more generally for p > ni , T 2 is
invalid by the same token as for its one-sample counterpart. We consider a likewise
partition of Q = ‖X1 − X2‖2 = X

′
1X1 + X

′
2X2 − 2X

′
1X2 as

Q =
2∑

i=1

1

n2
i

ni∑

k=1

ni∑

r=1

X′
ikXir − 2

n1n2

n1∑

k=1

n2∑

l=1

X′
1kX2l = Q1 + U0 (4)

with Q1 = ∑2
i=1 Qi1 = ∑2

i=1 tr(�̂i )/ni = tr(�̂0), Qi1 = (Ei − Uni )/ni =
tr(�̂i )/ni , U0 =∑2

i=1 Uni − 2Un1n2 , where Ei =∑ni
k=1 X

′
ikXik/ni and

Uni = 1

ni (ni − 1)

ni∑

k=1

ni∑

r=1
k �=r

X′
ikXir , Un1n2 = 1

n1n2

n1∑

k=1

n2∑

l=1

X′
1kX2l , (5)

are one- and two-sample U -statistics, respectively, with symmetric kernels as bilinear
forms of independent vectors. As in the one-sample case, E(Qi1) = tr(�i )/ni ⇒
E(Q1) = tr(�0), �0 = ∑2

i=1 �i/ni and E(U0) = ‖μ1 − μ2‖2 which vanishes
under H02. Thus,

E(Q) = tr(�0) + ‖μ1 − μ2‖2 = tr(�0) under H02. (6)

Again, E(Q1) is independent of μi , and E(U0) is independent of �i , under H02 and
H12. Further, E(Q1) = tr(�0), �0 = Cov(X1 − X2). We thus extend T1 in Eq. (3)
for H02 as

T2 = 1 + nQ0

[nQ1/p] , (7)

where Q0 = U0/p is U0 with kernels of Uni and Un1n2 scaled by p, i.e., h(xk, xr ) =
X′

ikXir/p and h(xk, xl) = X′
1kX2l/p, respectively. Following assumptions extend

those of one-sample case, where νis = λis/p are eigenvalues of�i = �i/p, i = 1, 2.

Assumption 8 E(X4
iks) = γis ≤ γ < ∞∀ s = 1, . . . , p, i = 1, . . . , g, γ ∈ R

+.

Assumption 9 lim p→∞
∑p

i=1 νis =∑∞
s=1 νis = νi0 ∈ R

+, i = 1, . . . , g.

Assumption 10 limni ,p→∞ p/ni = ci = O(1), i = 1, . . . , g.

Assumption 11 limni →∞ n/ni = ρi = O(1), i = 1, . . . , g.

Assumption 12 lim p→∞ μ′
i�kμ j/p = φi jk ≤ φ = O(1), i, j, k = 1, . . . , g.

As the same assumptions will be used in Sect. 3, they are stated for g ≥ 2. Assump-
tion 11 is additional to those for one-sample case. It is needed to keep the limit
non-degenerate when ni → ∞, n = ∑g

i=1 ni . Assumption 12 is again needed only
under H12. Following theorem, proved in “Appendix B.2”, extends Theorem 5 to
two-sample case.
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Theorem 13 For T2 in Eq. (7), (T2 − E(T2))/
√
Var(T2)

D−→ N (0, 1) under Assump-
tions 8–12, as ni , p → ∞, where E(T2) and Var(T2) denote the mean and variance
of T2.

It is interesting to see how the limit for degenerate case sums up. With ν0 as the limit
of nQ1/p, it follows from (21) and (22) that (see e.g., Anderson et al. 1994)

nQ0
D−→

∞∑

s=1

(√
ρ1ν1s z1s − √

ρ2ν2s z2s
)2 − ν0

⇒ T2
D−→

∞∑

s=1

(√
ρ1ν1s z1s − √

ρ2ν2s z2s
)2

/ν0,

with 1 and 2
∑∞

s=1(ρ1ν1s − ρ1ν2s)
2/ν20 as limiting mean and variance, where the

variance approximates 2 tr(�2)/[tr(�)]2, � = n�0/p, �0 = ∑2
i=1 �i/ni . By the

same argument of a scaled Chi-square approximation as for one-sample case, the
moments correspond to those of χ2

f / f , i.e., 1 and 2/ f , f = f1/ f2, f1 = [tr(�0)]2,
f2 = tr(�2

0). Let E2i = ηi {(ni −1)(ni −2)tr(�̂
2
i )+ [tr(�̂i )]2−ni Qi }, E3i = ηi {2tr(�̂2

i )

+ (n2
i − 3ni + 1)[tr(�̂i )]2 − ni Qi }, where Qi = ∑ni

k=1(X̃
′
ikX̃ik)

2/(ni − 1), X̃i =
Xik −Xi , ηi = (ni −1)/[ni (ni −2)(ni −3)]. Further, by independence, tr(�̂1�̂2) is an
unbiased and consistent estimator of tr(�1�2). Plugging in f1, f2 leads to a consistent
estimator of f , hence of Var(T2), i.e., V̂ar(T2). We have the following corollary.

Corollary 14 Theorem 13 remains valid when Var(T2) is replaced with V̂ar(T2).

Remark 15 Due to its special practical value, the two-sample test has been investigated
the most, also for high-dimensional case. We briefly discuss three tests, most closely
related to T2. Denote κ = n1n2/n, ω1 = (n − 1)/(n − 2), ω2 = (n − 2)2/n(n − 1),
n = n1 + n2. Let ξ = ‖X1 − X2‖2 − tr(�̂)/κ , where �̂ is the pooled estimator of
common � as given in the context of T 2 above.

Dempster (1958) proposed the first two-sample test for high-dimensional data under
normality, motivated by a problem put forth by his colleagues (see Sect. 5). The test,
in simpler form, is given as TD = ‖X1 − X2‖2/κ tr(�̂). An alternative form of TD

follows by partitioning the norm in the numerator into several independent quadratic
forms using an orthonormal transformation, so that the test follows an approximate F
distribution with degrees of freedom estimated using a scaled Chi-square distribution.
See also Dempster (1960, 1968) for details, where Bai and Saranadasa (1996) give a
detailed evaluation of the approximation and power of Dempster’s test.

Bai andSaranadasa (1996)’s test, TBS = κξ/
√
2ω1B, is a standardization of ξ under

homoscedasticity, where B2 = ω2{tr(�̂)2 − [tr(�̂)]2/n}. Chen and Qin (2010)’s test,
TCQ, is a standardization ofU0 =∑2

i=1 Uni −2Un1n2 ; see (4). TCQ is based on the same
model used for TBS but relaxing normality and homoscedasticity. From the partition
of Q in (4), it follows that, under the assumption of homoscedasticity, TD divides the
norm by the biased term, where TBS and TCQ subtract the same bias term from the
norm, so that the numerator in both tests is U0 with E(U0) = ‖μ1 − μ2‖2 = 0 under
H0, where for �i = �, i = 1, 2, both tests coincide.
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The proposed test, Tg , g ≥ 1, differs from both in that it uses the removed bias
term to rescale the test, where it neither requires normality nor homoscedasticity
assumption. Note that, TCQ is also defined without the two assumptions, but the bias
adjustment, assumptions and computation of variance of the statistic are reasonably
different for the two tests.

