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Abstract We propose a new estimation procedure for estimating the unknown param-
eters and function in partial functional linear regression. The asymptotic distribution of
the estimator of the vector of slope parameters is derived, and the global convergence
rate of the estimator of unknown slope function is established under suitable norm.
The convergence rate of the mean squared prediction error for the proposed estimators
is also established. Based on the proposed estimation procedure, we further construct
the penalized regression estimators and establish their variable selection consistency
and oracle properties. Finite sample properties of our procedures are studied through
Monte Carlo simulations. A real data example about the real estate data is used to
illustrate our proposed methodology.

Keywords Partial functional linear regression · Functional principal component
analysis · Variable selection · Asymptotic properties

1 Introduction

In the last two decades, there has been an increasing interest in regression models
for functional variables as more and more data have arisen where the primary unit
of observation can be viewed as a curve or in general a function, such as in biol-
ogy, chemometrics, econometrics, geophysics, the medical sciences, meteorology and
neurosciences. As a natural extension of the ordinary regression to the case where
predictors include random functions and responses are scalars or functions, functional
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linear regression analysis provides valuable insights into these problems. The effec-
tively infinite-dimensional character of functional data analysis is a source of many
of its differences from more conventional multivariate analysis. The functional linear
model has been extensively studied and successfully applied; see Cardot et al. (2003),
Ramsay and Silverman (2002, 2005), Cai and Hall (2006), Hall and Horowitz (2007),
Reiss and Ogden (2010), Brunel and Roche (2015), Hsing and Eubank (2015), among
many others.

It is frequently the case that a response is related to both a vector of finite length
and a function-valued random variable as predictor variables. With a square integrable
random function X on a compact set T in R and a d-dimensional vector of random
variables Z = (Z1, . . . , Zd)T , we suppose that the scalar response Y is linearly related
to predictor variables (X, Z) through the relationship

Y =
∫
T

γ (t)X (t)dt + Z Tβββ0 + ε, (1.1)

where βββ0 is a d × 1 vector of regression coefficients of Z , γ (t) is a square integrable
function on T , and ε is a random error. Model (1.1) generalizes both the classical
linear regression model and functional linear regression model which correspond to
the cases γ (t) = 0 and βββ0 = 0, respectively. Moreover, this model includes the
analysis of covariance model where the covariate is a random function, i.e., the model
represents functional linear models between a scalar variable Y and a function-valued
random variable X for each group simultaneously with the Zk being scalar-valued
indicator variables associated with subgroups. Zhang et al. (2007) proposed a two-
stage functional mixed effects model to deal with measurement error and irregularly
spaced time points and estimated the regression coefficient function using a two-
stage nonparametric regression calibration method. Shin (2009) and Reiss and Ogden
(2010) proposed the estimators ofβββ0 and γ (t) by generalizing the functional principal
components estimation method in the functional linear regression and Shin and Lee
(2012) considered a prediction of a scalar variable based on both a function-valued
variable and a finite number of real-valued variables.

In this paper, we propose a newmethod for estimating the unknown parameters and
function in model (1.1). Using functional principal component analysis, the unknown
slope function is approximated by an average value which includes the unknown
parameters. The estimators of the unknown parameters are obtained by solving a min-
imization problem. Although our method is obviously different from Shin (2009) and
Shin and Lee (2012), we find that the estimators obtained by the two methods have
the same behavior through simulation and further derivation. In fact, our estimators
are more simple in expression and require less computation. Under conditions weaker
than Shin (2009), we derive the asymptotic normality of the estimator ofβββ0 and estab-
lish the global convergence rate of the estimator of the slope function γ (t). Since our
assumptions are weaker than that of Shin (2009), the asymptotic distribution of the
estimator of βββ0 is different from that of Shin (2009) and Shin and Lee (2012). The
proofs of our theorems are essentially different from Shin (2009). We establish the
convergence rate of the mean squared prediction error for a predictor. Based on the
proposed estimation procedure, we further propose a family of variable selection pro-
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cedures via the penalized least squares using concave penalty functions. We show that
the proposed penalized regression estimators have the variable selection consistency
and oracle property of Fan and Li (2001).

Variable selection is particularly important when the true underlying model has
a sparse representation. Identifying significant predictors will enhance the prediction
performance of the fittedmodel. A penalty function generally facilitates variable selec-
tion in regression models. Various penalty functions have been used in the literature:
the bridge regression (Frank and Friedman 1993), LASSO (Tibshirani 1996), SCAD
(Fan and Li 2001), adaptive LASSO (Zou 2006), MCP (Zhang 2010), are well known.
Liang and Li (2009) considered variable selection for partially linear models with
measurement errors, Wang and Wang (2014) proposed adaptive Lasso estimators for
ultrahigh-dimensional generalized linear models, and Aneirosa et al. (2015) investi-
gated variable selection in partial linear regression with functional covariate. Fan et al.
(2014) studied oracle optimality of folded concave penalized estimation.

The paper is organized as follows. Section 2 describes the estimation method and
studies its asymptotic properties. Section 3 investigates an adaptive variable selection
method and its asymptotic properties. Section 4 presents finite sample behaviors of
the estimators. A real data example about the real estate data is given in Sect. 5. All
proofs are relegated to “Appendix.”

2 Estimation method and asymptotic results

Let Y be a real-valued random variable defined on a probability space (�,B, P). Let
Z be a d-dimensional vector of random variables with finite second moments, and let
{X (t) : t ∈ T } be a zero-mean and second-order (i.e., E X (t)2 < ∞ for all t ∈ T )

stochastic process defined on (�,B, P) with sample paths in L2(T ), the set of all
square integrable functions on T , where T is a bounded closed interval. ε is a random
error with mean zero and is independent of (X, Z). Let < ·, · > and ‖ · ‖ represent,
respectively, the L2(T ) inner product and norm. Denote the covariance function of
the process X (t) by K (s, t) = cov(X (s), X (t)). We suppose that K (s, t) is positive
definite, in which case it admits a spectral decomposition in terms of strictly positive
eigenvalues λ j ,

K (s, t) =
∞∑
j=1

λ jφ j (s)φ j (t), s, t ∈ T , (2.1)

where (λ j , φ j ) are (eigenvalue, eigenfunction) pairs for the linear operator with kernel
K , the eigenvalues are ordered so thatλ1 > λ2 > · · · and the functionsφ1, φ2, . . . form
an orthonormal basis for L2(T ). This leads to the Karhunen–Loève representation

X (t) =
∞∑
j=1

ξ jφ j (t),
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where the ξ j = ∫
T X (t)φ j (t)dt are uncorrelated random variables with mean 0 and

variance Eξ2j = λ j . Let γ (t) = ∑∞
j=1 γ jφ j (t), then model (1.1) can be written as

Y =
∞∑
j=1

γ jξ j + Z Tβββ0 + ε. (2.2)

By (2.2), we have

γ j = E{[Y − Z Tβββ0]ξ j }/λ j . (2.3)

Let (Xi (t), Zi , Yi ), i = 1, . . . , n, be independent realizations of (X (t), Z , Y ) gen-
erated by the model (1.1). Empirical versions of K and of its spectral decomposition
are

K̂ (s, t) = 1

n

n∑
i=1

Xi (s)Xi (t) =
∞∑
j=1

λ̂ j φ̂ j (s)φ̂ j (t), s, t ∈ T .

Analogously to the case of K , (λ̂ j , φ̂ j ) are (eigenvalue, eigenfunction) pairs for the
linear operator with kernel K̂ , ordered such that λ̂1 ≥ λ̂2 ≥ · · · ≥ 0. We take (λ̂ j , φ̂ j )

and ξ̂i j = 〈Xi , φ̂ j 〉 to be the estimators of (λ j , φ j ) and ξi j = 〈Xi , φ j 〉, respectively,
and set

γ̃ j = 1

nλ̂ j

n∑
i=1

(
Yi − Z T

i βββ0

)
ξ̂i j . (2.4)

We use
∑m

j=1 γ̃ j ξ̂ j to approximate
∑∞

j=1 γ jξ j in (2.2). Combining (2.2) and (2.4),
we then solve the following minimization problem

min
βββ

n∑
i=1

⎧⎨
⎩Yi −

m∑
j=1

ξ̂i j

nλ̂ j

n∑
l=1

(
Yl − Z T

l βββ
)

ξ̂l j − Z T
i βββ

⎫⎬
⎭

2

(2.5)

to obtain the estimator of βββ0. Define ξ̃li = ∑m
j=1

ξ̂l j ξ̂i j

λ̂ j
, Ỹi = Yi − 1

n

∑n
l=1 Yl ξ̃li and

Z̃i = Zi − 1
n

∑n
l=1 Zl ξ̃li . Then, (2.5) can be written as

min
β

n∑
i=1

(
Ỹi − Z̃ T

i βββ
)2

(2.6)

