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Abstract Varying coefficient models are flexible models to describe the dynamic
structure in longitudinal data. Quantile regression, more than mean regression, gives
partial information on the conditional distribution of the response given the covariates.
In the literature, the focus has been so far mostly on homoscedastic quantile regression
models, whereas there is an interest in looking into heteroscedastic modelling. This
paper contributes to the area bymodelling the heteroscedastic structure and estimating
it from thedata, togetherwith estimating thequantile functions.Theuseof the proposed
methods is illustrated on real-data applications. The finite-sample behaviour of the
methods is investigated via a simulation study, which includes a comparison with an
existing method.

Keywords B-splines ·Heteroscedastic error · Longitudinal data · P-splines ·Quantile
regression · Varying coefficient models

1 Introduction

In many applications, the same characteristics for a subject are observed at multiple
points in time. In this longitudinal data setting, the multiple observations on the same
subject typically are not independent, whereas independence between observations
from different subjects still can be considered.
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Simple multiple linear regression models are often insufficient to adequately
describe such data, and among the more flexible models are varying coefficient mod-
els, introduced by Hastie and Tibshirani (1993) and further studied for longitudinal
data in Hoover et al. (1998), Huang et al. (2004), Qu and Li (2006), and Şentürk and
Müller (2006, 2010), among others. Most papers in the literature focus on estima-
tion of the dynamic influence of the covariates on the mean response. A more overall
picture of the conditional distribution function of the response given the covariates
can be obtained from investigating quantiles. Quantile regression in a longitudinal
data setting has been dealt with in Honda (2004), Kim (2006, 2007), Wang et al.
(2009) and Andriyana et al. (2014), among others. Andriyana et al. (2014) considered
a homoscedastic quantile regression varying coefficient model, and approximated the
unknown coefficient functions by B-splines. They established theoretical properties
(including consistency and rate of convergence, and asymptotic distribution) of the
estimated coefficient functions.

In regressionmodelling, the assumptionsmade on the error term are crucial. Among
the important issues is whether the error term has a structure that changes with the
covariates or not. In a simple (non-dynamic) covariate setting, this results in look-
ing at heteroscedastic (versus homoscedastic) regression models. In mean regression,
various methods have been developed for testing for a homoscedastic error structure
(versus a heteroscedastic one). When the aim is a more general knowledge of the
conditional distribution of the response, and one resorts to quantile regression the
main focus has been so far on a homoscedastic error structure. Recently, Andriyana
et al. (2016) allowed for some dynamic structure of the error term in a location-scale
model, and developed an estimation method for its variability. This structure, how-
ever, does not allow the error to change with (depend on) the covariates, whereas such
flexible modelling is sometimes needed as will be seen in Sect. 5 and the example
below.

In the UK employment data example of Sect. 5.2, the aim is to investigate how
covariates (wage, capital, output) influence the conditional quantile function for the
response variable, the employment, which is the logarithm of the number of employees
in a firm. This influence may change over time, and this is captured by a varying
coefficient model. The top and bottom panels of Fig. 1 show the estimated conditional
quantile curves as functions of time (for nine different orders of quantiles: 0.1, 0.2, up to
0.9) under two different fixed covariate settings: for the top panel formean values of the
covariates, and for the bottom panel for maximal values of the covariates. Figure 1a,d
and b, e are obtained by the proposed methods allowing for heteroscedasticity in the
error structure, whereas Fig. 1c, f utilizes a state-of-the-art method. This figure already
reveals that some heteroscedasticity is not captured by the latter method (see Fig. 1f,
as opposed to Fig. 1d, e). Indeed, some of the covariates turn out to have an influence
on the error variability. In Sect. 5.2, we further investigate this heteroscedasticity in the
data, as a function of the covariates and time. Figure 2 depicts the estimated influence
from the covariate capital on a main quantile pattern (in Fig. 2a), as well as on the
observed heteroscedasticity (in Fig. 2b). Important to note is that the influence of the
covariate capital increases over time, but with a more or less constant influence the
last 3 years of the studied period. See further Sect. 5.2.
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Method of Section 3.1. Method of Section 3.2. Using Andriyana et al.
(2016).

Method of Section 3.1. Method of Section 3.2. Using Andriyana et al.
(2016).

Fig. 1 UK employment data. Estimated log-employment quantile curves for τ = 0.1, 0.2, . . . , 0.9 at the
mean values (top panels) and at the maximum values (bottom panels) of all covariates using: a, d method
of Sect. 3.1, b, e method of Sect. 3.2 , and c, f AHe V (t) approach
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(a) (b)Coefficient of capital (̂β2(t)). Coefficient of capital (γ̂2(t)).

Fig. 2 UK employment data. The estimated influence of the covariate capital on the main quantile function
(a) and on the heteroscedasticity (b), using the estimation method of Sect. 3.2

In this paper, we thus allow for a heteroscedastic error structure, and estimate
also the function that describes how the error structure changes with the covariates.
This is in contrast to Andriyana et al. (2014) who consider homoscedastic errors
and Andriyana et al. (2016) that only allow for a too simplistic heteroscedasticity,
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as is illustrated in the example above. The main and innovative contribution of this
paper is, thus, to (1) allow for a flexible enough heteroscedasticity modelling in the
context of quantile regression for varying coefficientmodels; (2) to provide amethod to
estimate not only the conditional quantile function, but also the impact of the covariates
on this heteroscedasticity structure; and moreover (3) to estimate the entire error
variability structure. The paper is further organized as follows. In Sect. 2, themodelling
framework is described, and Sect. 3 discusses estimation methods. The finite-sample
behaviour of the estimators is examined in Sect. 4 via a simulation study. The practical
use of the proposedmethod is then further illustrated via real-data applications in Sect.
5. In Sect. 6, some concluding remarks and some further discussions are given.

2 Varying coefficient models and heteroscedasticity

Suppose we have repeated observations on (Y (T ), (X (1)(T ), . . . , X (p)(T )), T ), with
T being a ‘time’ variable taking values in the domain T , with Y (T ) being the response
variable at time T , and with (X (1)(T ), . . . , X (p)(T )) being the vector of covariates at
time T .