To get a more precise idea on the comparison of these tests, we did a simulation
study to assess their test sizes and power. Two independent random samples of iid
vectors of sizes (n1, n2), n1 ∈ {10, 20, 50}, n2 = 2n1, each of dimension p ∈
{50, 100, 300, 500}, are generated from normal, t7 and Unif[0, 1] distributions with
covariancematrices,�i , i = 1, 2, compound symmetry, CS, and autoregressive of order
1, AR(1). The CS and AR(1) are defined, respectively, as κI+ρJ and Cov(Xk, Xl) =
κρ|k−l|, ∀ k, l, with I as identity matrix and J a matrix of 1s. For size, we pair �i for
the two populations: both �1 and �2 CS with ρ = 0.5 and ρ = 0.8, respectively; �1
as CS, �2 as AR(1), both with ρ = 0.5. For power, we use CS with ρ = 0.4 and 0.8.
We take κ = 1 for all cases. For brevity, power results are only reported for p = 100,
for normal and t distributions.

Table 1 reports estimated test sizes of T2, TBS and TCQ for all distributions with both
pairs of�i . We observe an accurate performance of T2 for all parameters, whereas TBS
and TCQ prove, respectively, to be very liberal and very conservative, with their perfor-
mance at least not improvingwith increasing p or (particularly) increasing n. Note that,
the inaccuracy of TBS can be justified as itmay pertain to the homoscedasticity assump-
tion the test is based on and which is violated in the simulations. The performance of
TCQ, on the other hand, can be ascribed to its assumptions, particularly on the vanish-
ing of trace ratios such as tr(�4)/[tr(�2)]2, tr(�2)/[tr(�)]2 and tr(�3)/ tr(�) tr(�2),
which are not satisfied for certain covariance structures, e.g., compound symmetric.
A discussion on Tg is adjourned for Sect. 4, where it is evaluated in more detail.

From Fig. 1, we also observe power of T2 higher than its competitors where the
curves come closer with increasing non-centrality parameter as well as with increasing
sample sizes, and this phenomenon is very similar for both distributions. Generally, a
similar comparative performance and effect of sample sizes are observed for different
p values; hence, not all are reported here.

3 Multi-sample test: one-wayMANOVA

Here, we extend T2 to the general case, g ≥ 2. As usual, Xi and �̂i are unbiased
estimators of μi , �i i = 1, . . . , g. Recall T2 in (7) as a modification of T 2 using the
Euclidean distance ‖X1−X2‖2. For H0g , we sumover all pairwise norms,

∑
i< j ‖Xi −

X j‖2 =∑i< j (Ei −Uni )/ni +∑i< j (Uni +Un j −2Uni n j ) = (g−1)
∑g

i=1 tr(�̂i )/ni +
(g − 1)

∑g
i=1 Uni − 2

∑g
i< j Uni n j , and define the MANOVA statistic as

Tg = (g − 1) + nQ0

[nQ1/p] , (8)

Q1 =∑g
i=1 Qi1, Qi1 = (Ei − Uni )/ni = tr(�̂i )/ni , Ei =∑ni

k=1X
′
ikXik/ni , Q0 =∑

i< j Q0i j , Q0i j = Uni + Un j − 2Uni n j , where Uni , Uni n j are as defined in (5) with
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Fig. 1 Power curves of T2, TBS and TCQ for normal (upper) and t (lower) distributions with (L to R)
(n1, n2) = (10, 20), (20, 40), (50, 100), p = 100 and CS structures with ρ = 0.4 and 0.8

kernels h(xik, xir ) = X′
ikXir , k �= r , h(xik, x jl) = X′

ikX jl , i �= j , k, r , l = 1, . . . , ni ,
i, j = 1, . . . , g, n = ∑g

i=1 ni . Further, Q1 = tr(�̂0), �̂0 = ∑g
i=1 �̂i/ni , is an

unbiased estimator of tr(�0), �0 =∑g
i=1 �i/ni . We begin with the moments of Q0.

In particular,

Var(Q0) =
g∑

i=1

g∑

j=1

Var

i �= j

(Q0i j ) +
g∑

i=1

g∑

i ′=1

g∑

j=1

g∑

j ′=1
(i, j) �=(i ′, j ′)

Cov(Q0i j , Q0i ′ j ′)

= (g − 1)2
g∑

i=1

Var(Uni ) + 4
g∑

i=1

g∑

j=1
i< j

Var(Uni n j )

+ 8
g∑

i=1

g∑

j=1

g∑

j ′=1
i< j< j ′

Cov(Uni n j , Uni n j ′ )

+8
g∑

i=1

g∑

j=1

g∑

j ′=1
i<i ′< j ′

Cov(Uni n j , Uni ′ n j )
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+ 8
g∑

i=1

g∑

j=1

g∑

j ′=1
i<i ′< j ′

Cov(Uni n j , Uni ′ n j ′ )

− 4(g − 1)
g∑

i=1

g∑

j=1

g∑

j ′=1
i< j< j ′

Cov(Uni , Uni n j )

− 4(g − 1)
g∑

i=1

g∑

j=1

g∑

j ′=1
i< j< j ′

Cov(Un j , Uni n j )

− 4(g − 1)
g∑

i=1

g∑

j=1

g∑

j ′=1
i< j< j ′

Cov(Uni , Un j n j ′ )

where the covariances vanish when i �= i ′, j �= j ′. Denoting �0i j = �i/ni +� j/n j ,
i < j , and using the moments of U -statistics from Sect. A.2, we obtain

Var(Q0i j ) = 2

p2
tr(�2

0i j ) + 4

p2
(μi − μ j )

′�0i j (μi − μ j ) (9)

Cov(Q0i j , Q0i j ′) = 2

n2
i p2

tr(�2
i ) + 4

ni p2
(μi − μ j )

′�i (μi − μ j ′) (10)

Cov(Q0i j , Q0i ′ j ) = 2

n2
j p2

tr(�2
j ) + 4

n j p2
(μi − μ j )

′� j (μi ′ − μ j ). (11)

Theorem 16 summarizes the moments which reduce to those of two-sample case for
g = 2.

