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Abstract We develop procedures for testing whether a sequence of independent ran-
dom variables has constant variance. If this is fulfilled, the modulus of a Fourier-type
transformation of the volatility process is identically equal to one. Our approach takes
advantage of this property considering a canonical estimator for themodulus under the
assumption of piecewise identically distributed zero mean observations. Using block-
wise variance estimation, we introduce several test statistics resulting from different
weight functions. All of them are given by simple explicit formulae. We prove the
consistency of the corresponding tests and compare them to alternative procedures on
extensiveMonte Carlo experiments. According to the results, our proposals offer fairly
high power, particularly in the case of multiple structural breaks. They also allow for
an adequate estimation of the change point positions. We apply our procedure to gold
mining data and also briefly discuss how it can be modified to test for the stationarity
of other distributional parameters.
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1 Introduction

Let us consider a real-valued sequence of independent random variables Xt corre-
sponding to the times t = 1, . . . , n for some n ∈ N. In addition, let σ 2(t) denote the
variance of Xt for each t = 1, . . . , n. We are interested in testing whether the random
variables under study have a constant volatility as opposed to the alternative of one or
several changes of the variance. This is expressed by the hypotheses

H0 : ∀t, t ′ = 1, . . . , n : σ 2(t) = σ 2(t ′) vs. H1 : ∃t, t ′ = 1, . . . , n : σ 2(t) �= σ 2(t ′).

Testing for changes in the volatility is a topic studied for the most part in the
last forty years. First papers on this problem often rely on distributional assumptions
in order to derive appropriate decision rules. For example, for the Gaussian case
Hsu (1977) constructs a test using cumulative sums of χ2-type random variables,
while Jandhyala et al. (2002) and others propose likelihood based procedures. To
weaken the distributional assumptions later articles such asWied et al. (2012) consider
asymptotic CUSUM-type tests, while Ross (2013) and others introduce nonparametric
alternatives. It should be noted that most of these methods split the sample into two
parts and are therefore constructed to detect at most one change at a time. This can be
quite problematic in cases where several change points lead to comparable variances
for any split of the data in two parts.

The method proposed in the following tries to circumvent this problem by using a
test statistic calculated from several nonoverlapping blocks of data. It performs quite
well on data with several structural breaks, but is also competitive in case of only one
change point. In addition, it does not make any assumptions on the distribution of the
data and keeps the significance level for any sample size.

We adopt a framework within whichmarginal distributional features are locally sta-
tionary, but globally nonconstant. A blockwise constant volatility has drawn attention
inMercurio and Spokoiny (2004) ,Davies et al. (2012) and Fried (2012), among others,
but there are also more general frameworks such as that of blockwise local station-
arity suggested in Guégan (2015). The assumption of a blockwise constant variance
can be formulated using some specified time points 0 = t0 < t1 < · · · < tN = n.
They are understood as possible change point positions. If external knowledge allow-
ing us to choose them appropriately is not available, one can select t0, . . . , tN
equidistantly. The possible change point positions correspond to important events
which may trigger an upward or downward change in the volatility. The values of
the volatility process σ 2(·) are thus allowed to differ for some of the time blocks
Bj = {

t j−1 + 1, t j−1 + 2, . . . , t j
}
, j = 1, . . . , N . Within each time block the volatil-

ity is assumed to be approximately constant.
In accordance with this model, we work under the assumption of independent zero

mean random variables with identical distribution up to scale. In other words, we

assume that the relation P(Xt ≤ x) = F
(
x/

√
σ 2(t)

)
holds for some unknown but

fixed distribution function F for t = 1, . . . , n and x ∈ R. The centered Gaussian
distribution is thus contained as a special case, but heavy tails are also included. The
zero mean assumption is justifiable when dealing with returns or similar data obtained
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from differences of consecutive observations. In other cases, it can be relaxed to
blockwise constant means with known block structure, so that zero mean data results
from preprocessing. For a detailed discussion of the other assumptions in the context
of volatility, see for example Spokoiny (2009) and the references given therein.

The paper is structured as follows: in Sect. 2 a new statistic for testing changes in the
volatility process is motivated. The corresponding test is introduced in Sect. 3, along
with alternative procedures available in the literature. In Sect. 4, all methods presented
before are compared in several simulation scenarios. Hereafter, the best methods are
applied to quality control data concerning face sampling in South African gold mines.
Section 5 summarizes the main results and provides an outlook on possible future
work. A proof for the consistency of our test procedure is given in the Appendix.

2 Test statistics

In this section, we introduce a class of test statistics for testing the constancy of the
volatility process. We then derive explicit representations for some members of this
class.

2.1 Motivation

A reasonable first step in order to test H0 is the estimation of the local volatilities.
Since all random variables are assumed to have zero mean, a natural estimator for the
variance within the j-th block Bj , j = 1, . . . , N , is given by

σ̂ 2
j = 1

τ j

∑

t∈Bj

X2
t . (1)

Thereby, τ j = |Bj | denotes the number of random variables corresponding to the j-th
block Bj , j = 1, . . . , N . These block lengths must be sufficiently large to ensure a
reasonable accuracy of the variance estimations.
Instead of considering the estimated volatilities themselves, we rather work with
their logarithms. This allows us to construct scale independent test procedures, as
we demonstrate in the following. Under the null hypothesis of constant variance,
the logarithmized volatility process log

(
σ 2(·)) constantly equals log

(
σ 2

)
for some

unknown σ 2 > 0. In this case, the function ϕ : R × {1, . . . , n} → C defined by
ϕ(u, t) = eiu log