In a longitudinal data setting, one has repeated measurements on n sub-
jects/individuals. For subject i , the repeated measurements occur at time points
ti1, . . . , ti Ni , with Ni denoting the number of repeated measurements for the i th
subject. At time point ti j , one observes the response variable Y (ti j ) and the vector
of covariate values (X (1)(ti j ), . . . , X (p)(ti j )), which are shortly denoted as Yi j and

(X (1)
i j , . . . , X (p)

i j ), respectively. The longitudinal observations of (Y (T ), X(T ), T ),

with X(T ) = (X (0)(T ), X (1)(T ), . . . , X (p)(T )), where X (0)(T ) = 1, consist thus

of (Yi j , Xi j , ti j ), i = 1, . . . , n and j = 1, . . . , Ni , with Xi j =
(
X (0)
i j , . . . , X (p)

i j

)T
,

and X (0)
i j = 1. Typically, one assumes that the measurements are independent for dif-

ferent subjects, but measurements at different time points for a same individual can
be correlated. For more details, see Andriyana et al. (2014) and Sect. 4.

The interest in this paper is in the conditional τ -th order quantile of Y (T ) given
{X(T ), T }, with 0 < τ < 1, denoted by qτ (Y (T )|X(T ), T ). Based on these con-
ditional quantiles, one could consider conditional measures of spread such as the
conditional median absolute deviation, or the conditional interquartile range (i.e.
q0.75(Y (T )|X(T ), T ) − q0.25(Y (T )|X(T ), T )). Without any modelling assumption,
one could attempt to estimate, based on the available longitudinal data, the conditional
distribution function of Y (T ) given {X(T ), T }, followed by estimation of conditional
quantile functions, and some conditional measures of spread. In a fully nonparametric
setting, this would result in a very cumbersome task (e.g. due to a possible impact of
several covariates, having an effect on the dimensionality of the conditioning argu-
ment). On the other hand, a fully parametric modelling setting is often too restrictive,
and leads to important model misspecification errors. Therefore in this paper, we opt
for adding some minor model structure, while still keeping enough flexibility. This is
done by considering a location-scale type of model. Of main importance is also that
such modelling allows us to quantify the possible impact of covariates on the error
variability.
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More specifically, we consider the following flexible varying coefficient model:

Y (T ) = β0(T )X (0)(T )+β1(T )X (1)(T )+· · ·+βp(T )X (p)(T )+V (X(T ), T ) ε(T ),

(2.1)
where ε(T ) is independent of (X (1)(T ), . . . , X (p)(T )), and βk(·), for k = 0, . . . , p,
are the dynamic regression coefficients (unknown univariate functions). We further
assume that

V (X(T ), T ) = γ0(T )X (0)(T ) + γ1(T )X (1)(T ) + · · · + γp(T )X (p)(T ) ≥ 0, (2.2)

for all T ∈ T , where γk(·), for k = 0, . . . , p, are unknown univariate functions.
Expression (2.2) in fact means that we assume for the error structure itself also a kind
of varying coefficient model. We refer to V (X(t), t) as the heteroscedasticy function.

A special case of (2.2) would be when γ1(T ) = · · · = γp(T ) = 0, for all T ∈ T ,
which means that the error structure simplifies to γ0(T ) ε(T ), and in fact V (X(t), t) ≡
V (t) = γ0(t). Such a simple heteroscedastic model was studied in Andriyana et al.
(2016), but it turns out to be too simple to describe the heteroscedasticity in some data,
as is illustrated by the real-data examples in Sects. 1 and 5.

Model (2.1) is inspired also by previous considerations in the longitudinal data
setting. For example, Davidian and Giltinan (1995) consider that the error variance
is proportional to the square of the mean response, and in Fortin et al. (2007) the
variance is expressed as an unknown power of the mean function. Assuming such
parametric relationships between conditional mean and variance is, however, again
quite restrictive, in contrast to (2.2) which allows for a very flexible heteroscedastic
error structure.

From Model (2.1), the τ -th conditional quantile (with 0 < τ < 1) of Y (T ) given
{X(T ), T = t} equals

qτ (Y (t)|X(t), t)=β0(t)X
(0)(t)+β1(t)X

(1)(t)+· · ·+βp(t)X
(p)(t)+V (X(t), t)aτ (t),

(2.3)
with aτ (t) being the τ -th conditional quantile of ε(T ), given T = t , i.e. aτ (t) =
inf{u : P{ε(T ) ≤ u|T = t} ≥ τ }.

Note that theModel (2.1) together with the error structure (2.2) can be re-expressed
as:

Y (t) = XT(t)β(t) + (
XT(t)γ (t)

)
ε(t) (2.4)

where β(t) = (β0(t), β1(t), . . . , βp(t))T and γ (t) = (γ0(t), γ1(t), . . . , γp(t))T,
where AT denotes the transpose of a vector or matrix A. Consequently, the τ -th con-
ditional quantile in (2.3) can be re-written as:

qτ (Y (t)|X(t), t) = XT(t)β(t) + (
XT(t)γ (t)

)
aτ (t) = XT(t)

[
β(t) + γ (t)aτ (t)

]
.

(2.5)
Note that, since X (0)(t) = 1, the intercept term in (2.5) equals

[
β0(t) + γ0(t)

]
aτ (t).

Note, more generally, that the dependence on τ comes in via the second term between
brackets in (2.5).

The quantities that we would like to estimate are:
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• the univariate regression functions (β0(t), β1(t), . . . , βp(t))T, impacting the main
conditional quantile (the systematic partXT(t)β(t)), andγ (t) = (γ0(t), γ1(t), . . . ,
γp(t))T, impacting the heteroscedasticity;

• subsequently, the heteroscedasticity function V (X(t), t) defined in (2.2);
• the τ -th order conditional quantile of ε(T ), i.e. aτ (t);
• finally, the τ -th order conditional quantile of Y (T ), expressed in (2.5).

Given that V (X(t), t) ≥ 0, and using that aτ1(t) ≤ aτ2(t) for 0 < τ1 < τ2 < 1,
we obtain that the population quantile functions are non-crossing under the general
heteroscedastic model (2.1),

qτ1(Y (t)|X(t), t) ≤ qτ2(Y (t)|X(t), t) for 0 < τ1 < τ2 < 1, (2.6)

for all (X(t), t) given. Estimated quantile functions should preferably also satisfy this
constraint.

It is clear from (2.5) (and the sentences following this displayed expression) that
for the vector γ (t) to be identifiable in the general heteroscedastic model (2.1), we
need to impose some conditions. We briefly discuss some sufficient conditions that
ensure identifiability of all quantities to be estimated.

