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Abstract Mixtures of t-factor analyzers have been broadly used for model-based
density estimation and clustering of high-dimensional data from a heterogeneous pop-
ulation with longer-than-normal tails or atypical observations. To reduce the number
of parameters in the component covariance matrices, the mixtures of common t-factor
analyzers (MCtFA) have been recently proposed by assuming a common factor load-
ing across different components. In this paper, we present an extended version of
MCtFA using distinct covariance matrices for component errors. The modified mix-
ture model offers a more appropriate way to represent the data in a graphical fashion.
Two flexible EM-type algorithms are developed for iteratively computing maximum
likelihood estimates of parameters. Practical considerations for the specification of
starting values, model-based clustering, classification of new subject and identifica-
tion of potential outliers are also provided. We demonstrate the superiority of the
proposed methodology by analyzing the Italian wine data and a simulation study.
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1 Introduction

Mixtures of factor analyzers (MFA) originally introduced by Ghahramani and Hin-
ton (1997) have become the most popular tool for clustering and local dimensionality
reduction of high-dimensional data, especially when the number of observations is not
relatively large than their dimension. TheMFA alongwith their applications have been
extensively studied by Hinton et al. (1997), McLachlan and Peel (2000) and McLach-
lan et al. (2002, 2003), among others. To reduce the number of parameters, especially
when the number of components or features is quite large, Baek et al. (2010) extended
theMFAusing common component-factor loadings, calledmixtures of common factor
analyzers (MCFA), and described an alternating expectation conditionalmaximization
(AECM) algorithm (Meng and Dyk 1997) for conducting maximum likelihood (ML)
estimation. Wang (2013) further studied an extension of the MCFA approach, which
allows practitioners to handle model-based density estimation, clustering, visualiza-
tion and discriminant analysis of high-dimensional data in the presence of missing
values.

A number of different Bayesian strategies have been developed for inferring finite
mixture models and its extensions through factor-analytic representations. Diebolt
and Robert (1994) presented a Gibbs-sampling scheme to perform posterior infer-
ence on Gaussian mixture (GMIX) models. Zhang et al. (2004) advocated the use
of the reversible jump Markov chain Monte Carlo (MCMC) algorithm (Green 1995;
Richardson and Green 1997) for fitting GMIX models with unknown number of com-
ponents. Lopes and West (2004) explored feasible MCMC methods for Bayesian
model assessments in factor analysis models. Bayesian treatments on MFA have been
investigated through a variational Bayes (VB) approximation (Ghahramani and Beal
2000) and a stochastic simulation procedure (Fokouè and Titterington 2003), where
there is uncertainty about the dimensionality of the latent spaces, i.e., the unknown
number of mixture components and common factors. Recently, Wei and Li (2013)
proposed a VB algorithm for learning MCFA from a Bayesian perspective.

In the MFA and MCFA frameworks, component factors and errors are routinely
assumed to be normally distributed for mathematical convenience and computational
tractability. However, the normality assumption is not always realistic because of its
known sensitivity to outliers. Furthermore, a poor fit for the data with longer than
normal tails may subsequently yield a wrong clustering identification. To cope with
such an obstacle, McLachlan et al. (2007) proposed the mixtures of t-factor analyzers
(MtFA), whereby the multivariate t family (Kotz and Nadarajah 2004) with dimension
p, mean vector μ(ν > 1), covariance matrix ν(ν − 2)−1Σ(ν > 2), and degrees of
freedom (df) ν, denoted by tp(μ,Σ, ν), is used to be the underlying distribution for
both component factors and errors. The multivariate t density is

tp( y|μ,Σ, ν) = �
( ν+p

2

) |Σ |−1/2

(πν)p/2�
(

ν
2

)
[
1+( y−μ)TΣ−1( y−μ)/ν

]−(ν+p)/2
, y∈R p,

where the df ν may be viewed as a robustness turning parameter that is used to control
the fatness of the tails of the probability distribution.
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Flexible clustering via extended MCtFA 229

Specifically, let y j = (y j1, . . . , y jp)T, j = 1, . . . , n, be np-dimensional vectors
of feature variables. The MtFA approach formulates y j as:

y j = μi + Biui j + ei j with probability πi (i = 1, . . . , g), (1)

where μi is a p× 1 vector of component location, Bi is a p× q matrix of component
factor loadings, ui j is a q-dimensional vector of component factors, and ei j is a p-
dimensional vector of component errors. Here, (uTi j , e

T
i j )

T is assumed to jointly follow
a multivariate t distribution with zero mean, a block-diagonal scale-covariance matrix
diag{Iq , Di }, and the df νi , where Iq is an identity matrix of size q and Di is a
diagonal matrix. Consequently, the density of y j for the MtFA is

f ( y j ) =
g∑

i=1

πi tp( y j |μi ,Σ i , νi ),

where Σ i = Bi BT
i + Di . Note that MtFA will be reduced to MFA as all compo-

nent dfs νi ’s tend to infinity. McNicholas and Murphy (2008) introduced a new class
of Gaussian mixture models with several parsimonious covariance structures, called
parsimonious Gaussian mixture models (PGMM). Andrews and McNicholas (2011)
investigated a restricted MtFA model, which is obtained by imposing constraints on
the df, the factor loadings, and the error covariance matrices. Recently, Wang and Lin
(2013) proposed an ad-hoc expectation conditional maximization (ECM; Meng and
Rubin 1993) algorithm on the basis of a much smaller hidden data space for fast ML
estimation of MtFA. They have also done a simulation study to show that their new
procedure can substantially outperform the commonly used expectation maximization
(EM; Dempster et al. 1977) algorithm and the AECM algorithm used in McLachlan
et al. (2007) in most situations, regardless of how the convergence speed is assessed
by the computing time and/or number of iterations.

