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Abstract Differential equations (DEs) are commonly used to describe dynamic sys-
tems evolving in one (ordinary differential equations or ODEs) or in more than one
dimensions (partial differential equations or PDEs). In real data applications, the para-
meters involved in the DE models are usually unknown and need to be estimated from
the available measurements together with the state function. In this paper, we present
frequentist and Bayesian approaches for the joint estimation of the parameters and of
the state functions involved in linear PDEs. We also propose two strategies to include
state (initial and/or boundary) conditions in the estimation procedure. We evaluate the
performances of the proposed strategy through simulated examples and a real data
analysis involving (known and necessary) state conditions.

Keywords Linear partial differential equations · Parameter estimation ·
Penalized tensor B-spline smoothing · State conditions

1 Introduction

Dynamic systems are commonly described by differential equations (DEs). In real data
applications, the parameters involved in the DEmodels are usually unknown and need
to be estimated from the available measurements together with the state functions. For
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one- dimensional applications, this estimation task has been extensively discussed in
the statistical literature. The most popular procedures rely on nonlinear least squares
(Biegler et al. 1986). These approaches are computationally intensive and often poorly
suited for statistical inference. An attractive alternative is represented by the penalized
smoothing framework introduced by Ramsay et al. (2007). This approach can be
viewed as a generalization of the L-spline theory (see, for example, Schultz and Varga
(1967) among others) where the flexibility acquired by a high-dimensional B-spline
basis expansion of the state function is counterbalanced by a penalty term expressed
using the (set of) ODE(s) that needs to be solved. The fidelity of the final fit to the
hypothesized differential model is then tuned using an ODE-compliance parameter.
Jaeger andLambert (2013) adapt the latter approach to a full Bayesian framework. This
Bayesian alternative offers two major advantages with respect to the frequentist one:
the selection of the ODE-compliance parameter becomes automatic and uncertainty
measures about the parameters can readily be obtained using MCMC.

When dealing with dynamics evolving in more than one dimension, partial dif-
ferential equations (or PDEs) are usually invoked. Inference in models specified by
PDEs has not received a large attention in the literature. Here, we discuss statistical
approaches to deal with dynamics described by linear PDEs. Such equations are used
to model large classes of phenomena (e.g., diffusion, heat transfer, price of financial
instruments, etc.). The general form of a deterministic PDE system can be written as:

F
(
x1, . . . , xp, u,

∂u

∂x1
, . . . ,

∂u

∂xp
,
∂2u

∂x21
, . . . ,

∂2u

∂x1∂xp
, . . . , θ

)
= 0, (1)

where u (x) is the state function evaluated in x = (
x1, . . . , xp

)� ∈ R
p and θ is the

vector of PDE parameters. In this paper, we further assume that F is a linear function
in u and its derivatives. Examples of this kind of PDE can be found in Eqs. (14),
(15). In particular, we are interested in estimating the vector of unknown θ using a set
of measurements ζ = ζ (x) = u (x) + ε where ε can be considered as a vector of
independent normally distributed measurement errors.

Xun et al. (2013) have proposed frequentist and Bayesian approaches for the esti-
mation of parameters in model driven by PDEs. The frequentist approach could be
viewed as a multidimensional generalization of the framework introduced by Ramsay
et al. (2007). The state function solving the differential problem is approximated using
tensor product of B-splines. The flexibility of the approximation is then counterbal-
anced by a penalty related to the PDE. In the frequentist proposal, the PDE penalty is
represented by the integral of the PDE operator evaluated at the B-spline approxima-
tion to the solution. In their Bayesian approach, they combine a PDE-based penalty
with one defined using finite differences [i.e., through a roughness penalty in the spirit
of Eilers and Marx (1996)]. In this paper, we present both frequentist and Bayesian
frameworks for the joint estimation of the parameters and the state function involved
in PDEs. Our methods generalize those proposed in one-dimensional applications by
exploiting a PDE-based penalized tensor product B-spline smoothing approach.

B-splines belong to the class of sieve estimators (Grenander 1981; Shen 1997), i.e.,
they approximate an infinite dimensional parameter spacewith a finite surrogate.Many
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sieves are available for function approximation. Our choice in favor of tensor product
B-spline bases can be justified bydifferent arguments. First, they are a fundamental tool
in the P-spline framework (Eilers andMarx 1996, 2003, 2010) towhichwe refer in this
paper. Indeed, analogously to P-spline smoothing approaches, we approximate (e.g.,
smooth) the observed multidimensional dynamics using a rich set of bases functions
and shrink the estimated coefficients through a suitable penalty term. The PDE-based
shrinkage termwe adopt in what follows frames into a B-spline collocation scheme for
the (numerical) solution of partial differential equations (see e.g., Golub and Ortega
1992). Within the available bases functions for the approximation of DE solutions,
B-splines are particularly convenient. Indeed, their compact supports lead to sparse
collocationmatrices that can be treated by fastmatrix algorithms and allow for efficient
storage strategies (see e.g., Botella 2002). Furthermore, their piecewise polynomial
nature avoids numerical interpolation distortion effects (such as Runge’s phenomena,
see, for example, Epperson (1987) for a detailed discussion on this aspect).

The choice of the optimal number of spline knots and their location has been
extensively discussed in the literature and both frequentist and Bayesian selection
approaches have been proposed. Examples include the stepwise selection method of
Friedman and Silverman (1989) or the Bayesian procedures introduced by Denison
et al. (1998) and Biller (2000). The knot selection process is usually computationally
demanding and some alternatives are available. For example, within the ODE-based
penalized smoothing framework (Ramsay et al. 2007), it is common to locate a knot at
each data point. However, for multidimensional analyses, this strategy becomes easily
impractical given the tensor product nature of the bases functions involved in the esti-
mation process and the amount of available measurements. For this reason, following
the suggestion by Eilers and Marx (2010) within the general P-spline framework and
by Xun et al. (2013) for PDE-based smoothing, we prefer to define the spline basis
over a generous number of knots at fixed locations. This a priori spline knot selection
can eventually be guided by prior knowledge about the nature of the phenomenon
under study (such an example is discussed in Sect. 5).

Finally, when the dimensionality of the estimation problem increases (e.g., by deal-
ing with PDEs defined over more than two dimensions), tensor product B-splines can
be computationally suboptimal if compared with other alternatives such as radial basis
functions. Radial bases are defined by kernels evaluated exclusively over the observed
domain. This allows for efficient surface smoothing algorithms (see e.g., Holmes and
Mallick 1998; Smith et al. 2002). On the other hand, few classes of compact ker-
nel functions are available (see e.g., Wu 1995) and they require the definition of a
“compactness” parameter to be selected by some optimality criterion (e.g., AIC, BIC
or cross-validation). This selection step can be computationally expensive. For this
reason, we recommend to use tensor product B-splines when dealing with differential
problems involving up to three dimensions.