A first sufficient condition for identifiability is having knowledge about two quan-
tiles of ε(t), say aτ1(t) and aτ2(t). It is clear from (2.5) that

qτ1(Y (t)|X(t), t) − qτ2(Y (t)|X(t), t) = XT(t)γ (t)
[
aτ1(t) − aτ2(t)

]
,

and, hence, an estimator of V (X(t), t) is given by

V̂ (X(t), t) = q̂τ1(Y (t)|X(t), t) − q̂τ2(Y (t)|X(t), t)

aτ1(t) − aτ2(t)
, (2.7)

with q̂τ (Y (t)|X(t), t) being an estimator for qτ (Y (t)|X(t), t). See also Sect. 3.1. A
sufficient condition to ensure identifiability ofV (X(t), t) in the general heteroscedastic
model is:

Assumption (A) The τ1-th and τ2-th order (with 0 < τ1, τ2 < 1 and τ1 �= τ2)
conditional quantile of the error term ε(T ), given T = t , are fully known, i.e.
aτ1(t) and aτ2(t) are known for all t ∈ T .
An alternative set of conditions that ensure identifiability of all quantities involved

is inspired by assumptions imposed in classical quantile regression (see, e.g. He 1997):

Assumption (B) (B1) the conditional median of the error term ε(t) equals zero:
i.e. a0.5(t) = 0 for all t .
(B2) the conditional median of the absolute value of the error term ε(t) equals
one: q0.5(|ε(t)|) = 1.
Indeed, under Assumption (B1), it follows from (2.1) and (2.5) that

q0.5(Y (t)|X(t), t) = XT(t)β(t) (2.8)
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which allows to estimate (β0(t), β1(t), . . . , βp(t))T. Subsequently, under Assumption
(B2) and since V (X(t), t) ≥ 0, it follows that

q0.5
(∣∣Y (t) − XT(t)β(t)

∣∣) = V (X(t), t), (2.9)

which then guides to estimation of the heteroscedasticity function. Finally, expression
(2.5) is the key to estimate aτ (t) followed by estimation of qτ (Y (t)|X(t), t). See
further Sect. 3.2.

3 Estimation procedure

The final aim in this paper is to estimate the conditional quantile functions
qτ (Y (t)|X(t), t)) in (2.5) for various values of τ ∈ (0, 1), keeping in mind the desir-
able property of non-crossing quantile curves in (2.6). There have been a number of
papers dealing with developing quantile estimationmethods that prevent the estimated
quantile curves to cross and violate (2.6). See, among others, the book by Koenker
(2005), as well as He (1997), Wu and Liu (2009), Bondell et al. (2010), Liu and Wu
(2011), Schnabel and Eilers (2013), Andriyana et al. (2016), and references therein.
Andriyana (2015) investigated and compared in detail the performances of various
methods. Therefore, in this paper and in this setting of heteroscedastic varying coef-
ficient models, we restrict immediately to adaptation of the methods that appeared
‘best’ from this extensive study.

We discuss two estimation methods, which are also in line with making different
assumptions to ensure identifiability. A basic ingredient throughout all estimation
steps is P-splines approximations for univariate functions. Some brief discussion on
practical implementation issues for the discussed methods is provided in Sect. 3.3.

3.1 Stepwise individual quantile regression estimation

Among the simplest procedures to ensure non-crossingness of estimated quantile
regression curves is the stepwise procedure introduced by Wu and Liu (2009). This
method starts by estimating a particular quantile curve (for example, the median quan-
tile curve) and then in an upward (respectively, downward) step moves to estimating
a higher order (respectively, lower order) quantile curve, including in each of the sub-
steps constraints in the estimation method to prevent the two estimated quantile curves
to cross.

Adapting the method ofWu and Liu (2009) to our model setting (2.1) involves con-
structing the τ -th order conditional quantile of the responseY (T )given {X(T ), T = t}:

qτ (Y (t)|X(t), t) = XT(t)
[
β(t) + γ (t)aτ (t)

] = XT(t)β̃τ (t) (3.1)

where β̃τ (t) = (
β̃τ,0(t), β̃τ,1(t), . . . , β̃τ,p(t)

)T
with β̃τ,k(t) = βk(t) + γk(t)aτ (t) for

k = 0, . . . , p.
The stepwise procedure is designed for estimation of β̃τ (t)=

(
β̃τ,0(t), β̃τ,1(t), . . . ,

β̃τ,p(t)
)T
, and from this then subsequently qτ (Y (t)|X(t), t) from (3.1), and this for
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various values of τ , say for 0 < τ1 < · · · < τH < 1, a set of H ∈ IN , H ≥ 1 values
of τ .

For a given order of the quantile, say τ , the estimation method utilized is that
of approximating the unknown univariate functions in β̃τ (·) by a set of basis B-
spline functions. More precisely, each of the coefficient functions β̃τ,k(t), for k =
0, . . . , p, is approximated by mk normalized B-splines of degree νk , denoted by
Bk1(t; νk), . . . , Bkmk (t; νk):

β̃τ,k(ti j ) ≈ αk1Bk1(ti j ; νk)+· · ·+αkmk Bkmk (ti j ; νk) =
mk∑
�=1

αk�Bk�(ti j ; νk), (3.2)

where the dependence on τ has been suppressed in the right-hand side for notational
simplicity.

The P-splines objective function for the individual τ -th order quantile estimation,
using an L1-type of penalty function, is then given by

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yi j −

p∑
k=0

mk∑
�=1

αk�Bk�(ti j ; νk)X
(k)
i j

)
+

p∑
k=0

mk∑
�=dk+1

λτ,k

∣∣∣�dkαk�

∣∣∣ ,

(3.3)
where λτ,k > 0, for k = 0, . . . , p, are the regularization or smoothing parameters,
and where �dkαk� are the differences of order dk ∈ IN , associated with the vector

of B-splines coefficients αk = (αk1, . . . , αkmk )
T, i.e. �dkαk� =

dk∑
t=0

(−1)t
(dk
t

)
αk(�−t).

See Eilers and Marx (1996). For simplicity of presentation, we consider the order
of differencing not depending on τ , although this is no formal restriction. The global
vector containing all B-splines coefficients of all (p+1) unknown univariate functions
is given by ατ = (αT

0 , . . . ,αT
p)

T. In the above, the function ρτ (z) = z I {z > 0}+ (1−
τ)I {z ≤ 0} is the so-called check function that is used for quantile regression. Here,
I {A} denotes the indicator of A, i.e. I {A} = 1 if A holds, and 0 if not. See Koenker
(2005) for further background on the check function ρτ .

The main steps of the upward and downward stepwise procedure read as follows.

Step 1: Estimating the median regression curve
The P-splines median quantile estimator is given by

α̂0.5 = argminα

⎧⎨
⎩

n∑
i=1

1

Ni

Ni∑
j=1

ρ0.5

(
Yi j −

p∑
k=0

mk∑
�=1

αk�Bk�(ti j ; νk)X
(k)
i j

)

+
p∑

k=0

mk∑
�=dk+1

λ0.5,k

∣∣∣�dkαk�

∣∣∣
⎫⎬
⎭ .