For model-based clustering of high-dimensional data, in practice, the dimension p
is sometime quite large and/or the number of components (clusters) g is sometimes
not small. Therefore, the number of parameters in model (1) might be unmanageable
and, thus, encounters near-singular estimates or inestimable component covariance
matrices. As a robust extension of MCFA, Baek and McLachlan (2011) proposed a
parsimonious version of the MtFA, named as mixtures of common t-factor analyzers
(MCtFA), which utilizes common factor loadings to reduce further the number of
parameters in the specification of the component-covariance matrices. For the con-
sideration of different covariance matrices for latent factors, this paper presents an
extended version of MCtFA, called the EMCtFA, studies its essential properties and
describes two variants of the EM algorithm, including the ECM and the expectation
conditional maximization either (ECME; Liu and Rubin 1994) algorithms for ML
estimation of model parameters.

As an alternative to exact ML methods, the simulated ML estimation can be imple-
mented for the model using the Monte Carlo (MC) or importance sampling (IS)
methods, known as the MCEM and ISEM algorithms. One drawback of simulated
ML methods is that the model fitting procedure relies on MC estimates which can be
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230 W.-L. Wang, T.-I. Lin

difficult to implement due to the heavy computational burden. Another issue is that
an increase in log-likelihood at each iteration is not guaranteed because of MC errors
(McLachlan and Krishnan 2008). Our proposed EM-type algorithms have exactly
closed-form expressions in the E-step and analytically reduced expressions in CM-
steps, yielding more accurate estimates than the simulated ML methods.

In this work, we provide a guideline for choosing a set of suitable initial values.
Furthermore, the probabilistic classification of new subjects and estimation of latent
factors are also investigated. Under the assumption of non-normality, importantly,
there is also a problem of outlier detection in mixture modeling. Outliers usually lead
to overestimating the number of components to offer a good presentation of the data
(Fraley and Raftery 2002). We also offer a rule for identifying which observations are
suspected outliers under the EMCtFA framework.

The remainder of this paper is structured as follows. In Sect. 2, we establish the nota-
tion and formulate the EMCtFA model. Section 3 presents two EM-type algorithms
for fitting EMCtFA and outlines a simple way of setting the initialization. Section 4
describes somepractical tools, includingmodel-based clustering, classification, outlier
detection andmodel selection. In Sect. 5, the application of the proposed methodology
is illustrated through analyzing the Italian wine data. In Sect. 6, we conduct a simula-
tion study to compare the performance of our recommended initialization procedure
with the existing method. We conclude the paper with a short summary in Sect. 7. The
detailed derivations are sketched in “Appendix”.

2 Extended mixtures of common t-factor analyzers (EMCtFA)

Consider n independent p-dimensional feature vectors y1, . . . , yn , which come inde-
pendently from a nonhomogeneous population with g subgroups. In the sense of
dimensionality reduction, q must be smaller than p. The EMCtFA model for contin-
uous features y j can be described as:

y j = Aui j + ei j with probability πi (i = 1, . . . , g), (2)

where A is a p×q matrix of common factor loadings, ei j is a p-dimensional vector of
component errors, and πi ∈ (0, 1) is the mixing proportion subject to

∑g
i=1 πi = 1.

The joint distribution of ui j and ei j for the i th component is assumed to be

[
ui j
ei j

]
∼ tq+p

([
β i
0

]
,

[
Ω i 0
0 Di

]
, νi

)
, (3)

where β i is a q-dimensional location vector, Ω i is a q × q positive-definite scale-
covariancematrix, Di is a p× p diagonal covariancematrix, and νi is the df.We further
assume that the joint distributions of (uTi j , e

T
i j )

T for distinct subjects are independent.
When Di = D for all i , the EMCtFA reduces to the original MCtFA model (Baek
and McLachlan 2011). Generally, the component dfs are allowed to vary for flexibly
controlling possibly different degrees of the tail thickness of component distributions.
The special case of equal df, say νi = ν for all i , is usually considered for the sake
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Flexible clustering via extended MCtFA 231

of parsimony and fast convergence of the algorithm. The MCtFA includes the MCFA
as a limiting/special case when all component dfs approach infinity simultaneously. It
can also be shown that MCtFA is a special case of MtFA by virtue of Eqs. (17)–(21)
in Baek et al. (2010).

For the MtFA in (1), q(q−1)/2 uniqueness constraints are imposed for component
factor loadings Bi and, thus, the total number of parameters in (1) is

d1 = (2g − 1) + 2gp + g[pq − q(q − 1)/2].

For the EMCtFA in (2) along with assumption (3), the common factor loadings A
must be unique only up to postmultiply by a nonsingular matrix such that its number
of free parameters is pq − q2. As a result, the total number of parameters in (2) is

d2 = (2g − 1) + pg + q(p − q + g) + gq(q + 1)/2,

while that in the MCtFA (Baek and McLachlan 2011) is

d3 = (2g − 1) + p + q(p − q + g) + gq(q + 1)/2.

It follows straightforwardly that the difference in numbers of parameters between
MtFA and EMCtFA is d1 − d2 = (g − 1)q(p − q) + g(p − q), which is nonnegative
when p ≥ q and g ≥ 1. Meanwhile, the difference in numbers of parameters between
the EMCtFA and MCtFA is d2 − d3 = (g − 1)p, which is also nonnegative when
g ≥ 1. Therefore, we have d1 ≥ d2 ≥ d3 if and only if p ≥ q and g ≥ 1. Clearly, the
EMCtFA reaches a compromise between the MtFA and MCtFA approaches through
the specification of distinct covariancematrices for component errors. The EMCtFA as
well as MCtFA are preferable to the MtFA model if the dimension p or the number of
component g is relatively large to suffer from the convergence problems. Furthermore,
unlike MtFA, the estimated posterior means of factor scores of EMCtFA can be used
to portray the data in low-dimensional subspaces.