This paper is organized as follows. In Sect. 2, we introduce our estimation proce-
dures. Both frequentist and Bayesian approaches can be adapted to include the state
(initial, boundary or mixed) conditions in the estimation process (see Sect. 3). In
Sect. 4, we evaluate the performance of our approach and compare it with competi-
tors using simulations. In Sect. 5, we illustrate our proposals dealing with a real data
analysis based on the Black and Scholes (1973) model. Our application represents one
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of those situations in which the state condition of the differential model (namely the
no-arbitrage conditions) is known and need to be satisfied to obtain reasonable results.
We conclude the paper with a discussion in Sect. 6.

2 Estimation of the unknown differential parameters for unknown state
conditions

In this section, we introduce the PDE-based penalized tensor product B-spline smooth-
ing approach both in frequentist and Bayesian frameworks without taking the state
conditions (initial and/or boundary) into account.

2.1 Frequentist approach

Assume that one observes
{
(ζ ; x) = (

ζn; x1,n, . . . , xp,n
) ; n = 1, . . . , N

}
describing

the evolution of the state function u whose dynamics is driven by (1). Our task is to
jointly estimate the state function u and the vector of parameters θ . Following Ramsay
et al. (2007), we suggest to exploit a DE-based-penalized smoothing approach. More
precisely, we denote by ũ (x) the B-spline tensor product approximation of u(x):

ũ(x) = (
Bxp ⊗ · · · ⊗ Bx1

)
c

= Bc, (2)

where Bxp is the (N × M) B-spline matrix defined on the p-th direction where a
generous numbers of internal knots were placed and c is the Mp-vector of spline
coefficients. The placement of the knots on the xp-direction can be either regular
or not. To simplify the notation, we suppose that the number of B-splines in each
direction is the same and equal to M . The spline coefficients are shrunk by adding (to
the log-likelihood) a multiple of a penalty defined using the PDE model (1):

PEN (c|θ) =
∫

F (x, ũ, θ)2 dx. (3)

This penalty term will be close to zero, for given PDE parameters θ , if the approxima-
tion ũ(x) to the solution of (1) is consistent with the PDEmodel. Aswe are considering
linear PDEs, this penalty is just a polynomial of degree 2 in the spline coefficients:

PEN (c|θ) = c�R (θ) c+ 2c�r (θ) + l (θ) ,

where R (θ) is the penalty matrix, r (θ) is the penalty vector and l (θ) is a constant
not depending on the spline coefficients. A fast procedure to compute these penalty
components is given in Appendix 3.

The compromise between data fitting and fidelity to the differential model can be
assessed using the penalized least square criterion:
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J (c|θ, γ, ζ ) = N

2
log (τ ) − τ

2
‖ζ − ũ (x)‖2 − γ

2
PEN (c|θ) , (4)

where τ is the inverse of the error variance (i.e., the precision ofmeasurement). Similar
to Ramsay et al. (2007), the estimation process for θ and c implies the iteration of
two profiling steps. First, for a given value of θ , τ and γ , the spline coefficients c are
estimated as the maximizer of J :

ĉ = argmax
c

J (c|θ, τ, γ, ζ ) =
(
τB�B + γ R (θ)

)−1 (
τB�ζ − γ r (θ)

)
. (5)

Then, given the last available spline coefficients ĉ, the PDE parameters θ and the
precision of measurements τ are estimated by maximizing:

H
(
θ , τ |ĉ, ζ ) = N

2
log (τ ) − τ

2

∥∥ζ − Bĉ
∥∥2 . (6)

The γ parameter weighs and controls the relative emphasis on goodness-of-fit and
on solving the partial differential equation. This parameter measures the confidence
that one has in the PDE to describe the dynamics in the system. Therefore, we
suggest to name it “PDE-compliance parameter”. As usual in penalized smoothing
approach, the parameter γ has to be selected in a higher optimization level (e.g.,
using cross-validation, AIC, etc.). Following the mixed model interpretation of penal-
ized smoothing splines (Ruppert et al. 2003), the PDE-compliance parameter can be
seen as the ratio of the variances of the residuals and of the penalty. For this reason,
we recommend to adopt the following EM-type procedure for the estimation (Schall
1991): update till convergence γ = σ̂ 2

ε /σ̂ 2
PEN with σ̂ 2

PEN = ‖PEN (c|θ)‖2/ED
where ED = tr(B(τ B�B + γ PEN (c|θ))−1τB�) is the effective dimension of
the smoother (Hastie and Tibshirani 1990). Note that for high PDE compliance the
effective dimension is usually much lower than the number of spline coefficients (an
example is presented in Fig. 2).

By estimating σ 2
ε as ‖ζ − ũ(x)‖2/(N −ED), it is possible to profile H

(
θ , τ |, ĉ, ζ )

w.r.t. the precision of measurements. Then, the function to be minimized to estimate
the unknown PDE parameters becomes:

H
(
θ |τ̂ , ĉ, ζ

) = − τ̂

2

∥∥ζ − Bĉ
∥∥2 . (7)

Confidence intervals for the PDE parameters cannot easily be obtained. Xun et al.
(2013) studied the asymptotic properties of the described PDE parameters and spline
coefficients estimators. When the hypotheses listed in their appendix A.2 hold, the
results presented by the authors can be extended to our procedure and their variance
formulas can be used to quantify uncertainty for the estimated unknowns. On the
other hand, following the suggestions by Rodriguez-Fernandez et al. (2006) and Xue
et al. (2010), we found that a reasonable approximation to the variance–covariance
of the θ parameters can be obtained using the observed pseudo-information matrix
given by the inverse of the Hessian of H in (7). Furthermore, approximated piecewise
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confidence bounds for the spline coefficients can easily be obtained in case of linear
PDE penalties. By defining the hat matrix as A = B(τB�B + γ PEN (c|θ))−1τB�
and noting that var(̃u(x)) ≈ τ̂−1

(
A�A

)
, the approximate pointwise confidence bands

for the estimated state function are computed as ũ(x) ± 2
√
diag[var(̃u(x))].

