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Abstract With the influx of complex and detailed tracking data gathered from elec-
tronic tracking devices, the analysis of animal movement data has recently emerged as
a cottage industry among biostatisticians. New approaches of ever greater complexity
are continue to be added to the literature. In this paper, we review what we believe
to be some of the most popular and most useful classes of statistical models used
to analyse individual animal movement data. Specifically, we consider discrete-time
hidden Markov models, more general state-space models and diffusion processes.
We argue that these models should be core components in the toolbox for quanti-
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tative researchers working on stochastic modelling of individual animal movement.
The paper concludes by offering some general observations on the direction of sta-
tistical analysis of animal movement. There is a trend in movement ecology towards
what are arguably overly complex modelling approaches which are inaccessible to
ecologists, unwieldy with large data sets or not based on mainstream statistical prac-
tice. Additionally, some analysis methods developed within the ecological community
ignore fundamental properties of movement data, potentially leading to misleading
conclusions about animal movement. Corresponding approaches, e.g. based on Lévy
walk-type models, continue to be popular despite having been largely discredited. We
contend that there is a need for an appropriate balance between the extremes of either
being overly complex or being overly simplistic, whereby the discipline relies onmod-
els of intermediate complexity that are usable by general ecologists, but grounded in
well-developed statistical practice and efficient to fit to large data sets.

Keywords Hidden Markov model · Measurement error · Ornstein–Uhlenbeck
process · State-space model · Stochastic differential equation · Time series

1 Introduction

Movement ecology seeks to infer why organisms move through space and what con-
straints operate on them as they do. It is the study of how movement shapes their
overall ecology, and the factors, both intrinsic and extrinsic, that influence movement.
Movement ecology broadly concerns the study of both animals and plant movement
and dispersal. While there are commonalities in some aspects of their study, there
are also many differences. In this paper we concern ourselves purely with individ-
ual organismal movement as measured through instruments and sensors which record
position at relatively short timescales. Although it is possible that some of the aspects
we discuss also apply to plants, practically this means we are nearly always referring
to the study of animal movement.

The discipline has been driven by the possibility of telemetering the paths of free-
moving animals navigating their natural habitats. Devices such as satellite and GPS
tags, radio tracking, radar and acoustic monitoring have generated large and, to ecol-
ogists and statisticians alike, largely unfamiliar data sets. Each technology has its
limitations and strengths in terms of accuracy, frequency and longevity. One fun-
damental feature of movement ecology is that it takes a “bottom-up” approach to
understanding population processes: it works by tracking individuals and seeking to
infer properties of populations. This brings several challenges, not least that these
individual-level data do not sit easily within the remit of the conventional biometric
toolbox employed by field ecologists. Statistically, movement processes are reason-
ably described as noisy, nonlinear and highly spatially and temporally correlated. As a
result, ecologists and statisticians alike have searched for new tools for understanding
animal movement.

Yet, movement ecology has also grappled with its conceptual foundations. Despite
being widely recognized as a fundamental process governing population dynamics,
the rationale for studying movement can be somewhat ill-defined. In other areas of
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ecological data analysis, say estimation of animal abundance, the motivation is clear,
namely to determine population size. Moreover, the reasons for wanting such an esti-
mate are clear. We maintain that this is not always the case in movement ecology.
While observations of movement, especially for a new species, are generally interest-
ing, the use of movement analyses, especially in applied ecological settings such as
conservation or management, is not always coherently stated. Additionally, movement
studies often suffer from low sample sizes and, even in an informal sense, a lack of
statistical design (Patterson and Hartmann 2011; McGowan et al. 2016). While these
problems can be difficult or even impossible to overcome, this is of obvious importance
for arriving at a set of statistical methods which are suitable for purpose.

Statistical methods for the analysis of individual movements can be problematic in
at least two ways. First, we contend that some of the models being developed arguably
are overly complex, both structurally and in terms of the machinery required to fit
them. In these cases, the complexity can be beyond what is required to address the
study goals. Care is therefore needed that complex models are not constructed based
on data from a small number of individuals or of short duration. The danger of this is
that much effort is expended on capturing aspects of a possibly unrepresentative data
set. At the other extreme lies another problem, namely that some movement models
are hopelessly simplistic, e.g. relying on a single-parameter model to describe a vast
array of complex behaviours. Yet, literal interpretation of the mathematical properties
of such simple models has been offered as evidence for strong claims about animal
movement.

While similar issues could be identified in many scientific endeavours, there is a
need formovement ecology to recognize these problems.Addressing these requires the
discipline clarifying its collective aims and consciously seeking to build workable and
well-understood analysis approaches that can be widely applied. Part of this process
is the identification of a set of models (a) that are reasonably appropriate to the nature
of most individuals’ movement data and associated research questions, (b) whose
statistical properties are well understood and (c) that are sufficiently computationally
efficient that they may be applied to representative, i.e. sufficiently large, data sets.

Real animalmovements and behaviour are, of course, highly complex and dynamic.
There is a limit towhat can be observed fromposition and sensor data alone. Therefore,
to parse out gross features from the data, it often makes sense to assume movement
processes to be driven by switches between behavioural modes, and several of the
modelling approaches that we discuss below do allow for different phases or modes of
movement. There is a mounting number of papers which seek to make interpretation
of animals’ movements tractable by assuming that they typically move in a set of
movement modes—e.g. rapid movements between regions (“transit” or “exploratory”
movements) vs. highly resident (“encamped”) movements which are related to activ-
ities such as resting or foraging. These approaches are at the core of what we cover
here.

From the outset we admit that our treatment is myopic in the sense that several other
widely used statistical approaches are not discussed in detail—in particular those that
look at broader spatial and temporal scales, at which behavioural state switching is
most likely irrelevant. If considered at all, we provide only a brief overview of those
other approaches and instead focus on three types of models—hidden Markov mod-

123



402 T. A. Patterson et al.

els (HMMs), more general state-space models (SSMs) and diffusion processes—in
much more detail. We identified these as key tools for conducting statistical analyses
of animal movement data collected at the individual level. Accordingly, the paper is
therefore restrictedmostly to consideration of models that analyse trajectories (or met-
rics derived from them).Most commonly, these trajectories are expressed as time series
of geographical coordinates. Our lack of attention to other areas of movement ecology,
or to ecological settings where movement is important, such as resource and habitat
selection, is simply because we regard these as related, but separate branches of the
discipline, characterized by different statistical problems and associated techniques.
We also note that even when we consider animal trajectory data alone, many telemetry
devices record concurrent sensor data that are useful for extracting behavioural signals.
For instance, most instruments deployed on air-breathing marine predators (marine
mammals, seabirds) collect not only position estimates, but also data describing div-
ing behaviour. These sorts of data are obviously relevant to characterize the state of
the animal in sufficient detail in SSMs (to name an example). In acknowledging this
issue, we must also admit that we do not, in this review paper, consider in any detail
techniques or models to tackle these combined data, although we note in passing that
combining types of data is perhaps less of a conceptual and technical jump from exist-
ing techniques than is often appreciated. For an example of an analysis of such a more
complex data set using essentially only standard methods, see DeRuiter et al. (2016),
where time series comprising seven data streams, corresponding to different measures
of blue whale activity, are analysed using a joint state-switching model.

The goal of this paper is therefore to provide a relatively detailed examination
of selected methods for analysis of individual animal tracking data. Our intended
audience are the statistically minded ecologists and ecologically minded statisticians
who are actively working with these data, day to day, although we hope that the
material below might also provide a technically honest entry point for the uninitiated.
This is in contrast to previous reviews in this area (e.g. Patterson et al. 2009), which
have been for a broader ecological audience and by necessity have needed to omit the
technical intricacies.

2 Animal movement data

Data sets on animal movement typically contain positions in space over a sequence of
discrete points in time, observed by using global positioning system (GPS) telemetry
technology, for instance. For land-based animals, this will usually be in the horizontal
plane, while for aerial and marine life, geographical space studies also exist in one
dimension, such as vertical movements of aquatic species—this choice clearly being
dependent on the questions being raised. A few studies exist of where high-resolution
three-dimensional movement data are available (e.g. Laplanche et al. 2015), but these
are less common and we do not consider them in this review. Sampling of locations is
often made at regular time intervals, and the hidden Markov model (HMM) and state-
space model (SSM) approaches described below are, with some important exceptions,
restricted to such data and are not generally well suited to observations that are irregu-
larly spaced in time (but see Sect. 5.6). In contrast, continuous-time approaches, such
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as those based on diffusion models (Sect. 6), straightforwardly accommodate irregu-
lar time intervals, whether they arise by design, through missing data, or through the
limitations of the sensor technology.

Sampling intervals vary considerably across studies, ranging from fractions of sec-
onds up to days. The time difference between observations affects what types of
inference can be made and what modelling approaches can be applied. It is therefore
important that care should be taken when choosing the sampling interval and that
researchers think ahead to the necessary analysis prior to deployment of telemetry
instruments. If the goal of an analysis is to infer the behavioural states of an ani-
mal, or proxies thereof, then observations need to be made at a temporal scale that is
meaningful with regard to the behavioural dynamics of the animal.

Various different movement metrics can be considered when modelling telemetry
data. These include, but are not limited to:

• the bivariate positions themselves or increments of these (velocity or displacement)
in either dimension;

• distances between successively observed positions (usually referred to as the step
lengths);

• compass directions (headings);
• changes of direction between successive relocations (usually referred to as the
turning angles).

We note that, conditional on the position and heading of an animal at the initial obser-
vation, the bivariate series of step lengths and turning angles completely determines
the entire subsequent movement path, and hence all metrics listed above. Step lengths
and turning angles are often considered together when analysing and interpreting
movement data, in particular because they lead to intuitive interpretations (Marsh and
Jones 1988). Note, however, that each turning angle depends on a sequence of three
consecutive observations, and so the arbitrary timescale of the observations is even
more influential.