Theorem 16 For Q0 defined above, we have

E(Q0) = 1

p

g∑

i=1

g∑

j=1
i< j

‖μi − μ j‖2

Var(Q0) = 1

p2

⎡

⎢
⎢
⎢
⎣
2(g − 1)2

g∑

i=1

tr(�2
i )

n2
i

+ 4
g∑

i=1

g∑

j=1
i< j

tr(�i� j )

ni n j

+ 4
g∑

i=1

g∑

j=1
i< j

(μi − μ j )
′�0i j (μi − μ j )
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+4
g∑

i=1

g∑

j=1

g∑

j ′=1
i< j< j ′

(μi − μ j )
′�0i j (μi − μ j ′)

⎤

⎥
⎥
⎥
⎦

Now, consider the limit of Tg under Assumptions 8–12. By the independence of g
samples, the convergence of Q1 follows exactly as for g = 2 so that, as ni , p → ∞,

nQ1/p
P−→ ν0,

where ν0 = ∑g
i=1 ρiνi0 = ∑g

i=1

∑∞
s=1 ρiνis . For the limit of Q0, we note, from

the formulation (g − 1)
∑g

i=1 Uni − 2
∑g

i< j Uni n j and by the independence of Uni ,
Un j , i �= j , which we need the distribution of UN = (Uni , Uni ni+1 , . . . , Uni ng )

′,
i = 1, . . . , g − 1. Alternatively, we can consider Q0 = (Q012, . . . , Q0g−1,g)

′. For
g = 2, UN = (Un1, Un1n2)

′, Q0 = Q012. We can use either of the two options and
proceed as for g = 2. Q0 is a G × 1 vector, G = g(g − 1)/2, with Cov(Q0) a G × G
partitioned matrix � = (�i j/p2)G

i, j=1 where

� =

⎛

⎜
⎜
⎜
⎝

�11 �12 . . . �1g

�21 �22 . . . �2g
...

...
. . .

...

�g1 �12 . . . �gg

⎞

⎟
⎟
⎟
⎠

. (12)

Thus,�i i/p2 = Cov(Q0i ): (g− i)×(g− i), and�i j/p2 = Cov(Q0i ,Q0 j ): (g− i)×
(g− j),� j i = �′

i j , i = 1, . . . , g−1, j = i+1, . . . , g. Denote ai = tr(�2
i /n2

i ), a0i j =
tr(�2

0i j ). Then �i i = 2(⊕g
j=i+1a0i j + (J− I)g−i ai )/p2, �i j = 2(0′ 1′

g−i ai ⊕g
j=i+2

a j )
′/p2, where 1 is vector of 1s, J = 11′, I is identity matrix, ⊕ is Kronecker sum

and 0 in �i j is ( j − i − 1) × (g − j) with no 0 if j − i − 1 = 0. For any i , �i i

has same off-diagonal element ai with diagonal elements a0i j = tr(�2
0i j ), �0i j =

�i/ni + � j/n j = Cov(Xi − X j ), j = i + 1. Further, most off-diagonals in �i j are
0, and the number of (rows with) zeros increases with j for every i , making � an
increasingly sparse matrix.

The weak convergence holds for Q0i j for any (i, j) in Q0, and we only need to
take care of the nonzero off-diagonal elements in �, i.e., ai/p2, which are uniformly
bounded under the assumptions and same holds for Eqs. (9)–(11). The limit of nQ0,
hence of nQ0, follows then as of UN for g = 2. Finally, Slutsky’s lemma gives the
limit of Tg . For the limit under H0g , E(Q0) = 0, all covariances of U -statistics vanish
(Sect. A.2) and Eqs. (9)–(11) reduce to Var(Q0i j ) = 2 tr(�2

0i j ), Cov(Q0i j , Q0i j ′) =
2 tr(�2

i )/n2
i , Cov(Q0i j , Q0i ′ j ) = 2 tr(�2

j )/n2
j , which are independent of μi , so that

we continue to assume μi = 0∀ i . In particular, from Theorem 16, E(Q0) = 0 under
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H0g and

Var(Q0) = 1

p2

⎡

⎢
⎢
⎢
⎣
2(g − 1)2

g∑

i=1

tr(�2
i )

n2
i

+ 4
g∑

i=1

g∑

j=1
i< j

tr(�i� j )

ni n j

⎤

⎥
⎥
⎥
⎦

,

which is 2 tr(�2
012) for g = 2; see Eq. (19). The null limit then also follows on the

same lines as for g = 2. The following theorem generalizes Theorem 13 for g ≥ 2
samples.

Theorem 17 For Tg in Eq. (8), (Tg − E(Tg))/
√
Var(Tg)

D−→ N (0, 1) under Assump-
tions 8–12, as ni , p → ∞, where E(Tg) and Var(Tg) denote the mean and variance
of Tg.

For the moments of Tg , note that the general distribution follows from the projection
Q̂0 =∑g

i< j Q̂0i j =∑g
i<1(Ûni − 2Ûni n j ) of Q̃ =∑g

i<1 Q̃0i j Q̃0i j = Q0 − E(Q0),
so that

E(Q̂0) = 1

p

g∑

i=1

g∑

j=1
i< j

‖μi − μ j‖2

Var(Q̂0) = 4

p2

⎡

⎢
⎢
⎢
⎣

g∑

i=1

g∑

j=1
i< j

(μi − μ j )
′�0i j (μi − μ j )

+4
g∑

i=1

g∑

j=1

g∑

j ′=1
i< j< j ′

(μi − μ j )
′�0i j (μi − μ j ′)

⎤

⎥
⎥
⎥
⎦

.

Likewise, under H0g , the convergence of degenerate Uni and Uni n j gives

nQ0
D−→

g∑

i=1

g∑

j=1
i< j

∞∑

s=1

(√
ρiνis zis − √

ρ jν js z js
)2

such that the limiting moments E(nQ0) = 0 and Var(nQ0) = 2
∑g

i<1

∑∞
s=1(ρiνis +

ρ jν js)
2 approximate exact moments of Q0 under H0g . Combined with the limit of

nQ1/p, it gives
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Tg
D−→ 1

ν0

g∑

i=1

g∑

j=1
i< j

∞∑

s=1

(√
ρiνis zis − √

ρ jν js z js
)2

, (13)

with E(Tg) = g − 1 and variance Var(Tg) = 2
∑g

i< j

∑∞
s=1(ρiνis + ρ jν js)

2/ν20

which approximates 2 tr(�2)/[tr(�)]2, � = n�0/p, �0 = ∑g
i=1 �i/ni . Further

zi j = √
ρiνis zis−√

ρ jν js z js is a linear combination of independent N (0, 1)variables,
hence itself normal with mean 0, variance ρiνis +ρ jν js . To estimate Var(Tg), we note
that the set of distinct non-zero elements in � is

S =
{

ai = tr(�2
i ), ai j = tr(�i� j ), i, j = 1, . . . , g, i < j

}
, (14)

with cardinality s0 = #{S} = g(g + 1)/2, i.e., for any g, we only need to estimate
s0 elements out of G(G + 1)/2 in order to estimate �. With the estimators of tr(�2

i ),[tr(�i )]2 and tr(�i� j ) same as given in the two-sample case, a consistent plug-in
estimator of Var(Tg) follows, leading to the following generalization of Corollary 14.

Corollary 18 Theorem 17 remains valid when Var(Tg) is replaced with V̂ar(Tg).