Alternatively, as suggested by Xue et al. (2010), inference on the model parame-
ters can be done using the weighted bootstrap (Ma and Kosorok 2005). Differently
from empirical bootstrap, this approach suggests to solve repeatedly the minimization
problem in Eq. (6) by weighting the residual sum of squares by a set of i.i.d. random
weights with unitary mean and variance.

2.2 Bayesian approach

We propose to adapt the frequentist proposal into a Bayesian framework. Contrary to
Xun et al. (2013), we will use the same PDE penalty than in the frequentist approach.
The penalty term in Eq. (4) appears as a quantity subtracted from the log-likelihood.
The log of the joint posterior yields the same fitting criterion using the followingmodel
specification: {

ζ |c, τ ∼ NN
(Bc; τ−1 IN

)
,

p(c|θ, γ ) ∝ exp
(
−γ

2
PEN

)
.

The corresponding prior distribution for the spline coefficients is a multivariate normal
distribution with mean V1

−1v1 and variance–covariance V1
−1 where v1 = −γ r (θ)

and V1 = γ R (θ).
Further prior distributions must be specified. For the precision of measurement

τ , it is convenient to take a gamma distribution G (aτ , bτ ) with mean aτ /bτ . If no
prior information is available on this precision parameter, we recommend either to set
aτ = bτ equal to a small value (e.g., 10−6) or to set aτ equal to 1.0 and bτ to a small
value (e.g., 10−6).

The PDE-compliance parameter appears as a precision parameter in the specifi-
cation of the prior distribution for the spline coefficients. It is therefore convenient
to take a gamma distribution G (

aγ , bγ

)
as prior. To express prior confidence in the

PDE model, we recommend to set aγ to one and bγ to a small value (e.g., 10−8).
Indeed, such a prior for γ is rather flat although it puts slightly more weight on value
of log10 (γ ) around − log10

(
bγ

)
(Jaeger and Lambert 2013, 2014).

For the PDE parameter θ , the prior distribution depends on contextual information
and is denoted by p (θ).

The log joint posterior distribution for (c, θ , γ, τ |ζ ) can be shown to be:

log (p (c, θ , γ, τ |ζ )) = N

2
log (τ ) − τ

2
‖ζ − Bc‖2

+1

2
log (det (V 1)) − 1

2

{
c�V1c− 2c�v1 + v1

�V1
−1v1

}
+ (aτ − 1) log (τ ) − bτ τ

+ (
aγ − 1

)
log (γ ) − bγ γ

+ log (p (θ)) . (8)
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It can easily be shown that the conditional posterior distribution for the spline coef-
ficients is a multivariate normal with mean V2

−1v2 and variance–covariance V2
−1

where V2 = τB�B + V1 and v2 = τB�ζ + v1:

c|θ , τ, γ, ζ ∼ NMp

(
V2

−1v2; V2
−1

)
.

The conditional posterior distribution for the precision of measurements and for the
PDE-compliance parameter is gamma distributed:

τ |c, ζ ∼ G
(
N

2
+ aτ ; ‖ζ − Bc‖2

2
+ bτ

)
,

γ |θ , c ∼ G
(
Mp

2
+ aγ ; c

�R (θ) c+ 2c�r (θ) + r (θ)� R (θ)−1 r (θ)

2
+ bγ

)
.

The conditional posterior distribution for the PDE parameters θ is not necessarily of
a familiar type. In addition, high posterior correlation could occur between the spline
coefficients c and the elements of θ .

FromEq. (8), it appears that the constant of normalization of the prior distribution of
the spline coefficients is given by the determinant of the PDE-penaltymatrix and hence
depends on the unknown θ parameters. Disregarding this normalizing constant when
computing the joint posterior is incorrect and leads to biased parameter estimates.

Finally, following Jaeger and Lambert (2013, 2014), we recommend to marginal-
ize the joint posterior distribution with respect to the spline coefficients, as given in
Appendix 1. This marginalization enables us to sample only the PDE parameters with
a mixing of the MCMC chains not hindered by the posterior correlation with spline
coefficients. The latter quantities can be sampled in a second step if found necessary.

3 Estimation of the unknown differential parameters including state
conditions

In many applications, state (initial and/or boundary) conditions naturally arise or are
implicitly defined by the observed dynamics (a clear real example is the analysis
discussed in Sect. 5). Such information can be included in the statistical framework
of Sect. 2.

Consider the general partial problem given by:

⎧⎪⎨
⎪⎩

F (x, u, θ) = 0,
∂(i)

∂x (i)
0

u(x0) = v (x0) ,
(9)

where x0 is a part of the domain where the state function u and/or its i th order deriva-
tives are forced to be equal to the function v. Using the B-spline approximation, these
conditions can be translated into:
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Hc = v (x0) , (10)

where H is a tensor product B-splinematrix evaluated on the desired support points. In
the frequentist framework, we propose two methods to introduce the state conditions
in the penalized smoothing approach: one is based on least squares and the other on
Lagrange multipliers. In the Bayesian setting, we only include the conditions using a
least square type strategy.

3.1 Frequentist approach

One way to take into account the conditions related to a generic PDE is to consider
them as an extra penalty. In the frequentist approach, the fitting criterion J is modified
as follows:

J (c|θ, γ, κ, ζ ) = N

2
log (τ ) − τ

2
‖ζ − ũ (x)‖2 − γ

2
PEN (θ |c)

−κ

2
(Hc− v (x0))� (Hc− v (x0)) . (11)

Note that with such a least square penalty, the approximated state function is not
forced to be exactly equal to the conditions. With this fitting criterion, the optimal
spline coefficients are computed as:

ĉ = argmax
c

J (c|θ , τ, γ, κ, ζ )

=
(
τB�B + γ R (θ) + κH�H

)−1 (
τB�ζ − γ r (θ) + κH�v (x0)

)
. (12)

Ifκ tends to infinity,we simply force the state function to be equal to the state conditions
at the prescribed points. On the other hand, if κ is equal to zero, then we just go back
to the case of Sect. 2.

Using Lagrange multipliers in a frequentist framework, we can force the smoothing
function to be exactly consistent with the conditions. The Lagrange function for our
constrained maximization problem is:

L (c,ω|θ, τ, γ, ζ ) = N

2
log (τ ) − τ

2
‖ζ − ũ (x)‖2 − γ

2
PEN (θ |c)

−1

2
ω� (Hc− v (x0)) , (13)

where ω is the vector of Lagrange multipliers. As in Currie (2013), the maximization
with respect to (c,ω) follows from the solution of:

(
τB�B + γ R (θ) H�

H 0

) (
c
ω

)
=

(
τB�ζ − γ r (θ)

v (x0)

)
.