Step 2: Complete up (CU)
Starting from τh = 0.5, the next larger order in the set {τ1, . . . , τH } (i.e. τh+1 > τh)
is obtained from the following constrained minimization problem:
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minimize

n∑
i=1

1

Ni

Ni∑
j=1

ρτh+1

(
Yi j −

p∑
k=0

mk∑
�=1

αk�Bk�(ti j ; νk)X
(k)
i j

)
+

p∑
k=0

mk∑
�=dk+1

λτh+1,k

∣∣∣�dkαk�

∣∣∣

(3.4)
with respect to α, subject to

α ≥ α̂τh . (3.5)

The complete upward (CU) stepwise procedure consists ofminimizing (3.4) subject
to (3.5) for subsequently larger values τh+1 (for h taking values in a given grid).

Step 2: Complete down (CD)
This is similar to the complete upward steps, but now moving downwards from Step
1 (median estimation) on, replacing (3.4) and its constraint (3.5) by

minimize

n∑
i=1

1

Ni

Ni∑
j=1

ρτh−1

(
Yi j −

p∑
k=0

mk∑
�=1

αk�Bk�(ti j ; νk)X
(k)
i j

)
+

p∑
k=0

mk∑
�=dk+1

λτh−1,k

∣∣∣�dkαk�

∣∣∣

with respect to α, subject to
α ≤ α̂τh ,

and carrying this out sequentially.
Note that the above stepwise procedure is mainly designed for estimating directly

the quantile functions in (2.5) (see also (3.1)). It is not relying on the explicit location-
scale model (2.1). It, therefore, does not provide automatically an estimator for the
heteroscedasticity function V (X(t), t) and, hence, does not allow to unravel the impact
of covariates on this function. A way to still estimate a heteroscedasticity via this
estimation approach is to considerAssumption (A), and estimate the heteroscedasticity
function via (2.7) (it is to be noted though that in that case we are relying on the
location-scale model again). Unfortunately, Assumption (A) is rather unrealistic and
difficult to be justified in practice. In the simulation study in Sect. 4, however, we show
the performance of the stepwise method used for the two τ -values, the biggest and
smallest quantiles orders considered (i.e τ1 and τH ). The advantage of the stepwise
estimation procedure is that it does not require any specification of the error term
structure (i.e. no location-scale type of modelling is needed).

3.2 The AHe approach: an adaptation of He’s (1997) approach

We now discuss an estimation approach that is inspired byHe (1997) in classical quan-
tile regression. In the current setting and the associated estimation tasks there are three
main elements: the coefficient functions for the signal part, βk(t) (for k = 0, . . . , p),
the coefficient functions γk(t) in the heteroscedasticity function (for k = 0, . . . , p),
and the τ -th order quantile of the error term, aτ (t) for τ ∈ (0, 1). In this approach,
each of these unknown quantities is estimated separately in three different subsequent
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steps. One then finally puts all estimators together to estimate the conditional quantile
in (2.5).

The three steps of this procedure read as follows.

Step 1 Under Assumption (B1), we rely on (2.8) to estimate the βk(t) for k =
0, . . . , p using P-splines approximation and the ‘median’ objective function (see
(3.2) and (3.3) with τ = 0.5). Denote by β̂k(·) the obtained estimator of βk(·), and
by β̂(·) the resulting estimator for β(·).
Step 2 From (2.9), we know that V (X(t), t) is the conditional median of∣∣Y (t) − XT(t)β(t)

∣∣. Considering (2.2), we have

q0.5
(∣∣Y (t) − XT(t)β(t)

∣∣) = γ0(t)X
(0)(t) + γ1(t)X

(1)(t) + · · · + γp(t)X
(p)(t).

Using
∣∣Y (t) − XT(t)β̂(t)

∣∣ as the pseudo response, the coefficient functions γk(·),
for k = 0, . . . , p, can be estimated by means of a P-splines objective function.
Firstly, we approximate the coefficients γk(t) for k = 0, . . . , p by a B-spline basis
of degree νv

k and dimension mv
k ,

γk(t) ≈ αv
k1B

v
k1(t; νv

k ) + · · · + αv
kmv

k
Bv
kmv

k
(t; νv

k ) =
mv
k∑

�=1

αv
k�B

v
k�(t; νv

k ).

The P-splines objective function is then given by

n∑
i=1

1

Ni

Ni∑
j=1

ρ0.5

⎛
⎝∣∣Y (ti j ) − XT(ti j )β̂(ti j )

∣∣ −
p∑

k=0

mv
k∑

�=1

αv
k�B

v
k�(ti j ; νv

k )X (k)(ti j )

⎞
⎠

+
p∑

k=0

mv
k∑

�=dv
k

λv
k

∣∣∣�dv
k αv

k�

∣∣∣ ,

where λv
k > 0 are the regularization parameters. Subsequently, the estimator

of V (X(t), t) is obtained by minimizing the objective function with respect to

αv =
(
(αv

0)
T, . . . , (αv

p)
T
)T

, where αv
k =

(
αv
k1, . . . , α

v
kmv

k

)T
. This leads to α̂v

k ,

subsequently γ̂k(t) = ∑mv
k

�=1 α̂v
k�B

v
k�(t; νv

k ), and results in

V̂ (X(t), t) = γ̂0(t)X
(0)(t) + γ̂1(t)X

(1)(t) + · · · + γ̂p(t)X
(p)(t).

Step 3 In this last step,we exploit the estimation results obtained in the two previous
steps. From Model (2.1), we have Y (t) − XT(t)β(t) = V (X(t), t)ε(t).
Replacing the coefficient functions β(t) and V (X(t), t) by the estimators obtained
in Step 1 and Step 2, respectively, we then approximate the unknown (conditional)
quantile aτh (t) of the error term ε(t) by mq

h B-spline basis functions of degree ν
q
h ,
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aτh (ti j ) ≈
mq
h∑

�=1

α
q
h,�B

q
� (ti j ; ν

q
h ).