Let Θ = {A, θ1, . . . , θ g} denote the entire unknown model parameters where
θ i = (πi ,β i ,Ω i , Di , νi ), i = 1, . . . , g, represents the parameter vector for the i th
component. According to (2) and (3), the probability density function (pdf) of y j is

f ( y j | Θ) =
g∑

i=1

πi tp( y j | Aβ i ,Σ i , νi ),

where Σ i = AΩ i AT + Di . Therefore, the ML estimates Θ̂ based on a set of
independent observations y = { y1, . . . , yn} is Θ̂ = argmaxΘ �(Θ | y), where
�(Θ| y) = ∑n

j=1 log f ( y j |Θ) is the observed log-likelihood function. Unfortunately,
there are no explicit analytical solutions for ML estimator ofΘ . In this case, we resort
to the EM-type algorithm (Dempster et al. 1977), which is popular iterative device for
ML estimation in models incorporating new hidden variables.

In the EM framework on supporting the interpretation of missing data problem,
it is convenient to introduce a set of allocation variables Z j = (z1 j , . . . , zg j ), j =
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1, . . . , n, where the componentmembership zi j = 1 if y j belongs to the i th component
and zi j = 0 otherwise. This indicates that Z j independently follows a multinomial
distribution with one trial andmixing properties (π1, . . . , πg) subject to

∑g
i=1 πi = 1,

denoted as Z j ∼ M (1;π1, . . . , πg). Based on the essential property of multivariate t
distribution, we also utilize the scaling variables τ j s following the gamma distribution
with shape νi/2 and rate νi/2 conditioning on zi j = 1. Through introducing the
latent variables Z j and τ j , for j = 1, . . . , n, three hierarchical representations of the
EMCtFA are sketched in “Appendix”.

As a consequence, we establish Proposition 1, which is useful for evaluating
the conditional expectations involved in the ECME algorithm described in the next
section.

Proposition 1 Given the hierarchical representations (18)–(20), we have

[
y j
ui j

] ∣∣
∣∣(τ j , zi j = 1) ∼ Np+q

( [
Aβ i
β i

]
, τ−1

j

[
Σ i AΩ i

Ω i AT Ω i

] )
.

It follows that

[
y j
ui j

] ∣
∣∣∣(zi j = 1) ∼ tp+q

( [
Aβ i
β i

]
,

[
Σ i AΩ i

Ω i AT Ω i

]
, νi

)
.

A simple algebra shows that

ui j | ( y j , τ j , zi j = 1) ∼ Nq(β i + γ T
i ( y j − Aβ i ), τ

−1
j (Iq − γ T

i A)Ω i ), (4)

τ j | ( y j , zi j = 1) ∼ Gamma

(
νi + p

2
,
νi + δi j

2

)
, (5)

where γ i = Σ−1
i AΩ i and δi j = ( y j − Aβ i )

TΣ−1
i ( y j − Aβ i ) denotes the

Mahalanobis distance between the observation y j and the component mean Aβ i .
Subsequently, multiplying (4) by (5) and then integrating out τ j implies

ui j | ( y j , zi j =1) ∼ tq

(
β i + γ T

i ( y j − Aβ i ),

(
νi + δi j

νi + p

)
(Iq − γ T

i A)Ω i , νi + p

)
.

Proof The proof is straightforward and, hence, is omitted. ��

3 Parameter estimation

3.1 ML estimation via the ECM and ECME algorithms

The EM algorithm has several appealing features including simplicity of implementa-
tion andmonotone convergencewith each iteration increasing the likelihood.However,
the EM algorithm is not straightforward for ML estimation of the model (2) because
its M-step is computationally difficult. To go further, we exploit a variant of the EM
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algorithm, called the ECME (Liu and Rubin 1994) algorithm. The ECME algorithm
proceeds to estimate parameters by replacing theM-steps of EMwith eitherCM-steps
that maximize a sequence of constrained Q functions, as in ECM, or CML-steps that
maximize the correspondingly constrained actual likelihood function. Furthermore,
it shares the appealing features of EM (Dempster et al. 1977) and ECM (Meng and
Rubin 1993), and possesses typically a faster convergence rate than either EM or ECM
in terms of CPU time and/or number of iterations.

For notational convenience, we denote the allocation variables by Z = (Z1, . . . ,

Zn), the scaling variables by τ = {τ1, . . . , τn} and unobservable factors by U =
{ui j ; i = 1, . . . , g, j = 1, . . . , n}. Treating (Z, τ ,U) as the “missing” data and
combining them with the observed data y as the “complete” data, the complete-data
log-likelihood function of Θ based on hierarchy (20) is

�c(Θ| y, Z, τ ,U) =
g∑

i=1

n∑

j=1

zi j {logπi + logφp( y j | Aui j , τ−1
j Di )

+ logφq(ui j | β i , τ
−1
j Ω i ) + logG (τ j | νi/2, νi/2)}, (6)

where φp(·|μ,Σ) stands for the pdf of the p-variate normal distribution with mean
vector μ and covariance matrix Σ , and G (·|a, b) denotes the pdf of the gamma distri-
bution with mean a/b and variance a/b2.