Let Ỹ = (Ỹ1, . . . , Ỹn)T and Z̃ = (Z̃1, . . . , Z̃n)T . Then the estimator β̂ββ of βββ0 is given
by

β̂ββ = (Z̃ T Z̃)−1 Z̃ T Ỹ . (2.7)
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The estimator of γ (t) is given by γ̂ (t) = ∑m
j=1 γ̂ j φ̂ j (t) with

γ̂ j = 1

nλ̂ j

n∑
i=1

(
Yi − Z T

i β̂ββ
)

ξ̂i j . (2.8)

To implement our estimation method, we need to know how to choose m. The value
for m can be selected by leave-one-curve-out cross-validation of the prediction error.
Define CV function as

CV(m) =
n∑

i=1

⎛
⎝Yi −

m∑
j=1

γ̂ −i
j ξ̂i j − Z T

i β̂ββ
−i

⎞
⎠

2

,

where γ̂ −i
j , j = 1, . . . , m and β̂ββ

−i
are computed after removing (Xi , Zi , Yi ). As an

alternative to cross-validation, m can also be chosen by information criteria BIC. The
BIC criteria as a function of m is given by

BIC(m) = log

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝Yi −

m∑
j=1

γ̂ j ξ̂i j − Z T
i β̂ββ

⎞
⎠

2
⎫⎪⎬
⎪⎭ + log n

n
(m + 1).

Large values of BIC indicate poor fits.

Remark 2.1 Noting that ξ̂i j = 〈Xi , φ̂ j 〉, it can be easily shown that our estimators have
the same performance as the estimators given in Shin (2009) and Shin and Lee (2012).
However, our estimators are more simple in expression and require less computation.

In the following, we derive asymptotic normality of the estimator β̂ββ and the rate of
convergence for the estimator γ̂ (t). We make the following assumptions.

Assumption 1 X has finite fourth moment, in that
∫
T E(X4) < ∞, and for each j ,

E(ξ4j ) < C1λ
2
j for some constant C1.

Assumption 2 There exists a convex function ϕ defined on the interval [0, 1] such
that ϕ(0) = 0 and λ j = ϕ(1/j) for j ≥ 1.

Assumption 3 For Fourier coefficients γ j , there exist constants C2 > 0 and δ > 3/2
such that |γ j | ≤ C2 j−δ for all j ≥ 1.

Assumption 4 m → ∞ and n−1/2mλ−1
m → 0.

Assumption 5 E(‖Z‖4) < +∞.

Assumptions 1 and 3 are standard conditions for functional linear models; see,
e.g., Cai and Hall (2006) and Hall and Horowitz (2007). Assumption 2 is slightly
less restrictive than (3.2) of Hall and Horowitz (2007). Assumptions 4 can be easily
verified and will be further discussed below.
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Remark 2.2 Assumptions 2 and 4 are weaker than the assumptions for λ j and m,
respectively, in Shin (2009) and Shin and Lee (2012).

We first establish the asymptotic distribution of the estimator β̂ββ. To derive the
asymptotic normality of the estimator β̂ββ, we need to adjust for the dependence of Z =
(Z1, . . . , Zd)T and X (t), which is a common complication in semiparametric models.
Let G denote the class of the random variables such that G ∈ G if G = ∑∞

j=1 g jξ j

and |g j | ≤ C3 j−δ for all j ≥ 1, where δ is defined in Assumption 3 and C3 > 0 is
a constant. Note that G is related to the first term on the right side of (2.2). Denote
Gr = ∑∞

j=1 gr jξ j . Let

G∗
r = arginfGr ∈G E

⎡
⎢⎣
⎛
⎝Zr −

∞∑
j=1

gr jξ j

⎞
⎠

2
⎤
⎥⎦ .

Since

E

⎡
⎢⎣
⎛
⎝Zr −

∞∑
j=1

gr jξ j

⎞
⎠

2
⎤
⎥⎦= E[(Zr−E(Zr |X))2]+E

⎡
⎢⎣
⎛
⎝E(Zr |X)−

∞∑
j=1

gr jξ j

⎞
⎠

2
⎤
⎥⎦ ,

therefore,

G∗
r = arginfGr ∈G E

⎡
⎢⎣
⎛
⎝E(Zr |X) −

∞∑
j=1

gr jξ j

⎞
⎠

2
⎤
⎥⎦ .

Thus, G∗
r are the projections of E(Zr |X) onto the space G. In other words, G∗

r is
an element that belongs to G and it is the closest to E(Zr |X) among all the random
variables in G. Let Hr = Zr − G∗

r for r = 1, . . . , d, and H = (H1, . . . , Hd)T . We
then have the following results.

Theorem 2.1 Suppose that Assumptions 1–5 hold and � = E(H H T ) is invertible,
then

√
n(β̂ββ − βββ0) →d N (0,�−1σ 2), (2.9)

where →d means convergence in distribution.

Remark 2.3 When the model is changed from functional linear model to partial func-
tional linear model, to derive the asymptotic normality of the estimator β̂ββ, it is key to
handle the relation of the vector Z and X (t). In our analysis, Zr , r = 1, . . . , d are
divided into two unrelated parts G∗

r = ∑∞
j=1 g∗

r jξ j and Hr . Consequently, (2.2) can
be written as

Y =
∞∑
j=1

(
γ j +

d∑
r=1

g∗
r jβ0r

)
ξ j + H Tβββ0 + ε,
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where βββ0 = (β01, . . . , β0d)T . If Zr = ∑∞
j=1 g̃r jξ j + Vr and Vr is independent of

X (t), then G∗
r = ∑∞

j=1 g̃r jξ j and Hr = Vr . If Zr is independent of X (t), then
G∗

r = 0 and Hr = Zr . If E(Zr |X (t)) = ∑∞
j=1 ḡr jξ j , then G∗

r = ∑∞
j=1 ḡr jξ j

and Hr = Zr − G∗
r . In Shin (2009) and Shin and Lee (2012), it is assumed that

E(Zr |X (t)) = ∑∞
j=1 λ−1

j < K Zk X , φ j > ξ j , where K Zr X = cov(Zr , X) for r =
1, . . . , d. In this case, G∗

r = ∑∞
j=1 λ−1

j < K Zk X , φ j > ξ j and Hr = Zr −G∗
r , and the

result of our Theorem 2.1 is the same as that of Theorem 3.1 in Shin (2009). Hence,
Theorem 3.1 of Shin (2009) is a special case of our Theorem 2.1.

Next we establish the convergence rates of the estimators γ̂ (t).

Theorem 2.2 Assume that Assumptions 1–5 hold and that n−1m2λ−1
m logm → 0.

Then

∫
T

{
γ̂ (t)− γ (t)

}2 dt = Op

⎛
⎝ m

nλm
+ m

n2λ2m

m∑
j=1

j3γ 2
j

λ2j
+ 1

nλm

m∑
j=1

γ 2
j

λ j
+ m−2δ+1

⎞
⎠ .

(2.10)

If λ j ∼ j−τ , τ > 1,m ∼ n1/(τ+2δ), δ > 2 and δ > 1+τ/2, then
∑m

j=1 j3γ 2
j λ−2

j ≤
C4(logm + m2τ+4−2δ)) and

∑m
j=1 γ 2

j λ−1
j < +∞, where C4 is a positive constant.

We then have the following corollary.

Corollary 2.1 Under Assumptions 1–5, if λ j ∼ j−τ , τ > 1, m ∼ n1/(τ+2δ) and
δ > min(2, 1 + τ/2), then it holds that

∫
T

{
γ̂ (t) − γ (t)

}2 dt = Op

(
n−(2δ−1)/(τ+2δ)

)
. (2.11)

The global convergence result (2.11) indicates that the estimator γ̂ (t) attains the same
convergence rate as those of the estimators of Hall and Horowitz (2007), which are
optimal in the minimax sense.

Let S = {(Zi , Xi , Yi ) : 1 ≤ i ≤ n}. In the following, for a new pair of predictor
variables (Zn+1, Xn+1) taking from the same population as the data and independent
of the data, we shall derive the convergence rate of the mean squared prediction error
(MSPE) given by

MSPE = E

([(∫
T

γ̂ (t)Xn+1(t)dt + Z T
n+1β̂ββ

)

−
(∫

T
γ (t)Xn+1(t)dt + Z T

n+1βββ0

)]2
|S
)

.