Hence, the coefficients α
q
h,1, . . . , α

q
h,mh

can be estimated by means of a P-splines

objective function with pseudo-response Y (t) − XT(t)β̂(t) and pseudo-covariate
V̂ (X(t), t), as follows:

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

⎛
⎝(

Y (ti j ) − XT(ti j )β̂(ti j )
) − V̂ (X(ti j ), ti j )

mq
h∑

�=1

α
q
h,�B

q
� (ti j ; ν

q
h )

⎞
⎠

+
mh∑

�=dqh +1

λ
q
h

∣∣∣�dqh α
q
h,�

∣∣∣ ,

where λ
q
h > 0 is the penalization parameter and dqh is the order of the differencing

operator. Having obtained the estimators forαq
h,1, . . . , α

q
h,mh

, the estimate of aτh (t)
is

âτh (ti j ) =
mh∑
�=1

α̂
q
h,�B

q
� (ti j ; νh).

Putting all estimators together we end up with the following conditional quantile
estimators:

q̂τh (Y (t)|X(t), t) = XT(t)β̂(t) + V̂ (X(t), t )̂aτh (t). (3.6)

To ensure the non-negativity of the estimated heteroscedasticity function in Step 2,
we proceed as follows. Before we start, we transform the observed covariate val-
ues as to make them non-negative. We do this by subtracting from each X (k)(t),
the smallest observed X (k)(ti j ), i.e. by considering the transformed

{
X (k)(t) −

min1≤i≤n1≤ j≤Ni

{
X (k)(ti j )

}}
. Since the function values of normalized B-splines are

also non-negative, it then suffices to impose that the coefficients are non-negative, i.e.

αv
k� ≥ 0 ∀k = 0, . . . , p, � = 1, . . . ,mv

k ,

to ensure that

p∑
k=0

mv
k∑

�=1

αv
k�B

v
k�(ti j ; νv

k )X (k)(ti j ) ≥ 0.

We, thus, add this constraint in the optimization problem.
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3.3 Practical implementation

As mentioned already in Sect. 3.2, the covariates are transformed such that they are
non-negative. This is a way to ensure the non-negativity of the estimated heteroscedas-
ticity function V (X(t), t), but the transformation also decreases considerably the
number of constraints in (3.5) (and alike) in the stepwise procedure of Sect. 3.1.

Approximation by B-splines, with a large number of basis functions, and then
introducing a penalty term to prevent for overfitting are employed in all estimation
procedures. In practical applications, we fix the degree of the B-splines as well as the
degree of the differencing operator [dk in (3.3)], and use the following data-driven
method to choose the regularization parameters λτ,k .

Step 1 First take λτ,k = λ for all k = 0, . . . , p. From a given grid of λ-values,
choose the λ that minimizes the Schwarz Information Criterion

log

⎛
⎝1

n

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yi j − q̂τ (Yi j |Xi j , ti j )

)
⎞
⎠ + log(N )

2N
pλ,

where pλ is the size of the elbow set Eλ

Eλ = {
(i, j) : Yi j − q̂τ (Yi j |Xi j , ti j ) = 0

}
,

i.e. the set of all fits which led to a perfect fitted value q̂τ (Yi j |Xi j , ti j ) for the
observed response value Yi j . Denote the resulting choice of λ by λ̂.
Step 2 Using λ̂, we obtain λτ,k for all k = 0, . . . , p, from

λ̂τ,k = λ̂
(
R(β̂B

τ,k(·))
)−κ

where β̂B
τ,k(t) is the quantile regression estimator of βτ,k(t) using B-splines (so

with the objective function putting λτ,k = 0),R(β̂B
τ,k(·)) is the range of all values

β̂B
τ,k((ti j )), and κ > 0 is a given number (in Sects. 4 and 5 we took κ = 0.5).

Each optimization problem discussed in this paper can be translated into a linear
programming problem, that is then translated into a dual problem, which is solved
using a Frisch-Newton interior-point algorithm. For details, we refer to Andriyana
(2015). The necessary computer codes have been developed and are collected in a
freely available R Package QRegVCM that has been developed by the first author (Y.
Andriyana).

4 Simulation study

In this section, we investigate the performances of the stepwise procedure (Sect. 3.1)
and theAHeapproach (Sect. 3.2) on four simulationmodels, involving three covariates.

Measurements can happen only at the time points {0, 1, 2, . . . , 49}. From this fixed
set of possible time points, each time point (except for the starting time point 0)
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Table 1 Coefficient functions in Models 1–4

Coefficient functions Model 1 Model 2 Model 3 Model 4

β0(t) 2
√
t 2

√
t

3 0 0

β1(t)
(π t+10)

15
cos(t−5)π

20 cos
(

(t−25)π
1000

)
cos

(
(t−25)π

100

)

β2(t) sin
(
π t
30

) + 3 sin(π t)
20 + 5 sin

(
π t
30

) + 3 sin
(
π t
30

) + 13

β3(t)
(20−t)2
1000 − 4 |25−t |5/2

200 −4 + (20−t)2
1000 −4 + (20−t)2

100

γ0(t)
β0(t)
8

√
β0(t) 0.2

√
t (25−t)2+3t

100

γ1(t)
√|β1(t)|

2
β2
1 (t)
200 0 0

γ2(t)
|β2(t)|
50

√
β2(t)
100 0 0

γ3(t)
|β3(t)|
50

β3(t)
200 0 0

has a probability of 40% to be skipped. This creates different numbers of repeated
measurements Ni for each subject i = 1, . . . , n. The actual measurement times are
generated by adding aU [0, 0.5] random variable to the non-skipped scheduled times.
The error term ε(t) is generated from a transformed multivariate normal distribution.
The transformation is needed to fulfill certain model assumptions. Firstly, we consider
η(ti j ), where η(·) follows a multivariate normal distribution with covariance structure
Cov(η(ti j ), η(ti j ′)) = 30 exp(− ∣∣ j − j ′

∣∣). Secondly, the generated η(ti j ) are trans-
formed such that the error term has a desired median (in this case q0.5(ε(t)) = 0 and
q0.5(|ε(t)|) = 1) by the following transformation:

ε(t) = η(t) − q0.5(η(t))

q0.5 (|η(t) − q0.5(η(t))|) .

The varying coefficients, βk(·) and γk(·) for k = 0, 1, 2, 3 in, respectively, the main
conditional quantile function and the heteroscedasticity function, for the four models
are presented in Table 1.

All elements of a model are such that the signal-to-noise ratio

Sample variance of all
{
β0(ti j ) + ∑3

k=1 βk(ti j )X (k)(ti j )
}

Sample variance of all
{
V (X(ti j ), ti j )ε(ti j )

}

is approximately 7.
Throughout Sects. 4 and 5, we utilize B-splines of degree 3 with 10 equidis-

tant knot points on the time interval (leading to 13 − 1 = 12 basis functions)
and a penalty in which we take differencing order 1. All covariates are trans-
formed to be in [0, 1], which puts them on a comparable scale. More precisely, we
work with

{
X (k)(t) −min1≤i≤n1≤ j≤Ni

{
X (k)(ti j )

}}
/
{
max1≤i≤n1≤ j≤Ni

{
X (k)(ti j )

} −
min1≤i≤n1≤ j≤Ni

{
X (k)(ti j )

}}
.
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(a) (b)Model 1. Model 2.