Power of Tg For zα as before, P(Tg ≥ zα

√
Var(Tg) + (g − 1)) = α, so that 1 −

β = P(zg ≥ zα − nδ) where, with zg = (Tg − E(Tg))/
√
Var(Tg), δ = δ1/δ2,

δ1 = ∑g
i< j ‖μi − μ j‖2/p, δ22 = tr(�0), �0 = n�0/p, �0 = ∑g

i=1 �i/ni . For

g = 2, δ1 = ‖μ1 − μ2‖2/p, �0 =∑2
i=1 �i/ni . A case of particular interest is when

μi are mutually orthogonal, μ′
iμ j = 0, ∀ i < j . The power function remains the

same, now with δ1 = (g − 1)
∑g

i=1 ‖μi‖2/p or, for g = 2, δ1 = ‖μ1‖2 + ‖μ2‖2.
Remark 19 This remark pertains to the trace estimators used to define consistent esti-
mators of Var(Tg). Consider one-sample case where E2, E3 as estimators of tr(�2),
[tr(�)]2, given after Theorem 5, are defined as functions of �̂ to keep them simple in
formulation and efficient in computation. Alternatively, however, the same estimators
can be defined as U -statistics which helps study their properties, particularly consis-
tency, more conveniently. Let Dkr = Xk − Xr , k �= r and define Akr = D′

krDkr ,
A2

krls = (D′
krDls)

2. Then, we can equivalently write

E2 = 1

P(n)

n∑

k=1

n∑

r=1

n∑

l=1

n∑

s=1
π(k, r , l, s)

1

12
Bkrls, E3 = 1

P(n)

n∑

k=1

n∑

r=1

n∑

l=1

n∑

s=1
π(k, r , l, s)

1

12
Ckrls .

where Bkrls = A2
krls + A2

klrs + A2
ksrl , Ckrls = Akr Als + Akl Ars + Aks Alr , π(·)means

all indices pairwise unequal and P(n) = n(n−1)(n−2)(n−3). This formulation of E2,
E3 lends itself to be mathematically easily amenable using the theory of U -statistics.
For details, see Ahmad (2016). The form extends directly to multi-sample cases by
defining E2i , E3i for i th independent sample in the same way, with tr(�̂i ) tr(�̂ j ) and
tr(�̂i �̂ j ) estimating tr(�i ) tr(� j ) and tr(�i� j ) as usual, where a U -statistic form of
tr(�̂) is

∑n
k �=r Akr/n(n − 1). For details, see Ahmad (2017a, b).
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Remark 20 Note that, the Chi-square approximation in both one- and multi-sample
cases follows through two-moment approximation of the limit of the test statistics
with that of a scaled Chi-square variable. Box (1954a, b) used this approximation
to study the violation of assumptions of homoscedastic and uncorrelated errors in
ANOVA settings, later extended and modified by Geissser and Greenhouse (1958),
Greenhouse and Geissser (1959) and Huynh and Feldt (1970, 1976).

4 Simulations

We evaluate the accuracy of tests for size control and power, specifically focusing on
violation of normality and homoscedasticity assumptions.We take g = 1 and 3 and gen-
erate data from Normal, Exponential and Uniform distributions with n = 10, 20, 50
for T1 and (n1, n2, n3) = (10, 15, 20), (5, 25, 50), (10, 30, 60), for T3, where the
last two triplets represent seriously unbalanced designs. For dimension, we take
p ∈ {50, 100, 300, 500, 1000}. For covariances structures, we use compound sym-
metry (CS), autoregressive of order 1, AR(1), as defined in Sect. 2.2, and unstructured
(UN), defined as � = (σi j )

d
i, j=1 with σi j = 1(1)d (i = j), ρi j = (i − 1)/d (i > j),

with I as identity matrix and J as matrix of 1s. We use ρ = 0.5, κ = 1.
We use α = 0.01, 0.05, 0.10 and estimate test size by averaging P(T ≤ To|H0)

over 1000 simulations, where T denotes T1 or T3 and To is their observed value under
H0. Tables 2 and 3 report estimated size and power of T1 for normal and exponential
distributions, and Tables 4 and 5 report the same for T3 for all distributions. For power,
we fix α = 0.05 and estimate the power by averaging P(T ≥ To|H1) over 1000 runs,
where H1 is defined as μ = δrp1, p1 = (1/p, . . . , p/p), δr = 0.2(0.2)1. Note that,
T3 is assessed under a triplet of covariance structures (CS, AR, UN) followed by the
three populations.

We observe an accurate size control for normal as well as for non-normal distribu-
tions and under all covariance structures. The stability of the size control for increasing
p, for n as small as 10, is also evident. We observe a similar performance for power,
with discernably better performance under AR and UN structures than under CS, for
all distributions, which might be attributed to the spiky nature of CS. The power, how-
ever, also improves reasonably under CS for increasing n and p. For g = 3, we also
observe accuracy for unbalanced design, with a drastic improvement for the last triplet
of ni . Although not reported here, similar results were observed for other ρ values in
CS and AR, for other covariance structures, e.g., Toeplitz, and for other distributions,
e.g., t .

We also assessed the power of proposed tests under possible sparse alternatives.
For simplicity, we report results for T1 for normal distribution with same n as used
above and p ∈ {60, 100, 200}. We consider three levels of sparsity: small, medium
and large with 25%, 50% and 75% zeros in the mean vector, respectively. Note that,
0% sparsity implies the case under H1, where 100% sparsity implies the null case.
Table 6 reports the results. Generally, the power is high under all parameter settings,
indicating the validity of tests for such alternatives. Further, the power increases with
increasing sample size, so that even under sparsity, the test shows a high probability
to tell the null from the alternative, particularly as the sample size grows.
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Table 2 Estimated size of T1: normal and exponential distributions