The precision of measurement τ and the PDE parameters θ are then estimated in the
same way as in Eq. (6).
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3.2 Bayesian approach

In a Bayesian setting, the frequentist least squares strategy can be translated into the
following prior for the spline coefficients:

p (c|θ, γ, κ) ∝ exp
(γ

2
PEN − κ

2
(Hc− v (x0))� (Hc− v (x0))

)
.

This prior distribution corresponds to a multivariate normal distribution with mean
V1

−1v1 and variance–covariance V1
−1 where v1 = −γ r (θ) + κH�v (x0) and V1 =

γ R (θ) + κH�H .
One can either fix κ to a large value or consider it as random with a gamma prior

distribution G (aκ , bκ) where aκ is equal to one and bκ is equal to a small value (e.g.,
10−6). This choice for the prior distribution for κ translates prior confidence in the
state conditions. The log joint posterior distribution, the log marginalized posterior
distribution and all the conditional posterior distributions can be found in Appendix 2.
For the Lagrange multipliers strategy, the possible Bayesian translation would require
to project the spline coefficients on a parameter sub-space where the constraints are
met: we have no practical implementation of such a strategy for the moment.

4 Simulation

An intensive simulation study was set up to study the properties of the proposed
estimation strategies. We consider the following advection-decay partial differential
equation:

F
(
x1, x2, u,

∂u

∂x1
,

∂u

∂x2
, θ1, θ2

)
=ux1+θ1ux2 +θ2u=0, with x1 ∈ R, x2 ∈ R

+,

(14)

where uxi denotes the first derivative of the state function with respect to xi . The
general solution of (14) is:

u(x1, x2) = g(θ1x2 − x1) exp(−2θ2x1),

where g(·) is an unknown function to be determined from the state conditions. For
simulation purposes, we take θ1 = 0.5 and θ2 = 1.5 and consider the condition

u(x1, 0) = 1

1 + x21
(note that it is, in a certain sense, analogous to the terminal condi-

tion of the equation discussed in Sect. 5). Applying this state condition, the differential
problem has the following closed-form solution:

u(x1, x2) = exp(−3x2)

1 + 4x22 − 4x1x2 + x21
.

This expression contaminated with Gaussian noise is used to generate the data. This
PDE appears particularly attractive as it has a closed-form solution, enabling an objec-

123



268 G. Frasso et al.

tive comparison of the merits of the proposed constrained approaches with the nonlin-
ear least squares one (see Sect. 4.1.2). Furthermore, the estimation abilities of our pro-
posalswill be comparedwith themethods presented byXun et al. (2013) (seeSect. 4.2).

4.1 Simulation using the PDE-P-splines approaches

The data used for the simulations of this section have been obtained by adding a
Gaussian noise component to the analytic solution computed on the grid of equidistant
points x1,i in [−3, 3], x2, j in [0, 1] with i = 1, . . . , 50 and j = 1, . . . , 50. Different
levels for the precision of measurements τ = {10000, 400, 100} have been used to
simulate the data in such a way to obtain a low, medium and large level of noise in
the measurements. Figure 1 shows three possible simulated data clouds (the gray and
black level lines on the top of each perspective plot indicate cross-sections, i.e., the
contour plots, of the simulated data and of the PDE solution, respectively).

We are interested in evaluating the efficiency of the proposed estimation procedures.
For this reason,we consider 500 simulated datasets per noise level and compute, for the
frequentist approaches, the relative bias (in percent), the relative root mean squared
error and the standard deviation of the estimated differential equation parameters
togetherwith the precision ofmeasurements and the optimal compliance parameter.On
the other hand, with the Bayesian approaches, we compute the relative bias (based on
the posteriormean), the relative rootmean squared error (based on the posteriormean),
the mean posterior standard deviation and the 80 and 95 % coverage probabilities
(based on the HPD intervals).

In this simulation study, we stress our proposal with andwithout taking into account
the state conditions. For the frequentist procedures, we include the state conditions
using either the least squares or the Lagrange multiplier strategy. For the Bayesian
approach, we only investigate the least squares strategy as it enables to marginalize
the joint posterior distribution with respect to the spline coefficients. Finally, the per-
formances of our PDE-P-spline approaches are compared with those achieved using
a (frequentist) nonlinear least square estimation procedure (that requires an explicit
solution of the PDE and the knowledge of the state conditions).

In this simulation study, we consider non-equally spaced knots. We use a set of 28
spline basis in the x1 direction and 13 spline basis in the x2 direction. In both direction,
more knots have been located in the part of the domain where variation of the signal
appears more evident. The selection of knot location is not mandatory as a fine grid
of equidistant knots produces similar estimates (but requires higher computational
efforts). For the degree of the B-splines, we found that a useful rule of thumb is to set
it equal to the degree of the differential equation plus two. This heuristic rule can be
justified by examining the properties of B-spline functions and their derivatives. The
dth order derivative of a B-spline basis of degree q is obtained by finite differentiation
of spline functions of degree q − d. On the other hand, a qth degree B-spline is q − 1
times continuously differentiable over the domain span (see e.g., Golub and Ortega
1992; Dierckx 1995). By defining bases of degree equal to the order of the PDE
plus two, we ensure that the splines used to approximate the highest order derivative
appearing in the differential model are at least one time continuously differentiable
over the entire domain mesh.
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4.1.1 Simulation results when ignoring the state conditions

’The results of the simulation study described above are provided in Table 1. In this
case, the state conditions have not been taken into account in the estimation process.
The cited table shows some interesting features. The relative bias (in percent) for the

Table 1 Frequentist and Bayesian simulation for advection-decay PDE smoothing example with unknown
state conditions