Fig. 3 Boxplots of RAISE(̂qτh (Y (t)|X(t), t)) using the stepwise procedure and the AHe approach

For each model, we draw 200 samples of size n = 100. For a given simulated
sample s (s = 1, . . . , 200), with the dependence on the sample indicated through the
superscript “(s)”, the performance of a quantile estimation method is evaluated via the
empirical root approximate integrated squared error, defined as:

RAISE(q̂(s)
τ (·)) =

⎛
⎝

n∑
i=1

1

Ni

Ni∑
j=1

(
q̂(s)
τ (Yi j |Xi j , ti j ) − qτ (Yi j |Xi j , ti j )

)2
⎞
⎠

1/2

. (4.1)

We do not write the dependence on the sample s in the second termwithin brackets for
not making the notation too heavy, but it is good to realize that due to the conditioning
on the covariates and time, this term also changes with the sample.

Note that Models 3 and 4 are models for which V (X(t), t) = γ0(t) and, hence, the
error term does not vary with the covariates. For these models, the methods developed
in Andriyana et al. (2016) would suffice. These two models are included in the simu-
lation study to see the possible loss using, in this simpler setting, the too sophisticated
estimation method of, for example, Sect. 3.2. In Sect. 4.1, the simulation results for
Models 1 and 2 are summarized. These, for Models 3 and 4, can be found in Sect. 4.2.

4.1 Simulation results for Models 1 and 2

Figure 3 shows boxplots of RAISE(q̂(s)
τh (.)) over 200 simulations for the two inves-

tigated methods. Overall, both methods have a comparable performance, with the
stepwise procedure performing slightly better than the AHe approach for Model 1.

A representative plot of the estimated conditional quantile curves is provided next.
For eachmethod,we focus on a sample forwhichmedian performance of the estimators
across the 200 simulationswas obtained, i.e. a sample forwhich the evaluation criterion
in (4.1) delivered the 50th-percentile of RAISEH

(
q̂(s)(.)

)
, where
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Scatter plot. True quantiles. AHe approach.

Scatter plot. True quantiles. Stepwise procedure.

Fig. 4 Model 1. a, d Scatter plots of the sample giving median performance of q̂τ (.); b, e true conditional
quantiles at the maximum values of the covariates; c, f q̂τ (Y (t)|X(t), t). Results for the AHe approach (top
panels) and the stepwise procedure (bottom panels)

RAISEH

(
q̂(s)(.)

)
= 1

H

H∑
h=1

RAISE
(
q̂(s)
τh

(.)
)

.

Consequently, we present estimated curves with median performance in each method.
The resulting representative estimated quantile curves for Model 1 are depicted in

Fig. 4. For graphical presentation purpose, we focus on the maximum values of the
covariates at each time point. To give a visual impression of the quality of the con-
ditional quantile estimation, we provide the associated scatterplot, the true quantiles
curves, and the estimated quantile curves, for the chosen representative sample (which
might be different for each method). In Fig. 5, we present the results for Model 2, but
only for the method following the AHe Approach. Results for the stepwise procedure
are similar, but slightly more variable (as already indicated by the boxplots in Fig. 3).

Next, we investigate the finite-sample performances of the estimators of V̂ (X(t), t)
via the criterion (suppressing from now on, for notational simplicity, the dependence
“(s)” on the sample)

RAISE
(
V̂ (·, ·)) =

⎛
⎝

n∑
i=1

1

Ni

Ni∑
j=1

(
V̂ (Xi j , ti j ) − V (Xi j , ti j )

)2
⎞
⎠

1/2

. (4.2)

The boxplots of RAISE
(
V̂ (.)

)
over the 200 simulations are given in Fig. 6. Note that

the stepwise procedure is less variable than the AHe approach, but the latter has a
better performance in case of Model 2.
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Fig. 5 Model 2. a Scatter plot of the sample giving median performance of q̂τ (.); b true conditional
quantiles at the maximum values of the covariates; c q̂τ (Y (t)|X(t), t). Results for the AHe approach
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Fig. 6 Boxplots of RAISE(V̂ (·, ·)) using the stepwise procedure and the AHe approach (respectively, the
first and the second boxplots in a, b)

4.2 Simulation results for Models 3 and 4

Since for Models 3 and 4 (see Table 1) V (X(t), t) = γ0(t), an error structure as in
(2.1) is not needed, and the methods developed by Andriyana et al. (2016) would be
sufficient to estimate V (t) = γ0(t). Among these methods is an adaptation of the
approach of He (1997) for that simpler setting, and we refer to it as the AHe V (t)
approach in the text below.

Figure 7b, c depicts boxplots of the RAISE(̂qτh (Y (t)|X(t), t) values for Models
3 and 4 using the method of Sect. 3.2 and the AHe V (t) approach. For comparison
purpose, we also include the boxplot of the results for both methods for Model 1
(see Fig. 7a). As can be seen from the boxplots in Fig. 7b, c, both methods perform
comparable, with only a small price to pay in terms of a slightly increased variability
for the method of Sect. 3.2. This more general method is, thus, also able to adapt to
the simpler situations. When using the simpler AHe V (t) approach to Model 1, it is
clear that it performs badly [except for the median quantile curve, when both methods
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Fig. 7 BoxplotsofRAISE(̂qτh (Y (t)|X(t), t)) for theAHeV (X(t), t) and theAHeV (t) approaches (respec-
tively, first and second boxplots), for Models 1, 3 and 4
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Fig. 8 Boxplots of RAISE(V̂ (X(t), t)) for the AHe V (X(t), t) and the AHe V (t) approaches (respectively,
first and second boxplots), for Models 1, 3 and 4

coincide byAssumption (B1)]. This just illustrates the need for themethods developed
in this paper.

The boxplots in Fig. 8b, c summarize the quality of the estimators for the function
V (X(t), t) forModels 3 and 4. A similar conclusion can be drawn as for the estimation
of the quantile curves. Both methods, this of Sect. 3.2 and the simpler AHe V (t)
approach perform comparable, with a slightly higher variability for the former one.
In contrast, when applying the simpler method to Model 1 it fails completely, as seen
from the boxplots in Fig. 8a.