Let Θ̂
(k) = ( Â

(k)
, π̂

(k)
i , β̂

(k)
i , Ω̂

(k)
i , D̂

(k)
i , ν̂

(k)
i , i = 1, . . . , g) be the estimates of

Θ at the kth iteration. In the E-step of ECME, one needs to evaluate the conditional

expectation of (6) at Θ = Θ̂
(k)

, which is the so-called Q-function:

Q(Θ|Θ̂(k)
) = E(�c(Θ| y, Z, τ ,U)| y, Θ̂ (k)

). (7)

All necessary conditional expectations in (7) can result from Eq. (21). The CM-steps,
each of whichmaximizes the constrained Q-function or the constrained log-likelihood
function over Θ step-by-step but conditioned on some vector functions of Θ being
estimated at its previous step, proceed as follows:

CM-step 1 forECMandECMEFix νi = ν̂
(k)
i (i = 1, . . . , g), and update π̂

(k)
i , Â

(k)
,

β̂
(k)
i , Ω̂

(k)
i , and D̂

(k)
i by maximizing (7), which gives

π̂
(k+1)
i =

n∑

j=1

ẑ(k)i j /n,

Â
(k+1) =

⎧
⎨

⎩

n∑

j=1

g∑

i=1

ẑ(k)i j τ̂
(k)
i j y j

[
β̂

(k)T
i + ŷ(k)T

i j γ̂
(k)
i

]
⎫
⎬

⎭

×
⎧
⎨

⎩

n∑

j=1

g∑

i=1

ẑ(k)i j

[
(Iq − γ̂

(k)T
i Â

(k)
)Ω̂

(k)
i + τ̂

(k)
i j û(k)

i j û
(k)T
i j

]
⎫
⎬

⎭

−1

, (8)
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β̂
(k+1)
i = β̂

(k)
i +

∑n
j=1 ẑ

(k)
i j τ̂

(k)
i j γ̂

(k)T
i ŷ(k)

i j
∑n

j=1 ẑ
(k)
i j τ̂

(k)
i j

, (9)

Ω̂
(k+1)
i =

∑n
j=1 ẑ

(k)
i j τ̂

(k)
i j γ̂

(k)T
i ŷ(k)

i j ŷ(k)T
i j γ̂

(k)
i

∑n
j=1 ẑ

(k)
i j

+ (Iq − γ̂
(k)T
i Â

(k)
)Ω̂

(k)
i ,

(10)

and

D̂
(k+1)
i = diag

⎧
⎨

⎩
D̂

(k)
i

(
I p − Σ̂

(k)−1

i D̂
(k)
i

)

+ D̂
(k)
i Σ̂

(k)−1
i

( ∑n
j=1 ẑ

(k)
i j τ̂

(k)
i j ŷ(k)

i j ŷ(k)T
i j

)
Σ̂

(k)−1
i D̂

(k)
i

∑n
j=1 ẑ

(k)
i j

⎫
⎬

⎭
, (11)

for i = 1, . . . , g. When Di s are assumed to be the same across components, that
is D1 = · · · = Dg = D, the updated formula for D is given by

D̂
(k+1) = diag

⎧
⎨

⎩

∑n
j=1

∑g
i=1 ẑ

(k)
i j D̂

(k) − ∑n
j=1

∑g
i=1 ẑ

(k)
i j D̂

(k)
Σ̂

(k)−1
i D̂

(k)

∑n
j=1

∑g
i=1 ẑ

(k)
i j

+
∑n

j=1
∑g

i=1 ẑ
(k)
i j τ̂

(k)
i j D̂

(k)
Σ̂

(k)−1
i ŷ(k)

i j ŷ(k)T
i j Σ̂

(k)−1
i D̂

(k)

∑n
j=1

∑g
i=1 ẑ

(k)
i j

⎫
⎬

⎭
.

CM-step 2 for ECM Solve the roots of the following equation, which maximizes
the constrained Q-functions:

log

(
νi

2

)
+ 1 − DG

(
νi

2

)
+

∑n
j=1 ẑ

(k)
i j (κ̂

(k)
i j − τ̂

(k)
i j )

∑n
j=1 ẑ

(k)
i j

= 0, i = 1, . . . , g.

(12)

As ν1 = · · · = νg = ν, we obtain ν̂(k+1) as the solution of the following equation:

log

(
ν

2

)
+ 1 − DG

(
ν

2

)
+

∑g
i=1

∑n
j=1 ẑ

(k)
i j (κ̂

(k)
i j − τ̂

(k)
i j )

n
= 0. (13)
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CM-step 2 for ECME Alternatively, to improve the convergence, we may exploit
the advantage of the ECME step. Given current estimates, calculate ν̂

(k+1)
i by

maximizing the constrained log-likelihood function, i.e.,

ν̂
(k+1)
i = argmax

νi

⎧
⎨

⎩

n∑

j=1

log
(
π̂

(k+1)
i tp( y j | Â(k+1)

β̂
(k+1)
i , Σ̂

(k+1)
i , νi )

)
⎫
⎬

⎭
. (14)

Similarly, as the case of common dfs (ν1 = · · · = νg = ν), we calculate

ν̂(k+1) = argmax
ν

⎧
⎨

⎩

n∑

j=1

log

( g∑

i=1

π̂
(k+1)
i tp( y j | Â(k+1)

β̂
(k+1)
i , Σ̂

(k+1)
i , ν)

)
⎫
⎬

⎭
.

(15)

Note that the solutions of Eqs. (12) and (13) involve a one-dimensional search for
νi one at a time or for the common df ν, which can be directly done by employing
the uniroot routine built in the R package (R Development Core Team 2009) con-
strained within an appropriate [2, 200] interval. The procedures (14) and (15) can
be implemented straightforwardly using the optim routine with starting value ν̂

(k)
i at

each iteration. Given a set of suitable initial values Θ̂
(0)

recommended in the next
subsection, the ECM or ECME algorithms are performed to obtain the ML estimates
Θ̂ = ( Â, π̂i , β̂ i , Ω̂ i , D̂i , ν̂i , i = 1, . . . , g) iteratively until the user’s specified stop-
ping rule is achieved. While carrying out quantitative analysis of experimental data,

the stopping rule �(Θ̂
(k+1)| y) − �(Θ̂

(k)| y) < 10−6 is employed.