Theorem 2.3 Under Assumptions 1, 3 and 5, if λ j ∼ j−τ , τ > 1, m ∼ n1/(τ+2δ) and
δ > min(2, 1 + τ/2), then

MSPE = Op(n
−(τ+2δ−1)/(τ+2δ)). (2.12)
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Remark 2.4 In practical application, X (t) is only discretely observed. Without loss
of generality, suppose T = [0, 1] and for each i = 1, . . . , n, Xi (t) is observed at
ni discrete points 0 = ti1 < . . . < tini = 1. Typically, maxi max1≤ j≤ni −1(ti( j+1) −
ti j ) → 0 as n → ∞ is also assumed. Based on the discrete observations, for each i =
1, . . . , n, linear interpolation functions or spline interpolation functions can be used
for the estimators of Xi (t). For example, we can use the following linear interpolation
function

X̂i (t) = Xi (ti j ) + (Xi (ti( j+1)) − Xi (ti j ))

ti( j+1) − ti j
(t − ti j ),

for t ∈ [ti j , ti( j+1)], j = 0, . . . , ni − 1

as the estimator of Xi (t). It is necessary to point out that if Xi (t), i = 1, . . . , n are
replaced by X̂i (t), i = 1, . . . , n, the conclusions of Theorems 2.1–2.3 do not hold.
We note that it is difficult to establish the related asymptotic properties by our current
approach, and further research is expected.

3 Variable selection for partial functional linear model

In the variable selection problem, it is assumed that some components of β0β0β0 in model
(1.1) are equal to zero. The goal is to identify and estimate the subset model. It has
been argued that folded concave penalties are preferable to convex penalties such
as the L1-penalty in terms of both model-estimation accuracy and variable selection
consistency (Lv and Fan 2009; Fan and Lv 2011). Let pνn (|u|) = pa,νn (|u|) be general
folded concave penalty functions defined on u ∈ (−∞,+∞) satisfying

(a) The pνn (u) are increasing and concave in u ∈ [0,+∞);
(b) The pνn (u) are differentiable in u ∈ (0,+∞) with p′

νn
(0) := p′

νn
(0+) ≥ a1νn ,

p′
νn

(u) ≥ a1νn for u ∈ (0, a2νn], p′
νn

(u) ≤ a3νn for u ∈ [0,+∞), and p′
νn

(u) =
0 for u ∈ [aνn,+∞) with a prespecified constant a > a2, where a1, a2 and a3
are fixed positive constants.

The above family of general folded concave penalties contains several popular
penalties including the SCAD penalty (Fan and Li 2001), the derivative of which is
given by

p′
νn

(u) = νn I{u≤νn} + (aνn − u)+
a − 1

I{u>νn} for some a > 2,

and the MCP penalty (Zhang 2010), the derivative of which is given by

p′
νn

(u) =
(
νn − u

a

)
+

for some a > 1.

It is easy to see that a1 = a2 = a3 = 1 for the SCAD, and a1 = 1−a−1, a2 = a3 = 1
for the MCP.
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Based on the above analysis, we define a penalized least squares estimator of βββ0
as

β̂ββPLS = argmin
βββ

(Ỹ − Z̃βββ)T (Ỹ − Z̃βββ) + n
d∑

k=1

p′
νn

(|β(0)
k |)|βk |, (3.1)

where βββ(0) = (β
(0)
1 , . . . , β

(0)
d )T is an initial estimator of βββ0. For example, βββ(0) can be

obtained from (2.7) in Sect. 2.
In the following, we show that the penalized least squares estimator defined by

(3.1) has the oracle property (Fan and Li 2001). Without loss of generality, let βββ =
(βββT

1 ,βββT
2 )T , whereβββ1 ∈ Rd1 andβββ2 ∈ Rd−d1 . The vector of true parameters is denoted

by βββ0 = (βββT
01,βββ

T
02)

T with each element of βββ01 being nonzero and βββ02 = 0.

Theorem 3.1 Suppose that the conditions of Theorem 2.1 hold. Let pνn (·) be general
folded concave penalty functions satisfying assumptions (a) and (b) above and βββ(0)

be the estimator defined by (2.7). If νn → 0 and
√

nνn → ∞ as n → ∞, then the

penalized least squares estimator β̂ββPLS = (β̂ββ
T
PLS1, β̂ββ

T
PLS2)

T defined by (3.1) satisfies

(1) Sparsity: P(β̂ββPLS2 = 0) → 1.
(2) Asymptotic normality:

√
n(β̂ββPLS1 − βββ01) →d N (0,�−1

1 σ 2), (3.2)

where �1 = E[(H1, . . . , Hd1)
T (H1, . . . , Hd1)].

Let

γ̂PLSj = 1

nλ̂ j

n∑
i=1

(
Yi − Z T

i β̂ββPLS

)
ξ̂i j (3.3)

and γ̂PLS(t) = ∑m
j=1 γ̂P L Sj φ̂ j (t). We then have the following theorem.

Theorem 3.2 (1) Under the assumptions of Theorems 3.1 and 2.2, the estimator
γ̂PLS(t) satisfies the conclusions of Theorem 2.2.

(2) Under the assumptions of Theorems 3.1 and 2.3, the conclusions of Theorem 2.3
hold.

4 Simulation results

Since our estimators have the same performances as Shin (2009) and Shin and Lee
(2012), in this section, we only investigate the finite sample performance of the penal-
ized least squares estimators proposed in Sect. 3 by carrying out a Monte Carlo study.
The data sets were generated from the following models

Yi =
∫
T

γ (t)Xi (t)dt + Z T
i βββ0 + εi , (4.1)
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Table 1 Results of Monte Carlo experiments for model (4.1)

FP FN |β̂1 − β1| |β̂2 − β2| |β̂3 − β3|
n = 100

Setting 1 0.0200 0.0640 0.1288 0.1145 0.1012

Setting 2 0.0520 0.0780 0.1174 0.0890 0.0942

Setting 3 0.0360 0.0500 0.0924 0.0689 0.0693

Setting 4 0.0480 0.0580 0.1045 0.0742 0.0843

n = 200

Setting 1 0.0040 0.0120 0.0952 0.0749 0.0744

Setting 2 0.0060 0.0280 0.0827 0.0719 0.0632

Setting 3 0.0040 0.0160 0.0637 0.0460 0.0478

Setting 4 0.0040 0.0140 0.0658 0.0529 0.0528

with T = [0, 1], βββ0 = (2, 0, 1.5, 0, 0.3)T . We took γ (t) = ∑50
j=1 γ jφ j (t) and

Xi (t) = ∑50
j=1 ξi jφ j (t), where γ1 = 0.3 and γ j = 4(−1) j+1 j−δ, j ≥ 2; φ1(t) ≡ 1

and φ j (t) = 21/2 cos(( j − 1)π t), j ≥ 2; the ξi j ’s were independent and normal
N (0, λ j ). We let Zi = (Zi1, . . . , Zi5)

T , when conditioning on ξi j , be a multivariate
normal distribution with the mean vector ((1 + λ1)

−1/2ξi1, . . . , (1 + λ5)
−1/2ξi5)

T

and the variance-covariance matrix V = vkl with vkk = (1 + λk)
−1 and vkl =

0.7((1 + λk)(1 + λl))
−1/2 for k, l = 1, . . . , 5, so that Zi has a multivariate normal

distributionwith the zero-mean vector and the variance-covariancematrixwhose diag-
onal elements are 1 and off-diagonal elements are vkl . The errors εi were normally
distributed with the mean 0 and the standard deviation 0.5. Similar to Shin and Lee
(2012), we used 4 different sets of the eigenvalues, {λ j }. In the two settings, λ j = j−τ

and different values of τ are considered. In the other two settings, eigenvalues are
“closely spaced” as in Hall and Horowitz (2007): λ1 = 1, λ j = 0.22(1 − 0.0001 j)2

if 2 ≤ j ≤ 4, λ5 j+k = 0.22{(5 j)−τ/2 − 0.0001k}2 for j ≥ 1 and 0 ≤ k ≤ 4.

1. Set τ = 1.1 and δ = 2 with the well-spaced eigenvalues.
2. Set τ = 1.1 and δ = 2 with the closely spaced eigenvalues.
3. Set τ = 3 and δ = 2 with the well-spaced eigenvalues.
4. Set τ = 3 and δ = 2 with the closely spaced eigenvalues.

All the results in this section are based on 500 replications. In all the simulated
designs, we used the SCAD penalty function with a = 3.7. We set the sample size n
to be 100 and 200, respectively. For each simulated data set, the penalized least squares
estimators β̂ββPLS and γ̂PLS(t) were computed by the procedure given in Sects. 2 and 3.
The tuning parameter m is determined by BIC criterion as described in Sect. 2, and
the tuning parameter νn in (3.1) is selected by the method given by Fan et al. (2014).