True parameter values

θ1 = 0.5 θ2 = 1.5 τ = 1/σ 2

PDE-P-splines Frequentist

R-BIAS σ 2 = 0.012 0.082 % 0.0876 % 2.550 %

σ 2 = 0.052 0.447 % 0.474 % 2.220 %

σ 2 = 0.12 1.160 % 1.210 % 0.648 %

R-RMSE σ 2 = 0.012 0.004 0.005 0.039

σ 2 = 0.052 0.023 0.025 0.038

σ 2 = 0.12 0.047 0.681 0.029

R-STD σ 2 = 0.012 0.004 0.005 0.030

σ 2 = 0.052 0.022 0.025 0.031

σ 2 = 0.12 0.045 0.050 0.029

E(γ ) = {2.36E + 08, 5.20E + 07, 4.30E + 07}
PDE-P-splines Bayesian

R-BIAS σ 2 = 0.012 0.064 % 0.069 % 0.325 %

σ 2 = 0.052 1.140 % 1.350 % 0.148 %

σ 2 = 0.12 4.020% 4.790 % 0.090 %

R-RMSE σ 2 = 0.012 0.004 0.005 0.029

σ 2 = 0.052 0.025 0.028 0.029

σ 2 = 0.12 0.063 0.072 0.029

MPSD σ 2 = 0.012 0.002 0.007 0.028

σ 2 = 0.052 0.011 0.037 1.140

σ 2 = 0.12 0.023 0.078 2.840

CP80 σ 2 = 0.012 80.2 80.6 80.6

σ 2 = 0.052 76.6 73.4 80.0

σ 2 = 0.12 69.4 68.6 79.6

CP95 σ 2 = 0.012 94.4 93.4 92.6

σ 2 = 0.052 91.0 93.0 92.2

σ 2 = 0.12 89.2 87.0 93.2

E(γ ) = {1.48E + 07, 2.02E + 07, 3.01E + 07}
At the end of each section in the table, the average optimal compliance parameters (per each simulation
setting) are listed
Coverage probabilities in agreement with their nominal values are indicated by bold numbers
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estimated parameters is small both for the frequentist and Bayesian approaches. On
the other hand, looking at the estimated PDE parameters, the relative bias obtained
within the Bayesian framework is positive and larger (but still very small) than for the
frequentist estimates, while the estimates for the precision parameter look similar for
the two approaches. This could be explained by the choice of the posterior mean for the
point estimate. The RMSEs seem to be larger for the PDE parameters in the Bayesian
approach and larger for the precision of measurement in the frequentist approach.
This can be explained looking at the bias. On the other hand, based on the STDs,
the estimation procedure seems quite robust against the noise level. For the Bayesian
estimates, the mean posterior standard deviations tend to increase with the level of
noise for the PDE parameters and to decrease for the τ parameter. Only some estimated
coverage probabilities (at 80 and 95% level) are in agreement with the nominal values.
On the other hand, for a high level of noise, there is evidence of an under coverage
effect that could be explained by the fact that the true state conditions are ignored in the
estimation process. Finally, the (average) optimal compliance parameters γ shown at
the bottom of each sub-table are fairly large, indicating a strong (posterior) confidence
in the appropriateness of the differential model used in the penalty to describe the
observed dynamics. Figure 2 shows three possible smoothing surfaces coming from
this simulation study. As expected, if we do not include the state conditions in the
estimation procedure, the fitted surface tends to be sensitive to the level of noise,
showing wiggly parts for large values of x1 and moderate value of x2 (see first column
of Fig. 2).

4.1.2 Simulation results considering the state conditions

The results of the simulation study taking into account the state conditions through
a least square penalty (frequentist and Bayesian approaches with fixed κ = 106) or
Lagrange multipliers (only frequentist approach) are shown in Table 2. The simulation
performances obtained using a nonlinear least square solution of the state function are
also shown inTable 3 (asmade possible by the availability of a unique and explicit solu-
tionwhen state conditions are known). It appears that the relative bias for the estimated
parameters is small both for the frequentist and Bayesian approaches. One can notice
that the bias decreases in absolute value when the state conditions are introduced in the
estimation procedure in the case of moderate and high noise variability. For frequentist
estimates, the RMSEs seem to increase together with the level of measurement noise.
On the other hand, based on the STDs, the estimation procedure seems quite robust to
the noise level. The estimated standard deviations for the PDE parameters seem to be
smaller when the state conditions are ignored. Looking at the frequentist estimates, the
results obtained by imposing conditions using least squares or Lagrange multipliers
look really similar. For the Bayesian estimates, the mean posterior standard deviations
for the PDE parameters increase with the level of noise and decrease for parameter τ .
As expected, the mean standard deviation for the PDE parameters tends to decrease
when forcing the state conditions. The estimate coverage probabilities are in agreement
with the nominal values in almost all the simulation settings. This is probably due to
the fact that the conditions are explicitly specified and not estimated. The average opti-
mal compliance parameters γ given in each sub-table indicate a stronger (posterior)
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Table 2 Frequentist and Bayesian simulation for advection-decay PDE smoothing example considering
the state conditions

True parameter values

θ1 = 0.5 θ2 = 1.5 τ = 1/σ 2

PDE-P-splines Frequentist (Least squares)

R-BIAS σ 2 = 0.012 0.106 % 0.073 % 1.510 %

σ 2 = 0.052 0.146 % 0.051 % 2.120 %

σ 2 = 0.12 0.162 % 0.020 % 0.584 %

R-RMSE σ 2 = 0.012 0.003 0.004 0.062

σ 2 = 0.052 0.016 0.018 0.037

σ 2 = 0.12 0.032 0.668 0.030

R-STD σ 2 = 0.012 0.003 0.004 0.060

σ 2 = 0.052 0.016 0.018 0.030

σ 2 = 0.12 0.033 0.036 0.030

E(γ ) = {2.10E+08, 2.94E+07, 1.21E+07}
PDE-P-splines Frequentist (Lagrange)

R-BIAS σ 2 = 0.012 0.112% 0.061% 2.240%

σ 2 = 0.052 0.144 % 0.047% 2.130%

σ 2 = 0.12 0.159% 0.014% 0.578%

R-RMSE σ 2 = 0.012 0.003 0.004 0.037

σ 2 = 0.052 0.016 0.018 0.037

σ 2 = 0.12 0.033 0.668 0.030

R-STD σ 2 = 0.012 0.003 0.004 0.030

σ 2 = 0.052 0.016 0.018 0.030

σ 2 = 0.12 0.033 0.036 0.029

E(γ ) = {2.11E+08, 3.62E+07, 2.08E+07}
PDE-P-splines Bayesian

R-BIAS σ 2 = 0.012 0.016% 0.008% 0.278%

σ 2 = 0.052 0.242% 0.224% 0.233%

σ 2 = 0.12 0.814% 0.821% 0.228%

R-RMSE σ 2 = 0.012 0.003 0.003 0.029

σ 2 = 0.052 0.016 0.018 0.029

σ 2 = 0.12 0.034 0.037 0.029

MPSD σ 2 = 0.012 0.001 0.005 20.84

σ 2 = 0.052 0.008 0.026 10.14

σ 2 = 0.12 0.016 0.052 2.840

CP80 σ 2 = 0.012 80.2 80.2 80.6

σ 2 = 0.052 78.4 78.2 80.6

σ 2 = 0.12 78.0 79.0 79.8
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Table 2 continued