3.2 Initialization

The EM-type algorithm, like other iteration-based methods, may suffer from com-
putational difficulties such as slow or even non-convergence. In particular, when the
data are too sparse or the dimension of latent factors is over-specified, a poor choice

of initial values Θ̂
(0)

may lead to the convergence in the boundary of the parameter
space. To alleviate such potential problems, a simple way of automatically generating
a set of suitable initial values is recommended below:

1. Perform a K -means clustering (Hartigan and Wong 1979) initialized with respect

to a randomstart. Specify the zero-one component indicator Ẑ
(0)
j = (ẑ(0)1 j , . . . , ẑ

(0)
g j )

according to the K -means results. The initial values of the mixing proportions πi s
are taken as

π̂
(0)
i = n−1

n∑

j=1

ẑ(0)i j , i = 1, . . . , g.
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2. Let y(i) be the data in the i th subpopulation (group). Perform the ordinary factor

analysis (Spearman 1904) for y(i). The initial estimate of Ω̂
(0)
i is chosen as the

sample variance–covariance matrix of the estimated factor scores.
3. Obtain the factor loading matrix for y(i) via the principle components analysis

(PCA; Flury 1984) method, denoted by B̂
(0)
i for i = 1, . . . , g. Set the initial

estimate of A as

Â
(0) =

g∑

i=1

π̂
(0)
i B̂

(0)
i Ω̂

(0)−1/2

i .

4. As for initial estimate of β i , set β̂
(0)
i = Â

(0)
ȳi , where ȳi is the sample mean vector

of y(i), i = 1, . . . , g.
5. The initial estimate of Di is obtained as a diagonalmatrix formed from the diagonal

elements of the sample covariance matrix of y(i). As D1 = · · · = Dg = D, we

set D̂
(0)

as a diagonal matrix formed from the diagonal elements of the pooled
within-cluster sample covariance matrix of g partitioned groups of the data.

6. With regard to the initial estimate of νi , we recommend setting a relatively large
initial value, say ν̂

(0)
i = 50, ∀i , which corresponds to an initial assumption of

near-normality for the component factors and errors.

When implementing ECM and ECME for the EMCtFA, it is advantageous to use
the Sherman–Morrison–Woodbury formula (Golub and Loan 1989) to avoid inverting
any large p× p matrix. That is, the inversion of the p× p matrix (AΩ i AT + Di ) can
be undertaken using the following result:

(
AΩ i AT + Di

)−1 = D−1
i − D−1

i A
(
Ω−1

i + ATD−1
i A

)−1ATD−1
i ,

which involves only the inverse of q × q matrix on the right hand side. It follows
that γ i can be rewritten as D−1

i A(Ω−1
i + ATD−1

i A)−1. Moreover, to obtain the
unique solution of A, as suggested by Baek et al. (2010), we perform the Cholesky

decomposition on Â such that Â
T
Â = CTC , where C is the upper triangular matrix of

order q. If we replace Â by ÂC−1, then the orthonormal estimate of A, which satisfies

the condition of Â
T
Â = Iq , can be obtained. Consequently, the limiting estimates β̂ i

and Ω̂ i are given as Cβ̂ i and CΩ̂ iCT, respectively.
Notably, the EM-based procedures can get trapped in one of themany local maxima

of the likelihood function, and such a phenomenon may still occur in the estimation
of the EMCtFA, especially when the number of latent factors is over-specified. To
circumvent such a limitation, we recommend initializing the algorithm with a variety
of slightly different initial values by performing the K -means allocation of subjects
with various random starts. The global optimum is obtained by choosing the one with
the largest log-likelihood value.
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4 Computational aspects

4.1 Clustering

The estimation of the component labels Z j and factor scores u j is meaningful for clus-
tering each observation y j to a suitable cluster and displaying the high-dimensional
data in lower-dimensional plots. Once the EMCtFA model has been fitted, a proba-
bilistic clustering of the data into g clusters can be determined based on the maximum
a posteriori (MAP) of component membership. That is, ẑ(k)i j evaluated at Θ = Θ̂ ,
denoted by ẑi j , indicates the estimated posterior probability that y j belongs to the i th
component. A natural assignment is achieved by assigning each observation to the
component which has the highest estimated posterior probability.

From Eq. (21), we calculate the estimated conditional expectation of component
factors ui j corresponding to y j evaluated at Θ = Θ̂ , denoted by ûi j . Then, it is
straightforward to estimate the j th factor scores corresponding to y j as

û j =
g∑

i=1

ẑi j ûi j . (16)

Let z̃i j = 1 if ẑi j ≥ ẑh j for h �= i , i, h = 1, . . . , g, and z̃i j = 0 otherwise.
Alternatively, substituting z̃i j for ẑi j in (16) leads to the other posterior estimates
of factor scores. Therefore, we can display the p-dimensional observations y j in a
q-dimensional subspace by plotting the corresponding values û j . In addition, the fitted
values of y j can be calculated as ŷ j = Âû j .

4.2 Classification for new subjects

It is also of interest to classify a new subject using the EMCtFA approach. For this pur-
pose, let ynew = (ynew1, . . . , ynewp)

T be the observations for a new subject. Suppose
that the model for ynew can be written as:

ynew = Aui,new + ei,new with probability πi (i = 1, . . . , g),

where the joint distribution of ui,new and ei,new satisfies the assumption (3). We now
turn our attention to diagnose the allocated group of the new subject and characterize
its predictive density. The work of classification of the new subject is based on a fitted
(i) conditional distribution of the observed vector ynew given an appropriate predictor
of factor scores (conditional prediction) and (ii) marginal distribution of the observed
vector ynew (marginal prediction).