(
σ 2(t)

)
, where i = √−1, does not depend on t . Hence, for any

t = 1, . . . , n it can be estimated by

ϕn(u) =
N∑

j=1

τ j

n
e
iu log

(
σ̂ 2
j

)

(2)

in a straightforward way. Here, each τ j/n = τ j/(
∑N

i=1 τi ) weights the corresponding
summand according to the number of observations in the j-th block for j = 1, . . . , N .
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If all blocks contain the same number of observations, all weights are equal to 1
N . The

applied transformation f : R → C, f (x) = eiux is closely related to the Fourier
transform and characteristic functions. In our situation, it has the following nice and
intuitive behavior: under H0, the blockwise estimations are closer to each other than
under the alternative. Therefore, they are mapped to points on the unit circle close to
each other. Consequently, the weighted mean ϕn(u) lies relatively close to the unit
circle for every u ∈ R and thus has a modulus near one. Under the alternative, the
logarithmized blockwise estimations differ more than underH0. They are thusmapped
to comparatively distant points on the unit circle for most u ∈ R. Hence, for most
u ∈ R, the weighted mean ϕn(u) is closer to the origin than under the null hypothesis.
Because of that, ϕn(u) has a small modulus under the alternative. This behavior is
related to the well-known property that the modulus of a characteristic function takes
on its maximum value one, identically in u, if and only if the underlying random
variable is degenerate; see Loéve (1977, §14.1). In view of this fact, we propose to
use statistics of the form

Vn =
∫ (

1 − |ϕn(u)|2
)

w(u)du

to test for global constant volatility, whereby here and henceforth integration is meant
over the entire real line. Vn is nonnegative because of |ϕn(u)|2 ≤ 1. The weight
function w : R → R

+
0 is chosen such that a finite Vn is ensured. More details on the

weight function along with explicit representations of Vn for several choices of w are
given in the next subsection.

To the best of our knowledge, the idea of utilizing the property of a Fourier transform
taking on its maximum modulus constantly over u is new in the literature. Neverthe-
less, similar transformations and characteristic functions have been used before for
change point detection, and to a good effect; see for instance Hušková and Meintanis
(2006a, b), Hlávka et al. (2012), and Hlávka et al. (2015). Specifically in these papers,
it is shown that approaches based on Fourier-type transformations are convenient from
the computational point of view, lead to theoretically sound asymptotics, and are com-
petitive compared to more classical procedures. We want to stress the fact that the
aforementioned Fourier-type tests are constructed by comparing the two subsamples
before and after each candidate change point using two-sample techniques (Meintanis
2005). This approach is based on the implicit assumption of only one or at least one
dominant change point in the data. If the latter assumption does not hold, the cor-
responding methods may lose a considerable amount of power. As opposed to this,
our test is designed to handle multiple structural changes by splitting the data set into
several subsamples.

2.2 Explicit representation and weight functions

In this section, we derive a representation of Vn allowing to calculate it in a convenient
way. To handle the integral figuring in Vn , we work with integrable weight functions
w and set W = ∫

w(u)du < ∞. Then, Vn can be rewritten to
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Vn = W −
∫

|ϕn(u)|2w(u)du.

Since the constantW does not depend on the data, it can be dropped for testing. Using
the definition of ϕ in (2), the integral above reduces to

TFour =
∫

|ϕn(u)|2w(u)du = 1

n2

N∑

j,k=1

τ jτk Iw
(
log

(
σ̂ 2
j

)
− log

(
σ̂ 2
k

))
, (3)

where

Iw(x) =
∫

cos(ux)w(u)du.

Since small values of V support the null hypothesis,H0 is rejected for small values of

TFour. This test statistic depends on the data only via the terms log
(
σ̂ 2
j

)
− log

(
σ̂ 2
k

)
=

log
(
σ̂ 2
j /σ̂

2
k

)
, 1 ≤ j �= k ≤ N . Therefore, thanks to taking the logarithm, any scale

factor is canceled out and thus TFour is scale invariant. For that reason, we propose
to use the logarithmized estimated volatilities instead of the estimated volatilities
themselves.
The function Iw can be expressed explicitly for several standard choices of w. These
are the uniform, the Laplace and the Gaussian weighting with corresponding weight
functions

wU (u) = 1(−a,a)(u), wL(u) = e−a|u| and wG(u) = e−au2 ,

respectively. All of them depend on a parameter a > 0. Straightforward computations
lead to

IwU (x) = 2 sin(ax)

x
, IwL (x) = 2a

a2 + x2
, and IwG (x) =

√
π

a
exp

(−x2

4a

)

for the uniform, Laplace and Gaussian weighting, respectively (Hušková and Meinta-
nis 2006a). Thereby, IwU (0) is defined by its limit limx→0

2 sin(ax)
x = 2a.