True parameter values

θ1 = 0.5 θ2 = 1.5 τ = 1/σ 2

CP95 σ 2 = 0.012 95.0 94.2 93.2

σ 2 = 0.052 92.4 93.4 93.0

σ 2 = 0.12 93.2 93.2 93.0

E(γ ) = {1.05E+08, 1.48E+08, 1.37E+08}
At the end of each section in the table, the average optimal compliance parameters (per each simulation
setting) are listed
Coverage probabilities in agreement with their nominal values are indicated by bold numbers

Table 3 Frequentist nonlinear least squares simulation for advection-decay PDE smoothing example

True parameter values

θ1 = 0.5 θ2 = 1.5 τ = 1/σ 2

Frequentist (NLS)

R-BIAS σ 2 = 0.012 0.050 % 0.054% −0.110 %

σ 2 = 0.052 0.061 % 0.071 % 0.216 %

σ 2 = 0.12 −0.070 % 0.140 % 0.865 %

R-RMSE σ 2 = 0.012 0.006 0.010 0.001

σ 2 = 0.052 0.027 0.050 0.007

σ 2 = 0.12 0.053 0.103 0.001

R-STD σ 2 = 0.012 0.006 0.011 0.001

σ 2 = 0.052 0.027 0.050 0.007

σ 2 = 0.12 0.053 0.103 0.001

confidence in the PDE model as descriptor of the dynamics of the observed state. The
middle and the third column of Fig. 2 show three smoothing surfaces extracted from
the simulation runs. Compared to the first column, the inclusion of the state condi-
tions forces the smoothing surface to be adherent to the closed-form solution over the
entire domain even for lower precision of the measurements. Finally, the performance
of the proposed frequentist and Bayesian estimation procedures are compatible with
those obtained through nonlinear least squares estimation of the parameters involved
in the analytic solution (see Table 3) in the exceptional case where it has a closed-form
expression.

4.2 Comparison of the PDE-P-splines approaches with the one by Xun et al.
(2013)

In their Bayesian framework, Xun et al. (2013) propose to use a penalty combining
PDE compliance (in a L2 sense) and smoothness of the estimated surface (achieved
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by an extra finite difference penalty). Our interest is to compare this proposal with
our Bayesian approaches (that are, as shown above, usable with known and unknown
state conditions). Furthermore, we also consider a modified version of the penalty
proposed by Xun et al. (2013) by discarding the extra finite difference penalties to
evaluate their impact on the quality of the estimates. The twomain differences between
our proposals and the one by Xun et al. (2013) lay in the construction of the penalty
term and in the inclusion of the normalizing constant of the prior distribution of the
spline coefficients when computing the conditional posterior for PDE parameters θ

(see Jaeger and Lambert (2013, 2014) for a discussion on this crucial point). Our
regularization term is defined as an integrated penalty ensuring the compliance of the
B-spline approximation to the proposed PDE. Note that our Bayesian approach is a
faithful “Bayesianization” of the frequentist one. As appears in Eq. (8), we compute
the normalizing constant of the prior distribution for the spline coefficients as the
determinant of the PDE-penalty matrix whereas Xun et al. (2013) approximate it by
a power of the smoothing parameters.

The data (100 samples) used for the comparison have been obtained by adding a
Gaussian noise component (σ 2

ε = 0.052) to the analytic solution of the PDE given
in Eq. (14) computed on the grid of equidistant points x1,i in [−4, 4], x2, j in [0, 1]
with i = 1, . . . , n, where n × m = 40 × 20, 60 × 40, 100 × 50, 200 × 100. The
performances of the competingmethods are shown in Table 4. It appears that our PDE-
P-spline approach (ignoring the state conditions) guarantees better performances than
the competing approach in terms of estimation bias. This is particularly evident when
looking at the results obtained for smaller sample sizes. For moderate sample sizes,
also the RMSEs obtained with the proposed procedure are smaller than those achieved
by the competitors. By comparing the estimation performances of the approach byXun
et al. (2013) with those obtained using an analogous model specification without extra
finite difference penalties, it appears that the extra smoothing term has the effect to
reduce the estimation bias. Finally, similar to the preceding discussion, the inclusion
of the state conditions increases the quality of the estimates.

In Figs. 3 and 4,we present the estimates obtained froma single set of data simulated
by adding a Student t noise (with 5 degrees of freedom) to the solution of Eq. (14).
Figure 3 shows the estimated surfaces obtained using the four approaches. For the large
sample sizes, all the estimated smoothing surfaces correctly estimate the underlying
state function.When the sample size decreases, our approaches seem to perform better
than the competitors in recovering the underlying signal. In the case where the sample
is limited, the approach of Xun et al. (2013) tends to oversmooth the data and seems
to put (relatively) lesser weight on the PDE-model penalty. On the other hand, for
the same simulation settings, the modified version of the model by Xun et al. (2013)
without the extra finite difference penalty seems to catch the signal slightly better than
its original formulation for intermediate sample sizes. The posterior densities for the
PDE parameters in the modified Xun et al. approach appear clearly left shifted (see
Fig. 4). The extra finite difference penalty mitigates the introduced bias. The inclusion
of the exact normalizing constant in the prior distribution for the spline coefficient
centers the marginal posterior distributions around the true PDE parameters. Finally,
whatever the sample size, the variability of the posteriors decreases when the state
conditions are introduced in the model.
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Fig. 4 Posterior densities for θ1 = 0.5 and θ2 = 1.5, respectively.Densities in gray are those obtained using
the approaches proposed by Xun et al. (2013) (gray curves: solid with the extra finite difference penalty and
dashed without it). Densities in black are those obtained using the PDE-P-splines approaches (solid curve
for unknown state conditions and dashed for known conditions). In each column, the posterior densities for
different sample sizes are depicted (n = 40 × 20 in the left column, n = 60 × 40 and n = 100 × 50 in
the middle columns and n = 200 × 100 in the right column). The data have been simulated by adding a 5
degrees of freedom Student t distributed noise to the analytic solution of the PDE in (14)

5 Application

In this section, we evaluate the performance of the proposed approaches in a real data
application.We analyze a set of prices of “option contracts” traded for different “strike
prices” and “maturities”. Cox et al. (1979), an option is a contract that gives the right,
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but not the obligation, to buy or sell a risky asset at a predetermined fixed price within
(American style) or at (European style) a given date (maturity of the contract). This
kind of financial instrument allows to bet on the future evolution of the price of the
underlying asset that can be another contract (a stock for example), a market index or a
commodity. Options and other related instruments are often called “derivatives” given
that their price is derived from the market value (S) of the underlying risky asset.