n p CS AR UN

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

Normal

10 50 0.020 0.065 0.115 0.025 0.071 0.116 0.025 0.068 0.120

100 0.019 0.069 0.127 0.024 0.080 0.136 0.020 0.069 0.113

200 0.022 0.073 0.134 0.020 0.065 0.122 0.024 0.077 0.131

300 0.019 0.068 0.116 0.020 0.067 0.120 0.023 0.075 0.133

500 0.016 0.068 0.127 0.018 0.062 0.114 0.021 0.064 0.130

20 50 0.015 0.060 0.112 0.020 0.058 0.112 0.014 0.047 0.098

100 0.011 0.053 0.098 0.014 0.054 0.109 0.015 0.055 0.109

200 0.018 0.060 0.114 0.016 0.053 0.107 0.016 0.063 0.109

300 0.016 0.056 0.113 0.012 0.055 0.108 0.011 0.056 0.114

500 0.012 0.055 0.102 0.014 0.057 0.104 0.012 0.062 0.114

50 50 0.013 0.043 0.093 0.018 0.053 0.094 0.014 0.051 0.103

100 0.015 0.048 0.102 0.011 0.044 0.089 0.014 0.052 0.107

200 0.012 0.050 0.098 0.013 0.050 0.101 0.012 0.060 0.104

300 0.010 0.048 0.099 0.014 0.057 0.107 0.013 0.051 0.094

500 0.009 0.052 0.097 0.012 0.056 0.102 0.012 0.050 0.108

Exp

10 50 0.053 0.105 0.137 0.021 0.065 0.121 0.021 0.069 0.112

100 0.048 0.074 0.138 0.023 0.063 0.125 0.024 0.057 0.119

300 0.033 0.068 0.125 0.018 0.065 0.113 0.016 0.062 0.108

500 0.021 0.650 0.114 0.014 0.059 0.117 0.018 0.063 0.113

1000 0.015 0.610 0.118 0.016 0.054 0.111 0.015 0.061 0.114

20 50 0.013 0.057 0.107 0.011 0.053 0.108 0.016 0.052 0.103

100 0.007 0.051 0.103 0.009 0.051 0.102 0.015 0.051 0.106

300 0.015 0.062 0.118 0.012 0.053 0.102 0.012 0.051 0.101

500 0.011 0.049 0.102 0.013 0.054 0.110 0.010 0.056 0.110

1000 0.012 0.058 0.110 0.010 0.052 0.095 0.012 0.056 0.113

50 50 0.013 0.057 0.102 0.011 0.052 0.110 0.009 0.049 0.101

100 0.011 0.059 0.104 0.011 0.051 0.102 0.011 0.055 0.105

300 0.008 0.047 0.105 0.013 0.054 0.103 0.010 0.050 0.101

500 0.008 0.051 0.097 0.011 0.049 0.097 0.009 0.045 0.093

1000 0.011 0.048 0.101 0.010 0.051 0.105 0.010 0.049 0.102

5 Analyses of real data sets

Figure 2 depicts average counts of macrobenthos observed along an approximately
2000 km long transact of Norwegian continental shelf. The transact under observation
comprised a range of water depths and sediment properties. A total of p = 809 species
were observed from n = 101 independent sites in five different regions of the transact,
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Table 3 Estimated power of T1: normal and exponential distributions

n p CS AR UN

0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

Normal

10 50 0.198 0.780 0.999 0.201 0.930 0.994 0.331 0.945 1.000

100 0.258 0.949 1.000 0.260 0.948 1.000 0.255 0.946 1.000

300 0.487 1.000 1.000 0.501 1.000 1.000 0.488 1.000 1.000

500 0.650 1.000 1.000 0.666 1.000 1.000 0.643 1.000 1.000

1000 0.839 1.000 1.000 0.805 1.000 1.000 0.858 1.000 1.000

20 50 0.397 0.998 1.000 0.384 0.998 1.000 0.393 0.995 1.000

100 0.556 1.000 1.000 0.562 1.000 1.000 0.570 1.000 1.000

300 0.904 1.000 1.000 0.910 1.000 1.000 0.908 1.000 1.000

500 0.987 1.000 1.000 0.987 1.000 1.000 0.987 1.000 1.000

1000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 50 0.888 1.000 1.000 0.883 1.000 1.000 0.897 1.000 1.000

100 0.990 1.000 1.000 0.990 1.000 1.000 0.988 1.000 1.000

300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Exp

10 50 0.124 0.308 0.678 0.138 0.514 0.892 0.162 0.676 0.990

100 0.126 0.329 0.714 0.188 0.707 1.000 0.206 0.900 1.000

300 0.201 0.413 0.778 0.350 0.907 1.000 0.462 1.000 1.000

500 0.255 0.491 0.802 0.504 0.999 1.000 0.706 1.000 1.000

1000 0.302 0.561 0.881 0.735 1.000 1.000 0.854 1.000 1.000

20 50 0.242 0.502 0.701 0.303 0.890 1.000 0.654 1.000 1.000

100 0.337 0.521 0.898 0.418 0.987 1.000 0.857 1.000 1.000

300 0.498 0.665 0.997 0.734 1.000 1.000 0.999 1.000 1.000

500 0.605 0.717 1.000 0.871 1.000 1.000 1.000 1.000 1.000

1000 0.723 0.815 1.000 0.912 1.000 1.000 1.000 1.000 1.000

50 50 0.458 0.748 0.998 0.682 1.000 1.000 0.898 1.000 1.000

100 0.554 0.795 0.999 0.879 1.000 1.000 0.977 1.000 1.000

300 0.714 0.823 1.000 0.998 1.000 1.000 1.000 1.000 1.000

500 0.831 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 0.885 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

where n1 = 16, n2 = 21, n3 = 25, n4 = 19, n5 = 20. Each count is a five-replicate
pooled observation, and the data contain a large amount of zeros where no species
could be recorded. For details, see Ellingsen and Gray (2002).

In our notation, X = (X′
1, . . . ,X

′
5)

′ ∈ R
n×p represents the complete data matrix

with regionwise data matrices Xi = (X′
i1, . . . ,X

′
ini

)′ ∈ R
ni ×p, Xik ∈ R

p, where
ni and p are given above. It is thus an unbalanced one-way MANOVA experiment
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Table 4 Estimated size of T3 for (CS, AR, UN) structures: all distributions

n1, n2, n3 p N(0, 1) Exp(1) Unif[0, 1]

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

10, 15, 20 50 0.006 0.041 0.090 0.006 0.040 0.086 0.008 0.043 0.092

100 0.009 0.049 0.091 0.013 0.052 0.094 0.013 0.056 0.105

300 0.011 0.047 0.094 0.010 0.047 0.090 0.011 0.048 0.100

500 0.010 0.047 0.093 0.009 0.045 0.089 0.012 0.052 0.098

1000 0.011 0.048 0.096 0.010 0.046 0.098 0.011 0.052 0.097

5, 25, 50 50 0.007 0.044 0.089 0.011 0.043 0.093 0.008 0.043 0.093

100 0.005 0.040 0.092 0.004 0.035 0.078 0.005 0.043 0.090

300 0.004 0.034 0.084 0.004 0.034 0.084 0.004 0.038 0.084

500 0.004 0.037 0.088 0.002 0.031 0.080 0.004 0.037 0.087

1000 0.005 0.035 0.082 0.003 0.036 0.085 0.007 0.034 0.081

10, 30, 60 50 0.009 0.050 0.096 0.008 0.042 0.083 0.014 0.049 0.093

100 0.011 0.051 0.096 0.009 0.044 0.087 0.014 0.055 0.101

300 0.008 0.043 0.092 0.008 0.040 0.085 0.001 0.048 0.096

500 0.008 0.042 0.086 0.009 0.048 0.099 0.010 0.047 0.094

1000 0.008 0.044 0.090 0.006 0.040 0.093 0.007 0.042 0.090

Table 5 Estimated power of T3 for (CS, AR, UN) structures: all distributions

n1, n2, n3 p N(0, 1) Exp(1) Unif[0, 1]