There also exist alternative choices for w. One example is the data adaptive weight-
ing scheme proposed by Meintanis et al. (2014) for goodness-of-fit testing. Another
weight function is studied in Matteson and James (2014) in the context of multivari-
ate nonparametric detection of general distributional changes. Both weight functions
were considered in our simulations. The corresponding results are not included in
this paper, since, in accordance with our simulations in Sect. 4.1, the choice of the
weight function does not seem to have a large impact on the performance of our tests.
In particular, the data adaptive weighting leads to slightly worse and the weighting
proposed by Matteson and James to essentially the same rejection rates as the three
standard weight functions introduced above. These results match earlier work suggest-
ing that the performance of similar Fourier-type procedures does not depend much on
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the particular functional form of w; see for instance Hušková and Meintanis (2006a)
and Hlávka et al. (2012).
In general, the parameter a figuring in the weight function might also influence the
method’s results. For the weight functions presented before, a large value of a lets w

decay more sharply while the opposite is true for smaller values of a. In the former
case (resp. latter case), more emphasis is placed on ϕ̂(u) for u near the origin (resp.
away from the origin). Note that the behavior of a characteristic function near the
origin reflects the tail behavior of the underlying distribution. Therefore, caution must
be exercised in choosing a. If a is chosen too large, then we might overemphasize
the tail of the underlying law, whereas in the opposite case of a being too small,
these tails will be obscured; see for instance Epps (1993). Other than that, the whole
issue of making an educated guess for a is typically highly technical. It has been
theoretically investigated only under very stringent parametric assumptions both about
the hypothesis being tested as well as about the direction of possible deviation from
this hypothesis; see Epps (1999) and Tenreiro (2009). Fortunately, the simulations in
Sect. 4.1 illustrate that our test seems not to be influenced much by the choice of a,
so that this problem is alleviated.

3 Testing for constant volatility

In this section, we first show how the hypothesis of global constant volatility can be
tested using the statistics defined in Sect. 2. Hereafter, we present a natural estimator
of the structural break position in case of rejection is defined. The procedure allows
for the location of several presumable structural break positions. The section closes
by briefly introducing four alternative methods for the testing problem taken from or
inspired by the literature.

3.1 Testing procedure

The distribution of our test statistic strongly depends on the distribution of the random
variables X1, . . . , Xn . Getting critical values without imposing distributional assump-
tions is thus not possible, at least for small sample sizes. In such situations, resampling
strategies are often of great help. Since under the null hypothesis the X1, . . . , Xn are
independent and identically distributed, we propose to test the stationarity of the vari-
ance using the permutation principle introduced by Fisher (1935). Research in various
fields shows that this approach can lead to quite powerful tests; see Good (2005) for a
monograph treatment with applications to various fields and Hušková and Meintanis
(2006b) in the context of characteristic functions. In our setting, the method is applied
as follows: given the complete original sample, first generate p new samples by ran-
domly permuting the observations p times. Then, determine the test statistic TFour for
each of the p+1 samples assuming that the data was observed in the respective order.
Thereby, the block lengths τ1, . . . , τN as well as N , w and a are the same for each
computation. Under the null hypothesis, the p + 1 test statistics are observations of
identically distributed random variables. Thus, the permutation test rejects H0 at the
predefined significance level α, if the test statistic determined on the original sample
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falls below the empirical α-quantile of all p + 1 test statistics. A formal proof of the
consistency of this testing procedure is given in the Appendix.

3.2 Estimation of structural break positions

If our test rejects H0 in favor of at least one variance change, we typically want to
find out where the structural breaks occur. Therefore, our goal is to locate the presum-
able change point positions. A rough approximation for the position of the dominant

change in variance is given by t j∗ , where j∗ = argmax
∣∣∣log

(
σ̂ 2
j

)
− log

(
σ̂ 2
j+1

)∣∣∣
and the maximization is performed over j = 1, . . . , N − 1. The resolution of this
estimator is obviously limited by the block lengths τ j , j = 1, . . . , N . This is partic-
ularly problematic, if the block boundaries t1, . . . , tN are not determined by a priori
knowledge. In order to alleviate this problem the presumable position of the dom-
inant change in variance can be fine tuned as follows: since we expect a structural
break near the rough estimate t j∗ , we consider the union of the two blocks around
t j∗ , B = {

t j∗−1, t j∗−1 + 1, . . . , t j∗ − 1, t j∗ , t j∗ + 1, . . . , t j∗+1
}
. For the moment, we

focus solely on the observations with indices in B and exclude the ones from the
remaining blocks from this part of the analysis. Our goal is to find the index t∗ ∈ B
such that the empirical variance before t∗, σ̂ 2

1 (t∗), differs the most from the empirical
variance after t∗, σ̂ 2

2 (t∗). Thereby, both σ̂ 2
1 (t∗) and σ̂ 2

2 (t∗) are computed analogously
to (1) using observations from B only. The position of the presumable structural break
is thus estimated by

t∗ = argmax
t∈B

∣∣∣log
(
σ̂ 2
1 (t)

)
− log

(
σ̂ 2
2 (t)

)∣∣∣ .

To ensure meaningful estimations σ̂ 2
1 (t) and σ̂ 2

2 (t) we do not maximize over all t ∈ B
but leave out values of t near the boundaries of B.
Several structural break positions are located in a recursive manner in the spirit of
Vostrikova (1981): after identifying the presumable position of the dominant change
in variance as described above, the sample is split into two parts at that point. The
test procedure is then conducted on each of the two subsets, as long as they are large
enough to ensure reasonable estimations. In case of new rejections, the corresponding
presumable change point positions are determined and the splitting continues. As soon
as the test does not rejectH0 on all current subsamples, the original sample appears to
be split into homogeneous subsamples and the procedure stops. This approach indeed
yields a level α test, since under H0 the permutation test conducted on the complete
sample rejects in only α percent of the cases.