We measured the estimation accuracy for parametric estimators by the average l1-
losses: |β̂1 −β1|, |β̂3 −β3|, and |β̂5 −β5| over 500 replications. We also evaluated the
selection accuracy by the average counts of false positive (FP) and false negative (FN)
over the 500 replications; that is, the number of noise covariates included in the model
and the number of signal covariates not included. Table 1 displays the simulation results
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Table 2 Results of Monte Carlo experiments for model (4.1)

n = 100 n = 200

Bias2 Var MISE Bias2 Var MISE

Setting 1 0.1163 0.1608 0.2771 0.1100 0.0873 0.1973

Setting 2 0.1981 0.4146 0.6127 0.1901 0.3551 0.5452

Setting 3 0.1186 0.1185 0.2371 0.1215 0.0546 0.1760

Setting 4 0.1954 0.4159 0.6114 0.1817 0.3437 0.5254

Table 3 Results of Monte Carlo experiments under high-dimensional data

FP FN |β̂1 − β1| |β̂2 − β2| |β̂3 − β3|
n = 100

Setting 1 0.0360 0.0840 0.1570 0.1217 0.1187

Setting 2 0.1560 0.1380 0.1336 0.1110 0.1166

Setting 3 0.0360 0.1580 0.1288 0.0912 0.1299

Setting 4 0.1060 0.0840 0.1134 0.0872 0.0975

n = 200

Setting 1 0.0020 0.0140 0.0967 0.0795 0.0810

Setting 2 0.140 0.0440 0.0830 0.0769 0.0692

Setting 3 0.0020 0.0640 0.0875 0.0631 0.0911

Setting 4 0.0120 0.0140 0.0755 0.0557 0.0550

for model (4.1). We see from Table 1 that there is a general tendency for the average
l1-loss and PN and FN to decrease as n increases and there is a general tendency for
the average l1-loss to decrease as τ increases. Table 1 also shows that PNs and FNs
for Settings 1 and 3 with the well-spaced eigenvalues are less than that for Settings 2
and 4 with the closely spaced eigenvalues, while PN and FN for the Setting 4 are less
than that for the Setting 2.

Table 2 reports the integrated squared bias (Bias2), integrated variance (Var) and
mean integrated squared error (MISE) of the estimator γ̂ (t) computed on a grid of
100 equally spaced points on T . Table 2 shows that there is a general tendency for the
MISE to decrease as τ increases. We also see from Table 2 that the MISEs for Settings
1 and 3 with the well-spaced eigenvalues are less than that for Settings 2 and 4 with
the closely spaced eigenvalues.

In the following, we investigate the variable selection for high-dimensional data. In
(4.1), let Zi = (Zi1, . . . , Zi30, )

T , where Zi1, . . . , Zi5 are taken the same as above,
Zi6, . . . , Zi30 are mutually independent and independent of Zi1, . . . , Zi5 and Xi j ∼
N (0, 1) for j = 6, . . . , 30, βββ0 = (2, 0, 1.5, 0, 0.3, 0, . . . , 0)T . The simulation results
under this high-dimensional data are reported in Tables 3 and 4. We find that Tables
3 and 4 show conclusions similar to those in Tables 1 and 2. Comparing Table 3 with
Table 1 and Table 4 with Table 2, we see that our penalized least squares estimators
also behave well under the high-dimensional data.
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Table 4 Results of Monte Carlo experiments under high-dimensional data

n = 100 n = 200

Bias2 Var MISE Bias2 Var MISE

Setting 1 0.1175 0.1676 0.2851 0.1112 0.0889 0.2001

Setting 2 0.2111 0.4712 0.6823 0.1956 0.3589 0.5545

Setting 3 0.1160 0.1337 0.2496 0.1196 0.0644 0.1839

Setting 4 0.1764 0.4358 0.6121 0.1868 0.3617 0.5485

5 A real data example

In this section, we analyze a real data set using the proposed methodology. For this
purpose, we analyze the real estate data set which was collected from the statisti-
cal yearbooks of various cities, real estate market reports and statistical bulletins on
national economic and social development in China. It includes the real estate data
for 197 second-, third- and fourth-tier cities in China. In this data set, there are the
average annual income of urban residents from 2000 to 2016, and the other data are
based on 2016. Our purpose is to study the relationship between urban housing prices
and their influencing factors. The response variable Y represents urban housing price.
Since it takes many years of savings for the average resident to buy a house, we
choose the average annual income of the residents as the functional covariate. Let
X∗

i (t) denote the average annual income of the residents of the i th city for the year t

and Xi (t) = X∗
i (t) − X̄∗(t), where X̄∗(t) = 1

197

∑197
i=1 X∗

i (t). The scalar covariates
of primary interests include urban category (Z2, Z3), urban population (Z4), urban
GDP (Z5), bank interest rate (Z6), urban livability index (Z7), urban comprehensive
competitiveness (Z8) and urban development index (Z9). We note that among these
variables the data of some variables such as Z4 and Z5 are very large, whereas those of
some variables such as Z6 are small. For this purpose, for each data of these variables,
we first make the following modification: Let z̄i4, i = 1, . . . , 197 be the observations
of Z4. Let zi4 = z̄i4/max z̄i4,i = 1, . . . , 197, so that the maximum of modified data
of the variable Z4 is 1. The data of the variables Z5, . . . , Z9 are modified in a similar
fashion. We construct the following partial functional linear model:

log(Yi ) =
∫ 17

0
γ (t)Xi (t)dt + Zi1β01 + · · · + Zi9β09 + εi , (5.1)

where Zi1 ≡ 1, Zi2 = 1 and Zi3 = 0 stand for second-tier city, Zi2 = 0 and Zi3 = 1
stand for third-tier city, and Zi2 = 0 and Zi3 = 0 stand for fourth-tier city.

The estimators of unknown parameters and function inmodel (5.1) are computed by
themethod given in Sect. 2, and the tuning parameterm is determined by BIC criterion
as described in Sect. 2. Table 5 exhibits the parametric estimators, and Fig. 1a shows the
estimated curve of γ (t) and its 95%confidence interval.We see fromTable 5 that urban
population, urban GDP, urban livability index , urban comprehensive competitiveness
and urban development index have nonnegative effects, while bank interest rate has
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Table 5 The parametric estimators for model (5.1)

β01 β02 β03 β04 β05 β06 β07 β08 β09

8.2416 0.6821 0.2785 0.0102 0.2541 −0.0006 0.0818 0.0036 0.2088
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Fig. 1 The solid lines are the estimated curves of γ (t), and the doted lines are their corresponding 95%
point-wise confidence intervals. γ (t) in (a) is computed by (2.8), and γ (t) in (b) is computed by (3.3)

Table 6 The penalized least squares estimators of the parameters for model (5.1)

β01 β02 β03 β04 β05 β06 β07 β08 β09

8.2424 0.6819 0.2785 0 0.2630 0 0.0804 0 0.2093

a negative effect. The fact that β02 > β01 > 0 in Table 5 indicates that the housing
price for a third-tier city is larger than that for a fourth-tier city and the housing price
for a second-tier city is larger than that for a third-tier city. We see from Fig. 1a that
the estimated curve varies smoothly, but there is a rapid upward trend in the tail which
shows that the effect of the average annual incomes of the residents on house prices
varies greatly with different cities in recent years.

Table 6 exhibits the penalized least squares estimators of the parameters computed
by the procedure given in Sect. 3, and Fig. 1b shows the estimated curve of γ (t)
computed by (3.3) and its 95% confidence interval. Table 6 shows that urban category,
urban GDP, urban livability index and urban development index are important factors
affecting house prices. Comparing Fig. 1b with Fig. 1a, we see that the difference
between the two is not much.

To evaluate the prediction performance of our model and methods, we applied
leave-one-out cross-validation to the data; i.e., when predicting the housing price for
the i th city, we omit the data for this city when fitting the model. Figure 2 displays
the boxplots for the absolute prediction errors | ̂log(y j ) − log(y j )|, j = 1, . . . , 197,
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Fig. 2 Boxplots for the absolute
prediction error | ̂log(y j )

− log(y j )|, j = 1, . . . , 197, for
two methods. Here 1 is the
boxplot for the method given in
Sect. 2 and 2 is the boxplot for
the penalized method given in
Sect. 3
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for the method given in Sect. 2 and the penalized method given in Sect. 3. The mean
values of these errors for the two methods are 0.2529 and 0.2521, respectively. These
observations and Fig. 2 suggest that the penalized method is slightly better than the
method given in Sect. 2.
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6 Appendix: Proofs

In this section, let C > 0 denote a generic constant of which the value may change
from line to line. For a matrix A = (ai j ), set ‖A‖∞ = maxi

∑
j |ai j | and |A|∞ =

maxi, j |ai j |. For a vector v = (v1, . . . , vk)
T , set ‖v‖∞ = ∑k

j=1 |v j | and |v|∞ =
max1≤ j≤k |v j |. Denote Wl = ∑∞

j=1 γ jξl j , W̃i = Wi − 1
n

∑n
l=1 Wl ξ̃li , ε̃i = εi −

1
n

∑n
l=1 εl ξ̃li and W̃ = (W̃1, . . . , W̃n)T , ε̃ = (ε̃1, . . . , ε̃n)T . Then

β̂ββ − βββ0 = (Z̃ T Z̃)−1 Z̃ T (W̃ + ε̃). (A.1)

Lemma A.1 Suppose that Assumptions 1, 2, 4 and 5 hold, then it holds that

1

n
Z̃ T Z̃ = � + op(1).