While this review primarily discusses the case of location data, there are many
other types of animal movement data, such as location derived from light sensors,
accelerometers, magnetometers, measurements of bearing, that are used to derive
position information. Additionally, some deployments of instruments return a mixture
of these. Finally, we note that a wide range of technologies exist that provide informa-
tion on fine-scale behaviours indeterminable from locational data alone. Readers are
directed to Cooke et al. (2004), Cooke et al. (2013), Rutz and Hays (2009), Wilmers
et al. (2015) and Leos-Barajas et al. (2016) for detailed reviews.

3 Overview of individual-level models for animal movement

In most cases, the type of data at hand largely dictates which modelling approach to
use. Given data, a decision whether to use HMMs, SSMs or diffusion processes can
broadly be summarized as follows.

If the data are collected at regular sampling units, e.g. hourly, daily or every time a
marinemammal comes to the surface to breathe, thenmost often a discrete-timemodel
would be used. If in addition themeasurement error is negligible, thenHMMs represent
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a natural, accessible and most likely computationally feasible approach, which would
typically be used to make inference, for example, on how animals interact with their
environment (see Sect. 4). If, however, the measurement error is non-negligible, then
SSMs account for this, at the cost of an increase in complexity, regarding both the
implementation and the computational effort. Like HMMs, SSMs can be used for
making general inference, though in some cases they are applied simply to filter the
noisy locations (see Sect. 5).

If the data are not equally spaced, i.e. if there is no regularity in the sampling
process, then continuous-time models such as diffusion processes constitute the most
natural choice. Of course, these models can also be applied to regularly sampled data.
The main drawback of those models, from a user’s perspective anyway, is that they
are less accessible than HMMs and SSMs (see Sect. 6).

There are, of course, exceptions to the above crude classification of how different
types of data are tied to specific modelling approaches. For example, for irregularly
spaceddata, instead of using a continuous-time approach, it has been suggested to inter-
polate the recorded locations on the required grid, then fitting an SSM that accounts
for the corresponding error due to the interpolation.

4 Hidden Markov models: discrete time, no measurement error

4.1 Model formulation

HMMs are natural candidates for modelling animal movement data. Indeed, HMMs
have successfully been used to analyse the movement of, inter alia, caribou (Franke
et al. 2004), fruit flies (Holzmann et al. 2006), tuna (Patterson et al. 2009), panthers (van
de Kerk et al. 2015), woodpeckers (McKellar et al. 2015) and white sharks (Towner
et al. 2016). One typically considers bivariate time series comprising step lengths and
turning angles, regularly spaced in time and assumed to be observed with no or only
negligible error. Within the HMM framework, such a time series is typically referred
to as the state-dependent process, since each of the corresponding observations is
assumed to be generated by one of N distributions as determined by the state of an
underlying hidden (i.e. unobserved) N -state Markov chain. The states of the Markov
chain can be interpreted as providing rough classifications of the behavioural dynamics
(e.g. more active vs. less active). In the following, we describe the key assumptions
involved in basic HMMs and also howmodel fitting for this class of models can easily
be accomplished. Almost all the methods described below are implemented in the
recently released R package moveHMM (Michelot et al. 2016).

Let the state-dependent process be denoted by {Zt }Tt=1, with realizations zt =
(lt , φt ), where lt is the step length in the interval [t, t + 1] and φt is the turning
angle between the directions of travel during the intervals [t − 1, t] and [t, t + 1],
respectively. Furthermore, let the underlying non-observable N -state Markov chain
be denoted by {St }Tt=1. In the most basic model, the dependence structure is such that,
given the current state of St , Zt is conditionally independent from previous and future
observations and states, and the (homogeneous) Markov chain is of first order (Fig. 1).
We summarize the probabilities of transitions between the different states in the N×N
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Fig. 1 Modelling of bivariate time series comprising step lengths and turning angles using HMMs: illus-
tration of the basic dependence structure as a directed acyclic graph

transition probability matrix (t.p.m.) � = (
γi j

)
, where γi j = Pr

(
St = j |St−1 = i

)
,

i, j = 1, . . . , N . The initial state probabilities are summarized in the row vector δ,
where δi = Pr(S1 = i), i = 1, . . . , N .

HMMs for animal movement data typically involve the additional assumption of
contemporaneous conditional independence (Zucchini et al. 2016). That is, conditional
on the current state, the step length and turning angle random variables are assumed
to be independent:

fi (zt ) = f (zt |St = i) = f
(
(lt , φt )|St = i

) = f (lt |St = i) f (φt |St = i).

(Here and elsewhere we use f as a general symbol for a density function.) This
assumption greatly facilitates inference, yet is not overly restrictive. In particular,
the two component series will still be mutually dependent, because the states induce
dependence between the component series. Plausible distributions for modelling the
circular-valued turning angles include the vonMises andwrappedCauchy. Step lengths
are, bynature, positive and continuous,which renders gammaandWeibull distributions
plausible candidates for modelling this component.

Most of the HMMs considered in movement ecology thus far involve a two-state
Markov chain, where each state is associated with a different correlated random walk
(CRW) pattern. CRWs involve correlation in directionality and can be expressed by a
turning angle distribution with mass centred either on zero (for positive correlation) or
on π (for negative correlation). The two states of the corresponding models are often
associated with the animal being either “encamped” (with mostly short step lengths
and many turnings) or “exploring” (with, on average, longer step lengths and more
directed movement, as expressed by smaller turning angles). This kind of labelling of
the states should be made with caution; it is generally accepted that these states merely
provide convenient proxies of an animal’s actual behavioural state (see Sect. 7.4).

In movement ecology, it is usually of primary interest to relate the state-switching
process to environmental covariates, thereby investigating how individuals interact
with their environment. This can be achieved by considering a non-homogeneous

Markov chain, with time-varying t.p.m. �(t) =
(
γ

(t)
i j

)
, linking the transition proba-

bilities to the covariate vectors, v·1, . . . , v·T , via the multinomial logit link:
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γ
(t)
i j = Pr (St = j |St−1 = i) = exp(ηi j )

∑N
k=1 exp(ηik)

, (1)

where ηi j = β
(i j)
0 + ∑p

l=1 β
(i j)
l vlt if i �= j (and 0 otherwise).

4.2 Inference for HMMs

For a homogeneous HMM, with parameter vector θ , the likelihood is given by

LHMM(θ) = f (z1, . . . , zT )

=
N∑

s1=1

. . .

N∑

sT =1

f (z1, . . . , zT |s1, . . . , sT ) f (s1, . . . , sT )

=
N∑

s1=1

. . .

N∑

sT =1

δs1

T∏

t=1

f (lt |st ) f (φt |st )
T∏

t=2

γst−1,st , (2)

wherewe exploited the dependence structure in the last step. In this form, the likelihood
involves NT summands, rendering its evaluation infeasible even for a small number
of states, N , and a moderate number of observations, T . This has led some users to
believe that a Bayesian approach is required to fit an HMM to movement data, often
leading to the use of WinBUGS. This approach, in which the data are augmented
with the states at each time point, is computationally inefficient because the Markov
chains display high autocorrelation (see Sect. 5.6). Consequently, fitting HMMs to
large movement data sets is often infeasible when using Markov chain Monte Carlo
(MCMC) in this way.

Returning to the likelihood of an HMM, it turns out that the use of a recursive
scheme called the forward algorithm leads to a much more efficient calculation than
via brute force summation over all possible state sequences as in (2). To see this, we
define the forward probability of state j at time t as αt ( j) = f (z1, . . . , zt , st = j),
and the vector of forward probabilities at time t as αt = (αt (1), . . . , αt (N )). The key
point now is that αt can be calculated based on αt−1. More specifically, using the
conditional independence assumptions it can easily be shown that

αt ( j) =
N∑

i=1

αt−1(i)γi j f j (zt ).

Inmatrix notation, this becomes αt = αt−1�Q(zt ), whereQ(zt ) = diag ( f1(zt ), . . . ,
fN (zt )). Together with the initial calculation α1 = δQ(z1), this is the forward algo-
rithm. Rather than separately considering all possible hidden state sequences, as in (2),
the forward algorithm exploits the dependence structure to perform the likelihood cal-
culation recursively, traversing along the time series and updating the likelihood and
state probabilities at every step. Such efficient recursive computation is one of the key
reasons for the popularity andwidespread use ofHMMs—the same trick can be applied

123



Statistical modelling of individual animal movement. . . 407

to forecasting, state decoding (see later) and model checking. The main price to pay
for being able to rapidly conduct such analyses is that theMarkov assumption needs to
be made for the state process. This assumption is somewhat unrealistic in many appli-
cations, but is a good example of attempting to identify the correct balance between
complex models that try to mimic as many aspects of the data as possible, often at the
expense of becoming computationally intractable, and overly simplistic models such
as the Lévy walk which ignores almost all striking features of the data (see Sect. 7.2).

The forward algorithm can be applied in order to first calculate α1, then α2, etc.,
until one arrives atαT , the sumof all elements ofwhich obviously yields the likelihood.
Thus,

LHMM(θ) = αT 1t = αT−1�Q(zT )1t = · · · = δQ(z1)�Q(z2) · · · �Q(zT )1t , (3)

where 1 ∈ RN is a row vector of ones. The computational cost of evaluating (3) is
linear in the number of observations, T , such that a numerical maximization of the
likelihood becomes feasible in most cases. Technical issues arising in the numerical
maximization, such as parameter constraints and numerical underflow, are straight-
forward to deal with (Zucchini et al. 2016).

A popular likelihood-based alternative is given by the expectation-maximization
(EM) algorithm. The EM algorithm also involves an iterative scheme for finding the
maximum likelihood estimate, by alternating between updating the conditional expec-
tation of the states (given the data and the current model parameters), and updating
the model parameters based on the complete-data log-likelihood where the unknown
states are replaced by their conditional expectations. We do not elaborate on EM here,
since we agree with MacDonald (2014) in there being no apparent reasons to prefer it
over direct likelihood maximization, which is easier to implement.