3.3 Alternative methods

The literature offers several approaches checking the stationarity of the variance for
a series of random variables. One of them is the CUSUM procedure. It is a standard
tool in the detection of structural breaks and hence a lot of work is available in this
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context. We choose the method proposed by Wied et al. (2012) as a representative for
this class of tests. It is based on the CUSUM statistic

TCUS = max
1≤t≤n

∣∣∣∣D̂
t√
n

(
σ̂ 2
1:t − σ̂ 2

1:n
)∣∣∣∣ ,

where σ̂ 2
1:l denotes the empirical variance computed from the first l observations, l =

1, . . . , n. The normalizing scalar D̂ is necessary to attain the asymptotic distribution.
The CUSUM approach compares the discrepancies between the estimated variance on
the whole sample to all estimated variances on proper subsamples. It then determines
the maximal deviation signaling a possible structural break. The test is designed to
detect at most one change in volatility. Critical values are derived from asymptotics.
Peña (2005) also compares variances estimated on subsamples to a measure of volatil-
ity estimated on the complete sample. He proposes a test statistic built in a blockwise
manner, namely

TLog = n log

(
n∑

t=1

X2
t

)

−
N∑

j=1

τ j log
(
σ̂ 2
j

)
.

As for our test statistic, the distribution of TLog underH0 heavily depends on the data.
We therefore again apply the permutation principle to obtain a distribution-free test.
Another approach checking the hypothesis of global constant volatility is given byRoss
(2013). It is motivated by the classical distribution-free procedure proposed by Mood
(1954). Instead of using X1, . . . , Xn , their ranks in the complete sample, denoted by
r1, . . . , rn , are determined. Hereafter, the sample is divided into two subsamples for
each possible split position t = 1, . . . , n. For each of these splittings, the standard-
ized statistic of the Mood test is calculated. Its expected value μt = t (n2 − 1)/12
and the standard deviation σt = √

t (n − t)(n + 1)(n2 − 4)/180 hold under the null
hypothesis. Taking the maximum over the possible split positions t = 1, . . . , n results
in

TMood = max
t=1,...,n

∣∣∣
∑t

h=1

(
rh − n+1

2

)2 − μt

∣∣∣

σt
.

Since only the ranks of the observations contribute to the test statistic, the procedure
is distribution-free. Appropriate critical values depend solely on the sample size n and
can be derived by simulations. For several critical values and more details, we refer
to Ross (2013).
In addition, we consider the monitoring procedure based on characteristic functions
proposed by Steland and Rafajłowicz (2014). The authors develop a test statistic com-
parable to ours. It has the advantage that changes in the location process do not affect
the monitoring of the volatility and vice versa. According to the authors,

S j =
∫ [(

Û j (u)
)2 + (

V̂ j (u)
)2]

w(u)du
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is an estimator in the context of characteristic functions which reflects the volatility in
the j-th data block, j = 1, . . . , N . Thereby,w is a weight function and may be chosen
as suggested in Sect. 2.2. The statistics Û j and V̂ j denote the standard estimators of
the real and imaginary part of the characteristic function for the random variables in
the j-th block, j = 1, . . . , N :

Û j (u) = 1

τ j

∑

t∈Bj

cos (u · Xt ) and V̂ j (u) = 1

τ j

∑

t∈Bj

sin (u · Xt ) .

We transfer the monitoring procedure of Steland and Rafajłowicz (2014) to the retro-
spective case in the following way: since H0 should be rejected if the volatilities in
two blocks are substantially different, we propose to use

Tcf = max
1≤ j<k≤N

∣∣S j − Sk
∣∣

to test the null hypothesis via the permutation principle.
Note that for any j = 1, . . . , N one can express S j as

S j = 1

τ 2j

∑

t,t ′∈Bj

Iw
(
Xt − X ′

t

)
,

so that by (3) our statistic TFour can be interpreted as aweighted version of S j computed
on the pseudo-observations log

(
σ̂ 2
1

)
, . . . , log

(
σ̂ 2
N

)
.

All four methods presented in this section reject the hypothesis of a global constant
volatility for large values of the corresponding test statistic.

4 Evaluation of the methods

In this section, we compare the performance of our permutation tests based on TFour to
its competitors listed in Sect. 3.3. For this purpose, we compute the empirical power of
each procedure for different data cases. We thereby address the choice of parameters
and weighting functions. Hereafter, the best methods are applied to gold mining data.

4.1 Choice of settings

As a first step of the analysis, we assess the influence of the weight function w, its
parameter a and the number of the blocks N on the tests based on the Fourier-type
statistics TFour and Tcf , respectively. Since both methods are constructed using the
permutation principle, they attain a predefined significance level α under the null
hypothesis of global constant volatility. We thus consider their empirical power under
various alternatives as an adequate measure of performance.
The tests are evaluated on datasets consisting of 200 observations each. The first half
of every sample is generated from the standard Gaussian distribution. The second
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Table 1 Rejection rates given
in rounded percent for data with
one increase in the variance in
the middle of the sample for the
permutation tests based on TFour
and Tcf , respectively

wU wL wG

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

TFour
N = 5 80 80 81 81 80 80 80 80 81

N = 10 72 72 72 71 72 71 72 72 71

Tcf
N = 5 68 69 65 60 65 68 66 68 69

N = 10 47 50 42 34 42 46 43 48 49

We thereby vary the weight
function w, its parameter
a = 0.5, 1, 1.5 and the number
of equidistant blocks N

Table 2 Rejection rates given in rounded percent for data with one increase in the variance in the middle
of the sample for the permutation tests based on TFour and Tcf for different numbers of initial equidistant
blocks N = 2, . . . , 10

2 3 4 5 6 7 8 9 10

TFour 96 82 93 79 85 71 79 66 74

Tcf 98 77 86 67 68 56 62 48 50

100 observations are sampled from the Gaussian distribution with increased standard
deviation 1.5 and mean 0. In this manner, we proceed generating 1000 datasets and
apply both tests to them. Following the discussion in Sect. 2.2, appropriate values for
the weight parameter a > 0 are chosen from the literature on empirical characteristic
functions, which are comparable to our quantity ϕ̂N ; see for instance Jiménez-Gamero
et al. (2009), Potgieter and Genton (2013) and Pardo-Fernández et al. (2015). In
accordance with this prior experience, we consider the values a = 0.5, 1, 1.5 for the
uniform (wU ), Laplacian (wL ) and Gaussian (wG) weight functions. The number of
equidistant blocks is set to N = 5 and N = 10 and 2000 permutations are conducted
for both test procedures. The resulting rejection rates are shown in Table 1.