Proof Let Z̃i = (Z̃i1, . . . , Z̃id)T . Set �ξli = ∑m
j=1

ξl j ξi j
λ j

, �Zir1 = Zir − 1
n

∑n
l=1 Zlr �ξli

and �Zir2 = 1
n

∑n
l=1 Zlr (ξ̃li − �ξli ). Then Z̃ir = �Zir1 − �Zir2 and

123



Estimation and variable selection for partial functional. . . 489

1

n

n∑
i=1

Z̃ir Z̃iq = 1

n

n∑
i=1

( �Zir1 �Ziq1 − �Zir1 �Ziq2 − �Zir2 �Ziq1

+ �Zir2 �Ziq2), r, q = 1, . . . , d. (A.2)

Let �Zir21 = ∑m
j=1

1
λ j

[
1
n

∑n
l=1 Zlr (ξ̂l j − ξl j )

]
ξi j , �Zir22 = ∑m

j=1

(
1
λ̂ j

− 1
λ j

)
(
1
n

∑n
l=1 Zlr ξ̂l j

)
ξi j and �Zir23 = ∑m

j=1
1
λ̂ j

(
1
n

∑n
l=1 Zlr ξ̂l j

)
(ξ̂i j −ξi j ).We then have

| �Zir2 �Ziq2| ≤ 3

2

( �Z2
ir21 + �Z2

ir22 + �Z2
ir23 + �Z2

iq21 + �Z2
iq22 + �Z2

iq23

)
. (A.3)

Lemma 5.1 of Hall and Horowitz (2007) implies that

ξ̂l j − ξl j =
∑
k �= j

ξlk

λ̂ j − λk

∫
�φ̂ jφk + ξl j

∫
(φ̂ j − φ j )φ j , (A.4)

where � = K̂ − K . We then obtain that

[
1

n

n∑
l=1

Zlr (ξ̂l j − ξl j )

]2

≤ 2

⎛
⎝∑

k �= j

�ξrk

λ̂ j − λk

∫
�φ̂ jφk

⎞
⎠

2

+ 2

(
�ξr j

∫
(φ̂ j − φ j )φ j

)2

≤ 2

⎡
⎢⎣∑

k �= j

�ξ2rk(
λ̂ j − λk

)2
⎤
⎥⎦
[ ∞∑

k=1

(∫
�φ̂ jφk

)2
]

+ 2�ξ2r j

(∫
(φ̂ j − φ j )φ j

)2

,

where �ξr j = 1
n

∑n
l=1 Zlrξl j . Lemma 1 of Cardot et al. (2007) implies that

|λ j − λk | ≥ λ j − λ j+1 ≥ λm − λm+1 ≥ λm/(m + 1) ≥ λm/(2m)

uniformly for 1 ≤ j ≤ m. By (5.2) of Hall and Horowitz (2007), it holds that
sup j≥1 |λ̂ j − λ j | ≤ |‖�‖| = Op(n−1/2) and

(∫
(φ̂ j − φ j )φ j

)2 ≤ ‖φ̂ j − φ j‖2 ≤ C |‖�‖|2
(λ j −λ j+1)

2 ≤ C |‖�‖|2λ−2
j j2, (A.5)

where |‖�‖| = (
∫
T
∫
T �2(s, t)dsdt)1/2. Using Parseval’s identity, we get that

∞∑
k=1

(∫
�φ̂ jφk

)2

=
∫ (∫

�φ̂ j

)2

≤ |‖�‖|2 = Op(n
−1).
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Assumption 4 implies that |λ̂ j − λ j | = op(λm/m). Consequently,
∑

k �= j
�ξ2rk

(λ̂ j −λk )
2 =

∑
k �= j

�ξ2rk
(λ j −λk )

2 [1+op(1)], where op(1) holds uniformly for 1 ≤ j ≤ m. By arguments

similar to those used in the proof of Lemma 2 of Cardot et al. (2007) and use the fact
that (λ j − λk)

2 ≥ (λk − λk+1)
2, we deduce that

∑
k �= j

1

(λ j − λk)2
E(�ξ2rk) ≤ C

∑
k �= j

1

(λ j − λk)2

(
n−1λk + g2

rkλ
2
k

)

≤ C
(

n−1λ−1
j j2 log j + 1

)
.

Lemma 1 of Cardot et al. (2007) yields that

m∑
j=1

λ−2
j j2 log j ≤ m−2λ−2

m

m∑
j=1

j4 log j ≤ λ−2
m m3 logm

and
∑m

j=1 λ−1
j ≤ λ−1

m m. Therefore,

∑m
j=1

1
λ j

[
1
n

∑n
l=1 Zlr (ξ̂l j − ξl j )

]2 = Op
(
n−2λ−2

m m3 logm + n−1λ−1
m m

)
(A.6)

and

1

n

n∑
i=1

�Z2
ir21 ≤

⎛
⎝ m∑

j=1

1

λ j

[
1

n

n∑
l=1

Zlr (ξ̂l j − ξl j )

]2
⎞
⎠
⎛
⎝ m∑

j=1

1

nλ j

n∑
i=1

ξ2i j

⎞
⎠

= Op

(
n−2λ−2

m m4 logm + n−1λ−1
m m2

)
. (A.7)

Decomposing 1
n

∑n
l=1 Zlr ξ̂l j = �ξr j + 1

n

∑n
l=1 Zlr (ξ̂l j − ξl j ) and using (A.6), we get

1

n

n∑
i=1

�Z2
ir22 ≤ C

m∑
j=1

(λ̂ j − λ j )
2

λ3j

(
1

n

n∑
l=1

Zlr ξ̂l j

)2

[1 + op(1)]
⎛
⎝ m∑

j=1

1

nλ j

n∑
i=1

ξ2i j

⎞
⎠

= Op

(
n−1λ−1

m m + n−3λ−4
m m4 logm + n−2λ−3

m m2
)

. (A.8)

By (A.10) of Tang (2015), it holds that

n‖φ̂ j − φ j‖2/( j2 log j) = Op(1), (A.9)

where Op(·) holds uniformly for 1 ≤ j ≤ m. Using (A.8) and (A.9), we obtain
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1

n

n∑
i=1

�Z2
ir23 ≤

⎛
⎝ m∑

j=1

1

λ̂2

(
1

n

n∑
l=1

Zlr ξ̂l j

)2
⎞
⎠
(
1

n

n∑
i=1

‖Xi‖2
)⎛
⎝ m∑

j=1

‖φ̂ j − φ j‖2
⎞
⎠

= Op

((
n−2λ−1

m m4+ n−1m3 + n−3λ−3
m m6 logm + n−2λ−2

m m4
)
logm

)
.

(A.10)

Hence, by (A.3), (A.7), (A.8), and (A.10) and Assumption 4, we conclude that

1

n

n∑
i=1

| �Zir2 �Ziq2| = Op

(
n−2λ−2

m m4 logm + n−1λ−1
m m2

)
= op(1). (A.11)

Define ξ̌ jr = 1
n

∑n
l=1 λ

−1/2
j ξl j Zlr . Since E[max1≤ j≤m(ξ̌ jr − E(ξ̌ jr ))

2] ≤ 1
n∑m

j=1 λ−1
j E(ξ j Zr )

2 ≤ Cn−1, we then have max1≤ j≤m |ξ̌ jr − E(ξ̌ jr )| = Op(n−1/2).
Hence

1

n

n∑
i=1

�Zir1 �Ziq1

= 1

n

n∑
i=1

Zir Ziq − 2
m∑

j=1

ξ̌ jr ξ̌ jq +
m∑

j=1

ξ̌ jr ξ̌ jq

nλ j

(
n∑

i=1

ξ2i j

)
+

∑
j �= j ′

ξ̌ jr ξ̌ j ′q ξ̄ j j ′

=
∞∑
j=1

gr j gq jλ j + E(Hr Hq) − 2
m∑

j=1

gr j gq jλ j +
m∑

j=1

gr j gq jλ j + op(1)

= E(Hr Hq) + op(1), (A.12)

where ξ̄ j j ′ = 1
n(λ j λ j ′ )1/2

∑n
i=1 ξi jξi j ′ . Now Lemma A.1 follows from (A.2), (A.11),

(A.12) and the fact that 1
n |∑n

i=1
�Zir1 �Ziq2| ≤

(
1
n

∑n
i=1

�Z2
ir1

)1/2 (
1
n

∑n
i=1

�Z2
iq2

)1/2
.