From a Bayesian perspective, the efficient evaluation of the likelihood is also a
great advantage. There is then no need to augment the data with the unknown states:
we can simply use the likelihood as above, applying the forward algorithm, and carry
out either a simple MCMC algorithm over the parameter space, such as random walk
Metropolis–Hastings, or direct numerical maximization over the (log) posterior den-
sity, if approximating the posterior distribution near its mode is adequate.

Of course, an analysis of movement data using HMMs does not end with estimating
the model parameters, and the HMM toolbox offers a variety of additional inferential
techniques. In particular, this includes the Viterbi algorithm, which is a recursive algo-
rithm for “state decoding”—i.e. identifying the most likely state sequence to have gen-
erated the observed time series, under the fitted model. Furthermore, the forward and
backward probabilities can be used to perform state prediction (i.e. calculate the state
probabilities at a given time) and to calculate “pseudo-residuals” (also known as quan-
tile residuals) for model checking. For more details, we refer to Zucchini et al. (2016).

4.3 Real data example: daily movement of elk

To illustrate the HMMapproach to modelling animal movement, we re-analyse the elk
data discussed inMorales et al. (2004). The data set was downloaded from the Ecolog-
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ical Archives (http://www.esapubs.org/archive/ecol/E085/072/elk_data.txt). We note
that this new analysis is neither an attempt to replicate nor an attempt to improve the
models discussed in detail byMorales et al. (2004). The data set comprises four tracks,
each with daily observations and several associated habitat covariates. There are 735
observed locations in total. For more details, see Morales et al. (2004).

We fitted a joint two-state HMM, with von Mises turning angle and gamma step
length distributions, to all four elk’s tracking data, assuming all model parameters to
be common to all individuals. About 2% of the step lengths were exactly equal to
0, which we accounted for following McKellar et al. (2015) by including additional
parameters specifying state-dependent point masses on 0 in the otherwise strictly
positive (gamma) step length distributions. To illustrate the type of ecological inference
that can be made using HMMs, we additionally implemented an AIC-based forward
selection of covariates influencing the state-switching dynamics, as in (1), which led
to the inclusion of exactly one covariate, namely “distance to water” (	AIC compared
to the baseline model without covariates: 11.3). This latter type of inference, i.e. the
fact that HMMs can easily be used to relate the evolution of an animal’s behavioural
states to environmental and habitat conditions, is what most often motivates the use
of HMMs for analysing individual animal movement data (see, for example, Morales
et al., 2004, Patterson et al., 2009, McKellar et al., 2015, DeRuiter et al., 2016).

Figure2 displays the estimated state-dependent step length and turning angle distri-
butions, as well as the estimated effect of the distance to water covariate on the t.p.m.
The state-dependent mean step lengths were estimated as 0.36 and 3.53 in states 1
and 2, respectively, and the associated estimated turning angle distributions indicate
a tendency to reverse direction in state 1 and directional persistence in state 2. It
seems reasonable to follow Morales et al. (2004) and label the two states “encamped”
and “exploratory”. The fitted model indicates that the probability of switching from
“encamped” to “exploratory” was highest when close to water, while the probability
of a reverse switch was highest when away from water (at the times the elks were
located)—according to the fitted model, the “exploratory” state is hardly ever visited
when at distances to water greater than three kilometres.

Figure3displays, for elk-287, the state sequence that ismost likely to havegenerated
this elk’s observations, under the fitted model. This sequence was obtained using the
Viterbi algorithm. Notably, this elk was within 1km of water for the first 89days of
observation (not shown in the figure)—during which the animal frequently switched
between the “encamped” and the “exploratory” state—and > 1km away from water
on days 90–164—during which the animal only occupied the “encamped” state.

4.4 Limitations of the HMM framework

The HMM framework is well suited to deal with animal positions that (a) are observed
at regular temporal spacings (andwhere the sampling unit needs to bemeaningful with
respect to the biological question of interest) and (b) are observed with only negligible
observation, or in this specific case, positional, error.

Regarding (a), it is straightforward to fit HMMs when data are missing at random
on an otherwise regular grid. However, if the sampling protocol varies, or if observa-
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Fig. 2 HMM applied to elk movement data: fitted state-dep. distributions (top row) and estimated effect
of covariate “distance to water” on state-switching dynamics (bottom plot)

tions are made essentially at random times, then the HMM machinery is not suitable.
Discrete-time Markov chains are meaningless without reference to a sampling unit,
and with irregular sampling there is also no obvious way to formulate, for example, a
step length distribution that takes into account the amount of time passed between con-
secutive observations in a sensible way. (Note, however, that there can be meaningful
sampling units that do not involve a regular temporal grid, e.g. positions observed each
time a marine mammal comes to the sea surface, such that the sampling is done on
a dive-by-dive basis.) Continuous-time HMMs, with the underlying Markov process
operating in continuous time, do exist (see, for example, Jackson and Sharples, 2002),
but they are only suitable if the observed process has the “snapshot” property, such
that the kth observation, made at time tk , depends only on the state active at time tk
and not on the entire state trajectory over the interval (tk−1, tk]. While this snapshot
property is often naturally met in medical studies, this is generally not the case for the
kind of movement data typically analysed.
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Fig. 3 HMM applied to elk movement data: example Viterbi output (middle plot), together with corre-
sponding step lengths (top plot) and turning angles (bottom plot), for one of the four elk

Regarding (b), when there is non-negligible measurement error in the locations—
i.e. error that is too large relative to the step lengths and/or the question of interest to
be ignored—then the basic HMM machinery is also not suitable. (If the locations are
observed with error, then there is error in the step lengths and turning angles, and the
way this error is generated does not allow for the use of, say, a simple convolution
of step length and error distributions to be accommodated within the state-dependent
process.) In the next section, we will first discuss how a class of models that is closely
related to HMMs, namely state-space models (SSMs), can be utilized in order to deal
with such positional error. At the end of that section, we will also return to (a), the
problem of irregularly spaced observations.

5 State-space models: discrete time, measurement error

5.1 Model formulation

SSMs are doubly stochastic processes that are very closely related to HMMs. They
have precisely the same dependence structure, with an observed time series such
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St−1 0St 0 St+1

Zt−1 0Zt 0 Zt+1

Yt−1 0Yt 0 Yt+1

. . . . . .
hidden

(behavioural state:
e.g. foraging)

hidden
(true steps & turns)

observed
(steps & turns,

with measurement error)

Fig. 4 Structure of an SSM where observations are step lengths and turning angles, measured with error.
This generalizes the model of Fig. 1. Note that while this structure is possible, it has not been implemented
on real data and is likely to be difficult to apply (see text and Fig. 5 for a more tractable structure)

that any observation depends only on the current value of an underlying unobserved
Markov state (or system) process. This can be generally expressed as

zt = f (zt−1, εt ), (4)

yt = g(zt , ηt ), (5)

where the underlying latent state at time t is given by zt and the (typically noisy)
observation of the latent state is yt . The functions f (·) and g(·) are the process and
observations models, respectively, and ε and η are the process and observation errors,
respectively.

Some authors regard HMMs and SSMs as the same (Cappé et al. 2009). However,
the label HMM is usually used to indicate a model with a finite number of possible
states, whereas in SSMs, the underlying state process typically takes continuous val-
ues and hence involves an infinite number of states. In the literature on movement
modelling via state-switching processes, SSM approaches typically include both the
(true) continuousmovement metrics and the discrete states in the hidden component of
the model, using the link to the observations to describe potential measurement error
(see Jonsen et al., 2005 or Patterson et al., 2008). In contrast, in HMM approaches,
as applied to GPS data, the measurement error is often assumed to be negligible, so
that the hidden component of the model involves only the behavioural states, with
the observed process giving the observed movement metrics, typically step lengths
and turning angles. While this may be acceptable for GPS data, which are generally
very precise, it will not be for other types of tag data such as that involving the use of
satellite tags or light-based geolocators.

We illustrate simple SSMs using Figs. 4 and 5. Figure4 shows an SSM that is
a straightforward extension of the HMM in Fig. 1 to allow for measurement error
in the step lengths and turning angles. Here st is the (discrete) state at time t , as
before, and zt is the vector of (continuous) state-dependent variables at time t , in
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St−1 0St 0 St+1

Zt−1 0Zt 0 Zt+1

Yt−1 0Yt 0 Yt+1

. . .

. . .

. . .

. . .

hidden
(behavioural state:

e.g. foraging)

hidden
(true locations)

observed
(locations, with

measurement error)

Fig. 5 Structure of an SSM where observations are animal locations, measured with error

this case the step length and turn angle. However, unlike in Fig. 1, zt is not observed
directly, and so is modelled as a latent variable; together, xt = {st , zt } forms the hidden
state at time t . Here, yt is the observed step length and turn angle at time t , related
to the true values through the observation process. In practice, however, this model
may not readily be applied: in particular errors in turn angle and step length may be
temporally correlated. Nevertheless, for tags that measure speed (or acceleration) and
bearing, rather than absolute location, models of this type, that include a component
for measurement error in these quantities, may be useful (see Laplanche et al., 2015).
Typically, it is more natural for SSMs tomodel the true location of the animal as one of
the hidden states, rather than the step length and angle; this provides a more direct link
to the noisy observations on animal location that are provided by some types of tag
(e.g. satellite/GPS tags) and it also allows for more explicit inferences about animal
location. This formulation is shown in Fig. 5: here zt is true location and yt is observed
location. Models that include elements of both formulations are, of course, possible—
for example given a marine mammal tag that measures speed, orientation, depth and
occasionally horizontal position (when the animal surfaces), one may envisage a 3-D
model like that of Fig. 5 where yt relates horizontal position and depth to true position
zt , but with an additional observation model to link measured speed and orientation
to change in true position.

In general, SSMs are much less mathematically tractable than HMMs. The likeli-
hood for HMMs, given in Eq. (2), can be readily evaluated and maximized in the form
of Eq. (3). By contrast, the likelihood for the model in Fig. 4 is of the form

LSSM1(θ)= f (y1, . . . , yT )

=
N∑

s1=1

∫

z1
. . .