According to Table 1, the choice of the weight function w and its parameter a do
not have a large influence on the performance of our test based on TFour. The second
method seems to be more strongly affected by these settings. Unsurprisingly, both
procedures heavily depend on the splitting of the data into blocks. For the considered
data scenario, the tests lead to lower rejection rates for N = 10 than for N = 5
although for N = 5 the true structural break lies in the middle of one block. We also
observe that our newly proposed test considerably outperforms the procedure using
Tcf in all cases. In the following, we restrict ourselves to the Gaussian weighting
and a = 1.5 for both tests due to the results in the previous analysis. Repeating the
simulation for N = 2, . . . , 10 yields the rejection rates in Table 2.

As expected, the choice of N = 2 blocks leads to the highest rejection rates, since
this data splitting perfectly fits the true volatility clusters. For the same reason, even
values of N attain better results than the corresponding odd neighbors N − 1 and
N + 1. In general, the rejection rates decrease with N , since many small blocks lead
to worse estimates of the volatility in the individual blocks. Also, for large N some
blocks estimate the same volatility. The difference of the corresponding logarithmized
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Table 3 Rejection rates given in rounded percent for data with one increase in the variance after 20% of
the observations for the permutation tests based on TFour and Tcf for different numbers of initial equidistant
blocks N = 2, . . . , 10

2 3 4 5 6 7 8 9 10

TFour 25 34 48 69 53 44 42 49 50

Tcf 26 35 47 70 48 37 36 32 36

blockwise estimates figuring in TFour is thus not equal to 0 solely due to sampling error.
Therefore, more terms than necessary contribute to the mean TFour, so that the impact
of the terms reflecting actual changes of the volatility are downweighted. Lastly, we
observe that, up to a certain degree, the correct position of the blocks is more relevant
than their actual number. For example, even though N = 2 is optimal in this case,
N = 6 is preferable to N = 3 and N = 5 for the test using TFour.
To study the latter point in more detail, we repeat the simulation presented above with
the structural change now taking place after 20% of the observations rather than in the
middle of the sample. Table 3 provides the corresponding rejection rates.

According to the results, choosing a few oversized blocks can be more problematic
than using many small blocks. In the scenario investigated, N = 5 blocks free of
structural breaks attain the best results, although actually just two volatility regions
exist. For N = 2, the correct number of blocks, the data is split at the wrong position
leading to worse performance of both methods. As before, one can observe a general
decrease in power after the optimal choice N = 5 and relatively good results for
its multiple N = 10. These findings consistently apply for both tests. Thereby, TFour
leads to increasingly higher rejection rates compared to Tcf as N , the number of blocks
increases. We will revisit the problem of block-choice in the discussion.

4.2 Method comparison

We now apply all tests introduced in Sect. 3 in six different data scenarios. To present
the settings in a clear and compact way, let the notation |n = n1, σ = s1| n = n2, σ =
s2| describe n1 observations with standard deviation s1 followed by n2 observations
with standard deviation s2. Generalizing this representation to the case of several data
blocks allows us to represented the scenarios under study in the following way:

(1) |n = 200, σ = 1|
(2) |n = 100, σ = 1| n = 100, σ = 1.5|
(3) |n = 100, σ = 1| n = 100, σ = 1.5 |n = 100, σ = 1|
(4) |n = 100, σ = 1| n = 100, σ = 1.4 |n = 100, σ = 1| n = 100, σ = 1.4

|n = 100, σ = 1|
(5) |n = 100, σ = 1| n = 50 , σ = 1.6 |n = 100, σ = 1| n = 150, σ = 1.2

|n = 100, σ = 1|
(6) Four random structural breaks in 500 observations

Thefirst fiveof themcorrespond to thenull hypothesis and the case of one, two, four and
four nonequidistant changes in volatility, respectively. In scenario (6), we randomize
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both the positions of the structural breaks as well as the variances within the blocks
for every sample. The four change point positions are sampled uniformly from the
values 40, 41, …, 460 such that the resulting blocks contain at least 40 observations.
The corresponding variances are randomly chosen from the values 0.6, 0.8, 1.0, 1.2,
1.4. Thereby, wemake sure that subsequent blocks do not share the same variance. For
each of these six scenarios, three distributions are considered. These are the standard
Gaussian distribution (G), the t-distribution with 5 degrees of freedom (t5) and the
exponential distributionwith parameterλ = 1 (exp) shifted to have zeromean. In order
to obtain the desired standard deviations, scaling is applied. The six data scenarios
and the three distributions yield 18 data cases in total. For each of them, 10,000
replications are generated. All five tests introduced in Sect. 3 are applied to this data at
a significance level of 5%. The permutation tests are executed with 2000 permutations.
The procedures involving blocks are conducted using N = 10 equidistant data blocks
on the original data and all subsamples. To reduce the computational burden, the tests
based on TFour and Tcf are carried out only for a = 1.5 andw = wG due to the analysis
in the previous subsection. The resulting rejection rates are listed in Table 4.