0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

10, 15, 20 50 0.074 0.405 0.921 0.058 0.399 0.934 0.066 0.414 0.919

100 0.071 0.598 1.000 0.064 0.603 0.995 0.078 0.600 0.993

300 0.097 0.912 1.000 0.099 0.931 1.000 0.097 0.921 1.000

500 0.123 0.986 1.000 0.122 0.985 1.000 0.127 0.988 1.000

1000 0.178 0.999 1.000 0.173 0.999 1.000 0.171 1.000 1.000

5, 25, 50 50 0.109 0.887 1.000 0.117 0.899 1.000 0.101 0.871 1.000

100 0.142 0.988 1.000 0.137 0.988 1.000 0.143 0.990 1.000

300 0.237 1.000 1.000 0.226 1.000 1.000 0.241 1.000 1.000

500 0.313 1.000 1.000 0.311 1.000 1.000 0.317 1.000 1.000

1000 0.500 1.000 1.000 0.506 1.000 1.000 0.490 1.000 1.000

10, 30, 60 50 0.070 0.525 0.988 0.056 0.539 0.995 0.070 0.5418 0.988

100 0.079 0.768 0.999 0.071 0.793 1.000 0.078 0.763 1.000

300 0.116 0.991 1.000 0.103 0.995 1.000 0.117 0.990 1.000

500 0.152 0.999 1.000 0.141 1.000 1.000 0.147 1.000 1.000

1000 0.218 1.000 1.000 0.208 1.000 1.000 0.213 1.000 1.000
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Table 6 Estimated power of T1 under three sparse alternatives

n p 25% 50% 75%

0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

10 60 0.679 0.969 0.999 0.629 0.924 0.992 0.593 0.828 0.956

100 0.680 0.973 0.999 0.643 0.938 0.995 0.600 0.839 0.963

200 0.691 0.976 0.999 0.639 0.939 0.996 0.596 0.840 0.968

20 60 0.770 0.998 1.000 0.698 0.987 1.000 0.628 0.932 0.994

100 0.771 0.999 1.000 0.712 0.992 1.000 0.619 0.937 0.996

200 0.774 0.999 1.000 0.711 0.992 1.000 0.636 0.946 0.997

50 60 0.921 1.000 1.000 0.846 1.000 1.000 0.729 0.994 1.000

100 0.933 1.000 1.000 0.866 1.000 1.000 0.737 0.997 1.000

200 0.936 1.000 1.000 0.870 1.000 1.000 0.741 0.998 1.000

with g = 5 independent samples, each of ni iid vectors of dimension 809, where
n =∑5

i=1 ni = 101. The linear model can be expressed as

Xik = μi + εik, j = 1, . . . , ni , i = 1, . . . , 5, (15)

where the vector Xik consists of 809 species counts measured for kth replicate (site)
from i th region, μi ∈ R

p is the true average count vector of i th region, and εik ∈ R
p

are random error vectors, associated with each Xik , with E(εik) = 0 and Cov(εik) =
�i∀ k, i = 1, . . . , 5. The hypothesis of interest can be formulated as H05 : μ1 =
. . . = μ5 vs H15 : μi �= μ j for at least one pair i �= j , i , j = 1, . . . , 5. We use Tg in
Eq. (8) to test H05.

We also apply the proposed test to two well-known data sets, referred here to
as alcohol and leukemia data. The alcohol data is a two-group (g = 2) data that
motivatedDempster to construct the first two-sample high-dimensional test (Dempster
1958); see also Dempster (1960, 1968). The data consist of p = 59 biochemistry
measurements on n1 = 8 alcoholic and n2 = 4 control individuals aged 16–39
years; see also Beerstecher et al. (1950). The three-group (g = 3) leukemia data
are often also used for classification. It consist of measurements on patients with
acute lymphoblastic leukemia (ALL) carrying a chromosomal translocation involving
mixed-lineage leukemia (MLL) gene. A total of p = 11225 gene expression profiles
of leukemia cells are taken from patients in ALL group (n1 = 28), B-precursor ALL
carrying anMLL translocation (n2 = 24) and conventional B-precursor without MLL
translocation (n3 = 20); see Armstrong et al. (2002) for details.

Model (15) remains the same for alcohol and leukemia data sets, with g = 2 and
3, respectively, and with corresponding sample sizes given above. The analyses of
all three data sets are reported in Table 7. The first three columns report the data
sizes and the next three the Chi-square approximation for Tg , and the penultimate two
columns provide the corresponding normal approximation. Only for alcohol data, the
results provide evidence in support of null hypothesis of no difference ofmean vectors,
whereas the hypotheses are significantly rejected for both leukemia and species data.
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Fig. 2 Average species count of macrobenthos data for five regions
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Table 7 Analysis of example data sets

Data Data size Chi-square test Normal test

g (n1, . . . , ng) p Tg df p value Tg p value

Alcohol 2 (8, 4) 59 2.80 3.91 0.578 −0.40 0.654

Leukemia 3 (28, 24, 20) 11225 96.93 7.31 0.000 21.52 0.000

Species 5 (16, 21, 25, 19, 20) 809 180.40 7.03 0.000 40.61 0.000

The conclusions for all three data sets are consistent for both approximations. In
particular, the results for species data substantiate what can be roughly witnessed in
Fig. 2.

6 Discussion and remarks

Test statistics for high-dimensional mean vectors are presented. A unified strategy is
proposed that systematically encompasses one- and multi-sample cases. The tests are
constructed as linear combinations of U -statistics-based estimators and are valid for
any distribution with finite fourth moment. The limiting distributions of the tests are
derived under a few mild assumptions. Simulations are used to show the accuracy of
the tests for moderate sample size and any large dimension. The tests are location
invariant, so that the mean vectors need not be assumed zero. Due to singularity of
empirical covariance matrix in high-dimensional case, an affine-invariant test is not
possible, and location-invariance is the best that can be achieved in this case.
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A Somemiscellaneous results

A.1 U-statistics

First, we need to set some notations. For details, see e.g., Serfling (1980),
Koroljuk and Borovskich (1994), van der Vaart (1998) and Lehmann (1999). For
iid Xi , let h(X1, . . . , Xm) : R

m → R denote the kernel of an mth order U -
statistic, Un , with E(Un) = θ = E[h(·)] with its projection hc(x1, . . . , xc) =
E[h(·)|x1, . . . , xc], hm(·) = h(·) and ξc = Var[hc(·), c = 1, . . . , m, so
that Var(Un) = ∑m

c=1

(m
c

)(n−m
m−c

)
ξc/
(n

m

)
. If 0 < ξc < ∞∀ c, then (Un −

E(Un))/
√
Var(Un)

D−→ N (0, 1). For two U -statistics, Uni , of order mi , kernels
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hi (·), projections hic(·), i = 1, 2, let ξcc = Cov[h1c(·), h2c(·)], c = 1, . . . , m1 ≤
m2. Then, Cov(Un1, Un2) = ∑m1

c=1

(m2
c

)(n−m2
m1−c

)
ξcc/
( n

m1

)
. Let Un1n2 be a U -statistic

of two independent samples, with kernel h(X11, . . . , X1m1 , X21, . . . , X2m2), sym-
metric in each sample, projection hc1c2 = E[h(·)|X11, . . . , X1c1; X21, . . . , X2c2 ],
ξc1c2 = Cov[h(·), hc1c2(·)], ξ00 = 0, ci = 0, 1, . . . , mi . Then, Var(Un1n2) =∑m1

c1=0

∑m2
c2=0

(m1
c1

)(n1−m1
m1−c1

)(m2
c2

)(n2−m2
m2−c2

)
ξc1c2/

(n1
m1

)(n2
m2

)
. If 0 ≤ ni/n ≤ 1, n = n1 +n2,

0 < ξc1c2 < ∞ ∀ ci , then (Un1n2 − E(Un1n2))/
√
Var(Un1n2)

D−→ N (0, 1).