Two different kinds of option contracts are distinguished according to the right that
they give to the holder. “Call” options give the right to buy the underlying asset, while
“put” give the right to sell it. These characteristics determine the payoff functions at
maturity (T ):

C(S, T ) =
{
0 if ST ≤ E
ST − E if ST > E,

P(S, T ) =
{
0 if ST ≥ E
E − ST if ST < E,

where C and P indicate call and put prices, respectively, E is the strike price and ST
represents the market price of the underlying asset at maturity. The current price of
the contract is then computed as the present value of the payoff at maturity. For this
reason, it is necessary to describe the dynamics of the underlying asset to price the
derivative contract “written” on it.

The Black and Scholes (1973) framework is the most famous pricing model for
financial derivatives. This model assumes that the price of the underlying risky asset
follows a geometric Brownian motion in the instantaneous time with a constant stan-
dard deviation (volatility). This assumption leads to the well-known second-order
partial differential equation describing the value (C) of a call option:

F
(
S, t,C,

∂C

∂S
,
∂C

∂t
,
∂2C

∂S2
, σ

)
= ∂C

∂t
+ r S

∂C

∂S
+ 1

2
σ 2S2

∂2C

∂S2
− rC = 0, (15)

where the parameter σ identifies the “implied volatility” and r is the observed risk-free
interest rate (e.g., the Libor rate). For European options (exercise allowed only at a
given date), a closed-form solution can be found by introducing the following no-
arbitrage terminal (related to the expiration of the contract) and boundary conditions:

C(0, t) = 0,

C(S, t) ≈ S for S → ∞,

C(S, T ) = max(S − E, 0) = (S − E)+. (16)

This framework provides a concise and easy-to-interpret description of the price
dynamics. Here, we aim to approximate the solution of the Black and Scholes PDE
and estimate its implied volatility by including (15) and no-arbitrage conditions (16)
in a PDE-P-spline approach. Note that we share with the theoretical model the strong
assumption of constant (implied) volatility over strikes and maturities. On the other
hand, besides the limitations of the differential model, we believe that the proposed
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Fig. 5 Left upper panel: observations (red dots) and smoothing surface obtained applying a frequentist
constrained PDE-P-spline estimation procedure to the SP-500 European call option prices analyzed by
Carmona (2004). The prices in the plot are scaled by the observed strikes and the moneyness is defined
as the log of the ratio between the observed spot and strike prices. The estimated implied volatility was
σ̂ = 1.003E−01 with an optimal compliance parameter equal to γ̂ = 47385275. Left lower panel posterior
density of the implied volatility parameter (Bayesian estimates). Right panels histogram and qq-plot of the
residuals (call price scale)

estimation procedure is flexible enough to ensure appropriate estimates. As data exam-
ple, we consider the option prices already analyzed by Carmona (2004). The dataset
counts 2800 prices of European call options written on the SP-500 index and traded in
1993 with expiration between 1993 and 1994. The six variables included in the dataset
indicate the value of the index, the strike prices of the option, the time to expiration
(in fraction of year), the spot interest rate, the observed implied volatilities and the
prices of the options. This application is, in our opinion, particularly interesting since
it represents one of those cases in which the state conditions are known a priori (given
by theoretical arguments) and need to be taken into account to obtain valid estimates.

The raw data and the estimated smoothing surface (obtained through a soft con-
strained frequentist approach) are shown in Fig. 5. According to the option-pricing
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theory, the payoff surface was expected to be rather flat over large portions of the
domain mesh. For this reason, we decided to build our smoother using tensor prod-
uct of B-splines of degree four defined on 25 equidistant internal knots for both the
maturity and moneyness directions. The moneyness parametrization of the PDE (see
Piché and Kanniainen (2007)) allows for a simple formulation of the penalty and of
the necessary state conditions.

The estimated implied volatilities are equal to 1.003E-01 and 1.014E-01 for the
frequentist and Bayesian procedures, respectively, and are in agreement with the
median of the ones observed in the dataset. The frequentist 95 % approximate confi-
dence interval (obtained using the observed pseudo-informationmatrix) is [9.967E-02;
1.015E-01], while the corresponding credibility interval has been found to be equal to
[1.007E-01; 1.020E-01]. The lower left panel of Fig. 5 shows the posterior distribution
of the estimated parameter.

The estimates obtained using our approach show some desirable properties. First
of all, we are able to extrapolate the prices associated with strikes and maturities not
traded, and these estimates are consistent with the no-arbitrage constraints (due to the
compliance to the Black and Scholes model). Furthermore, it is particularly apprecia-
ble in real data analysis to have confidence/credible bounds for prices associated to
unobserved strikes and/or maturities. On the other hand, the PDE-P-spline approach
enables here to obtain point and interval estimates of the implied volatility consistent
with the Black and Scholes equation while ensuring a good performance in terms of
data fitting.

6 Discussion

In this paper, we propose a PDE-based penalized tensor product B-spline smoothing
approach to solve and estimate unknown parameters in partial differential equations.
Our aim was to introduce frequentist and Bayesian procedures to analyze data which
dynamics is defined over more than one dimension. Both approaches exploit a tensor
product B-spline approximation to the state function, while the consistency of the
final estimates to the PDE is ensured by PDE-based soft constraints. The compromise
between data fitting and consistency with the PDE is tuned by a compliance parameter.
As in Xun et al. (2013), we estimate the spline coefficients, the PDE parameters and
the precision of measurement using the available observations. If state conditions are
not included in the model, our frequentist approach and the one by Xun et al. (2013)
are comparable except that we provide an automatic EM-like procedure to select the
PDE-compliance parameter (Schall 1991). In our Bayesian approach, differently from
Xun et al. (2013), we use the same PDE-based penalty aswith the frequentist approach.
In particular, our Bayesian formulation takes into account the functional dependence
of the normalizing constant of the spline coefficient prior on PDE parameters. Note
that prior confidence in the PDE model is introduced by a specific choice for the prior
distribution of the compliance parameter.

Even if their knowledge is not strictly required for the application of the proposed
methods, we are able to improve the quality of the estimates by introducing state
conditions as extra constraints using either a L2 penalty or Lagrange multipliers. On
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the other hand, the introduction of these conditions sometimes arises naturally from
theoretical arguments and cannot be omitted during the estimation process. This is the
case for the real data analysis in Sect. 5.