Under the null hypothesis, all methods roughly keep the significance level of 5%.
For non-Gaussian data, however, the asymptotic of the CUSUM test does not provide a
good approximation so that its rejection rates are somehat low underH0. As expected,
the CUSUM procedure leads to the best results for Gaussian data with one volatility
change, but loses a considerable amount of power in presence of multiple structural
breaks due to masking effects. We observe a similar loss of efficiency for the Mood-
type test. Much like the CUSUM approach, the distribution-free procedure is based
on a two-sample test. It therefore also implicitly anticipates one structural break at
a time. Nevertheless, the procedure proposed by Ross (2013) clearly outperforms its
competitors in the case of exponential data in all but the fifth data scenario. In the latter
setting, its rejection rate is still fine, but the procedure does not dominate its competitors
any longer. The tests based on TFour and TLog overall lead to competitive results. In
particular, their performance often improves when multiple structural breaks occur,
in contrast to the CUSUM and the Mood-type test. As a consequence, they clearly
outperform the CUSUM test for all distributions under study and the test proposed
by Ross for the symmetric distributions in case of more than one volatility change.
Among the two, TLog leads to slightly higher rejection rates. The test using Tcf performs
similarly to TFour and TLog, but is inferior to both in all but two considered scenarios.
This is in accordance with the results discussed in Sect. 4.1. In general, the rejection
rates of all tests are lower for t-distributed data than for the corresponding Gaussian
case. This indicates that heavier tails make the detection of the breaks more difficult.
A good test for structural breaks should have high rejection rates under various alter-
natives. However, it also must adequately determine the causes of the heterogeneity
causing the rejection. Otherwise, it connects the correct rejection with an irrelevant
event leading to false conclusions. We therefore take a closer look at the estimated
number and location of the structural breaks of the methods. Thereby, we focus on the
results for the blockwise procedures based on TFour and TLog, which showed the best
overall performance in our opinion. Both tests are conducted in the recursive manner
as explained in Sect. 3.2. Their mean numbers of estimated change points are listed
in Table 5 for the six data scenarios investigated above for t-distributed samples:
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Table 4 Rejection rates given in percent for all tests introduced in Sect. 3 for the six different volatility
scenarios on page 11 and for Gaussian (G), t-distributed (t5) and exponential data (exp)

TFour TCUS TMood Tcf TLog

H0

G 5.2 4.9 5.3 5.0 5.4

t5 5.0 3.5 5.1 5.3 5.1

exp 5.0 3.0 4.8 5.2 5.1

1 break

G 71.0 89.3 78.4 44.1 74.6

t5 47.2 51.1 65.8 35.1 47.4

exp 49.1 31.8 99.0 26.3 41.4

2 breaks

G 78.5 2.6 38.1 55.2 82.7

t5 50.6 1.9 29.0 42.9 52.3

exp 44.3 1.4 83.6 31.0 41.1

4 breaks

G 77.7 0.7 14.6 55.6 80.1

t5 70.1 0.7 20.4 64.8 69.7

exp 56.1 0.9 70.4 43.7 53.7

4 noneq. breaks

G 88.9 0.3 14.6 80.8 92.0

t5 56.2 0.7 12.6 65.5 60.8

exp 44.7 0.8 42.6 43.3 46.4

4 random breaks

G 93.7 45.4 85.9 91.5 93.0

t5 82.9 29.2 80.4 82.2 81.2

exp 75.6 21.2 95.6 68.5 72.9

Table 5 Mean number of detected structural breaks for the permutation tests using the blockwise statistics
TFour and TLog on data generated by the t-distribution with five degrees of freedom for the six data cases
introduced on page 11. In brackets, the mean number of detected structural breaks among the samples with
rejection is given

H0 1 break 2 breaks 4 breaks 4 noneq. breaks 4 random breaks

TFour 0.07 (1.4) 0.70 (1.48) 1.05 (2.08) 1.66 (2.37) 2.16 (3.84) 1.73 (2.08)

TLog 0.08 (1.56) 0.76 (1.60) 1.15 (2.20) 1.74 (2.48) 2.28 (3.75) 2.41 (2.96)

To interpret the results correctly keep in mind that each data case was chosen such
that the rejection rates of all tests are below 100% so that the tests are compara-
ble. Therefore, unsurprisingly, both tests do not detect all structural breaks, since the
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Fig. 1 Change point positions estimated by the permutation procedure for two (top) and four (bottom)
present structural changes for the test based on TFour (left) and TLog (right)

volatility changes are simply not that clear by construction of the setting. Quite intu-
itively it seems harder to detect all structural changes the more of them occur. The
test based on TLog rejects more often and thus estimates more structural breaks on
average. The differences are quite small though. We also provide the mean numbers
of estimated structural breaks only considering the samples where the tests reject. As
indicated by the values in brackets, both methods determine a reasonable number of
presumable structural breaks if they reject at all. Their results are again quite similar.
The estimated change point positions for the case of two and four equidistant structural
breaks for t-distributed data are presented in Fig. 1 for both methods. Note that both
tests estimate presumable change points in the same way in case of rejection, see Sect.
3.2. The different results are thus mainly a consequence of additional rejections of the
method based on TLog on subsamples. Figure 1 reveals that the test based on TFour
estimates the true change point positions muchmore precisely than the one using TLog.
Consequently, the estimated change points due to additional rejections of the latter
method do not coincide with the true structural breaks for the most part. This suggests
that tackling the detection of structural breaks via Fourier-type transformations is
advantageous in comparison with a simpler blockwise approach. The price paid by
a somewhat smaller rejection rate is outweighed by a more exact estimation of the
change point position.