��

Lemma A.2 Under Assumptions 1–4, it holds that

m∑
j=1

λ j

[
γ j − 1

λ̂ j

(
1

n

n∑
l=1

Wl ξ̂l j

)]2

= Op

(
n−1λ−1

m m
)

.

Proof Set S1 = ∑m
j=1 λ j

[
γ j − 1

λ j

( 1
n

∑n
l=1 Wlξl j

)]2
, S2 = ∑m

j=1
1
λ j[

1
n

∑n
l=1 Wl(ξ̂l j − ξl j )

]2
and S3 = ∑m

j=1 λ j

(
1
λ̂ j

− 1
λ j

)2 (
1
n

∑n
l=1 Wl ξ̂l j

)2
.We have
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m∑
j=1

λ j

[
γ j − 1

λ̂ j

(
1

n

n∑
l=1

Wl ξ̂l j

)]2

≤ 3(S1 + S2 + S3). (A.13)

Since E
[
γ j − 1

λ j

( 1
n

∑n
l=1 Wlξl j

)] = 0, then by Assumptions 1–3, we obtain that

E(S1) =
m∑

j=1

1

λ j
V ar

(
1

n

n∑
l=1

Wlξl j

)
≤

m∑
j=1

1

n2λ j

n∑
l=1

E
(

W 2
l ξ2l j

)
≤ Cm/n.

(A.14)

Similar to the proof of (A.6) and (A.8) and using Assumption 4, we deduce that

S2 = Op

(
n−2λ−2

m m3 logm + n−1λ−1
m m

)
= Op(n

−1λ−1
m m) (A.15)

and

S3 ≤ C
m∑

j=1

(λ̂ j − λ j )
2

λ3j

⎛
⎝ζ̄ 2

j +
[
1

n

n∑
l=1

ζl(ξ̂l j − ξl j )

]2
⎞
⎠ [1 + op(1)]

= Op

(
n−1λ−1

m + n−3λ−4
m m3 logm + n−2λ−3

m m) = Op(n
−1λ−1

m

)
. (A.16)

Now Lemma A.2 follows from (A.13)–(A.16). ��
Lemma A.3 Under Assumptions 1, 2, 4 and 5, it holds that

m∑
j=1

λ−1
j

(
n∑

i=1

ξi j Z̃ir

)2

= Op(nm + λ−2
m m4 logm).

Proof Let Z∗
ir = Zir − ∑m

j ′=1
1

λ j ′
( 1

n

∑n
l=1 Zlrξl j ′

)
ξi j ′ . Observe that

(
n∑

i=1

ξi j Z̃ir

)2

≤ 4

(
n∑

i=1

ξi j Z∗
ir

)2

+ 4

⎛
⎝ n∑

i=1

ξi j

m∑
j ′=1

1

λ j ′

[
1

n

n∑
l=1

Zlr

(
ξ̂l j ′ − ξl j ′

)]
ξi j ′

⎞
⎠

2

+ 4

⎛
⎝ n∑

i=1

ξi j

m∑
j ′=1

(
1

λ̂ j ′
− 1

λ j ′

)[
1

n

n∑
l=1

Zlr ξ̂l j ′

]
ξi j ′

⎞
⎠

2

+ 4

⎛
⎝ n∑

i=1

ξi j

m∑
j ′=1

1

λ̂ j ′

[
1

n

n∑
l=1

Zlr ξ̂l j ′

]
(ξ̂i j ′ − ξi j ′)

⎞
⎠

2
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=: 4(Tj1 + Tj2 + Tj3 + Tj4). (A.17)

By direct computation and using Assumption 1, we get

E
(
ξ2i j Z∗

ir
2
)

≤ 2E
(
ξ2i j Z2

ir

)
+ 2E

⎡
⎢⎣ξ2i j

⎛
⎝ m∑

j ′=1

1

λ j ′

(
1

n

n∑
l=1

Zlrξl j ′

)
ξi j ′

⎞
⎠

2
⎤
⎥⎦

≤ C
(
λ j + mλ j/n2 + (n − 1)mλ j/n2 + m2λ j/n2

)
≤ Cλ j

and

∣∣∣∣∣∣
∑

i1 �=i2

E
(
ξi1 jξi2 j Z∗

i1r Z∗
i2r

)
∣∣∣∣∣∣ ≤ C[(n − 1)(n + 2)λ j/n + (n − 1)mλ j/n] ≤ Cnλ j .

Hence

E(Tj1) =
n∑

i=1

E
(
ξ2i j Z∗

ir
2
)

+
∑

i1 �=i2

E
(
ξi1 jξi2 j Z∗

i1r Z∗
i2r

) ≤ Cnλ j . (A.18)

Since
∑m

j ′=1
1

λ j ′
E
(∑n

i=1 ξi jξi j ′
)2 ≤ Cn2λ j , then by (A.6), we have

m∑
j=1

λ−1
j Tj2 ≤

⎛
⎝ m∑

j ′=1

1

λ j ′

[
1

n

n∑
l=1

Zlr (ξ̂l j ′ − ξl j ′)

]2
⎞
⎠

×
⎛
⎝ m∑

j=1

λ−1
j

m∑
j ′=1

1

λ j ′

(
n∑

i=1

ξi jξi j ′

)2
⎞
⎠

= Op(n
−2λ−2

m m3 logm)Op(n
2m) = Op(λ

−2
m m4 logm). (A.19)

Similar to the proof (A.8) and using Assumption 4, we deduce that

m∑
j=1

λ−1
j Tj3 ≤

⎛
⎝ m∑

j ′=1

λ j ′

(
1

λ̂ j ′
− 1

λ j ′

)2 [
1

n

n∑
l=1

Zlr ξ̂l j ′

]2
⎞
⎠

×
⎛
⎝ m∑

j=1

λ−1
j

m∑
j ′=1

1

λ j ′

(
n∑

i=1

ξi jξi j ′

)2
⎞
⎠

= Op

(
λ−2

m m2+ n−1λ−4
m m4 logm

)
= op

(
λ−2

m m2 logm
)

. (A.20)
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and

m∑
j=1

λ−1
j Tj4 ≤

⎛
⎝ m∑

j ′=1

1

λ2j ′

[
1

n

n∑
l=1

Zlr ξ̂l j ′

]2
⎞
⎠ [1 + op(1)]

×
⎛
⎝ m∑

j=1

1

λ j

n∑
i=1

ξ2i j

⎞
⎠
⎛
⎝ m∑

j ′=1

n∑
i=1

(ξ̂i j ′ − ξi j ′)
2

⎞
⎠

= Op

(
n−1λ−1

m m5 logm + n−2λ−3
m m7(logm)2

)
= op

(
λ−2

m m4 logm
)

.

(A.21)

Now Lemma A.3 follows from (A.17)–(A.21) and Assumption 4. ��

Lemma A.4 Under Assumptions 1–5, it holds that

n−1/2

∣∣∣∣∣∣
m∑

j=1

1

λ̂ j

(
1

n

n∑
l=1

Wl ξ̂l j

)
n∑

i=1

(ξ̂i j − ξi j )Z̃ir

∣∣∣∣∣∣ = op(1).

Proof Let W̆ j = 1
n

∑n
l=1 Wl ξ̂l j . Applying the Cauchy–Schwarz inequality, we get

⎛
⎝ m∑

j=1

1

λ̂ j
W̆ j

n∑
i=1

(ξ̂i j − ξi j )Z̃ir

⎞
⎠

2

≤
⎛
⎝ m∑

j=1

1

λ̂2j

W̆ 2
j

⎞
⎠
⎛
⎝ m∑

j=1

(
n∑

i=1

(ξ̂i j − ξi j )Z̃ir

)2
⎞
⎠ .