Given the model parameters, the strength of allocating ynew to the i th group is
characterized by a predictive density p( ynew|A, θ i ) whose estimated expression is
discussed below. The predictive density of ynew is
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p̂( ynew|Θ) =
g∑

i=1

πi p̂( ynew|A, θ i )

in which the predictive density belonging to component i , say p̂( ynew|A, θ i ), can be
estimated by the conditional and marginal predictions described below.

For conditional prediction, the predictive density p( ynew|A, θ i ) is the conditional
density of ynew given the estimated factor scores ûi,new. Specifically,

p̂( ynew|A, θ i ) = tp( ynew|Aûi,new, Di , νi ).

As in (16), a suitable estimate of component factors is the conditional mean of ui,new
which is calculated using an expression analogous to û(k)

i j with y j , ui j and Θ̂
(k)

replaced by ynew, ui,new and Θ̂ , respectively.
For marginal prediction, the predictive density p( ynew|A, θ i ) is the marginal den-

sity of ynew, where the term ‘marginal’ reflects the fact that the component factors
ui,new are integrated out from the joint density of ( yTnew, uTi,new)T. We, thus, have

p̂( ynew|A, θ i ) = tp( ynew|Aβ i ,Σ i , νi ).

Subsequently, the estimated allocation of the new subject to group i is according
to a combination of the prior probabilities π1, . . . , πg and the estimated values of
predictive densities p̂( ynew|A, θ1), . . . , p̂( ynew|A, θ g), given by

P̂i,new = πi p̂( ynew|A, θ i )
/
p̂( ynew|Θ), i = 1, . . . , g.

Within the likelihood-based approach, all model parameters are estimated by the ML
estimates Â and θ̂ i . Consequently, based on the MAP classification rule, the feature
vector ynew is classified to group i if P̂i,new > P̂h,new, for h �= i, i, h = 1, . . . , g.

4.3 Outlier identification

Identification of outliers is an important issue because few outliers may produce poor
clustering results. Just like the use of allocation indicator zi j , introducing the scaling
variable τ j not only facilitates the implementation of the EM-type algorithm but also
enables the interpretation of the estimated model. As can be seen from (8) to (11),
τ̂

(k)
i j can be treated as the weight in the estimation of A,β i ,Ω i and Di . Because
the estimated value of τ j is negatively correlated with the estimated Mahalanobis

distance δi j between y j and Aβ i , a small value of τ̂i j (i.e., τ̂
(k)
i j at convergence) would

downweight the influence of the corresponding subject, which can be thought of as a
suspected outlier.

To explicitly identify which subject should be an outlier, we follow the idea of
Lo and Gottardo (2012) to establish a convenient rule of judging a subject with the
associated τ̂ j = ∑g

i=1 z̃i j τ̂i j value smaller than a critical value, where z̃i j = 1 if
ẑi j ≥ ẑh j for h �= i , and z̃i j = 0 otherwise. From a viewpoint of hypothesis testing,
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if we treat τ̂ j as a test statistic, then the critical value should be theoretically selected
based on some standard distributions. Given zi j = 1, y j follows a p-dimensional
t-distribution with location Aβ i , scale-covariance Σ i and df νi , and the Mahalanobis
distance δi j follows pF (p, νi ), where F (a, b) denotes a F distribution with dfs a
and b. Thus, τ̂ j has a scale Beta distribution, say (1+ p/νi )Beta(νi/2, p/2). Under
a significance level of α, the critical value is determined as:

c = (1 + p/νi )Bα(νi/2, p/2), (17)

whereBα(·, ·) denotes the α quantile of the Beta distribution such that P(B ≥ Bα) =
1 − α. Consequently, given y j belonging to the i th group, if τ̂ j < c then the corre-
sponding subject will be treated as a suspect outlier.

4.4 Model selection

To choose the preferred models and determine the numbers of latent factors q and
components g, we adopt two widely used model selection criteria. Let �max be the
maximized log-likelihood, and m the number of free parameters in the model. The
Bayesian information criterion (BIC; Schwarz 1978), defined as

BIC = m log n − 2�max,

is the most commonly employed approach to identifying which model gives the best
approximation to the underlying density. Accordingly,models with smaller BIC scores
are preferred. Under certain regularity conditions, Keribin (2000) presented a theoret-
ical justification for the efficacy of the BIC in determining the number of components
of a mixture model. Fraley and Raftery (2002) gave some empirical evidence that the
BIC performs well in model-based clustering tasks.

As argued by Biernacki et al. (2000), BIC may not be an ideal way of identifying
the number of clusters. Indeed, BIC favors models with more mixture components to
provide a good density estimation of the data. Instead they proposed an alternative
promisingmeasure for estimating the proper number of clusters based on the integrated
completed likelihood (ICL), calculated as:

ICL = BIC + 2EN (z),

where EN (z) = −∑n
j=1

∑g
i=1 ẑi j log ẑi j is the entropy of the classification matrix

with the (i, j)th entry being ẑi j . In the same vein, the smaller the ICL value, the better
the model. Typically, the ICL is preferable to BIC for EMCtFA as it leads to fewer
factors since it places a higher penalty on more complex models. Nevertheless, there
is no unanimity about which criterion is always the best, and a combined use of BIC
and ICL could be of help in screening reasonable candidate models.

From a classification viewpoint, the accuracy of classification can be taken as an
alternativemeasure of fitness of data in some sense. Tomeasure the agreement between
a clustering of the data and their true group labels, we employ the leave-one-out (LOO)
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cross validation of the MAP classifications against the true group labels to evaluate
the correct classification rate (CCR; Lee et al. 2003) and the adjusted Rand index
(ARI; Hubert and Arabie 1985). The LOO technique is to take one out of subjects and
use the remaining subjects as the training data to update the parameters. The CCR,
which ranges from zero to one, is computed as the proportion of correct clusters with
respect to the true group labels. As a measure of class agreement between two data
clustering, the ARI has an expected value of zero under random classification and
takes the maximized value one for perfect classification.