N∑

sT =1

∫

zT
f (y1, . . . , yT |z1, . . . , zT ) f (z1, . . . , zT |s1, . . . , sT )

f (s1, . . . , sT )dzT . . . dz1
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=
N∑

s1=1

∫

z1
. . .

N∑

sT =1

∫

zT
δs1

T∏

t=1

f (yt |zt ) f (zt |st )
T∏

t=2

γst−1,st dzT . . . dz1,

(6)

and for the model in Fig. 5 is similarly

LSSM2(θ) =
N∑

s1=1

∫

z1
. . .

N∑

sT =1

∫

zT
f (z1)δs1

T∏

t=1

f (yt |zt )
T∏

t=2

f (zt |zt−1, st−1)γst−1,st dzT . . . dz1. (7)

It is clear that evaluation of Eqs. (6) or (7) requires difficult (multidimensional) integra-
tions; closed-form expressions are only available in special cases, where the integrands
are of a particular form, such as the linear normalmodels of theKalmanfilter, described
below. In other cases, model fitting is achieved using computer simulation-basedmeth-
ods within the Bayesian inference paradigm. Two important exceptions are (1) the use
of Laplace approximations to approximate the required integralswithin amixed effects
framework, and (2) discretization of the continuous states so that HMMmachinery can
be used. In the next sections we describe briefly each of these approaches, starting with
the Kalman filter, then discussing the mixed effects and discretization approximations,
before considering two Bayesian inference methods: particle filters and Markov chain
Monte Carlo.

5.2 Kalman filters

The Kalman filter (Kalman 1960) is applicable in the special case of an SSM where
the posterior distribution of the state, conditional on the previous observations, is
analytically tractable. This tractability stems from two crucial assumptions: (1) that
both the process and observation models are linear and (2) that their respective error
processes are Gaussian. The Kalman filter also is a recursive (and inherently Bayesian;
see Wikle and Berliner, 2007) algorithm, updating state estimates while step-by-step
traversing along the time series. Again analogous to the forward–backward algorithm
in case of HMMs, the so-called Kalman smoother can be used to obtain state estimates
given all observations and a fitted model. A good exposition of the Kalman filter is
given by Harvey (1990). Its development was a huge breakthrough in the application
of state-space models to problems in engineering such as radar tracking and has been
applied to a vast number of problems in many fields. The Kalman filter and associated
variants thereof have also been applied to animal movement data. In particular, one
of the most widely used Kalman filters has been developed by Sibert et al. (2003),
Nielsen et al. (2006); Nielsen and Sibert (2007) in a series of papers which tackle the
problem of estimating the position of animals (chiefly marine species) using ambient
light data. Patterson et al. (2010) and Johnson et al. (2008) used Kalman filtering to
correct positional errors in satellite telemetry data fromServiceArgos. Indeed, Service
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Argos now employsKalman filtering routinely to infer amost likely path fromDoppler
measurements from Platform Terminal Transmitter (PTT) devices (Lopez et al. 2014).

5.3 Random effects approaches to SSMs

The SSM formulation is a natural way to view the joint problem of estimation of latent
states given uncertain data, and it fits very naturally to animalmovement problems. The
major barrier to the widespread use of SSMs by ecologists is technical difficulties in
their implementation. Even the simplest linear SSMs are relatively complex for “end-
users”, whose capacity to deploy SSMsmay be limited by complexity of the necessary
statistical machinery used to fit them. A relatively new approach to fitting SSMs offers
analysts a more straightforward and flexible path to develop relatively flexible SSMs
via mixed effects modelling. In this section we closely follow the description given in
Fournier et al. (2012).

The usefulness of this approach comes through the ability to cast the SSM as
a more general hierarchical random effects (or mixed effects) model. In this case
the latent states are random effects, Z = {z1, z2, . . . , zT }. A model for the data
YT = {y1, y2, . . . , yT }, conditional on the unobserved random effects, is given as
fYT|Z (YT|Z, θy) along with a model of the unobserved random effects fZ (Z|θz). It
is immediately obvious that these two components are equivalent to the usual SSM
components of the observation and process models. From this, the joint density of both
the latent states (random effects) and observations conditional on the parameters θ is

fZ,YT(Z,YT|θ) = fZ (Z|θz) fYT|Z (yT|Z, θy). (8)

However, for estimating the parameters θ = {θz, θy} we require the marginal likeli-
hood LM (.). Obtaining this requires integrating over the unobserved random effects

LM (θ |YT) = fYT(YT|θ) =
∫

RT
fZ,YT(Z,YT|θ)dZ. (9)

In the software packages ADMB-RE (Fournier et al. 2012) and Template Model
Builder (Albertsen et al. 2015), the Laplace approximation is used to calculate a fast
approximation of Eq. (9), which is carried out as follows:

LM (θ; y) =
∫

L(θ; z, y)dz

≈
∫

exp

(
l(θ; z, y) − 1

2
(z − ẑθ )

T(−l ′′zz(θ; z,Y )|z=ẑθ )(z − ẑθ )

)
dz

= L(θ; z, y)
∫

exp

(
−1

2
(z − ẑθ )

T(−l ′′zz(θ; z,Y )|z=ẑθ )(z − ẑθ )

)
dz

= L(θ; z, y) · (2π)n/2 · det (−l ′′zz(θ; z,Y )|z=ẑθ )
)− 1

2 ,
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by taking the logarithm

lM (θ; y) = l(θ; z, y) − 1

2
log

(
det

(
l ′′zz(θ; z,Y )|z=ẑθ )

)) + n

2
log(2π). (10)

In ADMB-RE and TMB, automatic differentiation is used to compute the Hessian
matrix, l ′′uu(θ; u,Y )|u=ûθ

of the likelihood function, and minimization is done using
standard numerical methods. This avoids numerical approximation of Hessians and
gradients, which can lead to poor optimization performance through propagation of
errors in numerical differencing schemes.

While thesemethods arewell recognized in somedisciplines, in particular in applied
contexts such as fisheries science for fitting population dynamics models (Maunder
et al. 2009), they are only starting to be more widely used in general ecology and
only very recently in movement ecology. A recent paper of Albertsen et al. (2015) has
applied these estimation methods to demonstrate estimation of a CRW model which
incorporates an Ornstein–Uhlenbeck process on the velocity component. The authors
provide an R package argosTrack which applies these methods to Service Argos
satellite telemetry data. This model is essentially an extension of the CRAWL package
(Johnson et al. 2008), which usedKalman filtering/smoothing of speed filtered Service
Argos data. However, by specifying themovementmodel within amixed effectsmodel
framework, the restriction of Gaussian error terms no longer applies, and Albertsen
et al. (2015) demonstrate a model with t-distributed errors. We feel the mixed effects
approach to fitting SSMs in movement ecology is an exciting and productive way for-
ward as it offers a fast and flexible method for estimating a range of movement models.
Initially, and like the Albertsen et al. (2015) paper, the primary application will be in
constructing more flexible error correction filters. However, it is likely that models
with more ecologically interesting process dynamics could be constructed within this
modelling approach. This sort of hierarchical state-space modelling has previously
only been available via complicated and bespoke modifications to Kalman filters (see,
for example, Meinhold and Singpurwalla, 1989) or with MCMC software (e.g. Win-
BUGS, OpenBUGS, JAGS). These are discussed in papers by Jonsen et al. (2013)
and Jonsen et al. (2006) (and see Pedersen et al., 2011b, for a general comparison of
techniques and software).

As an illustrative example, consider a simple two-dimensional problem. Let zt =
(z1,t , z2,t ) be a two-dimensional state variable (e.g. longitude and latitude, easting
and northing).

zt = zt−1 + ηt , ηt ∼ N (0, �z),

yt = zt + εt , εt ∼ tν(0, �y).

Wesimulate 2000observations froma randomwalkwith independent process errors
�z = Iσ 2

z . To demonstrate how the approach extends the canonical linear Gaussian
case, we simulated a noisy heavy-tailed (t-distributed with degrees of freedom ν)
observation process�y = Iσ 2

y with 40%of times havingmissing observations.Results
are displayed in Fig. 6. This could not be accommodated using a standardKalmanfilter.
The package TMB was used to estimate the model parameters.
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Fig. 6 Estimated track from a random walk state-space model fitted to simulated data with t-distributed
errors and 40% missing observations (N = 2000 positions). Top panel: X–Y coordinates. Bottom panels A
section of 300 time steps from the simulated data shown in the top panel separated intoX and Y components.
In all panels, lines between grey open circles denote consecutive observations; so if a joining line is absent
this denotes an instance where an observation was missed

5.4 Discretizing space in SSMs

In this approach, the continuous latent variables are finely discretized, so that the com-
plexities of integrating over hidden states are reduced to a summation. The standard
HMM machinery can then be applied as described in Sect. 4. This is a powerful and
underutilized approach which also has the advantages of being able to incorporate
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non-trivial spatial constraints such as animals having to avoid barriers to movement
(i.e. water masses for ground dwelling animals that do not swim, or conversely land-
avoidance in marine species). These methods were first demonstrated for geolocation
from depth and temperature sensing tags by Thygesen et al. (2009) and Pedersen et al.
(2008) and typically involve the use of data from sensors aswell as (or instead of) noisy
estimates of x–y position. The sensor data may be compared to spatial fields, and a data
likelihood can be generated for all states in the state space. From there the standard
HMM routines can be applied. The case withMarkov switching between diffusive and
ballistic travel modes was shown by Pedersen et al. (2011a). In all these studies, the
transitions between latent states is governed by a PDE which is solved numerically
to predict movement. A comparison of these methods to non-spatial/behaviour-only
HMMs and switching CRWs fitted using MCMC is given in Jonsen et al. (2013). A
limitation of spatial HMM approaches is that, given the large number of states which
may need to be stored, computational aspects can be important.