Lemma 21 (Jiang 2010, p. 183; Hájek et al. 1999, p. 184) Let Y1, Y2, . . . be iid random
variables, E(Yi ) = 0, Var(Yi ) = 1. Let bni be a sequence of constants, 1 ≤ i ≤ n.

Then
∑n

i=1 bni Yi
D−→ N (0, 1) given maxi b2ni → 0, as n → ∞.

A.2 Basic moments of U-statistics

For Uni , h(Xik,Xir ) = X′
ikXir , m = 2, h1(Xik) = μ′

iXik , ξ1 = μ′
i�iμi ,

ξ2 = tr(�2
i ) + 2μ′

i�iμi . For Uni n j , h(Xik,X jl) = X′
ikX jl , m1 = 1 = m2,

h10 = μ′
jXik , h01 = μ′

iX jl , h11(·) = h(·), ξ10 = μ′
j�iμ j , ξ01 = μ′

i� jμi ,
ξ11 = μ′

i� jμi + μ′
j�iμ j + tr(�i� j ). Then, for i �= j , i �= j ′, i ′ �= j ,

Var(Uni ) = 2[2(ni − 1)μ′
i�iμi + tr(�2

i )]/ni (ni − 1), Var(Uni n j ) = [niμ
′
i� jμi +

n jμ
′
j�iμ j + tr(�i� j )]/ni n j , Cov(Uni , Uni n j ) = 2μ′

j�iμi/ni , Cov(Un j , Uni n j ) =
2μ′

i� jμ j/n j , Cov(Uni n j , Uni n j ′ ) = μ′
j�iμ j ′/ni , Cov(Uni n j , Uni ′ n j )=μ′

i� jμi ′/n j .
See Sect. A.1 for basic notations and general moment expressions.

B Main proofs

B.1 Proof of Theorem 5

First, E(Q1/p) = tr(�)/p = ∑p
s=1 νs , bounded by ν0, under Assumption 2, as

p → ∞. Now

Var(nQ1/p) = Var(E/p) + Var(Un/p) − 2Cov(E/p, Un/p). (16)

With Var(X′
kXk) ≤ γ p2 under Assumption 1, Var(E/p) ≤ γ /n = O(1/n). From

Sect. A.2, Var(Un/p) = γ /n + 2 tr(�2)/n(n − 1)p2 + 4μ′�μ/(n − 1)p2 = O(1/n)

under the assumptions. Finally, Cov(E/p, Un/p) = 0 forμ = 0which can be assumed
w.o.l.o.g. since E(Q1/p) does not depend on μ. Alternatively, by Cauchy–Schwarz
inequality,Cov(E/p, Un/p) ≤ [Var(E)Var(Un)]1/2 which simplifies to O(1/n). This
proves consistency of nQ1/p. Note that, this consistency holds both under simulta-
neous and sequential (n, p)-asymptotics where in the later case the last term vanishes
with p, before the limit over n is carried out. Further, the limit is the same under H0
and H1.

Now, consider nUn with h(xk, xr ) = X′
kXr/p so that E[h(·)] = ‖μ‖2 = E(Un).

Define Ũn = Un − E(Un) with corresponding kernel h̃(·) = h(·) − E[h(·)]. Let Ûn

123



614 M. R. Ahmad

denotes the projection of Ũn . As Un is a second-order U -statistic with product kernel
(bilinear form of independent components), h(·), following the notation in Sect. A.1,

Ûn =
n∑

k=1

E(Ũn|Xk) = 2

n

n∑

k=1

μ′(Xk − μ)

with E(Ûn) = 0 = E(Ũn) and Cov(Ûn, Ũn) = 4μ′�μ/n = Var(Ûn) so that, with
Var(Ũn) as given above (see Sect. A.2), it follows that Var(nÛn) and Var(nŨn) are
uniformly bounded under Assumptions 2 and 4, such that Var(nÛn)/Var(nŨn) → 1;
see e.g., Lehmann (1999, Ch.6), Serfling (1980, Ch.5) or van der Vaart (1998, Ch.12).
This, along with the convergence of nQ1/p, gives normal limit of nUn/[nQ1/p],
hence of T , by Slutsky’s theorem.

Some remarks concerning the aforementioned limit will help us extend it further
under the null. To begin with, the first-order projection of h(·), h1(xk) = E[h(·)|xk] =
μ′Xk/p, along with its variance, ξ1 = Var[h1(xk)] = μ′�μ/p2 exactly vanishes
under H0 : μ = 0, making the kernel (first-order) degenerate under H0. Note that, for
the limit under H1 above, the term involving this projection, 4μ′�μ/np2 is eventually
bounded under Assumption 4, for simultaneous (n, p)-asymptotics, when used for
nUn . But under sequential asymptotics, if p → ∞ first, then the projection vanishes
asymptotically. But the limit under H1 still holds since the total variance Var(Un)

still remains bounded under the assumptions. In fact, an additional advantage under
sequential asymptotics is that now the power of T does not depend on any specific μ.

Under H0, however, the projection and its variance ξ1 are exactly zero and the
limit need to be derived differently. Since E[h2(·)] = tr(�2)/p2 < ∞ under the
consequence of Assumption 2, the kernel is square integrable. As we shall see in
the sequel, h(·) being a product kernel makes it further convenient to derive the limit.
Without loss of generality, we can assume that the dataXk are generated by a separable
(Hilbert) space L2(X ,A,P). By symmetry and square integrability of h(·), the map
T : L2(X ,A,P) → L2(X ,A,P), being a (bounded, linear) integral operator, i.e.,

T f (xk) =
∫

f (xk, xr ) f (xr )dP(xr ),

is self-adjoint, Hilbert–Schmidt. With λ’s and ν’s introduced just before the assump-
tions, let (νs, fs) forms its orthonormal eigendecomposition, i.e., h(xk, xr ) =∑∞

s=0 λs fs(xk) fs(xr ), where
∑

s ν2 < ∞ and f0 = 1 correspond to λ0 = 0. For
details, see e.g., van der Vaart (1998) and Koroljuk and Borovskich (1994). By the
Hilbert–Schmidt Theorem (Reed and Simon 1980, p. 203), the convergence of the
kernel to its basis is in L2, i.e.,

E

(

h(xk, xr ) −
p∑

s=0

λs fs(xk) fs(xr )

)2

=
∞∑

s=p+1

ν2s → 0.

A general theorem on the limit of a degenerate U -statistics under this setup is given
in van der Vaart (1998, Theorem 12.10, p. 169) or Lee (1990, Theorem 1, p. 90). The
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limit holds for nc/2Un,c with variance c!E[h2
c(·)], where Un,c is a U -statistic with

(projected) kernel hc(·) and c is the least value for which hc(·) is non-degenerate (see
Sect. A.1).