We demonstrate through simulations that our PDE-P-spline approaches show desir-
able properties and that the inclusion of the state conditions has an influence on the
estimation performances by reducing the variability of the PDE parameters and by
improving the coverages of credible regions. For known state conditions, the appro-
priateness of our proposal has been tested by comparing its performances with those
achieved via nonlinear least squares inversion of the analytic state function.

We have also compared our Bayesian proposals with the one suggested byXun et al.
(2013). By simulating 100 synthetic data sets with Gaussian noise, we found that, the
introduction of an additional finite difference penalty, within their Bayesian approach,
helps to reduce the bias of the PDE parameter estimates and mitigates the effect of
the miss-specified constant of normalization in the prior of the spline coefficients.
The effectiveness of this correction seems to decrease with the size of the data sample.
This appears also from the results presented in Figs. 3 and 4 showing the approximated
state functions and the PDE parameters posterior densities obtained for a simulated
set of data with Student t distributed noise. For small sample sizes, the extra penalty
term tends to produce smoothing surface not compliant with the state function. These
undesirable features are not shared by our Bayesian proposal. Indeed, even for small
sample sizes and/or large level of noise, the use of the proper prior for the spline
coefficients ensures good fitting and estimation performances.

As real data application, we have analyzed the SP-500 call option prices discussed
in Carmona (2004). The proposed example represents one of those cases where the
state conditions (as defined in Sect. 3) are known (due to theoretical arguments) and
cannot be ignored to estimate a smoothing surface consistent with the necessary no-
arbitrage constraints. We used the well-known Black and Scholes model to define a
suitable PDE-based penalty. Despite its simplicity, the presented analysis based on the
Black and Scholes differential equation ensured satisfactory results in terms of signal
extraction and PDE parameter estimation.

Extensions of our approaches are possible. First of all, the analysis of the call
option prices in Sect. 5 could be improved. In the Black and Scholes model, the
volatility parameter is supposed to be constant over time. This assumption is obviously
unrealistic. One way to allow for time-varying volatility could be to adopt a more
realistic differential pricing model (e.g., the stochastic volatility model of Heston
(1993)). The same result could be achieved, in our opinion, by allowing the implied
volatility parameter in the Black and Scholes equation to vary (e.g., using P-splines)
with the time to maturity.

In this paper, we have considered only linear partial differential equations. Moving
to nonlinear partial differential equation would lead to additional challenges. First of
all, the PDE-penalty termwould no longer be a second-order homogeneous polynomial
in the spline coefficients. In the frequentist approach, this would require the use of
the implicit function theorem to estimate the PDE parameters (Ramsay et al. 2007).
On the other hand, in a Bayesian setting, the constant of normalization for the prior
distribution for the spline coefficients would not have an explicit form anymore.
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Appendix 1: Logarithm of the marginalized posterior distribution

The joint posterior distribution given in Eq. (8) is marginalized with respect to the
spline coefficients. The log of the marginalized posterior distribution can be shown to
be:

log (p (θ, γ, τ |ζ )) = N

2
log (τ ) − τ

2
ζ�ζ

+1

2
log (det (V1)) − 1

2
v1

�V1
−1v1

−1

2
log (det (V2)) + 1

2
v2

�V2
−1v2

+ (aτ − 1) log (τ ) − bτ τ

+ (
aγ − 1

)
log (γ ) − bγ γ

+ log (p (θ)) .

Appendix 2: Posterior distributions including the DE conditions by least
squares

The log joint posterior distribution can be shown to be:

log (p (c, θ , γ, κ, τ |ζ )) = N

2
log (τ ) − τ

2
‖ζ − Bc‖2

+1

2
log (det (V1)) − 1

2

{
c�V1c− 2c�v1 + v1

�V1
−1v1

}
+ (aτ − 1) log (τ ) − bτ τ

+ (
aγ − 1

)
log (γ ) − bγ γ

+ (aκ − 1) log (κ) − bκκ

+ log (p (θ)) .

From this joint posterior distribution, only two conditional posterior distribution can
be identified. The conditional posterior distribution for the spline coefficients is a
multivariate normal distribution:

c|θ , τ, γ, ζ ∼ NMp

(
V2

−1v2; V2
−1

)
.

where V2 = τB�B + V1 and v2 = τB�ζ + v1. For the precision of measurement,
the conditional posterior distribution is a gamma distribution:
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τ |c, ζ ∼ G
(
N

2
+ aτ ; ‖ζ − Bc‖2

2
+ bτ

)
.

The joint posterior distribution can be marginalized with respect to the spline coeffi-
cients. The log of the marginalized posterior distribution can be shown to be:

log (p (θ, γ, τ |ζ )) = N

2
log (τ ) − τ

2
ζ�ζ

+1

2
log (det (V1)) − 1

2
v1

�V1
−1v1

−1

2
log (det (V2)) + 1

2
v2

�V2
−1v2

+ (aτ − 1) log (τ ) − bτ τ

+ (
aγ − 1

)
log (γ ) − bγ γ

+ (aκ − 1) log (κ) − bκκ

+ log (p (θ)) .

Appendix 3: Elementary penalty elements

The penalty term, dealingwith linear PDEs, can be seen as a homogeneous polynomial
of second degree in the spline coefficients. The computations needed to construct the
penalty term are:

PEN (c|θ) = c�R (θ) c+ 2c�r (θ) + l (θ) .

The R matrix is given by the sum of a series of elementary penalty matrices:

P
jp,..., j1
i p,...,i1

=
∫ (

B
(i p)
p (xp) ⊗ · · · ⊗ B(i1)

1 (x1)
) (

B
( jp)
p (xp) ⊗ · · · ⊗ B( j1)

1 (x1)
)�

dxp . . . dx1,

=
∫

B
(i p)
p (xp)

(
B

( jp)
p (xp)

)�
dxp ⊗ · · · ⊗

∫
B(i1)
1 (x1)(B

( j1)
1 (x1))

�dx1,

= S(i p, jp)
p ⊗ · · · ⊗ S(i1, j1)

1 ,

where the matrix S(ih , jh)
h can be approximated using a trapezoidal rule. The r vector

can be constructed as the sum of elementary penalty vectors:

pi p,...,i1 =
∫

B
(i p)
p (xp) ⊗ · · · ⊗ B(i1)

1 (x1)dxp . . . dx1,

=
∫

B
(i p)
p (xp)dxp ⊗ · · · ⊗

∫
B(i1)
1 (x1)dx1,

= s
(i p)
p ⊗ · · · ⊗ s(i1)1 ,

as before, a trapezoidal rule can be applied to approximate the vector s(ih)h .
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