Using (A.4), (A.5), Assumption 4 and Parseval’s identity and the arguments similar
to those used to prove Lemma A.3, we deduce that

m∑
j=1

(
n∑

i=1

(ξ̂i j − ξi j )Z̃ir

)2

≤ 2
m∑

j=1

⎡
⎢⎣
⎛
⎝∑

k �= j

(λ̂ j − λk)
−1

∫
�φ̂ jφk

n∑
i=1

ξik Z̃ir

⎞
⎠

2

+
(

n∑
i=1

ξi j Z̃ir

)2 (∫
(φ̂ j − φ j )φ j

)2
⎤
⎦

≤ C |‖�‖|2
m∑

j=1

⎡
⎣∑

k �= j

(
λ̂ j − λk

)−2
(

n∑
i=1

ξik Z̃ir

)2

+ λ−2
j j2

(
n∑

i=1

ξi j Z̃ir

)2
⎤
⎦

= Op

(
λ−1

m m3 logm + n−1λ−3
m m6 logm

)
= op(n).
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Let �W j = 1
n

∑n
l=1 Wlξl j . Decomposing 1

n

∑n
l=1 Wl ξ̂l j = �W j + 1

n

∑n
l=1 Wl(ξ̂l j − ξl j )

and using arguments similar to those used in the proof of (A.6) and usingAssumption 4
, we obtain that

m∑
j=1

1

λ̂2j

W̆ 2
j = Op(n

−1λ−1
m m + 1 + n−2λ−3

m m3 logm + n−1λ−2
m m) = Op(1).

This finishes the proof of Lemma A.4. ��
Lemma A.5 Under Assumptions 1–5, it holds that

n−1/2

∣∣∣∣∣
n∑

i=1

W̃i Z̃ir

∣∣∣∣∣ = op(1).

Proof Observe that

n∑
i=1

W̃i Z̃ir =
m∑

j=1

[
γ j − 1

λ̂ j

(
1

n

n∑
l=1

Wl ξ̂l j

)]
n∑

i=1

ξi j Z̃ir

−
m∑

j=1

1

λ̂ j

(
1

n

n∑
l=1

Wl ξ̂l j

)
n∑

i=1

(
ξ̂i j − ξi j

)
Z̃ir

+
∞∑

j=m+1

γ j

n∑
i=1

ξi j Z̃ir (A.22)

Lemmas A.2 and A.3 and Assumption 4 imply that

n− 1
2

∣∣∣∣∣∣
m∑

j=1

[
γ j − 1

λ̂ j

(
1

n

n∑
l=1

Wl ξ̂l j

)]
n∑

i=1

ξi j Z̃ir

∣∣∣∣∣∣

≤ n− 1
2

⎛
⎝ m∑

j=1

λ j

[
γ j − 1

λ̂ j

(
1

n

n∑
l=1

Wl ξ̂l j

)]2
⎞
⎠

1
2
⎛
⎝ m∑

j=1

λ−1
j (

n∑
i=1

ξi j Z̃ir )
2

⎞
⎠

1
2

= Op

(
n−1/2λ

−1/2
m m + n−1λ

−3/2
m m5/2(logm)1/2

)
= op(1). (A.23)

By arguments similar to those used in the proof of Lemma A.3, we obtain that

⎛
⎝ ∞∑

j=m+1

γ j

n∑
i=1

ξi j Z̃ir

⎞
⎠

2

≤
⎛
⎝ ∞∑

j=m+1

γ 2
j

⎞
⎠
⎛
⎝ ∞∑

j=m+1

(
n∑

i=1

ξi j Z̃ir

)2
⎞
⎠
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= Op

(
nm−2γ+1 + λ−2

m m−2γ+4 logm
) ∞∑

j=m+1

λ j

= op(n). (A.24)

Now Lemma A.5 follows from (A.22)–(A.24) and Lemma A.4. ��
Proof of Theorem 2.1 By arguments similar to those used to prove Lemmas A.4

and A.5, we deduce that n−1/2∑n
i=1

(
1
n

∑n
l=1 εl ξ̃li

)
Z̃ir = op(1). Hence

n− 1
2

n∑
i=1

Z̃ir ε̃i = n− 1
2

n∑
i=1

Z̃irεi + op(1).

We decompose
∑n

i=1 Z̃irεi into three terms as

n∑
i=1

Z̃irεi =
n∑

i=1

εi

⎛
⎝Zir −

m∑
j=1

E(Zlrξ j )

λ j
ξi j

⎞
⎠ −

n∑
i=1

εi

m∑
j=1

ξi j

λ j

(
1

n

n∑
l=1

Zlrξl j − E(Zlr ξ j )

)
−

n∑
i=1

εi
1

n

n∑
l=1

Zlr (ξ̃li − �ξli ).

Similar to the proof of Lemma A.4, we have
∑n

i=1 εi
1
n

∑n
l=1 Zlr (ξ̃li − �ξli ) = op(n).

Since

n∑
i=1

εi

⎛
⎝Zir −

m∑
j=1

E(Zlr ξ j )

λ j
ξi j

⎞
⎠ =

n∑
i=1

εi Hir +
n∑

i=1

εi

∞∑
j=m+1

gr jξi j ,

∑n
i=1 εi

∑m
j=1

ξi j
λ j

( 1
n

∑n
l=1 Zlrξl j − E(Zlrξ j )

) = op(n) and
∑n

i=1 εi
∑∞

j=m+1 gkjξi j

= op(n), it follows that

n− 1
2

n∑
i=1

Z̃ir ε̃i = n− 1
2

n∑
i=1

Hirεi + op(1). (A.25)

Now (2.9) follows from (A.1), Lemmas A.1 and A.5, (A.25) and the central limit
theorem. The proof of Theorem 2.1 is finished. ��
Lemma A.6 Define γ̌ j = 1

λ̂ j
E[(Y − Z Tβββ0)ξ j ]. Under the assumptions of Theo-

rem 3.2, it holds that

m∑
j=1

(γ̂ j − γ̌ j )
2 = Op

⎛
⎝n−1mλ−1

m + n−2mλ−2
m

m∑
j=1

γ 2
j λ−2

j j3

⎞
⎠ .
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Proof Define I1 = 1
n

∑n
i=1(Yi −Z T

i βββ0)ξi j −γ jλ j , I2 = 1
n

∑n
i=1(Yi−Z T

i βββ0)(ξ̂i j−ξi j )

and I3 = 1
n

∑n
i=1 Z T

i (β̂ββ − βββ0)ξ̂i j . Noting that E[(Y − Z Tβββ0)ξ j ] = γ jλ j , we have

m∑
j=1

(γ̂ j − γ̌ j )
2 ≤ 3

m∑
j=1

λ−2
j

(
I 21 + I 22 + I 23

)
[1 + op(1)], (A.26)

where op(1) holds uniformly for j = 1, . . . , m. Since E(I1) = 0 and E(I 21 ) ≤
1
n [∑∞

k=1 γ 2
k E(ξ2k ξ2j ) + σ 2λ j ] ≤ Cλ j/n, we obtain that

m∑
j=1

λ−2
j I 21 = Op

⎛
⎝n−1

m∑
j=1

λ−1
j

⎞
⎠ = Op(n

−1mλ−1
m ). (A.27)

Let M(t) = E[(Yi − Z T
i βββ0)Xi (t)] = ∑∞

k=1 γkλkφk(t). Then

I 22 ≤ 2
∫
T

(
1

n

n∑
i=1

(Yi − Z T
i βββ0)Xi (t) − M(t)

)2

dt‖φ̂ j − φ j‖2

+ 2

(∫
T

M(t)(φ̂ j (t) − φ j (t))dt

)2

.

Applying Assumption 1, it holds that

E

⎛
⎝
∫
T

(
1

n

n∑
i=1

(Yi − Z T
i βββ0)Xi (t) − M(t)

)2

dt

⎞
⎠

≤ 1

n

∫
T

E[(Yi − Z T
i βββ0)

2X2
i (t)]dt = O(n−1).

From (A.9), we obtain
∑m

j=1 λ−2
j ‖φ̂ j −φ j‖2 = Op(n−1m3λ−2

m logm). By arguments
similar to those used in the proof of (5.15) of Hall and Horowitz (2007), it follows
that

m∑
j=1

λ−2
j

(∫
T

M(t)(φ̂ j (t) − φ j (t))dt

)2

= Op

⎛
⎝ m

nλm
+ m

n2λ2m

m∑
j=1

γ 2
j λ−2

j j3 + m3 logm

n2λ2m

⎞
⎠ .
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Hence, using the assumption that n−1m2λ−1
m logm → 0, we obtain

m∑
j=1

λ−2
j I 22 = Op

⎛
⎝n−1mλ−1

m + n−2mλ−2
m

m∑
j=1

γ 2
j λ−2

j j3

⎞
⎠ . (A.28)

Using Theorem 3.1, it holds that

m∑
j=1

λ−2
j I 23 ≤

⎛
⎝ m∑

j=1

1

nλ2j

n∑
i=1

ξ̂2i j

⎞
⎠
(
1

n

n∑
i=1

[Z T
i (β̂ββ − βββ0)]2

)

= Op

(
mλ−1

m + n−1m3λ−2
m logm

)
Op(n

−1) = Op

(
n−1mλ−1

m

)
.