5 Application: the Italian wine data

Forina et al. (1986) reported 28 chemical and physical properties of three types of
Italian wine, including 59 Barolo, 71 Grignolino and 48 Barbera. A subset of p = 13
of these variables (listed in the first column of Table 2) for n = 178 wines is available
as part of the gclus package (Hurley 2004) of R software. The proposed techniques
are demonstrated on the analysis of these Italian wines.

For the sake of comparison, in addition to the EMCtFA model, the MFA, MtFA,
MCFA, MCtFA and EMCFA (extended MCFA, which is the original MCFA with
distinct variance–covariance matrices for latent factors) approaches are also fitted to
the data. Prior to analyses, each variable is standardized to have zero mean and unit
standard deviation. For the MtFA, EMCtFA, and MCtFA, the assumption of equal
and unequal dfs is imposed on the component factors and errors. Henceforth, their
counterparts in the case of equal dfs, say νi = ν for all i , are named as the ‘MtFAe’,
‘EMCtFAe’, and ‘MCtFAe’, respectively. For supervised learning of the wine data
with three class labels, the nine candidate models are fitted with g = 3 components
and q varying from 1 to 8, where the choice of maximum q = 8 satisfies the restriction
of (p − q)2 ≥ (p + q), as recommended by McLachlan and Peel (2000, Chapter 8).
All models are trained by the proposed ECME algorithm over five trials of different
K-means initializations. The optimal solution is the one providing the largest log-
likelihood value.

Table 1 reports the number of model parameters m and the values of BIC and ICL
for the considered 72 scenarios in terms of the specification of models and the number
of factors q. In light of BIC and ICL, the t-based models outperform their normal
counterparts except for the case of q = 1. Furthermore, it is evident that both criteria
give a consistent preference in the study, that is, the best fit to the data is EMCtFAe
(q = 4), followed by EMCtFA (q = 4), MCtFA (q = 4) and MCtFAe (q = 4).

The resulting ML estimates of common factor loadings Â and component means
μ̂i = Âβ̂ i (i = 1, 2, 3) together with the empirical sample means ȳi for the best
model are presented in Table 2. Herein, the names for the cluster components are
matched with the shortest Euclidean norm of the distance between the sample class
means ȳi and the estimated component means μ̂i , for i = 1, 2, 3. The estimates
of mixing proportions are π̂1 = 0.331, π̂2 = 0.382 and π̂3 = 0.287, respectively,
and they are very close to the proportions of the corresponding groups of wine data.
Besides, the estimate of common df (ν̂ = 12.658) is somewhat small, signifying that
the heavy-tailed behavior exhibits within the multi-dimensional Italian wine data.
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In the model-based classification framework, the main objective is to estimate the
group memberships for new subjects with unknown group memberships. To empiri-
cally demonstrate the performance of the proposed classification procedure described
in Sect. 4.2, we calculate the CCR and ARI of the classification results based on both
marginal and conditional predictions. Table 3 tabulates the classification performance
of the best fitting models under each class of EMCtFA and MCtFA models, respec-
tively, namely EMCtFAe (q = 4) and MCtFA (q = 4). The EMCtFAe model shows
a slight improvement on the classification accuracy by virtue of having higher CCR
and ARI values compared to the MCtFA.

Figure 1 shows the 3D scatter-ellipsoids plots of two triple estimated factor scores
calculated using (16) for the best model, where the colors of the dots correspond to
the true class labels. It is interesting to see that the three groups of wines can be
visually separated by mapping the estimated factor scores to a low-dimensional space.
Furthermore, it is of interest to detect outlying observations based on the identification
rule described in Sect. 4.2. With a significance level of α = 0.05, any subject with the
estimated τ̂ j which is less than the critical value c = 0.552, calculated by (17), will
be deemed as an outlier. Using such an identification rule indicates that Barolo wine
14, Grignolino wines 62, 69, 70, 74, 96, 97, 111 and 122, and Barbera wines 159 and
160 can be thought of as potential outliers. The finding is consistent with the estimate
of df, reflecting that the wine data have longer-than-normal noises.

6 Simulation

In this section, we conduct a small-scale simulation study to compare the perfor-
mance of the initialization method presented in Sect. 3.2 (Method 1) with the strategy
described in the Appendix of Baek et al. (2010) (Method 2). The computation was
carried out byR package 2.13.1 in win 64 environment of desktop PCmachine with
3.40 GHz/Intel Core(TM) i7-2600 CPU Processor and 8.0 GB RAM. We generate
100 artificial data points in R10+p2 of size n = 100 and 250 from a five-component
EMCtFA model with q = 2. The dimension for noise variables p2 is set to 0 and 20,
so the numbers of total variables p are equal to 10 and 30, respectively. Specifically,
the artificial data were generated from

y j = (AT
1 , AT

2 )Tui j + ei j with probability πi , (i = 1, . . . , 5),

in which the distributional assumption for (uTi j , e
T
i j )

T satisfies Eq. (3). The presumed
model parameters are the same with those specified in Section 6 of Baek et al. (2010),
except for νi = 5 for i = 1, . . . , 5. Each simulated dataset was fitted with the EMCtFA
(g = 5, q = 2) by implementing the ECME algorithm with parameters initialized
once from each of the two methods. A total of 100 independent replications were run
for each simulated case.