Thus, in the present context with m = 2, c = 2, nUn has a finite limit with
variance approximating 2ξ2 = 2 tr(�2)/p2 = 2

∑p
s=1 ν2s . Specifically, for first-order

degeneracy, the limit is [m(m − 1)/2]∑∞
s=1 νs(z2s − 1), where zs are independent

N (0, 1) variables; see Koroljuk and Borovskich (1994, Ch. ) and Shao (2003, Ch. 3).
With m = 2, we thus have, for n, p → ∞,

nUn
D−→

∞∑

s=1

νs(z
2
s − 1), (17)

with z2s ∼ χ2
1 iid, where the limiting mean is 0 and variance is 2

∑∞
s=1 ν2s which

approximates 2 tr(�2)/p2. Combined with the limit of nQ1/p by Slutsky’s theorem,
we have

T − 1
D−→

∞∑

s=1

νs(z
2
s − 1)/

∞∑

s=1

νs . (18)

Now write ωs = νs/
∑

s νs such that
∑

s ωs = 1 and maxω2
s → 0. Also let Ys =

(z2s − 1)/
√
2 so that E(Ys) = 0, Var(Ys) = 1. Then, the normal limit follows by the

Hájek–Šidák Lemma (Lemma 21).

B.2 Proof of Theorem 13

With Q1 composed of two independent components, the probability convergence of
nQ1/p follows exactly as in one-sample case, so that

nQ1/p
P−→ ν0,

where ν0 = ∑2
i=1 ρiνi0 = ∑2

i=1
∑∞

s=1 ρiνis , as ni , p → ∞. Now Q0, which we
first write as Q0 = a′UN , where a = (1 1 − 2)′ and UN = (Un1 Un2 Un1n2)

′, so that
the limit of Q0 follows from that of UN . Obviously E(Q0) = ‖μ1 − μ2‖2 where,
from “Appendix A.2”,

Cov(UN )

= 1

p2

⎛

⎜
⎜
⎝

2 tr(�2
1)

n1(n1−1) + 4μ′
1�1μ1

n1−1 0
2μ′

2�1μ1
n1

0
2 tr(�2

2)

n2(n2−1) + 4μ′
2�2μ2

n2−1
2μ′

1�2μ2
n2

2μ′
2�1μ1
n1

2μ′
1�2μ2
n2

tr(�1�2)
n1n2

+ μ′
1�2μ1

n2
+ μ′

2�1μ2
n1

⎞

⎟
⎟
⎠

so that Var(Q0) = a′ Cov(UN )a results into

Var(Q0) = 2

p2

(
tr(�2

1)

n1(n1 − 1)
+ tr(�2

2)

n2(n2 − 1)
+ 2 tr(�1�2)

n1n2

)
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+ 4

p2

(
μ′
1�1μ1

n1 − 1
+ μ′

2�2μ2

n2 − 1
+ μ′

1�2μ1

n2
+ μ′

2�1μ2

n2

−2μ′
2�1μ1

n1
− 2μ′

1�2μ2

n2

)

= [2 tr(�2
0)/p2 + 4(μ1 − μ2)

′�0(μ1 − μ2)/p2][1 + oP (1)]. (19)

Note that, as ni , p → ∞, terms involving μ′�μ are finite under the assump-
tions, making Cov(nUN ), hence Var(nQ0), uniformly bounded, implying in turn
that nQ0 might have a finite limit. Let Q̂0 = ∑2

i=1 Ûni − 2Ûn1n2 be the projec-
tion of Q̃0 = ∑2

i=1 Ũni − 2Ũn1n2 , where Ũni = Uni − E(Uni ), with its kernel
h̃(xik, xir ) = X′

ikXir/p − ‖μ‖2/p, and similarly Ũn1n2 with its kernel h̃(x1k, x2l).
Further, Ûni are as defined for one-sample case, whereas

Ûn1n2 = m1

n1

n1∑

k=1

h̃10(x1k) + m2

n2

n2∑

l=1

h̃01(x2l)

where h̃10(x1k) = E [̃h(x1k, x2l)|x1k], similarly h̃01(x2l); see Sect. A.1 for notations.
Thus

Q̂0 = 2

n1 p

n1∑

k=1

μ′
1(X1k − μ1) + 2

n2 p

n2∑

l=1

μ′
2(X2l − μ2)

−2

[
1

n1 p

n1∑

k=1

μ′
2(X1k − μ1) + 1

n2 p

n2∑

l=1

μ′
1(X2l − μ2)

]

= 2

n1 p

n1∑

k=1

(μ1 − μ2)
′(X1k − μ1) − 2

n2 p

n2∑

l=1

(μ1 − μ2)
′(X2l − μ2)

= 2(μ1 − μ2)
′
[

1

n1 p

n1∑

k=1

(X1k − μ1) − 1

n2 p

n2∑

l=1

(μ1 − μ2)

]

(20)

is the projection of Q̃0 with E(Q̂0) = 0, Var(Q̂0) = 4(μ1 − μ2)
′�0(μ1 − μ2)/p2.

The term within brackets in Eq. (20) is the sum of two independent components, as
a direct extension of one-sample case. By the same procedure then, it follows that
Cov(Q̃0, Q̂0) = Var(Q̂0) so that Var(n̂Q0)/Var(ñQ0) → 1. Under the assumptions,
nQ̃0 = nQ̂0 + oP (1) with the limit of nQ̂0 following by the central limit theorem,
leading to the limit of nQ̃0, hence of T2, by Slutsky theorem.

Nowconsider H0 whence the projection Q̂ = 0,making the componentU -statistics,
hence Q0, degenerate and leaving the normal limit above invalid under the null. To
simplify the matters, assume without loss of generality, that μi = μ = 0, i = 1, 2.
Then

Cov(UN )=diag
(
2 tr(�2

1)/n1(n1−1), 2 tr(�2
2)/n2(n2−1), tr(�1�2)/n1n2

)
/p2
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and Var(Q0) = 2 tr(�2
0)/p2. This, again, is a direct extension of one-sample case

under H0, so that we can similarly proceed to obtain the limit, except that here we
need to deal with a three dimensional vector instead of a scalar. Then, the limits of
nUni , i = 1, 2, follow from (17) as (see also Ahmad 2014)

nUni

D−→
∞∑

s=1

ρiνis(z
2
is − 1), (21)

as ni , p → ∞, where n = n1 + n2. Writing n/n1n2 = [√n/n1
√

n/n2][1/√n1n2],
the corresponding limit for nUn1n2 is given as Koroljuk and Borovskich (1994, Ch. 4)

nUn1n2
D−→

∞∑

s=1

√
ρ1ρ2ν1sν2s z1s z2s, (22)

as ni , p → ∞, where zis are iid N (0, 1) variables in both limits and z1s , z2s are also
independent of each other. To combine the three limits, define w2

is = ρiν
2
is/
∑

s ρiν
2
is ,

i = 1, 2 such that lim p→∞ maxs w2
is = 0. Then, amultivariate extension of Lemma21

gives the normal limit

ŨN
D−→ N3(0, I),

where ŨN = (Un1/
√
Var(Un1), Un2/

√
Var(Un21), Un1n2/

√
Var(Un1n2))

′ is the
standardized form of UN with each component having mean zero. Finally, under
Assumption 2 and by Slutsky theorem, with covariance matrix diagonal, the limit
easily extends for nQ0/[nQ1/p] and hence for T2 as a linear combination of three
components.
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