Next, we investigate how the structural break position influences the methods’ per-
formance. Therefore, we repeat the simulation for Gaussian data and one volatility
change increasing from σ = 1 to σ = 1.5. This time we let the structural break occur
after 10, 20,…, 80%, or 90% of the 200 observations.We apply all tests presented, but
leave out the permutation test based on Tcf due to its poor results in the previous sim-
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Table 6 Rejection rates given in rounded percent for different volatility tests in case of one volatility
change occurring after different proportions of the data

10% 20% 30% 40% 50% 60% 70% 80% 90%

TFour 28.6 50.3 65.3 67.4 75.1 70.1 58.7 45.3 20.3

TCUS 9.3 25.3 57.1 80.1 88.5 88.5 79.6 55.7 11.8

TMood 16.2 47.7 66.9 71.2 78.5 75.0 68.9 59.7 38.2

TLog 25.3 47.3 63.1 68.2 76.8 75.4 65.8 57.6 34.2

ulations. The corresponding rejection rates based on 1000 replications are presented
in Table 6.

The best results for all methods are attained when the structural break is in the
middle of a sample. The rejection rates decrease the more the volatility clusters differ
in size. The best procedure for a break in the middle of the sample, the CUSUM test,
is most severely affected by this fact. Its rejection rates drop the most when the data is
almost exclusively generated from one model. In general, better results are achieved
for all tests if the majority of the data has a standard deviation of 1 rather than 1.5. The
overall variance of the data in this case is smaller leading to a more precise decision
process.
The simulation presented next allows to assess the importance of our zero mean
assumption. As before, we induce one or two structural breaks on 1000 Gaussian
samples of size 200, respectively, and apply our test based on TFour to the data. Here-
after, the data sets are centered by their arithmetic means and again passed to the
permutation test. In case of one volatility change, we get rejection rates of 70.3% for
the uncentered data and 70.2% for the centered equivalents. For two strucural breaks,
the results are 76.0 and 75.2%.We thus conclude that demeaning has a negligible effect
on the performance of our test even for comparatively small numbers of observations.
Instead of zero mean data, it is thus possible to assume an unknown constant mean.
Finally, we compare the tests on artificial data with linearly increasing variance. For
this purpose, we simulate 500 datasets containing 200 observations each. The first 100
observations for each of them are generated from the standard Gaussian distribution.
The remaining ones are drawn from Gaussian distributions with mean zero and a vari-
ance increasing by 0.025, that is, σ 2(101) = 1.025, σ 2(102) = 1.05, . . . , σ 2(200) =
3.5. The corresponding rejection rates for the test under study are 83% for TFour, 94%
for TCUS, 89 % for TMood and 88% for TLog. We repeat the simulation now increasing
the variance by 0.1 each time. This time all tests reject the null hypotheses of constant
variance in all cases. Kernel density estimates of the estimated change point positions
for each test are given in Fig. 2. Hereby, we use the Gaussian kernel and the default
bandwidth selection for the kernel routine in R.

The test based on TFour does not detect the structural break position well in case of a
comparatively small linear increase in the variance. In contrast, the other tests correctly
estimate potential change points almost exclusively after the 100th observation. In
case of increased variance growth, our procedure performs much better than before
relatively to its competitors. It is more sensitive to the first change of the variance and
does not get distracted by the linear increase after the 100th observation.
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Fig. 2 Kernel density estimates of the estimated positions of potential structural changes for different tests
in case of a linear increase in the variance by 0.025 (upper row) and 0.1 (lower row) after 100 observations

4.3 Application

For further illustration of the methods, we consider a data set related to gold mining
in South Africa introduced in Rowland and Sichel (1960). The extraction and pro-
cessing of gold are quite expensive. Therefore, ore samples are collected in mines
and checked for their gold content by chemical examinations to discover promising
cultivating regions. However, taking representative samples is quite complicated due
to the highly irregular gold concentration. This leads to unreliable results in particular
for new samplers. Thus, experienced supervisors resample part of the work. The data
considered in the following and presented in Fig. 3 are taken from Jandhyala et al.
(2002). It consists of 157 logarithmised ratios of gold contents in samples collected
by a junior sampler to samples mined by a supervisor at the same locations. The data
are arranged in chronological order. Values with a large modulus therefore indicate
a high disagreement between the two corresponding samples. Such a result is inter-
preted as nonrepresentative sampling by the junior sampler. We follow the arguments
of Jandhyala et al. (2002) stating that unreliable sampling does not induce a bias in
the data, but rather leads to more unstable results. In accordance with these authors,
we thus assume zero mean observations. To evaluate the work of the junior sampler,
we check the constancy of the variance of the data applying the tests performing best
on artificial data.

Using N = 5 almost equidistant blocks, the Gaussian weighting and a = 1 the test
based on TFour detects a variance change at observation 81. This seems plausible in
view of the data and is in accordance with the results in Jandhyala et al. (2002). Note
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Fig. 3 Logarithmised ratios of gold contents in samples collected by a junior sampler to samples mined
by a supervisor at the same 157 locations (Jandhyala et al. 2002)

that last-named authors propose a method relying on Gaussianity, while our procedure
is valid regardless of this assumption. The test based on TLog detects only one change
point at observation 42. It thereby neglects both the region of comparatively high
variance around observation 55 as well as the high peak at observation 77. Therefore,
the procedure based on TFour appears to be more favorable in this application.