Table 4 lists the averages of required numbers of iterations, consumed CPU time (in
seconds) until convergence, initial and maximized (converged) log-likelihood values,
and the CCR and ARI values for clustering results along with the number of non-
convergence cases (in parentheses) over 100 trials. Those non-convergence cases occur
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due mostly to the singularity of scale-covariance matrices Σ i during the iterations
before convergence. Figure 2 displays the typical evolvements of log-likelihood values
for one of the 100 replicates for each considered case. The numerical results indicate
that the initialization ofMethod 1 leads tomuch faster convergence speed as it requires
smaller numbers of iterations and less CPU time thanMethod 2.Meanwhile,Method 1
canobtain higher starting log-likelihoodvalues (closer to themaximized log-likelihood
values upon convergence of ECME) and maximized log-likelihood values as well as
better classification performance in terms of CCR and ARI. This study illustrates the
effectiveness of our recommended initialization procedure. The poor performance of
Method 2 is largely attributable to the fact that it generates inappropriate initial values

simply from the standard normal distribution for each entry of Â
(0)

.

7 Conclusion

The MtFA approach indeed provides a more flexible formulation of the component
scale-covariances and the component means without restrictions. Hence, it is useful
for analyzing the high-dimensional data with heavy tails or atypical observations. In
this paper, we have studied a comparable approach, named as EMCtFA, using a factor-
analytic representation of themultivariate t-component scale-covariancematriceswith
common factor loadings and distinct covariance matrices for latent factors and errors.
The EMCtFA approach, which contains the MCtFA as a special case, achieves a
compromised reduction in the number of parameters, particularly when the dimension
p and the number of clusters g are not small. This approach is very well suited for
clustering a wide variety of high-dimensional data into several clusters and provides
robustness (less sensitive to outliers) in the sense of resulting number of clusters.

In this work, we have developed two computationally flexible EM-type algorithms
and offered a simple way of generating suitable initial values for carrying out ML
estimation of the EMCtFA model within a convenient complete data framework. The
utility of the proposed approach has been demonstrated through experimental studies
based on the real and simulated datasets. Numerical results have also shown that the
proposed techniques perform reasonably well for the Italian wine data and outperform
some common existing approaches.

To alleviate some limitations associated with the deterministic likelihood-based
approach, one may resort to the VB approximation method working with maximiza-
tion of a lower bound on the marginal log-likelihood (Jordan 1999; Corduneanu and
Bishop 2001; Tzikas et al. 2008; Zhao and Yu 2009). The VB strategy has been shown
effective to simultaneous estimate model parameters and determine the number of
components for the MFA (Ghahramani and Beal 2000) and MCFA (Wei and Li 2013)
models. Therefore, it is worthwhile to establish a novel VB scheme for learning the
EMCtFAmodel under an approximated Bayesian paradigm. Besides, it is of interest to
extend the EMCtFA based on a broader mixture family of component densities such
as the multivariate skew t (Lin 2010; Lee and McLachlan 2014) and the canonical
fundamental multivariate skew t (Lee and McLachlan 2016) distributions.
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Appendix A: Hierarchies and some properties for the EMCtFA

For the convenience of developingML estimation, we have the first hierarchy ofmodel
(2) with assumption (3):

y j | (zi j = 1) ∼ tp(Aβ i ,Σ i , νi ),

Z j ∼ M (1;π1, . . . , πg). (18)

Based on the characterization of multivariate t distributions, the second hierarchy can
be expressed as:

y j | (τ j , zi j = 1) ∼ Np(Aβ i , τ
−1
j Σ i ),

τ j | (zi j = 1) ∼ Gamma (νi/2, νi/2), (19)

Z j ∼ M (1;π1, . . . , πg).

From (3), the zero covariance of (uTi j , e
T
i j )

T implicitly implies that ui j | τ j and ei j | τ j
are assumed to be independent. The third hierarchy can be written as:

y j | (ui j , τ j , zi j = 1) ∼ Np(Aui j , τ
−1
j Di ),

ui j | (τ j , zi j = 1) ∼ Nq(β i , τ
−1
j Ω i ), (20)

τ j | (zi j = 1) ∼ Gamma (νi/2, νi/2),

Z j ∼ M (1;π1, . . . , πg).

Furthermore, we need the following conditional moments of latent variables for E-
step of the ECM and ECME procedures. According to hierarchies (18)–(20), it follows
from Proposition 1 that

ẑ(k)i j = E(zi j | y j , Θ̂ (k)
) = π̂

(k)
i tp( y j | Â(k)

β̂
(k)
i , Σ̂

(k)
i , ν̂

(k)
i )

/
f ( y j |Θ̂(k)

),

τ̂
(k)
i j = E(τ j | y j , zi j = 1, Θ̂

(k)
) = (ν̂

(k)
i + p)/(ν̂(k)

i + δ̂
(k)
i j ),

κ̂
(k)
i j = E(log τ j | y j , zi j = 1, Θ̂

(k)
) = DG

(
ν̂

(k)
i + p

2

)

− log

(
ν̂

(k)
i + δ̂

(k)
i j

2

)

,

û(k)
i j = E(ui j | y j , zi j = 1, Θ̂

(k)
) = β̂

(k)
i + γ̂

(k)T
i ŷ(k)

i j ,

Ψ̂
(k)
i j = E(ui juTi j | y j , zi j = 1, Θ̂

(k)
) = û(k)

i j û
(k)T
i j + τ̂

(k)−1
i j (Iq − γ̂

(k)T
i Â

(k)
)Ω̂

(k)
i ,

(21)
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where Σ̂
(k)
i = Â

(k)
Ω̂

(k)
i Â

(k)T+ D̂
(k)
i , γ̂ (k)

i = Σ̂
(k)−1

i Â
(k)

Ω̂
(k)
i , δ̂(k)

i j = ŷ(k)T
i j Σ̂

(k)−1

i ŷ(k)
i j ,

ŷ(k)
i j = y j − Â

(k)
β̂

(k)
i , and DG (·) is the digamma function.
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