Picking up a sample corresponding to median performance of V̂ (t), we plot the
estimators V̂ (X(t), t) and V̂ (t) together with the corresponding standardized residuals
in Fig. 9 for Model 3. In particular, the standardized residuals based on V̂ (X(t), t), i.e.(
Yi j − q̂0.5(Xi j , ti j )

)
/V̂ (X(ti j ), ti j ), show that the method performs well also in this

simpler setting [note the similarity between pictures (e) and (f)]. Figure 10 shows the
true V (t) and the estimators V̂ (X(t), t) and V̂ (t), for a median performing sample,
for Model 4. The plots for the standardized residuals are not provided, since they look
similar to these for Model 3.

The conditional quantile curves for Model 3, based on a sample exhibiting median
quantile performance for the simple AHe V (t) approach, are presented in Fig. 11.
This figure confirms the previous conclusions.
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Fig. 9 Model 3: median performance of V̂ (t); a true variability, b V̂ (X(t), t), (c) V̂ (t), d The true stan-
dardized residuals, e standardized residuals via the V̂ (X(t), t) approach and f Standardized residuals via
the V̂ (t) approach
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Fig. 10 Model 4: median performance of V̂ (t); a true variability, b V̂ (X(t), t), c V̂ (t), d the true stan-
dardized residuals, e standardized residuals via the V̂ (X(t), t) approach and f standardized residuals via
the V̂ (t) approach

5 Real-data applications

In this section,we illustrate the practical use of themethods of Sect. 3 on a few real-data
examples.

We present the estimators of the conditional quantile curves using the stepwise
procedure of Sect. 3.1, the AHe V (X(t), t) approach of Sect. 3.2 and the simple
AHe V (t) approach of Andriyana et al. (2016). Differences in results for the first two
methods on the one hand and the last method on the other hand will be a possible
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Fig. 11 Model 3:a scatter plot of the sample givingmedian quantile performance usingAHeV (t) approach;
b true conditional quantiles applied to the maximum values of the covariates; c q̂τ (Y (t)|X(t), t) using AHe
V (X (t), t) approach; and d q̂τ (Y (t)|X(t), t) using AHe V (t) approach

indication for which model might be more appropriate. The development of formal
statistical goodness-of-fit tests is part of future research. See also Sect. 6.

To analyse all real-data examples, we use B-splines of degree 3 with 10 equidistant
knot points on the time interval (leading to 13 − 1 = 12 basis functions) with differ-
encing order 1. All covariates are transformed to be in [0, 1], which puts them on a
comparable scale.

5.1 Air Pollution data example (PM10)

This data set originates back to a study regarding air pollution at a road, where traffic
volume andmeteorological variables aremeasured. The data considered here are a sub-
sample of 500 observations. The data were collected by the Norwegian Public Roads
Administration, measured at Alnabru in Oslo, Norway, between October 2001 and
August 2003. During each of the 273 days, measurements were performed at different
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Fig. 12 Air pollution data. aThe estimated variability curves V̂ (X(t), t) and V̂ (t); b standardized residuals
using the AHe V (X(t), t) approach and c Standardized residuals for the AHe V (t) approach

time points (hours). There are between 1 and 6measurements per day with amedian of
2 measurements per day. Information about the data can be found at StatLib (http://lib.
stat.cmu/edu) and also in the truncSP R-package. Guo et al. (2012) analysed these
data using a varying coefficient model including two covariates, but in an i.i.d. setting.
These data were also analysed in Andriyana et al. (2016), stepping away from the i.i.d.
setting but assuming that the error is not depending on the covariates. In the analysis
here, we drop this assumption, and also include an additional covariate in the analysis.

The response variable Y (t) consists of hourly values of the logarithm of the concen-
tration of PM10. This substance is a mixture of solid and liquid droplets with diameter
less than 10 µm, and is one of the air pollutants suspected to have a negative effect
on human health. See for example Aldrin and Hobaek Haff (2005) and Oftedal et al.
(2009) for studies on air pollution, involving particle pollutants such as PM10. The
covariates considered in the analysis here are: X (1)(t) is the logarithm of the num-
ber of cars per hour; X (2)(t) is the wind speed (in meters/second), and X (3)(t) is the
temperature (in degree Celcius, measured two meters above the ground).

Figure 12a depicts V̂ (X(t), t) as a function of t (the points) as well as V̂ (t)
(the solid line). The standardized residuals

(
Yi j − q̂0.5(Xi j , ti j )

)
/V̂ (X(ti j ), ti j ) and(

Yi j − q̂0.5(Xi j , ti j )
)
/V̂ (ti j ) are plotted in Fig. 12b, c, and little conclusions can be

drawn from these.
The influences of each of the covariates on, respectively, themain conditional quan-

tile function and the heteroscedasticity function are obtained via, respectively, the
estimated coefficients β̂k(·) and γ̂k(·), using the method of Sect. 3.2. These estimated
coefficients are depicted in Figs. 13 and 14. Note that for example the covariate temper-
ature has the smallest effect on the main conditional quantile, whereas this covariate
seems to play a role (although possibly small) in the heteroscedasticity present in the
data. The covariates number of cars and wind have most impact on the main con-
ditional quantile function, with their effect being maximal and nearly constant for a
large portion of the day (between approximately 8 am and 7 pm for the first covariate).

The estimated conditional quantile curves applied to the mean and the maximum
values of the covariates are presented in Fig. 15, in the top and bottom panels, respec-
tively. The estimated conditional quantile curves show less curvature for mean values
of the covariates than for maximum values.
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Baseline (β0(t)). Coefficient of cars ( β1(t)).

Coefficient of wind (β2(t)). Coefficient of temperature
(β3(t)).