5 Conclusion and outlook

In this work, we consider the problem of testing whether a sequence of random vari-
ables has constant volatility over time. In accordance with Spokoiny (2009), Davies
et al. (2012) and other authors we assume that the volatility is approximately piece-
wise constant. We thus propose a new test based on blockwise volatility estimates and
a Fourier-type transformation. According to our extensive simulations, it performs
competitively in comparison with alternative procedures from the literature in case of
data from symmetric distributions. In particular, our test is recommendable if several
structural changes may occur. In case of rejection, it determines the structural break
positions adequately. An application to gold mining data also leads to meaningful
results.
Our concept can easily be adapted for testing the constancy of other distributional
properties such as skewness, kurtosis or tail behavior. This can be achieved in a straight-
forward way: one simply substitutes the estimator of the local variance presented in
(1) by another measure reflecting the quantity of choice. Robust estimators of scale
can also be incorporated in this way, if outliers are an issue. Simulation results for
the case of kurtosis not reported here show that the corresponding method performs
similar to the volatility case.
In forthcoming work, we would like to further explore the asymptotic behavior of our
test statistic. First results in this regard indicate that under certain additional assump-
tions, the asymptotic distribution of TFour for a particular weight function is Gaussian
under the null hypothesis. These investigations however are the subject of ongoing
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work. Also, we are interested in extending our methods to dependent observations
considering a more general framework; see for instance Brooks et al. (2005); Feunou
and Tédongap (2012); Harvey and Siddique (1999). In this connection, appropriate
resampling techniques might be of great help. Finally, our procedure might benefit
from a more refined choice of data blocks. We have considered two initial approaches
for this purpose. The first one pre-estimates potential structural breaks by applying a
fast heuristic to the data. For any possible split position, the heuristic estimates the
variance both shortly before as well as shortly after the split position. It then returns
the positions with the largest discrepancies between the two corresponding estimated
local variances. To avoid representing the same structural break several times, we
thereby exclude positions close to ones with even greater local variance changes. The
second approach determines the best of several given data partitions by maximizing
a properly standardized version of our test statistic. The choice of N = 10 fixed
equidistant blocks performed almost equal or better than both alternative strategies
for the simulation settings presented in this manuscript and in particular for the case
of four randomized structural breaks. Thus, for the moment, we recommend to use
somewhat more than twice as many equidistant blocks as the expected number of
structural breaks. In this way, the majority of the blocks are free of structural breaks so
that the test’s power should be decent. Nevertheless, there is certainly room for further
improvement.
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Appendix

In this subsection,we prove the consistency of our permutation test based on Vn against
a change in volatility alternative, as specified in H1.

Let us first recall our definitions

ϕn(u) =
N∑

j=1

τ j

n
e
iu log

(
σ̂ 2
j

)

and Vn =
∫ (

1 − |ϕn(u)|2
)

w(u)du,

whereby σ̂ 2
j = 1

τ j

∑
k∈Bj

X2
k for j = 1, . . . , N . The X1, . . . , Xn are assumed to

be independent zero mean random variables. The corresponding variances remain
constant within each block Bj , i.e., Var(Xt ) = σ 2

j ,∀t ∈ Bj , j = 1, . . . , N . We
consider weight functions w which are integrable and positive, except possibly over a
set of measure zero.

We prove consistency of our test in scenarios with an arbitrary but fixed (in n)
number of change points, where the number of observations inbetween the change
points grows linearlywith the same rate (infill asymptotics).Assume that N equidistant
blocks are chosen, with N = Nn growing slower than linearly in n, such that the block
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length grows in n, too. Then the fraction of the blocks corresponding to the same true
variance asymptotically equals the fraction κ j , j = 1, . . . , ν of observations with this
variance. Thereby, ν denotes the number of different true variances. We then have

ϕn(u) → ϕ(u) =
ν∑

j=1

κ j e
iu log σ 2

j .

ϕ is the characteristic function of a random variable, say Y , which satisfies

P

(
Y = log σ 2

j

)
= κ j for j = 1, . . . , ν.

By taking into account that 1 − |ϕn(u)|2 ≤ 1 and that w is integrable, the Lebesgue
theorem of dominated convergence entails

Vn =
∫ ∞

−∞

(
1 − |ϕn(u)|2

)
w(u)du →

∫ ∞

−∞

(
1 − |ϕ(u)|2

)
w(u)du = V,

almost surely. Clearly |ϕ(u)|2 ≤ 1 holds. Along with w > 0 this implies that V is
positive unless |ϕ(u)|2 = 1, identically in u. However, the latter would mean that ϕ

is the characteristic function of a degenerate random variable, i.e., P(Y = c) = 1 for
some c ∈ R; see Loéve (1977, §14.1). Since this does not hold under H1, our test
statistic Vn converges toward V > 0 for any alternative.
Let us now consider a random sample X̃1, . . . , X̃n generated from the original sample
via permutation. Define Ṽn in analogy Vn , but computed on the permuted rather than
the original sample. For any n ∈ N, the X̃1, . . . , X̃n are strictly stationary. Thus we get
Ṽn → 0 using similar arguments as above. Hence, the permutation test rejecting H0
for large values of Vn is strongly consistent against a general change-point alternative
such as H1. An analogous result holds for the permutation test based on TFour, since
TFour and Vn are identical up to constants.
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