5.5 Particle filters

Particle filtering is a widely used technique in computational statistics for making
Bayesian inference from nonlinear SSMs where the emphasis is on “online” (i.e. real-
time or near real-time) estimation of the underlying states—in our case, the true, but
unknown, animal positions and behavioural states (where the application would be
real-time tracking or location forecasting). It is less commonly applied to offline or
parameter estimation problems, although it can be used for both. The nomenclature
is not standardized in this area, and particle filtering is also referred to as sequential
importance sampling and sequential Monte Carlo. Like Markov chain Monte Carlo
(MCMC, described in Sect. 5.6), particle filters can be used to make inference from
very complexmultistatemovementmodels. Two strong advantages of particle filtering
are (1) that it is very easy to set up the algorithm, requiring simply that one can simulate
from themovement model and can evaluate the likelihood of observations given states,
and (2) that particle filtering can be fast to run compared withMCMC. However, when
parameter inference is required, as is commonly the case inmovementmodelling, these
advantages typically disappear. A practical disadvantage for practitioners is that gen-
eral particle filtering software is not typically available, requiring custom-written code.

The starting point for both the particle filtering and MCMC approach to Bayesian
inference on SSMs is to augment the set ofmodel parameters to include additional aux-
iliary variables corresponding to the latent states—i.e. the true locations of individuals
and their behavioural states—which we denote x = {z, s} = {z1, . . . , zT , s1, . . . , sT }.
Further, we specify an initial latent state, x0 = {z0, s0}, corresponding to the location
and behavioural state at time 0. Using Bayes’ theorem, the joint posterior distribution
of the augmented model parameters, given the observed positions y, can be written

π(θ, x|y) ∝ g(y|x, θ) f (x|θ, x0)p(θ, x0)

=
T∏

t=1

g(yt |xt , θ) f (xt |xt−1, θ)p(θ, x0), (11)
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The (marginal) posterior distribution of the model parameters is obtained by inte-
grating out the auxiliary variables. The necessary integration is, however, analytically
intractable.

Particle filtering (and MCMC) both work by generating samples from the posterior
distribution π(θ, x|y). Inferences about model parameters, including latent states, are
then made readily using techniques of Monte Carlo integration—for example, the
posterior mean of θ , z or s can be estimated from the mean of the sample values.
Both methods are described in many texts, but a good general introduction is Liu
(2004). Introductory articles to particle filtering include Doucet et al. (2000), Doucet
et al. (2001) and Arulampalam et al. (2002), and a very basic application to a state-
switching animal movement model is given by Patterson et al. (2008).

Particle filtering generates independent samples from the posterior. There are many
variants, but the most basic, the bootstrap filter can be viewed as an extension of
importance sampling. There, many replicate samples are simulated from a proposal
distribution q(), and each is assigned an importance weight w = π(θ, x|y)/q(); the
weighted samples can then be used to make inferences about the posterior distribution
of interest. These samples are called “particles” in particle filtering. The bootstrap
filter makes three extensions:

1. Advantage is taken of the Markovian nature of the model, so that the algorithm
proceeds one time step at a time, starting by proposing values for time 1 based on
an initial sample for time 0, calculating time-specific weights, w1, and resampling
(see next extension, below), then proposing values for time 2 based on the samples
at time 1, calculating weights w2 and resampling, etc.

2. There is a resampling step at each time period, where the weighted particles are
resampled with replacement with probability proportional to the weight, to yield
an unweighted set of particles that can be used for inference.

3. The initial sample at time 0 comes from the prior p(θ, x0), and the proposal each
time step is based on the processmodel qt = f (xt |xt−1, θ). This results in aweight
of a very simple form: wt = g(yt |xt , θ), i.e. the observation process density.

The filtering algorithm outlined above is also accompanied by a reverse algorithm,
the particle smoother, that is exactly analogous to the backward step of the forward–
backward algorithm in HMMs and the Kalman smoother in Kalman filtering. This
second stage is not relevant for online problems, but is typically applied in offline
problems like post-processing animal movement data.

Hence, all that is required to implement the most basic particle filter (and smoother)
is the ability to sample from the prior distributions of model parameters and latent
states, to simulate realizations from the process model, and to evaluate the observation
process density given values of the latent variables.

Unfortunately, the basic method can suffer from high Monte Carlo error, because
resampling with replacement at each time step from the particles simulated at time
0 inevitably means that there are fewer and fewer of the unique “ancestral” particle
remaining at each time period—a phenomenon known as “particle depletion”. This is
not typically a serious problem for latent variables that are dynamic (i.e. time-varying)
components of the process model, such as animal locations zt and behavioural states
st , because simulating stochastically from the proposal distribution (i.e. the process
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model) at each time step generates new diversity among the simulated particles. How-
ever, for the static model parameters, θ , each time resampling is performed, fewer and
fewer unique values from the original simulated set remain, resulting in an increas-
ingly poor approximation to the posterior distribution. One solution to this is to make
the model parameters time-varying, for example by having expected speed and turn
angle evolve slowly over time according to a first-order Markovian process. This
is the solution adopted by some authors, e.g. Dowd and Joy (2011). Another solu-
tion is to extend the particle filtering algorithm to maintain diversity among particles
in static parameter values, for example by resampling from kernel smoothed esti-
mates of the joint posterior distribution of parameters or by introducing an MCMC
step. An example of an MCMC step, applied after particle filtering in order to facil-
itate static parameter estimation, is Andersen et al. (2007). Many other techniques
are available (see review by Kantas et al., 2015); however, these methods tend to
loose the advantages of simplicity and speed. Perhaps because of this, or perhaps
because of the absence of general software for particle filtering animal movement
data, MCMC (as described in the next section) has been historically the more popular
approach.

5.6 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a very popular approach for obtaining infer-
ence on the model parameters within a Bayesian analysis by simulating (dependent)
samples from the posterior distribution (Eq. 11). Standard easy-to-use computer pack-
ages exist which implement anMCMCalgorithm for a givenmodel, prior specification
and associated data. The MCMC algorithm is performed within a closed “black-box”,
so that in-depth computational details of the algorithm are not required. The most
widely used packages for movement models are BUGS and JAGS (Lunn et al. 2000;
Plummer 2003). Jonsen et al. (2005) provide BUGS code for fitting SSMs with mul-
tiple CRWs to animal movement data, which has been employed widely. However,
we discuss below why such general software packages can perform poorly. Alterna-
tively, bespoke MCMC computer codes can be written with complete control over the
updating algorithm, permitting more general updating algorithms (McClintock et al.
2012). Typically, this is a non-trivial endeavour.

The general structure of theMCMC algorithm for sampling from the joint posterior
distribution specified in Eq. (11) is as follows. At each iteration of the MCMC algo-
rithm, the model parameters, θ , and auxiliary variables, x, are updated. For animal
movement models, a mixture of single and block updates is generally used. Single
updates are typically used for the model parameters, θ , and discrete behavioural
state, st , at time t ; and block updates for the true location of an individual at a
given time t , zt (i.e. the cartesian coordinates are updated simultaneously). Within
the constructed Markov chain, each iteration involves cycling through each individual
model parameter, behavioural state and location parameter (at time t) to update their
values.

For the behavioural state, st , the posterior conditional distribution is of multinomial
form with 1 trial and associated probability for state i = 1, . . . , N ,
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pi = f (zt , st = i |zt−1, st−1) f (zt+1, st+1|zt , st = i)
∑N

j=1 f (zt , st = j |zt−1, st−1) f (zt+1, st+1|zt , st = j)

(for t �= 0, T ). Thus, a Gibbs sampler can be implemented, such that at each iter-
ation of the Markov chain the behavioural state is updated by simulating from the
given multinomial posterior conditional distribution. For the remaining parameters,
the full posterior conditional distribution is of non-standard form so that aMetropolis–
Hastings algorithm is used. For example, suppose that a given iteration of the Markov
chain, the current location at time t is zt (for t �= 0, T ). Simulate the proposed value,
v ∼ q(v|zt ), where q is the proposal distribution. For example, a common choice for
the proposal distribution is a random walk, such that v = zt + ε, where E(ε) = 0. The
proposed value is accepted with probability, min(1, A), where

A = f (zt+1|v, st , θ) f (v|zt−1, θ)q(zt |v)
f (zt+1|zt , θ) f (zt |zt−1, θ)q(v|zt ) ,

using the Markovian structure of SSMs. If the proposed value is rejected the chain
remains in the same location state. The analogous Metropolis–Hastings updates are
used for the remaining model parameters. See McClintock et al. (2012) for further
discussion of such updating algorithms, including where transitions between states
may be dependent on additional factors/covariates.

This form of updating leads to very high autocorrelation in the Markov chain for
the simulated true location states, zt . This is a direct result of the high correlation
between the location of an individual at time t , with their corresponding locations
at time t − 1 and t + 1 (animals do not teleport). This can be immediately seen in
the above acceptance probability for the Metropolis–Hastings algorithm for updating
the location of an individual at time t—the acceptance probability is a function of
the underlying density function for the movement of the individual in the intervals
[t − 1, t] and [t, t + 1]. This leads to generally very poor mixing within the Markov
chain, and low effective sample sizes, so that large numbers of iterations are needed
to obtain converged posterior estimates with small Monte Carlo error. Consequently,
extensive posterior checking should be conducted to assess the convergence of the
Markov chain, for example, using multiple Markov chains with over-dispersed initial
values for themodel parameters and auxiliary variables. For further discussion of these
issues for general SSMs, see, for example, Fearnhead (2011).

Approaches have been proposed to improve the mixing of MCMC algorithms for
SSMs. The most notable (and promising) approach considers a particle MCMC algo-
rithm that combines particle filtering with MCMC (Andrieu et al. 2010). The model
parameters, θ , and discrete states, s, are updated using an MCMC-type algorithm (for
example a single-update Metropolis–Hastings within Gibbs algorithm), and the true
locations, z, updated using a particle filter. In addition, the behavioural states do not
necessarily need to be imputed within the MCMC algorithm. Assuming first-order
Markovian transitions between states, we can use the efficient HMM machinery to
write down an explicit expression for the joint density (i.e. likelihood) of the true loca-
tions, given the model parameters (see Eq.3). In other words the behavioural states do
not need to be treated as auxiliary variables and imputed within theMCMC algorithm.