(A.29)

Now Lemma A.6 follows from combining (A.26)–(A.29). ��
Proof of Theorem 2.2. Note that

∫
T

[γ̂ (t) − γ (t)]2dt ≤ C

⎛
⎝ m∑

j=1

(γ̂ j − γ̌ j )
2

+
m∑

j=1

(γ̌ j − γ j )
2 + m

m∑
j=1

γ 2
j ‖φ̂ j − φ j‖2 +

∞∑
j=m+1

γ 2
j

⎞
⎠

(A.30)

and

m∑
j=1

(γ̌ j − γ j )
2 =

m∑
j=1

(λ̂ j − λ j )
2

λ2j
γ 2

j [1 + op(1)] = Op

⎛
⎝n−1λ−1

m

m∑
j=1

γ 2
j λ−1

j

⎞
⎠ .

(A.31)

Assumption 3 implies that m
∑m

j=1 γ 2
j ‖φ̂ j − φ j‖2 = Op(mn−1∑m

j=1 γ 2
j j2 log j) =

op(m/n) and
∑∞

j=m+1 γ 2
j = O(m−2γ+1). Now (2.10) follows from Lemma A.6,

(A.30) and (A.31). The proof of Theorem 2.2 is finished. ��
Proof of Theorem 2.3. Observe that

MSPE ≤ 2{‖γ̂ − γ ‖2K + (β̂ββ − βββ0)
T E(Z Z T )(β̂ββ − βββ0)}, (A.32)

where ‖γ̂ −γ ‖2K = ∫
T
∫
T K (s, t)[γ̂ (s)−γ (s)][γ̂ (t)−γ (t)]dsdt . Under the assump-

tions of Theorem 2.3, using arguments similar to those used in the proof of Theorem
2 of Tang (2015), we deduce that ‖γ̂ − γ ‖2K = Op(n−(τ+2δ−1)/(τ+2δ)). Now (2.12)
follows from (A.32) and Theorem 2.1. The proof of Theorem 2.3 is finished. ��
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Lemma A.7 Under the assumptions of Theorem 3.1, there exists a local minimizer β̂ββ

of (3.1) such that ‖β̂ββ − βββ0‖ = Op(n−1/2).

Proof Let

Pn(βββ) = n
d∑

k=1

p′
νn

(∣∣∣β(0)
k

∣∣∣
)

|βk |, Pn1(βββ) = n
d1∑

k=1

p′
νn

(∣∣∣β(0)
k

∣∣∣
)

|βk |

and Dn(βββ) = (Ỹ − Z̃βββ)T (Ỹ − Z̃βββ) + Pn(βββ). It suffices to prove that for any given
ε > 0, there exists a constant C such that

P

{
sup

‖u‖=C
Dn(βββ0 + n−1/2u) > Dn(βββ0)

}
≥ 1 − ε. (A.33)

Note that

Dn(βββ0 + n−1/2u) − Dn(βββ0) ≥ −2n−1/2(Ỹ − Z̃βββ0)
T Z̃u + n−1uT Z̃ T Z̃u

+
[

Pn1

(
βββ01 + n−1/2u1

)
− Pn1(βββ01)

]
(A.34)

and

(Ỹ − Z̃βββ0)
T Z̃ = (W̃ + ε̃)T Z̃ .

By Lemma A.5, we have that n−1/2W̃ T Z̃ = op(1). By (A.25), it follows that
n−1/2ε̃T Z̃ = Op(1). By Theorem 2.1, it holds that βββ(0) →P βββ0, and we then have
P{Pn1(βββ01 + n−1/2u1) − Pn1(βββ01) = 0} → 1 as n → ∞. Hence, for sufficiently
large C , (A.33) follows from (A.34) and Lemma A.1 and the fact that � is positive
definite. The proof of Lemma A.7 is complete. ��
Proof of Theorem 3.1. Wefirst prove that for anyβββ = (βββT

1 ,βββT
2 )T in the neighborhood

‖βββ − βββ0‖ = O(n−1/2) for sufficiently large n and βββ2 �= 000, with probability tending
to 1, we have

Dn((βββ1,βββ2)) > Dn((βββ1,000)). (A.35)

Observe that

Dn ((βββ1,βββ2)) − Dn ((βββ1,000)) = −2

(
W̃ − Z̃

(
(βββ1 − βββ01)

T ,000T
)T + ε̃

)T

Z̃
(
000T ,βββT

2

)T

+
(
000T ,βββT

2

)
Z̃ T Z̃

(
000T ,βββT

2

)T + n
d∑

k=d1

p′
νn

(∣∣∣β(0)
k

∣∣∣
)

|βk |

By Lemma A.5, we have that n−1/2W̃ T Z̃ = op(1). By (A.25), it follows that
n−1/2ε̃T Z̃ = Op(1). Hence, using Lemma A.1 and the fact that ‖βββ2‖ = O(n−1/2)
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and n1/2νn → +∞ and the result of Theorem 2.1, we deduce that with probability
tending to 1, it holds that

Dn ((βββ1,βββ2)) − Dn ((βββ1,000))

= Op

(
n1/2

) d∑
k=d1

|βk | + n
d∑

k=d1

p′
νn

(∣∣∣β(0)
k

∣∣∣
)

|βk |

= nνn

d∑
k=d1

[
Op

((
n1/2νn

)−1
)

+ ν−1
n p′

νn

(∣∣∣β(0)
k

∣∣∣
)]

|βk | > 0.

By Lemma A.7 and (A.35), there exists a
√

n-consistent local minimizer β̌ββ =
(β̌ββ1,000

T )T of (3.1). Note that

Dn((β̂ββPLS1, β̂ββPLS2)) = Dn((β̌ββ1,000)) − 2
√

n
[
n−1/2(Ỹ − Z̃β̌ββ)T Z̃(θ̂θθPLS − β̌ββ)

+ n−1/2(θ̂θθPLS − β̌ββ)T Z̃ T Z̃(θ̂θθPLS − β̌ββ)

+√
n

d∑
k=d1+1

p′
νn

(∣∣∣β(0)
k

∣∣∣
)

|β̂P L Sk |
⎤
⎦ , (A.36)

where β̂ββPLS = (β̂PLS1, . . . , β̂P L Sd)T .Write Z̃ = (Z̃ZZ1, Z̃ZZ2). Since β̂ββPLS is aminimizers
of (3.1) and β̌ββ is a local minimizer of (3.1), we then have that

(Ỹ − Z̃β̌ββ)T Z̃(θ̂θθPLS − β̌ββ) = (W̃ + ε̃)T Z̃ZZ2θ̂θθPLS2 + (βββ0 − β̌ββ)Z̃ T Z̃ZZ2θ̂θθPLS2. (A.37)

By Lemma A.5, we have that n−1/2W̃ T Z̃ZZ2 = op(1). By (A.25), it follows that
n−1/2ε̃T Z̃ZZ2 = Op(1). The fact that βββ0 − β̌ββ = Op(n−1/2) and Lemma A.1 imply
that n−1/2(βββ0 − β̌ββ)Z̃ T Z̃ZZ2 = Op(1). If β̂ββPLS �= β̌ββ, under the assumptions of The-
orem 3.1, then by (A.36) and (A.37), we have Dn((β̂ββPLS1, β̂ββPLS2)) > Dn((β̌ββ1,000)).
This is a contradiction to the fact that β̂ββPLS is a minimizer of (3.1). So β̂ββPLS2 = 0 and
β̂ββPLS1 = β̌ββ1.

We now prove asymptotic normality part. Consider Dn((βββ1,000)) as a function of
βββ1. Noting that with probability tending 1, β̂ββPLS1 is the

√
n-consistent minimizer of

Dn((βββ1,000)) and satisfies

∂ Dn((βββ1,000))

∂βββ1

∣∣∣βββ1=β̂ββPLS1
= −2Z̃ZZ

T
1 (Ỹ − Z̃β̂ββPLS) = 0

Hence

β̂ββPLS1 − βββ01 =
(

Z̃ZZ
T
1 Z̃ZZ1

)−1
Z̃ZZ

T
1 Ỹ .

By arguments similar to those used in the proof of (2.9), we can prove (3.2). The proof
of Theorem 3.1 is finished. ��
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Proof of Theorem 3.2 Similar to the proofs of Theorems 2.2 and 2.3, we can complete
the proof of Theorem 3.2. ��
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