Fig. 13 Air pollution data. The estimated coefficient functions β̂k (t), k = 0, 1, 2, 3, using the method of
Sect. 3.2. a Baseline (β̂0(t)). b Coefficient of cars (β̂1(t)). c Coefficient of wind (β̂2(t)). d Coefficient of
temperature (β̂3(t))

5.2 UK employment data example

The next data frame contains company accounts fromDatastream International, which
provide accounts records of employment and remuneration (i.e. wage bill) for all UK
quoted companies. The data are available in the plm R-package under EmplUK.
Table 2 briefly describes the variables involved. More detailed information regarding
these data can be found in the data Appendix of Arellano and Bond (1991). This study
deals with determinants of employment in 140 UK firms observed each year from
1976–1984. The data are unbalanced both in the sense that some firms have more
observations than others, and also in the sense that these observations correspond
to different points in historical time. The range of observations per firm is seven to
nine [i.e. min(Ni ) = 7 and max(Ni ) = 9]. The response variable (Y (ti j )) is the
logarithm of the UK employment in company i at time ti j , where i = 1, . . . , 140 and
j = 1, . . . , Ni .
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Fig. 14 Air pollution data. The estimated coefficient functions γ̂k (t), k = 0, 1, 2, 3, using the method of
Sect. 3.2. a Baseline (γ̂0(t)). b Coefficient of cars (γ̂1(t)). c Coefficient of wind (γ̂2(t)). d Coefficient of
temperature (γ̂3(t))

The three covariates are (see Table 2): the average annual wage per employee in
the company (X (1)(ti j )); the capital defined as the book value of gross fixed assets
(X (2)(ti j )); and an index of value-added output at constant cost (X (3)(ti j )). Arellano
and Bond (1991) and also Kleiber and Zeileis (2008) combine a static model equation
including all three covariates using a dynamic model with 2 lagged endogenous terms.

Here,wepresent amoreflexiblemodelling using varying coefficientmodels. Firstly,
the conditional quantile estimators are plotted in Fig. 1, in the top panels when applied
to the mean of the covariate values, and in the bottom panels when applied to the
maximum of the covariate values. As can be seen, the estimated conditional quantiles
for given mean values of the covariates are almost linear, with a change in direction
from the year 1982 onwards. Note that, considering linearity in quantile regression for
all quantiles is quite restrictive; since for some quantiles a linearity assumption might
be appropriate, while for some other order quantile curves this might not be the case.
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Fig. 15 Air pollution data. Estimated log(concentration of PM10) quantile curves for τ = 0.1, 0.2, . . . , 0.9
at the mean values (top panels) and at the maximal values (bottom panels) of all covariates, using the
methods: a stepwise procedure, b AHe V (X(t), t) approach, and c AHe V (t) approach

Table 2 The UK employment data

Variable Description

Employment The number of employees in 140 companies with operations mainly in UK,
whose main activity is manufacturing

Real wage A measure of real average annual remuneration per employee in a company

Gross capital stock The historic cost book value of gross fixed assets

Industry output An index of value-added output at constant factor cost

See more detailed information about the data in the Appendix of Arellano and Bond (1991)

This is for example well visible for the estimated conditional quantile curves in Fig. 1,
using the approach of Sect. 3.1. Most remarkable is the difference in the estimated
conditional quantiles in Fig. 1d–f, revealing that possible heteroscedasticity is present
in the data.

We next wonder about this heteroscedasticity present in the data. The estimated
heteroscedasticity function V̂ (X(t), t), using the method of Sect. 3.2, is plotted in
Fig. 16a, together with the estimator V̂ (t). The associated standardized residuals are
plotted in Fig. 16b, c. To be remarked is the skewness in the plot in Fig. 16a for a
fixed year, with a high concentration towards lower values of V̂ (X(t), t), but also a
considerable amount of high values for the same time moment.

Finally, Figs. 17 and 18 depict the estimatedmain quantile coefficient functions and
the estimated coefficients in the heteroscedasticity function. See also Fig. 2 in Sect. 1.
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Fig. 16 UK employment data. a Variability estimators and b, c standardized residuals
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Fig. 17 UK employment data. The estimated coefficient functions β̂k (t), k = 0, 1, 3 using the method of
Sect. 3.2. a Baseline log-employment (β̂0(t)). b Coefficient of wage (β̂1(t)). c Coefficient of output (β̂3(t))
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Fig. 18 UK employment data. The estimated coefficient functions γ̂k (t), k = 0, 1, 3 using the method of
Sect. 3.2. a Baseline log-employment (γ̂0(t)). b Coefficient of wage (γ̂1(t)). c Coefficient of output (γ̂3(t))

The covariate capital seems to contribute most, both in the main conditional quantile
function and in the heteroscedasticity function.

6 Further discussion and conclusion

In Andriyana et al. (2016), the heteroscedasticity function was only allowed to change
with the time (i.e. V (t)) and as was illustrated with the example in the introduction
and Sect. 5 this may be too simple in some applications. In this paper, we there-
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fore consider a varying coefficient model allowing for a flexible heteroscedastic error
structure that may also vary with the covariates, i.e. V (X(t), t). The interest was in
estimating conditional quantile curves, together with the more complex heteroscedas-
ticity function. All univariate coefficient functions appearing in both target quantities
are approximated using P-splines. Thanks to this flexible modelling, combined with
an appropriate approach (such as the AHe and the stepwise method), these complex
estimation tasks become feasible. In the simulation study, it was demonstrated that if
one unnecessarily assumes the more complex heteroscedastic error structure, the loss
in efficiency, compared to working with the sufficient simpler heteroscedastic error
structure, is small.

An interesting question, however, is how to test for an appropriate heteroscedastic
structure. Note that the choice between a simple heteroscedastic structure V (t) or a
more flexible heteroscedastic structure V (X(t), t) can, in the setting of this paper,
be translated in the univariate coefficient functions γk(·), for k = 1, . . . , p, to be
all equal to zero versus at least one coefficient function is not zero. In Gijbels et al.
(2016), testing procedures for testing for various (nested) heteroscedastic structures
are developed.

Note that in this paper we assume that V (X(T ), T ) ≥ 0. To ensure positiveness of
the estimated heteroscedasticity function, one can proceed as indicated at the end of
Sect. 3.2. An alternative would be tomodel the logarithm (or any other appropriate link
function) of the heteroscedasticity function as in (2.2). Both approaches are feasible
with rather similar performances, and we do not elaborate further on this.

Varying coefficient models are among flexible regression models, together with,
for example, generalized additive models. As was remarked by a referee, one could
think of some alternative estimation approaches in varying coefficient models. In case
there is only one covariate one could indeed view a varying coefficient model (the
most simplistic variant of it) as an additive model. See for example Stasinapoulos and
Rigby (2007), and the GAMLSS package in R. An additional limitation, however, is
that one needs to specify a specific error distribution.
Yet another viewpoint and alternative estimation approach could be envisaged as
follows. Approximating all the univariate covariate functions by a combination of
B-spline basis functions, there is a way to write the systematic term in the location-
scale model as a linear term involving a design matrix that consists of rows of all
B-spline functions evaluated in all observational points. See for example Andriyana
et al. (2014). This then opens the way to use Bayesian regression quantile methods (for
example using the R package bayesQR). Although this is an alternative approach,
the disadvantage is that it does not allow to estimate the heteroscedasticity function.
Given the above limitations we did not further elaborate on these alternative
approaches.
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