123



Statistical modelling of individual animal movement. . . 421

Finally, we note that SSMs generally assume observations are recorded at a set
of equally spaced discrete-time intervals. In practice, irregularly spaced time steps
can be forced into the regular time interval SSM framework by linearly interpolating
the recorded location observations at the required time steps (Jonsen et al. 2005;
McClintock et al. 2012).Discrete-timemodels have the advantage of accessiblemodel-
fitting tools (albeit potentially very inefficient) and immediately interpretable model
parameters. However, issues arise, for example, if there is a mismatch between times
between observation and the scale at which transitions occur between states. See
McClintock et al. (2014) for an in-depth discussion of the issues of discretizing time.
An alternative and more natural approach in many situations (though at the expense
of mathematical simplicity) is to consider continuous-time models, discussed in the
next section.

6 Diffusion models: continuous time

Continuous-time modelling of movement almost always makes use of diffusion
processes—Markov processes with continuous sample paths. We distinguish two
broad approaches: one is to build models from the limited selection of tractable diffu-
sion models (Sects. 6.1–6.4) and the other is to define models directly in terms of the
stochastic differential equations that they satisfy (Sect. 6.5). Our emphasis here is on
the former, with animals switching between different movement modes—the direct
equivalent in continuous time of the HMMs of Sect. 4.

6.1 Brownian motion

Brownian motion, or the Wiener process, the continuous-time version of a random
walk model, is the simplest diffusion process, and its density function can be written
down explicitly. If a Brownian motion W (·) starts at location 0 at time 0, then

W (t) ∼ N(0, t�),

where � is a variance–covariance matrix (or, for one-dimensional movement, just a
variance), most commonly with � = σ 2 Id (the isotropic or circular case, with Id
the identity matrix of order d). Brownian motion is an extremely simplistic model,
representing an animal having no interaction with environment, and no directed or
persistent movement. The model is of limited use in its own right, but becomes a
useful component in switching models (Sect. 6.4).

Given a sequence of observations {x(t j )} in d dimensions, the likelihood follows
from the multivariate normal density;

L(�|{x(t j )}) =
∏

j

(2π)d/2|	t j�|−1/2 exp(−(	x′
j (δt j�)−1	x j )/2),

where 	x j = x(t j+1) − x(t j ),	t j = t j+1 − t j .
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Brownian motion is often used as a purely local model. Horne et al. (2007) suggest
thatmovement between known locations can be estimated through the use of Brownian
bridges; this possibility is also implicit in Blackwell (1997, 2003). The Brownian
bridge (B(t), t1 ≤ t ≤ t2) is the stochastic process that arises from Brownian motion
(W (t), t ≥ 0) in which the state of the process is not only known at the start of the
process, but also at the end (Anderson and Stephens 1996). The Brownian bridge
therefore describes Brownian motion conditioned on its state at these endpoints t1 and
t2. With endpoints B(t1) = a and B(t2) = b, the process has

B(t) ∼ N

(
a + t − t1

t2 − t1
(b − a),

σ 2(t2 − t)(t − t1)

t2 − t1

)
, (12)

for t1 ≤ t ≤ t2 (Anderson and Stephens 1996). Specifically, this kind of interpolation
can be informative about an animal’s utilization distribution—themarginal distribution
of its location—and hence about its habitat use. Given two consecutive observations
of location, it is assumed that the animal is moving according to Brownian motion
and so the only movement parameter is the random volatility. The theory of Brownian
bridges allows the likelihood of space use at any time between the two known loca-
tions to be easily evaluated, given the volatility parameter of movement. Furthermore,
given a series of locations over time, disjoint Brownian bridges can be constructed
between pairs of observations and the likelihood can be evaluated due to conditional
independence.

6.2 The Ornstein–Uhlenbeck position model

The Ornstein–Uhlenbeck (OU) process (U (t), t ≥ 0) is a stochastic process intro-
duced byUhlenbeck andOrnstein (1930) as an improvement tomethods for modelling
the movement of particles—based on Brownian motion (see, for example, Guttorp
(1995)). This stationary, Gaussian process is mean-reverting (Dunn and Gipson 1977),
and so has a tendency to drift towards its long-termmean. The equilibrium distribution
of a particle following an OU process in d dimensions is

U (t) ∼ N(μ,�), (13)

whereU (t) and μ are d-dimensional vectors and � is a d × d covariance matrix. The
conditional distribution of the process at a future point in time, given its current value,
can be described as

U (t + s)|U (s) ∼ N
(
eBtU (s) +

(
1 − eBt

)
μ,� − eBt�eB

′t
)

, (14)

where U (t), μ and � are as above and B is a d × d stable matrix—that is, eBt → 0
as t → ∞—so as to ensure a positive-definite covariance (Dunn and Gipson 1977). It
can therefore be seen that μ describes the centre of the process, with rate of attraction
towards the centre controlled by B and with random variation governed by �.
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The OU process is perhaps the simplest continuous-time model that is of use in its
own right. It arises from ecologists’ interest in learning about the home range of an
animal, the spatial range in which it performs its daily survival activities (Börger et al.
2008)—often mathematically defined as the smallest geographical area in which the
animal spends a fixed proportion of time (Jennrich and Turner 1969). Approaches to
estimating the home range include that in Jennrich andTurner (1969), proposing that an
animal’s utilization distribution (see Sect. 6.1) can be represented as a bivariate normal
distribution. This led to the first method for modelling animal positions in continuous
time—given by Dunn and Gipson (1977), who model the (X,Y ) coordinate positions
of an animal by a 2-D OU process. The long-term position of the animal is described
by the equilibrium distribution of an OU process—see (13). Movement therefore has
a random element to it, but the animal is ultimately attracted to a centre, and so has
a well-defined home range. Autocorrelation of successive observations is accounted
for by the conditional distribution of the OU process—see (14).

In the application of the OU process to animal movement, the matrix B is often
taken to be isotropic—uniform in all orientations—with B = bId for b < 0 to ensure
stability. More general classes of B may be used, but note that the class must be
symmetric under rotation and reflection; otherwise, there would be some significance
placed on the coordinate system chosen (Dunn and Gipson 1977; Blackwell 1997).
For example, the general diagonal case is not appropriate, for this reason.

Inference for the OU parameters governing movement in Dunn and Gipson (1977)
is carried out by maximum likelihood methods. A difficulty presented by this method
is the choice of likelihood for the initial observation. Dunn and Gipson (1977) explore
two approaches. One is to ignore the information provided by the initial observation,
effectively conditioning on that observation; this is the approach used most widely in
movement analysis. The other is to use the tractability of the equilibrium distribution
for the animal’s position and add a likelihood term assuming that the initial observation
comes from that equilibrium distribution. They discuss the implications in terms of
statistical information, and the relationship with the actual sampling scheme for the
data.

TheOUprocess addresses the problemof autocorrelation of position,meaninghigh-
frequency “bursts” of observations can be modelled. The OU process, however, will
always result in an estimate of home range being elliptical and unimodal. For some
animals and habitats this will clearly not be an appropriate assumption (Blackwell
1997). Again, this limits the usefulness of the model on its own, but it is an important
component in constructing more realistic models (Sect. 6.4).

6.3 The Ornstein–Uhlenbeck velocity model

The persistent movement modelled using correlated random walks (Sect. 4.1) can be
extended to a continuous-time framework. One such approach is given by Johnson
et al. (2008) and applied to data from northern fur seals in Kuhn et al. (2009). Johnson
et al. (2008) model positions over time indirectly, by formulating a model in terms of
velocity—the instantaneous rate of change of location. The behaviour of the velocity
vector over time is then described by a bivariate OU process—in practice, Johnson
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et al. (2008) use two independent 1-D OU processes. The persistence assumption on
how animals move is thus incorporated as a result of the autocorrelation of the OU
process.

The location of the animal at any time, t , can then be found by integrating the
velocity process up to time t . This results in the location process no longer being
Markovian—as in the OU position model above—as it depends on the entire velocity
process prior to time t . However, the combined process of position and velocity is
Markovian in this model. Observation error in position is incorporated into Johnson
et al. (2008) via a SSM with Gaussian distributed errors and extended in Albertsen
et al. (2015) to allow for non-Gaussian errors.

Statistical inference for all unknown parameters in Johnson et al. (2008) is carried
out using maximum likelihood techniques. Kalman filtering—see Sect. 5.2—is used
to find these maximum likelihood estimates, along with prediction intervals for the
velocity and location of the animal at unobserved times. In Albertsen et al. (2015)
inference is carried out via the Laplace approximation using the R package TMB.

6.4 Modelling switching behaviour in continuous time

Blackwell (1997) suggests an extension to the Brownian and OU models in order to
allow for behavioural “switching”. As in the HMMs of Sect. 4, it is assumed that
at any point in time an animal exhibits one of a finite set of behavioural states.
The process describing the behavioural state of the animal is assumed to follow a
continuous-time Markov process. The animal’s movement is modelled in the same
way as in Dunn and Gipson (1977) by an OU process. The OU process param-
eters, however, are dependent on the behaviour process; when the animal is in
behavioural state i it moves according to anOU process with the parametersμi ,�i , Bi
(Blackwell 1997)—see (14). Brownian motion can be recovered as a limiting special
case.

The Markov process M(t) taking values from a finite state space of size N can be
fully described by its generator matrix, G = {gi j } for i, j = 1, . . . , N . The values
gi j , i �= j describe the infinitesimal transition rate from state i to state j ; the rate of
transitions out of state i is given by −gii . The process can therefore be thought of
as being in a state i for a length of time exponentially distributed with mean −1/gii ,
and then “switching” to another state j for i �= j . An alternative parametrization
(Guttorp 1995) of the process is therefore given by the transition rates out of each

state, λ = {λi } = {−gii }, and the set of jump probabilities Q = {qi j } =
{

gi j
−gii

}
for

i �= j .
Given observed data of a continuous-timeMarkov chain, sufficient statistics for the

process parameters λ and Q are given by t = {ti }, the total observed times spent in
each state i , and n = {ni j }, the numbers of observed transitions from state i to state j
(Guttorp 1995). The likelihood for λ and Q is then given by

L(λ, Q; t, n) = e
∑

i λi ti
∏

i �= j

(qi jλi )
ni j . (15)
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Statistical inference for these models is given in Blackwell (2003), applied to posi-
tional data with known behavioural states at each observation time. Inference is more
complicated than in the Dunn and Gipson (1977) case as the conditional distribution
of the animal’s position—given an earlier position in time—depends on the complete
behaviour process between these two times. This entire behaviour process, however,
is unknown. The approach taken by Blackwell (2003) treats the behaviour process as
“missing” data and usesMarkov chainMonteCarlo (MCMC) techniques.Quantities of
interest are split into three groups, and a hybrid MCMC is carried out, where posterior
distributions are sampled from each group separately, using Gibbs sampling tech-
niques. The three groups are the “missing” complete behaviour process, the behaviour
process parameters and the movement process parameters. Blackwell (1997, 2003)
assumes that the behaviour process is independent of the geographical position of
the animal. Harris and Blackwell (2013) describe spatially heterogeneous extensions
of these models, where movement and behaviour may depend on the discrete spatial
region in which an animal is located at a given instant. Blackwell et al. (2015) give
a method of Bayesian inference for models where switching probabilities may vary
with spatial location, in either discrete or continuous form, and with time; behaviour
is generally taken to be unknown and is reconstructed as part of theMCMC algorithm.

It is important to note that, while it is convenient to refer to the “behaviour process”,
the behavioural state potentially has the same limitations as in the HMMs of Sect. 4;
that is, the statemay reflect a statistical description ofmovement rather than necessarily
being “behaviour” in true biological sense. See Sect. 7.4 for further discussion.

It is also worth pointing out that a “behaviour” here simply refers to a set of param-
eter values, and so different behavioural states may simply represent, for example,
similar kinds of movement centred on different points of attraction. Combined with
dependence of the switching probabilities on location, this means that these mod-
els can represent quite varied interactions with spatially complex environments. See
Harris and Blackwell (2013) for a range of examples, and Blackwell et al. (2015) for
statistical analysis (using the methods outlined in Sect. 6.4.2) of movement in a habitat
known from satellite imaging.

6.4.1 Simulation of a switching diffusion process

To understand the basis of the estimation approaches described previously, it is instruc-
tive to consider how to simulate from a switching diffusion process.

Consider a Markov process M(t) on the finite set of states S = {1, . . . , N } with
underlying generator matrix G = {gi j }. Starting from some initial state s0 at time t0,
this process can be simulated forward until some “end time”, T , using the characteriza-
tion given above. This simulation approach can be extended to incorporate movement
based on switching between some set of diffusion models. Algorithm1 gives details
in the form of pseudo-code. Simply ignoring the locations gives a simulation of the
Markov behaviour process.

Assume a movement model in one dimension following Brownian motion with
volatility V = (0.01, 0.1, 1), determined by a Markov process on 3 states with gener-
ator matrix
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1: Set the current time, t ← t0, state, s ← s0 and location x ← x0

2: Generate t∗ ∼ Exponential(−gss)

3: while t + t∗ < T do

4: Generate x∗ from movement model s, starting at x , run for duration t∗

5: Generate s∗ from the discrete distribution over S\s with probabilities
−gs·/gss

6: Update t ← t + t∗, s ← s∗, x ← x∗ and store

7: Generate t∗ ∼ Exponential(−gss)

8: end while

9: Generate x∗ from movement model s, starting at x , run for duration T − t

10: Store final state T, s, X∗

Algorithm 1: Simulating a Switching Diffusion model with behaviour following

a Markov Process

G =
⎛

⎝
−0.10 0.04 0.06
0.025 −0.05 0.025
0.20 0.00 −0.20

⎞

⎠ . (16)

A simulated realization of this behavioural process and the corresponding locations
at behavioural switching times is shown in Fig. 7 for 100 time-units after starting in
state 1 and at the origin. Note that only locations at the times of switches are shown, as
generated by the simulation. The Markov nature of the movement between switches
means that additional points of the trajectory can readily be filled in using the idea of
a Brownian bridge.

6.4.2 Inference for switching diffusions

As an example of inference for continuous-time models, we again look at simulated
data, from a model switching between three behavioural states according to a Markov
process defined by the generator in 16. Rather than the 1-D Brownian motion in
Sect. 6.4.1, we consider a more realistic model with 2-D movement in each state
following anOUprocess (for position, not velocity). Thismodel is an example of those
discussed by Blackwell (1997, 2003) and so can be fitted using the MCMC methods
described there; here, we use a spatially homogeneous special case of themore general
method, and code, in Blackwell et al. (2015). Figure8 shows the simulated trajectory
from the model.

Our prior distribution of the parameters takes the states to be ordered in terms of
the derived quantity �, the variance on the right hand of 14 with t = 1, for each state.
This enables us to avoid problems of label switching, since behaviour is not observed
and there is no inherent meaning to the labelling of states. Figure9 shows the posterior
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Fig. 7 A simulated realization of the Markov process starting with an initial state of 1 over 100 time-units
and following the generator matrix given in Eq.16
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Fig. 8 Simulated trajectory from the switching OU model. Lines indicating movement in states 1, 2 and 3
are shown in red, green and blue, respectively. Locations when behaviour switches are shown as triangles,
other locations as circles (color figure online)

distributions, in the form of MCMC samples, for the two key parameters controlling
the dynamics in this model, for each behavioural state.

Figures10 and 11 show two ways of visualizing the results of the reconstruction
of states in this example, based on an MCMC run of 1 million iterations. Figure10
shows the posterior probabilities (vertical axis) of the true state taking each of the three
possible values, at the time of each observation. Figure11 shows the same probabilities
as areas of the solid rectangles, with the true trajectory of the process through the three
states superimposed as a solid line.
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Fig. 9 Posterior distributions for parameters of the three behavioural states in the switching OU example.
Parameters for states 1, 2 and 3 are shown in red, green and blue, respectively. True values are shown as
black discs (color figure online)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

St
at

e 
pr

ob
ab

ilit
y

Fig. 10 Posterior probabilities for behavioural states, at the times of observations, in the switching OU
example. Probabilities for states 1, 2 and 3 are shown as solid red, dashed green and dotted blue curves,
respectively (color figure online)

6.4.3 Computation for switching diffusions

The computation for the method of Sect. 6.4.2 is very time-consuming, as it involves
MCMC sampling of behavioural trajectories, conditional on data, which have vary-
ing numbers of change points and can typically only be updated a short segment at
a time. As such, these methods are limited in their application at present and are
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Fig. 11 Posterior probabilities for behavioural states, at the times of observations, in the switching OU
example. Probabilities for states 1, 2 and 3 are indicated as areas of filled red, green and blue rectangles,
respectively; the largest rectangle corresponds to a probability of 1. The true state (known at all times, since
the data are simulated) is shown by the solid curve (color figure online)

certainly not yet feasible for data sets with very large numbers of observations, or
large numbers of individuals. However, high computational cost is not inherent in
these models; improving the algorithms and their implementation, and developing fast
and efficient approximations, is a very fast-moving area of research, making use of
computational ideas from other strands of movement modelling, broader advances in
Bayesian computation and techniques from stochasticmodelling generally.We include
this approach since we believe it has a place in movement modelling which will only
increase.

6.5 Stochastic differential equations

The diffusion models described so far are tractable because they are linear and Gaus-
sian. A more flexible modelling approach is to describe movement within a state
implicitly, in terms of a stochastic differential equation (SDE).

Brownian motion remains a key component in defining such models. A general
SDE can be written as

dX (t) = A(t, X (t))dt + B(t, X (t))dW (t), (17)

whereW (t) is Brownian motion. Discussion of the formal meaning of such equations
is beyond the scope of this paper (but see, for example, Stepanov (2013) for an intro-
duction). The simplest non-trivial example is the OU process, as above, which in one
dimension can be derived as the solution to the stochastic differential equation
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dU (t) = −a(U (t) − μ)dt + σdW (t), (18)

since the attraction towards the long-term centre μ is linear.
SDEs can describe much more flexible movement models, generally at the expense

of computational, and hence statistical, tractability. For example, Brillinger and Stew-
art (1998), Brillinger et al. (2002), Preisler et al. (2004) and Preisler et al. (2013)
all consider the case where the SDE derives from a potential function, by taking
A(t, X (t)) in 17 to be minus the gradient of the potential function, representing an
animal’s attraction to or avoidance of a particular point, line or region in a com-
pletely general way. Brillinger and Stewart (1998) and Brillinger et al. (2002) also use
models for movement that are defined through SDEs incorporating spherical geom-
etry, allowing a natural representation of long-range migration along “great circle”
routes.

In all these cases, some elements of approximation are needed to fit these models.
Typically, a normal approximation to the movement over each time step is used

x(tj+1) ∼ N
(
x(tj) + A(tj, x(tj))	t j , B(tj, x(tj))	t j

)
.

An approximate likelihood can then be derived and maximized; the quality of the
approximation obviously depends on the frequency of the data compared with the
rates at which A(·, ·), B(·, ·) vary. More sophisticated approaches to inference from
SDEs are available, but seem to be rarely used in a movement context, because of the
extra computational cost, particularly in the presence of measurement error.

All the SDE models above take the state of the process to be the animal’s location.
Recent work (Parton et al. 2016) explores a different representation, with the animal’s
bearing and speed following SDEs to give a continuous-time version of the step-and-
turn models described earlier. Implementation involves reconstructing the animal’s
path using MCMC on a finer timescale than that of the observations, avoiding the
arbitrariness of the latter at some computational cost.

7 Discussion

Given the numerous approaches that have been proposed for the analysis of animal
movement data, our review is necessarily myopic in order to avoid superficiality. Thus,
our review does not cover all relevant existing approaches to animal movement mod-
elling, instead focusing on what we believe to be a few of the key tools for conducting
meaningful biological inference from movement data collected at a relatively fine
temporal scale. The rationale behind this was to provide researchers working on this
type of data with a concise overview of the basic toolbox of which we think they ought
to be aware of. We will organize the discussion in the same spirit, not attempting to
cover a wide range of topics, including, for example, the various future directions
of research on animal movement. Instead, we focus on the discussion of what we
consider to be crucial, but sometimes neglected, issues concerning good practice in
animal movement modelling.
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7.1 Formulation of study aims and study design

An area that receives very little attention is that of design of movement studies. This in
itself may cover a variety of aspects. One example is estimation of data throughput—
the amount of data we expect to retrieve from a single instrument. Another is how to
optimize data returns given constraints of bandwidth limitations (e.g. from satellite
tags) against expected longevity. Various aspects of this were tackled by Patterson
and Hartmann (2011) with regard to Service Argos. In that work, a model of failure
rates was fitted to previous tag deployment data, and a simple model of transmission
schedules dependent on the location on the globe was presented. Musyl et al. (2011)
also examined failure rates of similar instruments given various aspects of the subject
animal and tagging protocol. Breed et al. (2011) examined how the choice of duty-
cycling in satellite tags drastically affects the results from Bayesian switching models
(in the spirit of Jonsen et al. (2005)). Another study, by Bidder et al. (2014), examined
the use of engineering approaches to analysis of failure events in biotelemetry. Indeed,
many of these are “engineering” issues, rather than statistical or ecological issues,
although they are crucially important to determining what ecological inferences may
safely be drawn from a particular data set.

More broadly, we are not currently aware of a study that seeks to ask “How many
tags on species X are required to estimate an effect Y?”. Here, Y could be the influence
of habitat type onmovement behaviour or characterizing sex-specific movement rates,
or amultitude of other questions. A possible exception to this is the work by Pagendam
et al. (2011), which looks at using D-optimal designs to examine how many satellite
tags are required to estimate dispersal rates betweenmetapopulations. Examining these
questions a priori and as part of the design of field programs, and even the vetting
of proposals, ought to become standard practice. However, as yet, the minutiae of
such approaches are not being considered. We feel this is an important missing link
in the dialogue between statisticians and ecological researchers. At present, analysis
of animal movement data is often reactive or opportunistic, and the statistics are
seen as a secondary step, only to be engaged in once data are streaming in from
tagged individuals in the field. A recent paper (McGowan et al. 2016) has considered
how conservation efforts can usefully use animal tracking data. Such assessments are
not new in other areas of applied ecology—evaluation of tagging studies has been
frequently employed in fisheries management (e.g. see Sippel et al. 2015; Eveson
et al. 2012). We hope this paper is indicative of a trend towards more quantitative
assessments of the design of tagging studies.

7.2 Retrograde steps in movement analysis

Animal movement patterns continue to be analysed by an array of new statistical
techniques that seek to classify behavioural states (e.g. Madon and Hingrat 2014; Sur
et al. 2014; Zhang et al. 2015). Those that we have discussed here are merely the tip of
the iceberg, relative to the number available in the ecological literature. The approaches
considered here were chosen because we feel that they are currently the best statistical
approaches for analysis of behaviour in relatively high-accuracy individual movement
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tracks. We do not have space to consider the larger literature here, but there are some
general points to be made about model complexity. In this section we consider the
general pitfalls of using what many consider to be too simple a model.

An example of a relatively simple statistical approach that has gained high promi-
nence (see, for example, Sims et al. 2008; Humphries et al. 2010; de Jager et al.
2011) is the Lévy flight (or Lévy walk) hypothesis. This was first proposed as ubiq-
uitous model of random searching behaviour by Viswanathan et al. (1999). Under
this model a simple power function is used to model the distribution of step lengths.
Several papers have argued for the ubiquity of the model and claimed that animal
search strategies that employ stochastic movements in accordance with the model will
be optimal (i.e. lead to the best foraging success in the long run relative to a Brow-
nian motion model). But the approach has also courted controversy (Edwards 2007,
2011; Pyke 2015). Pyke (2015) criticizes the approach on theoretical and largely non-
statistical grounds and states that the controversies regarding statistical methods for
Lévy flights, as discussed, for example, in Edwards (2007), are largely a “red herring”.
This may be true in this particular case. Nonetheless, if statistical inference is used
to guide scientific inference, then it is critical to align the statistical models with the
biological inference so that the two are commensurate and that biological conclusions
are well supported by empirical evidence (Edwards et al. 2012). We believe there are
two critiques of Lévy-like approaches that are not generally appreciated by ecologists.
The temporal dependence in movement data is a crucial factor that must be accounted
for in inference and model selection. Since movement data are often fundamentally
autocorrelated, the samples from any distribution of step lengths are not independent.
This is ignored at the researcher’s peril when attempting to discriminate between can-
didate models/hypotheses. Spurious tests of significance are highly likely, and the
size of animal movement data sets increases the power of any significance test to
discriminate between what could be biologically irrelevant differences. This criticism
applies to both sides of the debate around Lévy-like models. Edwards (2007), in an
article critical of much of the foregoing estimation of Lévy models, details likelihood-
based approaches, but largely ignores the crucial issue of autocorrelation. This is why
such importance should be placed on time series approaches. The methods consid-
ered which do account for temporal dependence are still merely caricatures of the real
processes that influence how animals make decisions about movement. Nonetheless,
they constitute progress towards capturing reality and are often sufficient for capturing
the broad features in the data via a time-dependent (e.g. using Markov assumptions)
likelihood function.

In that sense, we, along with other authors (Pyke 2015), question whether the
strong claims about animal movement (such as ubiquity and optimality) have been
strongly tested by the use of simple models such as those based on power laws. The
set of candidate models in such papers is often pitifully small (e.g. Lévy vs. Brownian
models), and little is to be gained by comparing the merits of two obviously over-
simplified models. In addition, simple models are highly limited in their ability to
encode the results of previous studies. In comparison, and simply as an example,
the HMM framework we considered here can incorporate factors such as energetic
reserves altering behavioural choices (Zucchini et al. 2016), environmental drivers
(Patterson et al. 2009) and individual variation (Langrock et al. 2012).
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7.3 Dependence between individuals

The vast majority of statistical analysis of movement focuses on one individual at
a time. Historically, this made sense give the sparsity of data, but modern global
positioning system (GPS) technology means that it is increasingly common to have
multiple individuals that are simultaneously tracked and potentially interdependent,
either because they interact directly or because they respond to the same events or
variations in their environment. Statistical treatment of this case lags behind the
data collection, notwithstanding the early mention by Dunn and Gipson (1977) and
recent papers using approaches outside the set of statistical techniques considered
here (Scharf et al. 2015; Russell et al. 2016). Within the HMM context Langrock et al.
(2014) described a discrete-time model with state switching, building on the ideas
in Sect. 4 to describe intermittent dependence between animals in a parsimonious
way. Niu et al. (2016) developed this approach in continuous time using the diffusion
approach of Sect. 6, jointly representing the locations of interacting individuals as the
state of a single high-dimensional process. Appropriate allowance for dependence is
crucial for statistically valid exploitation of data currently being generated.

7.4 Interpretation of model states in HMMs and SSMs

In the literature on animalmovementmodelling using state-switchingmodels, whether
HMMs, SSMs or diffusions, the states of the Markov chain are often interpreted as
behavioural states of the animals considered. While the general sentiment of relating
the models’ states to the animals’ underlying motivation clearly makes sense, there
is, in our view, a tendency to over-interpret these types of models. The probabilistic
features within states are data driven in the sense that when fitting themodel to the data
there is no mechanism that would guarantee that the patterns that will be picked up by
the model are in any way biologically meaningful with regard to behavioural states.
The model simply picks up the strongest patterns in the data. For example, there could
be three biologicallymeaningful behavioural states, say resting, feeding and travelling,
but the fitted three-statemodel is such that resting and feeding are lumped together into
onemodel state (due to the step lengths and turning angles being of similarmagnitude),
while short-distance and long-distance travelling activities are differentiated by the
remaining two states (possibly due to insufficient flexibility of the state-dependent
distributions considered). Perhaps even more importantly, the temporal resolution of
the observations will often not allow for any direct interpretation of the states (e.g. if
time intervals between successive observations are such that animals will often exhibit
several different behaviours within each interval).

Blackwell et al. (2015) give examples of various kinds. In their spatially heteroge-
neousmodel of fisher movement, the model states are constrained to have a one-to-one
correspondence with habitat types and are shown to have a much improved fit com-
paredwith a spatially homogeneousmodel, strongly suggesting that the states represent
some biologically meaningful aspect of movement behaviour in response to environ-
ment. Their analysis of wild boar movement has a small supervised element, partly to
tackle statistical issues with label switching; this also has the effect of ensuring that
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particular states correspond to some features of the data that are both obvious and bio-
logically interpretable, namely clusters of locations during periods of inactivity. The
same analysis also illustrates the caveats above; some of the states, originally envis-
aged as “foraging” and “travelling” states, clearly improve the fit of the model, but
their pattern of occurrence suggests that they do not have such a direct interpretation,
but rather capture less interpretable heterogeneity in movement over time.

7.5 Final remarks

Although considerable progress has been made over the last decade, the development
of statistical tools for modelling animal movement data is only beginning to catch up
with the explosion in the volume of corresponding data and associatedmodelling chal-
lenges. There has been, and still is, a huge demand for statistical expertise. Crucially,
we believe that the end-users (i.e. ecologists) mostly do not need more sophisticated
but case-specific and technically intractable models, but instead need intuitive and
practical tools which they can implement and handle themselves. The main challenge
clearly lies in identifying the right balance between overly complex yet inaccessible
and accessible yet overly simplistic modelling approaches. Progress towards this end
will require close collaboration between statisticians and movement ecologists. Such
a process ought to inform all parts of movement ecology, from the design of tags,
sensors and instruments, to study design and ultimate analysis.
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